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ON THE ASYMPTOTIC PROPERTIES OF CERTAIN TWO-STEP PROCEDURES COMMONLY USED

IN THE ESTIMATION OF DISTRIBUTED LAG MODELS*

bv

o

bavid M. Grether and G.S. Maddala

I. Introduction

It is by now well known that in the presence of lagged dependent wvari-
ables and serially correlated errors certain two-step procedures are not
asymptotically as efficient as the method of Maximum Likelihood (ML). (See
Amemiya and Fuller [1], Maddala {4], Dhrymes [2].) 1In the present paper we
provide a convenient classification of the several twop-step procedures that
are currently in use, present some guidelines for choice betwsen the different
two-step estimators and show that the two-step procedures are imefficient
not only when compared with the ML method but under some conditicons when
compared with the first step of the two-step procedure. The plam of the
paper iz as follows., Section IT provides the clasgification of the two-step
procedures. In Section III we compare the asymptotic covariance wacrix of
the two-step estimators with that of the ML estimators and the first step
egtimators in the two=-step procedures. Section IV presents the concluszions

of the paper.

*This research has been financed partly by the MSSE Workshep on Lags in
Economic Behavior held at the University of Chicago in 1970 and partly by
grants from the Mational Science Foundation and the Ford Foumdation to the
Cowles Foundation for Research in Economics at Yale University.



II. A Classification of Two-Step Procedures

Consider the model
yt = ayt«l + th + ut (1)
u o =pu g +e o] <1 {(2)

where [et} are serially independent. There are two commonly used two-step

procedures.

Method 1: write (1) and (2) as
Y, = ayt_l + th + pu, ¢ + e, (3

In the first step we obtain consistent estimates &, B of the parametrers
@, B in (l)--say by the instrumental variable method. From these compute

the residuals

Ye =¥ ey = BX

)

t L

titut u for
Now substitute c~1 utwl

by ordinary least squares. This method of using estimates of residuals

in equation (3) and estimate eguation (3)

as regressors is often used e.g. by Taylor and Wilson's Three Pass Least
Squares [5], and Gupta [3], for the estimation of distributed lag models,
Method 2: 1In the first step we obtain, as before, consistent estimates

a, é of the parameters o, B in (l). Then from the computed residuals
we obtain & consistent estimate of the covariance matrix of the disturbances

u, o, and estimate (1) by generalized least squares. This is the procedure

discussed by Wallis [6].



Methods 1 and 2 differ in the way they treat the computed residuals
-~one uses them as regressors and the other uses them in obtaining an estimate
of the covariance matrix. We will show later that the former procedure
is not a desirable omne.

An alternative two-step procedure, discussed by Dhrymes (2] is the

following. Consider the distributed lag model

Ye " TooL %e * o “
where L 1is the lag operator defined by kat =X o0 Define
Ve T ToR % 3
we can write (4) as
¥, =ox + x§t_1 +.e, {6)

The two-step procedure is: obtain initial comsistent estimates & s A

of O, A . Compute

Substitute §t~1 for ;tol in (6) and estimate (6) by ordimary least
squares.
The procedure is similar to Methed 1 described above inasmuch as an

estimated value of one of the regressors is substituted for the regressor.;1

1This is also similar to the procedure followed in two-stage least squares.



In all these problems, there are two questions that arise, The first
is the question: when is the two-step procedure inefficient compared with )
the ML method? The second is the question of whether the two-step procedure
iterated further produces the ML estimates,

The first question which is discussed by Maddala [4] is easily answered
by looking at the information matrixez Suppose the model involves two sets
of parameters 8, and 92 ;s where 8; is the set of parameters of interest
and 8, are the 'nuisance’ parameters. 1In the model given by equations (1)
and (2) 8, congists of , P and 92 consists of p . Let V1 be the
asymptotic covariance matrix of the ML estimates of ¢, when the ‘nuisance’
parameters 92 are known. Let V2 be the corresponding covariance matrix
when the parameters 92 are not known but 91 and 92 are jointly estimated
by the method of ML. Finally, let V3 be the covariance matrix of a Z-step
estimator of 91 based on a consistent estimate of 92 « Lf the information
matrix is block-diagonal i.e. the ML estimates of 8y and 92 are uncor-
Otherwise V

related, then V =V

1%V =V e
being used in the sense that V

1<V <V,

and V, - V

{the ineguality

1" V2 2 4 &re negative semi-

definite).

