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THE ESTIMATION OF MIXED REGRESSION, AUTOREGRESSION,

MOVING AVERAGE AND DISTRIBUTED LAG MODELS*
by

E.J. Hannan and D.F. Nichollgk¥*

1. Introduction

In this paper, which is closely related to Hannan (1969), we shall

deal with the estimation of the parameters in the model
q T p '
(1) %B(;’)Y(nﬂj) + ?6(3)_xj(n) = ga(j)e(n-j) s @(0) =p(0) =1,

asguming that we have observations for n =1 ..., N on xj(n) and y(mn) .
We also make the following assumptions:
(1) The e(u) are i.i.d. (0, g2) .

(i1) All zeros of the z transforms

P j 1 3
g(z) = }ga(j)z ’ h(z) = rgﬂ(j)z

*The research described im this paper was carried out under grants from the
National Science Foundation and from the Ford Foundation.

**0f the Australian National University, Canberra, Australia.



lie outgide of the unit circle.

(i1i) The xj(n) come from infinmite sequences which satisfy, almost
surely,

N
-1
lim N~ ¢ x.(m)x, (m#n) = 7 (n) =7 .(-n) i, k=1, ..., v, n=0 1, ...,
it *x ik kj ’ ’

independently of the ¢(n) sequence.

As a consequence of (iii) we have
T .
in)
7 () = f_ﬂe aF O

The matrix F{\) with ij(k) ag entry in row j columm k is, of course,

a gpectral distributien matr‘ix.,

The condition (ii) is reasonable in the following sense. I1f the con-
ditien em g{z) is not imposed then it is possible to re-express the right
hand side of (1) in terms of a new orthogonal sequence with zero mean and
constant variasnce, which we call gl(n) , 80 that the right hand side of

(1) may be written

Py
gal(j)el(nwj) ’ pl 5 P
and for which gl(z) = ml(j)zj has all of its zeros on or outside of the

unit cii'cle. Moreover the glfn) will be the linear, "one step, prediction

errors for the right hand side of {1) so that they will be the linear pre~



diction errors for y(n) also when the xj(n) sequences are known, If
the data is @Gaussian then the gl(n) sequence will be independent also but

in any case it scems as reasonable to hope that they are independent as to
hope that the g(n) are soc. The exclusion of zeros om the unit circle
from g(z) 18 required because the other case causes difficulty with the
method which we present. It is felt that if there is a zero om the unit
circle the location of this zere will be known beforehamd, in which case
the method we introduce below can be modified to allow for it. The second
requirement in (ii) is necessary if there is to exist a stationary solutiom,

v(n) , to (1), which ié expressible in terms of the e¢{m-k), xj(nnk) R

k> 0. (Of course the possibility of stationarity will depend oa the
xj(n) sequences also.)

It seems preferablé“to treat the xj(n) as fixed sequences as in
(iii), rather ﬁhan to prescribe them stochastically as this makes the treat-
ment less restrictive. One could begin from a more general specification

such that the y{n) and x,{n) in (1) are residuals from a regression.

i

For example we might have

y(n) = F(n) + p'z(n)

where p 1is a vector of regression coefficlents and z(n) 1is a vector of
exogenous variables, so that it is ¥(n) which is observed. WUnder reasonable

conditions on the xj(n) in (1) it will be possible to.remove the effects

of z(n) first by regression and then to work with the estimates of y(a)

obtained from the computed regression and the results of this paper will



continue to hold. 1In this way non-stationary (trend) compoments in '?(n)
can be allowed for. We shall not deal with this explicitly below except
for the case where z({n) =1 (i.e. except for a mean correction). Of course
sach a z(n) could also be incorporated among the xj(n) but it will be
equally as efficient and computationally simpler to account for it by & mean
correction.

The equation (1) may be regarded as an altermative form of the disz-

tributed lag wmodel

— r 2]
(2) y(r) =u(n) + T §, ¥ ax (n-k) + u(n)
| je1 im0 K3
where
>k -1 3 P
%akz = h(z) ~, gﬂ(j)u(nﬂ) = ga(j)e(nﬂ)

and p(n) is a solution of the homogeneous equation

4
gﬁ(j)u(nwj) =0,

This solution decays to zero at an exponential rate as n increases., Im
particular we might have xj(n) = x(n-j) in which case we are dealing with

the general rational distributed lag model (we put y(m) = 0) ,

y(n) = gvh . x(n-j) + u(n)
o7

o -1¥ 5o q
(3) iéhjzj = {5(1) Iiza(j)z-" 1ll{§§(j)zj‘} ,



with u(n) as before. .Gf course the model (1) (or its equivalent form
(2)) covers also thg case of more than one exogenous variable but the gen-
erating functions (3) for these different variables will 81l have the ssme
denominator. (More general cases can be dealt with but lead to very com-
plex calculations.) A special casé is that where p =g and af{j) = B{j)
se that u(n) = g(n) . We shall discuss this special case further irn sec-
tion 3. In that section we shall alse discuse problems asseociated with
another way in which there might be uarecognized restrictions om the a{j)
and PB(j) ; namely that where af(p) or PB(q) is zero.

Finally in thiz section we shall describe the (restricted) semse im
which we shall spesk of (asymptotically) efficient estimates. If the ¢(n)

and xj(n) are Gausgiem spd the xj(n) processes are suitably restricted

we may set up the likelihood function and obtaln the maximum likelibheod
estimators. With small modifications these estimators may be showm te have
a limiting normal digtribution, afrer appropriate mormalizatiem. (This

is discussed inrﬁalker (1964). He deals basically with the univariate
case but it is clear that the results extemt te the multivariate case.)

For example the covariance matrix for the estimators '3' s Fé of § and

B in the model (2) becoues

- . )
) _Be™
- 2 1 - ae? -
@ < f,,,, ._,.,...sz.......,_.,.,lzl g BN . aFQ) P
P T




The existing maximum likelihood results would cover the case of only rather
special F(A) . We shall establish central limit theorems for our estimates;
under the conditioms (i), (ii), (iii) and shall speak of them as asymptotically
efficient if in their limiting distribution they have (4) as covariance
matrix (or have the analogous matrix as covariance matrix if, for exsmple,
the more general model (1) is being considered).

The likelihood equatioms are mon-linear amnd our estimates define a
sequence of iterations which, mo doubt, converge in some sense to these
maximum likelihood estimateors, but we do not establish that. By a direct
examination of our estimates we shall be able to establish more than can
at present be said to be true, im gemeral, of maximum likelihood precedures.
In particular we prove almost sure convergence amd are able to deal with

the rather general specification of the xj(n) in (iii) above. 6f course

we also prescribe an algorithm for computing our estimates.

The Estimation Procedure amd the Cemtral Limit Theorem.

The basic statistics on which our computations are based are the fimite

Fourier transforms

1 N inmt 1 N . inmt
Wy(wt) =ﬂ1"-fg nzly(n)e » Wj(wt} = ﬁ_:f—? nﬁlxj(n)e §

wt = zﬂtIH » t = 1, svay [1[2 N] E) j = 1, e 4y r .
We also put w(mwt) ﬁ'wgmt) and

JZmR W&th) = nyﬁnt) + iVy(mt) » JEN Wjﬁnt) = ujﬁnt}+ ivj(mt)



so that, for example,

N
X£.(0)CO8 °
nzl J( ) vy,

uj (wt) =

We shall often omit the w0, argument, even in summatiomns, for simplicity

of printing. It is the L LT vy » vy

blocks and the wy s W, are introduced se that formulae can be written

]

which are the bagic building

more perspicuously. We have omitted the terms for t = 0 sgince these are
annihilated by mean correctien while the othera are mot affected by this.

We introduce the symbol K > t=1 ..., N, which is to be 1 umnless

t= -;- ¥ (i.e. K even) when it iz to be% . We algso put

2 -1, 2 2
Iy = Iwyl = (2nN) (uy ‘l"._'?y) s

= -1 |
Ij =wywj = (2N} {'cj iqj} ’ ¢y = um, +vyvj R

TR

- -1
I’jk - ijk = (2rN) {cjk - iqjk] s Gg U + vjvk s gy B T VY o

vector 1 and the r2 quan-=

We arrange the r gquantities T j in a column

tities I in the matrix T‘x - Then

jk

1= (0 e~ 1), 1, = (0 {C, - 10,]

‘'where €, Gx ’ Q R Qx are defined in terms of cJ. s cjk 5 qj R ‘qjk

ag were 1 and I‘x in terms of I I

IR |



We also need the serial covariaamces

- o _q{H-n _ -

cy(n) = cy(-f'n) = (N-n) 1 L (y(m)-y)(y(mtn)-y) , m =0, L, ..., piq,
m=l

A F'S aluﬂn [ '. p—

cjk(a) &= ckj(am) e (N-n) mil(zj{m)oxj)(xk(m%xk) s J k=l o.., 3

m@, 1, ooy ﬁ,
Nen

Eyjm = éyj.,(e-n) - mwmf'izlmmr?)(zjcm)%zj) s 3= eeey T

nﬂﬂ, 1, evey p“"q.o

Our estimation procedure consists of two steps, of which omrly the

second is iterated.