Consider, for example, the follcwing model:

a 1 ‘
= — 7
Ve "T-aL *e Y T-oL %t 7
This is a distributed lag model with serially correlated errors. However,

2The information matrix is the expected value of the matrix of second partial
derivatives of the logarithm of the likelihood function were & negative sign.



one can easily verify that the information matrix is block»diagonalgathe

ML estimates of (&, A) and p are uncorrelated. Hence a two-step pro-
cedure based on a consistent estimate of p 1is asymptotically as efficient
as the ML estimate with p estimated or with p known. On the other hand;‘
in the case of the model given by equations (1) and (2} this is not the case,

Considering the fact that we can write equation (7) as:

1~ AL
e

Ve = O 1- oL “t

£ + %ytwl +

and comparing it with equations (1) and (2) which are: Vo 2Oy 1+ th

1
+1—pL € »

it might appear that the problems are the same--indeed that
the model given by (7) is more complicated than the model given by equations
(1) and (2). This is not the case. Thus, in any problem;, to appraise the
properties of two-step procedures, it is first desirable to check what the
information matrix looks like.

As to the second question- whether the two-step procedures iterated
produce the ML estimates;, this can also be checked from the equations to
be solved for obtaining the ML estimates of the parameters. S8ince this will
automatically be done in the course of evaluating the information matrix;
there is no additional burden involved. For the model given by equations
(1) and (2) it is easy to check that Method 2, iterated beyond the second
step produces ML estimates whereas Method 1 dees not.

As explained above, the two-step procedures differ in the way in which
the information about the serial correlation is used. It should be emphasized
as brought out in the discussion above that the relative merits of two-step

procedures and ML depend crucially on the model being estimated.



IIT. Asymptotic Efficiency of the Two-Step Estimators

First we will consider the case where the calculated residuals are used
as regressors. This procedure is obviously inefficient even in the case
where there are no lagged dependent variables.

Consider the model

Y, = th +u, , u =opu

¢ +e ol <1

t-1

where e, are serially independent with wvariance o’: . These equations
imply Ve = th +pu _; te o To simplify the algebra we will assume that
the X, series is first order autoregressive i.e. x, = Mtwl + Ve where
v, are serially independent. Let c»i be ghe variance of x .

The variance of the ordinary least squares (OLS) estimate of £

2
o
in this case is —_ L+ . The variance of the Ml estimate
2 2
o | (1=2p)(1-9p)
02
of B is “% __—__L_—_E o
Oy 1-2ph+p

Consider next the following two-step precedure. From the OLS esti-

mate ﬁ of B, obtain the calculated residuals ﬁt =Y Ext . In the

second step estimate P from a regression of y. on X and ﬁcwl .

Writing the model as:

Ve ¢ th + pU, 1 + p(utml = “c-l) + e,

we find that the variance of the two-step estimator of B 1s: (see Appendix

for details)
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1+ g 1 +wm£“___
l-p}\, 1"92

It can be easily verified that the two-step estimator of B 1is more effi-
cient than the OLS estimator of P but is less efficient than the ML esti-
mator. Specifically,

V(Z step estimator)
V{OLS estimator)

=1 - 92(1 = hz)

202 (1 = 2%)
(1'ph)(1“’pz)_1

V(2 step estimator) - o2, 2
V(ML estimator) [1-p (-2 1+

and

For A =p = 7 the last ratic is 2-25 and for A = p = -9 it is 7.2,
Thus for higher (positive) values of » and p which is likely to be the
case with observed economic time-series, this two-step procedure is considerably
less efficient than an alternative two-step procedure.

In this example it is well known that if we used the residuals to get
a consistent estimate B of p and used a quasi-first difference trans-
formation of ¥y and x based on B s the resulting estimate of B is

asymptotically as efficient as the ML estimate. Thus using the estimated

regsiduals as regressors is an inefficient way of taking account of the serial

correlation in the residuals., Similar conclusions hold Lf we have lagged

dependent variables. Since the algebra gets very complicated, we will con~

sider the case where the x, are serially independent. If they are serially

correlated, we would expect the two-step procedures to perform worse.



Consider the model given by equations (1) and (2)

Ve =W,y +Bx, +u, (1)
u, =pu._, te s <1 (2)

where e, are serially independent with a common variance ai . Let ai

be the variance of x, and A\ = ci/ci - If =x

¢ and xtg1 are used as

t .
instrumental variables to obtain consistent estimates of « and B in (1),

the covariance matrix of the instrumental variable (IV) estimator is

1 2
A 62 P
Viy = 2
1-p 2 1
B

el
r 2 2
1 4_&..“ L - 20p + ¢ _Ba H
l_az A 1-(12 h 1-0ap
VMLa ..,EQ. l....i'...ﬂi 0
A A
1 1
0 _
1 - ap 'J.mp2

Consider now the following two-step procedure: From the consistent

estimates (&, é) of (o, B) compute the residuals Gt =¥, " ayt_l = th .