Step 1. We may estimate B, § by means of

q. r ., - .
T e (pHK)B(K) + T o (p+i)e(k) = -c (i+p), J=1, ..., q
k=l 7 k=1 7 7

g, . . . . o
kﬁlcyj(k)ﬁ(k) + kifikwmk) e {0, J=1 ., r, BO)=L.

It is conveniemt to introdace the partitioned (row) vectors

pl = (Bﬂ 2 80)’ pu - (Bﬂ 2751!)
wherein B has B(j) in the 3°° place, j =1, ..., q (and similarly
for B) and § has’ §(3) in the jth place, j =1, ...; r (and similarly

for 3) . We may thus write the equations for E s 3 as



a acia

pﬂ"c £ s

We observe that G convefges-almost sureiyl to the matrix

(22 C o AEHA
.fw LJprickn gl [gl” 0 +Lﬁ&&l€} "fﬂ £ 8'dF (L) -

L3

2 3 e

on ™ 1| W . S P
G o L] Ll o o L] L] L4 © o o .D - o -3 o o L -3 o -] - L4 - L o o L] o L] - - *

™ e“‘ik)o ® T

-[ S dR(A)S . [ oary

- h o e
Here j, k wvary from 1 to ¢q sc that the top left hand corner part is
a q x q wmatrix., Simce F(A) is r x r the top right hand corner is qx r

and the bettom right hand corner is r x r . We have omitted the argument

expii

from g and h , for convenience.
Qur final asswmption is:
{(iv) & 1is non-singular.

For given ¥, h, h the vectors § making G singular will
lie in an (r-1) .dimensional subset se that a priori it seems most
unlikely that G will be éingular, In any case there is no shortage
of "instrumental variables™ to replace some or all of the y(m-p-j) ,
j=1, oo, § 3 xj(n) » 3=L .o P In particular the xj(nwk) s
k>0, could be used to replace the y(n-p-j) . The use of these
would have one decided virtue, namely that the equations give valid

estimates independent of the size of p so that if p 1is to be im-

lIn future we shall oftem omit the qualification "almost surely"” when we speak
of this mode of convergence.
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creased in a later calculation the initial estimate of p does mot
have to be recomputed. Thus if r =1, for example, we-might choose

to replace the first ¢q equations defining B by

ﬁcylck—j)éck) +e (DB =8, (D, §=0 oy a, BO=1.

Fer r > 1 1if ome wishes to use the xj(ﬁpk)_,' only, as ingtrumentals ome
will have to choose which set to adopt. Presumably the maximum lag will be
kept a¢ low as possible. We emphasize that Theorem 1 below will hold in
its entirety no matter what system of equations is used out of those just
discussed, provided omly that (iv) is replaced by an equivalent conditiom

easuring that these imitial equations for B have, asymptotically, a wunique

solutien,

Once having obtained our first estimate B we next form
iy q 1 s
» . t 1
(5) h<e "> w%ﬁv(])e , t=1 ..., 58,

ﬁhere, let us say, ho= éh + iiyj, We also form the autocovariances

e (m) = T BB (k=7) + T §{jls(k)e,, (n)
¥ 3, k=0 y i, kel ik

q T o ) '
+ % TR c (ati) +¢c, (-}, n=0, 1, ..., p.
j=0 kel (e “ky(* 9}

From these we obtain
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P :
FS 1 a - 2 1 .
fw(mt) = 21 {Cw(ﬁ) + zﬂglcw(n)cos “(ﬂt.} &= fw(wt) s £=1, 2, ..., EEﬂ] °

The function %w estimates the spectrum of

p ,
w(n) = Ega(j)e(ﬁ“‘j) .

it thus estimates & positive function. Nevertheless it may be negative,
perhaps for a value other tham some 0, - If and only if it is positive
may it be, uniquely, factored in the form
130 a2

FS "6 t 2 =~ 2 ~

t =Gy 1Tae T =G (e, a®) =1,
where all zeres of E(z) lie outside of the unit circle. We shall call
& the vector with a(j) in the jth place, j =1, cooy P . Since the
factorization may be troublesome (or impossible) we mow show how to avoid
it. We form

¥}

o 2 Ia 2, 22
© d -y 3 xtgces k| B+ j}ilamwjl Vi,

1%

2 2 Sl S 4 Stme can NI/ (9E 32
= Gn/8) T K foos ko, (| B] "2t + 8¢, 8 + §7cEy + 8,33/ (2nf )

The second formula is written in a form eliminating factors whose intréduction
causes needless computing which are absorbed into the factor lmfﬂz . ¥Now

let A have a(k-f) imrow k columm £, k £=1, ..., p, end a

have “a(k) invow k, k=1 ..., p and put
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A Aw]e

a=“’A a .

We have here ugsed & as a name for two separate estimates of « but
since only one of these will be computed and they occupy the same place
in later formulae no confusion will result. This completes Step 1, which

is not repeated in later iteratiocns.

Step 2. From the @(j) we have

let us say. If %w was not factored we estimate 02 by

58]
N 5% - = %

which is, of course, in agreement with the definition when %w is factored.

¥We next form

)2 :
Gy = M) T w2 cos(k=£w }/g|“, k =1 ..., q

(28]

e : 5.2 o S
w (2/N°) % xt[cj cos kmt: + qy sin kwt}ljg] , k=l ..., a9, f=a¥,
jml’ ..o’ r

(%]

a2 .
- (2,“2)2 Ktcij”g' y k=g, L=qtj, & j=1, ooy T .
1

Finally d e = d which completes the defimition (with some redundancy).

kg’
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g A -~

We define 62D to have dkz inrow k, column £ , k, £ =1, ..., q+ % .

LY Xa -~ ry -~

We define Uzd to have dk in row k where dk --dok s k=1, seey g+ 1 .

Thus,
= (2/8°) E K {ZﬂHIy cos ku%1/|gl , k=1, ..., q,

[1/2n] a
= (2/N2)- % Ktej/|g|2 s k=gt i, 3=, .., 7.

We now put

o) o pt d,

so that the factor 6? doeg not meed to be introduced (for the factors

2/H2) . We have defined P and & in the above manner becauge this definitien
iz needed later.
5(1)

O 2(1) ;

ﬂh as we used P to

compute h in (5) and we them compute A( ) (1) in the same way az we

We now use to compute

computed A, a , in and below (6) , but using h(l) 3 6(1) and 02|g|2/2ﬂ

1

in place of ié . In computing the a(l)(k) we may omit all constant factors,

guch as czIZTr, but it is convenient to retain the definition as given. We

now form

-1
o) _ ,;(1) ;(1) .

We next compute (1 whoze typical emtry is- w(k-4) , in row k ; column

£, vwhere k=1, .o.;, @3 £=1, cco, p and .
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N-1 -1k

w(k)=§z -1-;e t, -pFl <k <q -1
t=1 °
gh
Z{IIZN] - A LN LY A N A2»2
"W I e )CGTntgMIcos ket (B N E dsin ko / Q18] IRIT .

If p and q are not large it may be easier to compute (k) from the

following formula for it, namely,

~ =7 -~ ' ~ - '- - )
o) = 3= [T {ge™he ™1 e an
-TT

For p > q this gives

1 ? i
g - e, qrgt
i#j
i=1

~ -~ - p ~ - -
wlk) = ae)” ' 3 £ ) n
TS R

~

where the §3 are the zeros of g(z) . For q > p we may use

- ce=l 3 el k-1 8 -1 -
o) =B(q) "% {alz,) "2z, W(z, -z,) 1, -qFl <k < p-1, where thez,are
= 3 j 1 ] - i
3=1 1#q .
i=1

the zeroes of i(z).In particular for p=q =1 we get m(0) = {1 - (:."(1)[3(1)3;1 .

If p=2,9=1 and € 1s complex then w(0) = {a(2)[¢,+8(1)|%1"] while

@ & &~ =Yy
o(1) = <20(0)B(1) L 1 where B =x +1y, . It is not difficult to derive

simple explicit formulae in my case where p and q are small, as we have

said,
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Row

-.1 Y N
(znlc wlr om"l[.?.] -V yex |

0

1) _

1f £ 1is factored them A will not have been computed, in which case it

w
L (1) *p2
may be replaced by A . FPor computations we may cancel the factor o

securring before E with the factor 0'2 introduced in the definition of b .

Finally

-1
1) o 5 @

where the zéi) s ?fi(cl) are defined as were dl(:l) a(1) but using

E(l) - zﬁ(l)(k)exp'ikwt - gél) + i"ﬁél) in place of ; .