Rext regress Yo o0 Y..q % and u . The covariance matrix of

t-1
this two-step estimator of (o, PB) 1is: (see Appendix for details)
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2 ] 9 ]
Va step = MyxA + pTABV  B'A + pABDC'A + pACDB'A

where -
B2 A1 + Ap) A
5 + 3 7 0 )
l1-qa (1 -ap)(l «a)(1~-p") (1 =-op)(1l -p)
- 2
At ol 0 1 0
A Z 0 -
(1 - ap)(l - p) 1=-p
2
o + AMp + Q) B
2 2 2
1-a° (1 =al -~ p%)(1 - ap)
2
B =0, 0 0
Ap - 0
(1 - ap){1l -~ p™)
B 0
1 0
C=7\04 1 p =+ °
x| P 2
% | 0 1
0 0

It is not possible to show that the two-step estimator is necessarily
more efficient than the IV estimator. The variance of the two-step esti-

mator of B is A, whereas the variance of the IV estimator of B is
A

82(1 - p%)

» Thus the comparison depends on Bz(l - pz) . As for the vari-

ance of o, 8ince the expressions are very complicated, we have computed
‘the magnitudes for selected values of the parameters to show that things
can go either way. Table I gives the variance of the two-step estimates of

¢ as compared with those of the IV estimator and the ML estimator,



TABIE I

Variance of a

B =1, o =1
o p V(2 step) VIV VMI.
.9 .95 1.14 1.02 .166
.95 .9 475 .526 .143
.05 .1 .102 .101 ,101
1 .05 . 100 .100 .100
A=l
.1 .9 .626 .526 .078
.9 .1 .021 .101 .021
.48 .53 .166 .139 127
.53 .48 144 .130 .122
5 «5 . 154 . 133 . 125
.9 .95 11.4 10.2 859
.95 .9 4.73 5,26 .556
.05 .1 1.03 1.01 1.00
. .05 1.00 1.00 .997
A = 1.0
1 .9 7.28 5.26 . 505
29 o1 125 1.01 . 119
48 «53 1.77 1.39 1.27
.53 .48 1.42 1.30 1.22
.5 .5 1.58 1.33 1,25
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A glance at the table indicates that the variance of the two-step
estimator of @ 1s higher than the variance of the IV estimaror of «
for the values of p > a . Both the estimators are considerably less effi-
clent than the ML estimator for high values of o and ¢ a. Even if o 1is
1arge; if p 1is small, the 2-step estimator of ¢ is almost as efficient
as the ML estimator and there is considerable gain in efficiemcy az compared
with the IV estimator. The results do not depend too heavily on the magni-
tude of the noise-signal ratio A .

Suppose that instead of using u as a regressor, we obtain a

t-1
consi;teﬁt estimate of the covariance matrix of the disturbances and estimate
the parameters in equatioh (1) by = generalized least squares (GLS) pro-
cedure based on the estimated covariance matrix, This is the two-step pro-
cedure discussed in Wallis [6]. The expression for the covariamnce matrix

of the two step estimator of (o, B) 133

Vo step = Va T VaQV, * V0,0,
- 2 /. 2 1t
1 +E_<l'='2(xg+g> _Ba
1-of 1-o? M
where vV, =
A 2
. Bo +03
A ™

3There is am error in the expression given by Wallis [6]. The second term
in his expression is ZVAQVA . The error consists in the definition of @

and in the omission of a term in expression (23), p. 567. When that is
corrected we get the expression given here. Our expression also checks
with the one given in Dhrymes [2].
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— - — -
1+3922 0 1 +;;!‘°"2 .
(1 - ap) (1 - ap)”
Q]_ = Q=
0 0 0 0

Ya

2,2
known, and A = oe/cx .

is the covariance matrix of the ML estimators of (&, B) when p is

Considering the fact ghat VA and ViV have an expression oi/ai and
that Q1 and Q are matrices of constants, it is easy to see that if
ci[oi is high, then the two-step estimator couid be considerably less effi-
cient than even the IV estimator. On the other.hand if ci/ci is-smaIL
unless pax 1is large, there could be a considerable gain in efficiency as
compared with the IV esﬁimator. Table II1 presents a comparison of the vari-
ances of « for the two-step, IV, ML and the Aitken (p known) estimators.
Table III shows the same information on the estimators for £ .