We shall shortly state a theorem which establishes the asymptotic effi~

(1)

ciency of &

Step 2. Thus we commence from E(l) s ﬁ(l) s '5(1) s f{(l) » this last being

got via (5) but using B'(l) in place of é . Of course f{(l) = ‘(1)-1-1 (1) .

The estimate cr2 irn {(7) 1is now replaced by

2 N
(7 F(L” _ 27 o !?f(l)w + 2Dy [21FDP
] =1 jm]_ j
[1/2N]

%\,IN

3=1 . y j=1 h]

, B'(l) but nevertheless it will often be necessary to iterate

(f(l)uyw (1)ver 2.5(1)(” )+@r(11)"" PO TN z 5(1’(5)v )2—] I3 1)l2‘
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(2) ~(2)

We may now repeat Step 2 arriving at [+ s P , which for the basis

for a further iteration. This completes the déscription of the computatioms.

We introduce the matrices

§ = r:—T =_=.1-=_ ‘JXKQZ)}H‘X’ ky 8= 1l,e00, P o,
|’ s1? ]
i L 1o, .
¥ —?ﬂ Jerr |h]2 e ii ky £ = 1,000, § &
n = 21 rﬁ ..:.g];am ei(k“’.ﬁ)kdx k = 1, seny q 9
™ =17 P ﬂ = 3 vesy P .
Ay + ¥ =5
A = 11 12
“”-“21 Azz
i(kal)h
Je d(5 F(K) ) ky, £=1, eee; 4.
Tr| 121n)?
K m e (8" <_: ' |
A = -y dﬁFk) k=1 ooe,qo ¥
I T e R N k=1
1 1
Azz = Lr wz dF(}e) o
o lgl

Since F(A) is an r x r matrix &12 is gqxr and A22 isrxr . Nowwe

have the following theorem:

Theoram 1.

conditiong ( and (iv) the vector

d§(1>' E;E(l)') COEX&ﬁESﬁﬂélmggg_gnrelv to (&' o p') and /kaﬁ(1)~a)'_: (E{l)-33'

‘has a distribution converging

to_the multivariate normal distribution with-zero
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& E -0 0
@ i

o
I —1

converge almost gurely to 3 . A ; ) respectively.

Before discugsing the proof two points may be made. Ia the first place

, 2
the procedure will usually be iterated, say (j+1) times, so that (E(j) /2m
K(j} » ﬁ'(j ) s ﬁ(ﬁ w11l be avallable and these will be asymptotically efficlent.

The sacond point relates to the size of N . We have in mind situvations
where N < 500 ., In this case the calcnlations are well within the capacity

of modern equipment. However as N incresses the labour of computing the w(mt)

becomes dominant. If N is highly composite, e.g. N = 2_s3t5u 2 then much
larger valueg may be eagily handled. If really large values of N are to be

uged then it might be worthwhile replacing IY s Ij 3 Ijk by smoothed estimstes

of spectra. Provided the somoothing is mot too radical there is no doubt that

Theorem 1 will continue to hold.

Proof of Theorem 1. We shall give the proof in outline only. In detail
it is rather complicated though it does not differ in principle from that given
in Hannan {1969). - The egsgential differences are due to the occurrence of the

xj(n) and the dropping of the agsumption of statiogarity for the y(n) (which

is mainly a consequence of the introduction of the xj(n)),*'First it iz shown

*
Details of the proof will be contained in a thesis submitted by the second
author to the Australian National University.
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&

that p converges to p and hence fw ‘converges to f"7 . Simce the zeroz of

g like outside of the unit circle then--

T I 7' ¥
lg]™* = % equ)e™
=e0

where the E,(u}h converge to E(u) and also for N sufficiently large the

&

sequence E(u) converges to zero expoventislly with u . As a result we may

L3

ghow that D converges to A . For example

I

R ST A 5 ol. = -
5 Ze =y =%z T cy {(vi(1 ~ = ) ¥ E(k~-vHiN) -
t=1 !gl =Nt1 jm=o

which comgequently convergee to

1 rﬁeik?\, o’ § ng?QQ
2y Zw!hl ihl

Similar results hold for other components of D #o that D comverges to A .

Now we introduce the matrix and vector D, d which differ from D,

d only in replacing g by g . {(Of course they are not computable.) Then

0

D comverges to A amnd putting p = wa}'d we have
" . ~a1s =1
fN(p(l)ﬁp) = -/N(D "d-p d)

which converges in probability to »AQIJN{ {D=-D)p + (d-d)1 . 1In wmuch the ssme

&

way ag for D , but after considersble manipulations, this may be shown to

converge in probability to

(8) JN(5“9}+A 06.)/N€a#a) .
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For example the typical entxry in D - D is

1 1 1 (k=)
=% ( = - )I e
SN 2 2
t | |l ¥

2]

which converges in probability to

t

j..'.. . ﬁggﬁgz T i(k“l)mt
N 2 ye
t |g|e

Collecting terms together from «/W{(D-D)p + (d-d)} we find that ﬂi(p(nmp}

converges in probability to (8) . In the same way we introduce o —Aela

where A , a differ from Aa) B a(l) in replacing h(l) 5 6(1) and g by
4,.{

h, § and g . Then m(a(n.,a) converges in probability to

9 /R(eayz /i) - & e - 8y .

Now using {8) and (9) we may express m(&(l),a) and fl‘i(ﬁ'(l)=p) 1inearly in

terms of /H(&a) and /N(p-p) and it remains only to discover the asymptotic

joint distribution of these two vectors and comvert that to a digtribution for
m(&(i)aa), m(ﬁ'(l)=p) . Thus /N{&0) = a7t /N(atA®) which we may replace

by _.{’1“ where u has typical element given by

2 N-1 r ik
-a— 2,1 2,7t
S u =N T lgl ‘s I?-Wy + jzls(j)wjl e

=0

which may be replaced by
N-1 ikm
=2 =1 t
v gl ‘g Iwe :

t=

N=1/2
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where Iw is the periodogram for the, uncomputable, w(nr) . Now exactly as in

Hannan (1969) we see that v may be replaced by

2 1/2 . e(n)N{n~-k)
n=i

where the 1(n) are a statiomary sequence satisfying

P
DHIINe-1) = @) .
<

Similarly we may replace J/N({p-p) by =Am1v where v has typical element

given by

(UZ/Zﬂ)vk =N 2" s: lgf -2 {h—fﬁa(j)I}
"1/2 z ! | {h{»‘za(k)l} k=g, § =1, oo, T

We may replace Iyﬁi-}:&(j )1 3 by Iyw where this is the cross periodogram between

1, c0es q

Jw
tween xj(m) and w(n) . We may then replace. Iyw by h=1[~28(J)ij+Iw7 o

y{n} and w(n) and Ijh-l-ifta(k)]‘.jk by I where this is the pericdogram be-

“25g) 2

The part N hmlIw(exp i‘kmt) may be replaced, again as Hannan (1965) by

. N
2 5 cmye(n-k)
=1

q
B(1)E(a=]) = e(n)
L]
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while the remaining parts are of the foram

-]

: I

The remainder of the derivation of the joimt distribution of JN(&;G) s JN(;=p)
reduces to the problem of obtaining that distirbution for estimated autoregressiom
coefficients or regression coefficients. (See Hanngn (1960, 1963)). The con-
version cf these results into the required results for ﬁ(l), 3(1) is
straightforward. The covariance matrix for the asymptotic distribution of the

maximum likelthood estimators, assuming the x,(n) to be stationary, may be

i
found by an extension of the results of Walker (1964) and is the same as that

gtated in Theorem 1,

3. Some Properties of the Estimators and Distributed Lap Models

The first point ﬁhich we wish to make in this section relates to the
posgibility that in choosing a mixed autoregressive, moving-average model ome

may also be choosing to accept certaim risgks. Let us now call VP the matrix

V of Theorem 1, so as to emphasise the assumed order cf the moving average.

Wow if Ofp) = 0 then some calculation shows that the part of V;I whizh

gives the asymptotic variances and covariances of the parameters of the model,

other than (p) , is

- [} "’l '“1 '=1 [ aal
+ {1l-e Vpule) v e eV

-1
v p=1 p-1

p-1

h

t th
where the vector e has zeros everywhere gave in the p to (prq) places

where it has, in the (p+j)th place,
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A
= L =1 -L{p-3) "
€pt zﬁ.rﬁﬂh e ar, § =1,

LN ] q bl

which ig, of course, zere for j > p . The matrix Vﬁal gives the veriances

and covariances which would obtain if we had known that O(p) = 0 snd had
fitted only (1), ..., a{p-1) . Thus the overfitting has résulted in too large

& covariance matrix. The effsct can be mest clearly seen when g=1 for =

then /N((1) - B(1) has & limiting distribution with wariance w/{l-v)

where V 1is the variance which would obtaim if it were recognized that

a{p) = 0 . For exsmple whem p=q=l , r= 0 then v = (1=B?(1)) and the
efficiency of B(1) is only B(l)z whea afl) = 6 « It is to be expected
that this efficienéy will be low when PB(1) iz esmall, as we are then mé@r to
an unidentified situation, but even for B(1) ak@%?.gthe efficiency is under
50%. Of course when a(p) % 0 and we zsgsume otha%wise the sstimates of the

remaining parameters will not be congistent.