The tables illustrate the above remarks: for p and o 1large the
two step procedure is worse than the IV estimates, but when pad 1is not
large there can be a substantial gain in efficiency using the 2 step pro-
cedures. Note, also that the variances are quite sensitive to variation in
the noise-signal ratio A . For this model the information matrix is not
block diagonal;, so the estimates with p known (VA) have smallier variances
than the ML estimates which in turn have smaller variances than the two-
step estimators. For many values of the parameters the IV estimates are
nearly fully efficient. Since the x_ were assumed to be uncerrelated

t

using x as an instrument brings in an independent piece of information,

t-1

if X, is auto-correlated we would expect the IV estimates to be less effi-

cient.



TABLE II

Variance of &

(B =1)
o p v(2 step) VIV VA VHL
.9 .95 75.7 1.02 . 094 . 166
.95 .9 15.9 .526 .062 .143
.05 .1 .101 ,101 .092 .101
1 .05 .100 . .100 |. 091 .100
A=l
.1 .9 .116 .526 .077 .078
.9 .1 .021 .101 .020 .021
.48 .53 .157 .139 .109 .127
.53 .48 ,145 130 | .105 .122
.5 .5 .150 .133 .107 .125
.9 .95 2500, 10.2 o172 .859
.95 .9 33,4 5.26 .092 .556
.05 .1 1.03 1.01 .501 1,00
1 .05 1,00 1.00 497 .997
A= 1.0 |
.1 .9 6,45 5.26 453 .505
.9 .1 . 134 1.01 . 104 ,119
.48 .53 2.96 1,29 .480 1.27
.53 .48 2.38 1.30 .453 1.22
.5 5 2,60 1.33 469 1.25
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TABLE IXI
Variance of ﬁ
(B =1)
o p V(2 step) vIV VA VML
.9 .95 18,9 1.02 . 076 . 094
.95 .9 3.98 + 526 .071 091
.05 .1 . 100 . 101 . 100 . 100
| .05 . 100 .100 . 100 . 100
A=_,1
.1 .9 . 084 « 526 074 .075
9 .1 .099 . 101 .099 .099
.48 .53 . 105 »139 . 097 . 100
+53 .48 . 103 .130 . 097 . 100
.5 .5 . 104 .133 .097 .100
o9 .95 624,0 10.2 «569 .740
.95 .9 83,1 5.26 575 .690
.05 .1 1.00 1.01 .995 1.00
.1 .05 1.00 1.00 . 999 1.00
A=1,0
.1 .9 2.15 5.26 .664 677
.9 o1 .991 1.01 .991 .991
.48 «53 1.28 1.39 .863 .997
.53 48 1.18 1.30 .B582 .998
.5 .5 122 | 1.33 875 | 1,00
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Finally, to complete our illustrations, we have investigated the

following model considered by Dhrymes [2]:

where e are serially independent°4

To simplify the algebra we will assume that the x, series is serially
uncorrelated. What we are interested in showing is that the 2-step estimator
can be inefficient even when compared with the IV estimator.

1f x, and X .1
matrix of the IV estimator of (@, A\) is

are used as instrumental variables, the covariance

2| 1422 -2
(¢3 ¢4
Vo o= ~s
w "i A 1422
o ag

The covariance matrix of the ML estimator of (@, A) 1is given by

. o
)
2 1- A
S . S
ML = 72 )
gl =201 o 2+ 2%
1 - 22 (1- 222
_ d

4Dhrymes considers the case where the errors are first order autocorre-
lated but this is an unnecessary complication and hence we have considered
the case of seriall, uncorrelated errors. As mentioned earlier a look at
the information matrix reveals that serial correlation is not a problem.
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Consider now the two-step procedure described as follows: From the

preliminary consistent estimates G A) of (o A), define

At-1 {
Veal = axr PN X, .

1=0 L

Regress y, on X, and §t-1 to obtain the second-step estimates of «
and M . The covariance matrix of this two-step estimator is derived in

Chapter 5, Dhrymes [ 2]. It is given by

= 2 - v Yatat '
V2 step o [A - AQBG'A AGB'Q'A'] + AQV_ QA

1 0
1
where A=—
2 1 - hz
Ox 0 3
a
2 0 0 1 0
a%cx :
Q= 3 B =
1-X\ CtA
1 3 -2 1
1~ A o

After carrying out the necessary multiplications, we find that

2 3>

-A — 2.