When B{g) = 0 and this is not recognized similar problems emerge
;hough thege are more complicated to describe. The problem does net arise with

8(j) where over fitting essentislly involves oaly a legs of degrees of freedom.

A situation whereas the absve memtioned problem camnot arise is that
where p=q and (J) = B(i) , 3=l,.0., P. It ig instructive to consider
this case. We must now require that & # 0 for otherwise the model is mot

identified. In this case, we have already safd, (1) is equivalent to

r -]
(10) ylert T 8(j)%a x. (a-k) = e(n) ,
j=1 o 3
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which, for r=1 , becomes the, so called, distributed lag model, with the a,

~1 wl g
generated by g ~ = h . As we have sald;, this case r=1 is probsbly most

interesting when xj(m) = x{n~j+1) so-that (10) ig

(1) Y(‘n)"'sﬂjx(nﬁ) = efn) , &=8(1),

where now the &, are generated by

5
f‘:l i q j
T d8(1y/8(1) b 22yl
[+] ’ , o

s0 that we are dealing with the geweral ratiomal distributed lag wmodel with

independent errors. Let us returm to the geuwsral medel (10) and comsider the
: {
begt lisear combimation of 'c\f(j} and 3’\5) {asguming § dterations to have
been completed), say A ?i{j )+ E’(j} AHA, = T Then it is eaéily estab-
’ 13T THAE T, Aty = T . t
' ' 2%
lighed from Theorem 1 that we must tske A, =0 gad 4, = Ip go ther B’

iz the best estimator. Thus 'E(j) is our best estimator of the wiknowm

parameterg, and this hag covariance matrix

b1 By |7t

=8y Bya

(1z)

Thig is the covarisznce matrix for an .asyﬁpt@tically efficient estimator, naed-
lags to s;a.y. This agrees also with the result obtaimed for the specilal csse
p=Eq=r :!-- 1 in Hanﬁan (1965)‘1&. In fact an examination of the proof shows
that the a,symp.t:otically efficient estf:mat@r of p may be m@r;e easily got,

" fiamely as

zFormula '4.7 in Hamnan (1965) is incorrectly stated as is evident from the
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‘ . %2 -
B 65 &AO} o
2 S i XY {‘* ‘}

Moreover the matrix (12) is estimated by the first factor in 45(1) . Thus
the computations are greatly simplifed. Further iteratiomsB are then com-

(1) (1) (1) 1)

pleted beginning from p s computing D gaad A uging g

A

and 31 4nplace of g, b and oY) . When this is done the estimate is
agymptotically equivalent to that introduced in Hannan (1965). TIadeed the
likelihood function being £ and O being a function of B the equations

of maximuom likelihood become

L, R _ axt

£ . ¢

S+ @5 Y .
If a=p then (d/oB) = Ep and we are led to equation (13) .

To test the hypothesis Q=B ,incase p = q , ve may form

& F . 2
(14) Eﬂﬁ(‘d’(-] )ﬁ_g(j))t'g(j‘ﬂ)(&(j)ug(j)} ,{Ecjw ‘5}

which is asymptotically digtributed as chi-square with p degrees of freedom.

2 (comnt'd)
derivation which precedes it. The fermula ghould read

-1
D"" {ant_ (831" Loy (oy*ar (BEI .

Note that - F (6) differs from our F(8) by a factor 7 (o) .

The need for further {terations was not emphasised in Hannan (1965) but in
fact these are likely to be needed.
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We gsummarise thege results in Theorem 2.

Theorem 2, If p = g we may test the hypothesie

N ., by using (14) as chi-square with p - degrees of freedom. If « = f then

o may be estimated by 5(1)- or by (13) . Then /N(p(l)ap fﬁfs(j)-p) are each

asymptotically nermal with covariance matrix

B17 Byl -t
Y

This matrix is consistently éétiggted by

c2 A ;\ -1
D - Eﬁ . .
0 of

The procedure is asymptotically efficient and p(i) converges to p almost

gurely.
In case xj(n) = x{n-j+1) , so that (11} ig the relation to be estimated

the computation would be simplified as follows. We would replace Wj by

w(mt)e s w(mt) = (2mN) 81 X{n)e = U(wt) + w(mt) .
_ o

Then all later formulae invelving the o, simplify. For example u, and c

3 i ik

are replaced, respectively, by
u cos(j«l)mt - vsin(j-l)mt 5 (uzhrz)cos{j=k)wt .