2 a({l - A%)
ce
v -V, =—=
2 step Iv 2

Tx A NN g_f 4+ a8
a(l - LZ) a2(1 - h?)z
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The first diagonal element is always negative and the second diagonal ele-
ment is always positive (for hz < 1) . Thus the 2-step estimator is not
necessarily more efficient than the IV estimator (i.e. the first step of the

two-gtep procedure),

IV. Conclusions

Many two-step procedures have during recent years crept into econo-
metric literature. It is by now well known that though these twc-step estimators
are consistent, they are less efficient than the ML estimators. However;
there are two important questions that remain unanswered. How much loss
in efficiency is there in the use of the two-step procedure? Are the two-
step estimators at least more efficient than the IV estimato:s? We have
tried toc answer these two questions in this paper. |

As to the first question, we have given the relevant variances for
selected values of the parameters for two commonly used two-step progedures
in the case of the model given by equatioms (1} and (2). The indications
are that for high values of p , there could be a considerable loss of
efficiency. Since most économic time-series exhibit high positive serial
correlation {(p = .7 or .8) we do not advocate the use of 2-step procedures.
Furthet; we have also shown that the variance of the Z-step estimator can
in some cases be higher tﬁan the variance of the IV estimator and this is
so for plausible values of the parameters. Thus, not only are the 2-step
estimators less efficient than the ML estim#tors, but also less efficient

than the IV estimaters in some caseSQ:
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For models similar to the one given in equation {4) iuef_where the
information matrix is block diagomal appropriate two step procedures may
be as efficienty o5 ML. However, if asymptotic efficiency is at all a guide,
we would not recommend the use of the two-step procedures for models of
the type given in equations (1) and (2). In these cases it is better to
use the ML method. "Since computational ease is not a powerful argument
in favor of the 2-step procedures in the present age of high-gpeed com-
puters; we do not see any case for the use of these proceduresz in econo-

metric work.
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APPENDIX

1) Variance of the two-step estimator of P in the model
Vo = Px +u,
u =pu g te, lp| <1

Let E be the OLS estimator of B

4 =¥ - Pxp
In the second step we regress y. onm x, and LINERE Since Y, = th
~ -~ * .
+ou ,+ P(“t-l - ut-l) te. , if B, p* are the 2-step estimators,
we have
- -1l
_ % e
* 1.2 1 A [ tt ., p _ oA
B B T IX¢ T T*¥ U e fﬂ}_':xt(ut_l u )
JT = R _
Tu e
* _ 1 A 1 a2 t-1t , p A _oa
O T P%¢%e-1 T P%-1 *oAr Bl (el T Vg
2 "1
, oy 0
The plim of the expression in the first bracket is
2
0 Cy
1 TRl g BX (e " ¥y)
Hence /T(B* - B) ~ 55— + G v .
Oy Ty

But ut-l - ut_1 = (5 = fa)xt_1 , and Lf xt are first-order auto-

regressive with autocorrelation coefficient A, we have

IX e,

8 + /(B - B)pr

JT(E* - B) ~

quah‘




2 9 2
2.2 9
Hence vI/ I (B -ﬁ)]'-~; LV(D)en N ; - 7 fk =
+ U p
X
0_2—1 N 2.2
-2 | et 14 A
2 1 ~"pA 2
Oy l-p

2) Variance of the two-step estimator of

Let &,

Since

and 8%,
6* - &
p* <.

(@, B) in the model

Yo = Wy + th +u,
U =Yy *
B be the IV estimates and
ut =yt - C"Yt_l - th

Ye oy, .y + th + U,y +

oluy g

- ut-l) + e defining

= (Y_lx X, u-l)

Zl = (Y_l, x)

X = (x_

()

v x)

p* as the two step estimators, we have

8% = 8 ' TR 1 2 > 1
= 1(2'2) Z'{ee' +p"(u_y -u_;) +pe(u
p* - p

-G'-l)‘

+p(u_1 - G_l)e‘}Z(z'z)'l

20
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. 2 2_13. - . n A '
The first term is O, (:,r :) « Since -y - (zl)_l(a - 8) the

e ()

Noting that (3 - 8) = (x'zl)-lx'u the third term can be written as:

' el ' s N -
2'z -1 2'eu'x xZ.\" 1 zl,__lz z'z 1
T T T T T

Evaluating these expressions separately, we get the result mentioned in the

paper.
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