= L)

We would slgo replace cjk(n) by c{otj-k) where

Nen -
c(m) = 0) 1§ (x @)ex) (x(min)-x) = c(-n), 00, 1,..., phrel .

m=1
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We would replace Eyj(n) by & _(n-j+1) where

¥x

e _ _
E__(n) = (N-n) ~ T (y(m)-y)(x(min)-x)= &__(-n), u=0,1,..., prgrr-1 .
yx el xy |

There are two ways in which the treatment in Hanmau (1965) is mowe
general than in the present paper. (Of course in other ways Lt is much less
general), ‘The first of these is through the introduction of a more gene?ai
stochastic structure for the term on the right side im (1). This is ass%mad

to be of the form
q
B(i)u(n-1)
o

where u{a) is statiomary and of a sufficiently regular kind (see the references
cited). 1If fu(h) is the spectral demsity of u{n) then the covariance matrix

of the limiting distribution of the estimates ig, for p=q=1r =1,

s _ dF(A)
(15) [E - Zﬁ'fw(?a) e“ih/h 62/ ihl .

where fw(h) = Ihlzfu(h) . Of courge 1f a =B #n& u{n) = e(n) this agrees
with our earlier result . The.estimation pfocedure leading to (15) does not
involve any parémeterisation of the stochastic structure of uin) but, as

we have said, cnly rather general gspacifications are wade. (This is a cowmom
device in time series analysis). An alternative procedure is to proceed ag we
 have in (1), which (when we do not assume «a = B) takes u(n) to be of the form

23 = g/h .

(16) u(n) = EbjE(n“j) > ij
o o
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Of course this specification resgtricts the nature of the process genmerating wu(n)
(as we have already said) since it wust correspond to a rational generating
function having h in the denominater, However, if g dis restricted oqu to be
a polynomial this specification is still very gemeral. It is therefore of
interest to compare the covariance matrix of the limiting distribution of

the estimates of p , obtained by the methods of section 2, with the generali-
zation of (15) appropriate tc the case of a general rational digbributed lag
model and r exogenous varisbles (all with lag structure such that the

denominator of the generating functions is h ) . Of course we assume that
2 2 2 2 2
£ =(c“/2m)|g]/|r]|” so that £, = (d /2m)|g|” the difference im the two

methods lying in the fact that the second does not take account of the special

form of fu . The generalizatien of (15) is

- =1
Mi Byg
Bry  Byp!

whereas ka;(i) = p) will have for its limiting distribution the covariance

matrix
A =1
859
However
-1,
(17) Y- " >0

g0 that the use of additional information has reduce the covariance matrix
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(as it clearly must), When g = h then (17) is null and the two methods are
équivalent as we have already seen. If the degree of g is overstated thenm,

as we know, we lose efficiency but they are never worse them the methods of
Hannan (1965) as (17) shows. OFf course if degree of g is understated

the methods of this paper become inconsistent but it iz poseible to test whether
p should be increased. In addition to 8 mors gccurate estimate of o the
methodg alsc lead to an estimate of g and hence {for example) to a specifi-

cation of the optimal linear predictor for y(a) , once the xj(n) are

predicted. (The prediction of the =x,(n) requires knowledge of their

3
stochastic structure), The relztion between the three cases 1s exhibited by the
special exaﬁple'where p=ag =z ﬁil ; (ly =0 and %x(n) consists of
uncorrelated random variasbles with unit variance while 02 =1 , Then wa

take the estimates obtain@d uvging (a) all iwnformation, (b} only the

knowledge that g 4f of degree one and (¢) by the method of Hanman (1965). The
three estimates of & have the ssme agymptotic variasmce properties but the

estimate of B has, in its limitimg distribution; the wegrisnce respectively,
4 2
(-84 /1467y, (18707 E%H6%) ana  (1-B0)/8° .

The other direction in which the approach of Hsmman {1965) waz more
genaral than that of the present paper was in the fact that =x(n) was allowed to

be more general and inm particular was allowed to contagin components ©f €he form
xj(n) = nk as well as of the kind treated in the present paper. It seems that

the methods of the pressnt baper could be extended.(and modified) to deal with
the more general specifications but the statement of already complex resultg
would be further compensated. Since we can allow for trends (for example) by
the procedures described in the pavagraph just above {2) it has been thought best

not to geek for this additional generality.
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