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AN EXAMPLE OF AN ALGORITEM FOR CALCULATING GENERAL EQUILIBRIUM PRICES

by

Herbert Scarf*

I. Introduction

During the past several years a number of writers have been in-
volved in the development of an algorithm applicable to a class of problems
in mathematical economics, not previously treated from a computational point
of view. Perhaps the most interesting and potentially useful of these appli-
cations is to the calculation of equilibrium prices for a general Walrasian

model of a competitive economy,

The version of the algorithm described in the present paper is a
specialization, due to Hansen [1, 2] of the more general, but computationally
less useful approach introduced in [4, 5]. Hansen's algorithm was indepen-
dently discovered by Xuhn [3], who also provided a illuminating geometrical

interpretation, previously not noticed by either Hansen or myself.

The algorithm itself is not particularly subtle, and for the most
part involves operations to which we have become accustomed in the solution

of linear programming problems by means of the simplex method, There are,

*The research described in this paper was carried out under grants from
the National Science Foundation and from the Ford Foundation.



however, some novel features which may be obscured in a mathematical treat-
ment, and which the general reader may most easily comprehend by means of

a simple numerical example.

The present paper will describe in detail an application of the
algorithm to an example with only three sectors., This small problem has
been selected for illustrative purposes only; any practical application
of these techniques will necessarily involve a substantially larger number

of commodities.

A considerable body of computational experience with larger models
has already been gathered. Over one hundred examples have been tested, ranging
from three to twenty sectors. The computation time, which is roughly pro-
portional to the number of sectors, has never exceeded five minutes on an
IBM 7094, and in most cases is substantially smaller. Given the increase
in speed of the newer computers, and the reduction in computation time achiev-
able by adroit modifications of the basic algorithm, it seems clear that
problems involving as many as 30 or 40 sectors will eventually be feasible,

should they be justified on intellectual grounds.

II. The Example

A general equilibrium model requires for its specification, a des-
cription of the productive technology available to the economy, the demand
functions of the consuming units, and the distribution of ownership of the
real resources in the economy among these units. In our example the tech-

nology will be described by the following activity analysis matrix:



=1 0 0 4 4 &4 0 Consumer Goods
A = 0 -1 0 -8 -6 -4 «2.4 Labor
[_ 0 4] -1 -1 =2 -3 1 Capital

in which inputs are represented by negative entries and outputs by positive
entries, The first three activities permit the free disposal of consumer
goods, labor and capital, respectively, and are incorporated in the model
to allow for the possibilicy of a zero price at equilibrium. Activities

4, 5 and 6 represent three distinct techniques which utilize labor and capi-
tal to produce consumer goods. In each of these activities the third entry
must be interpreted as the decrease in capital stock caused by depreciation
and wear, if the activity is run at a unit level. The seventh activity
describes a net increase in capital stock as a consequence of investment.
The seven activities can be used simultaneously, at arbitrary non-negative

levels.

My own preference, even in a single period model, would be to
consider the capital stock at the beginning of the period as a commodity
distinet from that available at the end of the period. Each activity would
then reduce the capital stock at the beginning of the period and produce,
as a joint output, a depreciated stock of capital at the end of the period.
Aside from recognizing explicitly that production takes time, this approach
leads naturally to a fully dynamic model in which the own rate of interest

on capital would be determined by the equilibrium price calculation.

In our example we shall assume that there are two types of con-

sumers, appearing in equal numbers in the economy, and differentiated by



their ownership of resources and demand functions. The following table des-

cribes the patterns of ownership of each type.

Consumer Goods Labor Capital
Type 1 +] 10 8
Type 2 0 i0 i
TABIE 1

OWNERSHIP OF RESOURCES

Each of the consumers has 10 units of potential labor, some of
which will be engaged in production, and the remainder consumed as leisure.

If the relative prices in the three sectors are given by 1 and

1’ M

Ty s for consumer goods, labor and capital respectively, the potential
wealth of the first consumer is 10rr2 + Bﬁa s and that of the second con-

sumer 10ﬁ2 +'W3 .

The algorithm places no restriction on the individual demand
functions other than the customary assumptions of homogeneity of degree
zerc in all relative prices, continuity, and satisfaction of the budget
constraint. In the interest of simplicity of exposition, I shall assume
that, both individuals spend a constant proportion of their potential wealth
on each commodity, independently of the relative prices, with the propor-

tion given by:



Consumer Goods Leisure Capital
Type 1 25 10 65
Type 2 60 20 20
TABLE 2

PERCENTAGES OF WEALTH SPENT IN EACH CATEGORY

These demand functions, which are derivable from utility functions
having a Cobb-Douglas form, can be generalized to include income effects,

and more elaborate sensitivities to prices.

It should be understood that capital appears in the consumer de-
mand functions as a proxy for savings. This assumes that investment activity
is motivated entirely by private saving decisions, and does not reflect the
eventual profitability of newly produced capital. A substantial improvement
would probably be obtained by extending the example over several periods,

and including markets for intermediary goods.

TIII. Equilibrium Prices and Activity Levels

Before discussing the algorithm in detail we shall describe the

answer to our specific example.

The equilibrium prices are given by
w = (13/36, 5/30, 12/30) ,

normalized arbitrarily so that their sum is unity. Of the seven activities,

all are run at a zero level with the exception of activity number four, which



operates at a level of 1.42, and activity number seven, at a level of 1.36.
In the following table the above prices are used to compute the profitabllity

of each of the available techniques:

Activity Level Profit
4 1.42 0
5 0 ~.067
6 0 -,133
7 1.36 0

As we see, all activities make a non-positive profit at the equi~
librium prices, and those in use make a profit equal to zero. The total
supply is given by the stock of initially owned commodities, minus the fac-

tors used up in production, and augmented by the outputs of production,

0 4 | o 5.67
20 |+ 1.42 | -8 |+ 1.36 | -2.4 | = | 5.40 [ .

9 -1 1 8.94

At the above prices the consumers' demands may be shown to be

Consumer Goods Leisure Capital

Type 1 2.808 2.920 7.908

Type 2 2.862 2.480 1.033
Market Dem. 5.670 5.400 8.941

so that for each market, demand is equal to supply, and the suggested price

and activity levels are indeed in equilibrium.



IV. How Not to Solve the Problem

Our example is somewhat deceptive in that the equilibrium prices
and activity levels can be determined by a very simple procedure and the
reader may erroneously suspect that this technique is capable of being gen-
eralized. The procedure is based on the observation that the equilibrium
price vector is determined up to a scale factor (aside from exceptional
cases) when it is known which two activities are to be operated at a posi~

tive level.

1f activities 4 and 7 appear in equilibrium, the competitive as-
sumption that each of these activities earn a profit of zero, yields the
pair of equations

4471*8“2-113=0

"'2.[&112 +ﬂ'3 =0,

which have as a unique solution, (13/30, 5/30, 12/30) , normalized to
sum to unity. The market demand functions can be evaluated at this price
vector, and the appropriate levels of activities 4 and 7 then determined

80 as to equate supply and demand.

If the wrong pair of activities is selected, this procedure may
not work for one of several reasons: the price vector determined by the
zero profit conditions may have several negative components; some of the
remaining activities may make a positive profit; and finally it may be im-
possible to equate supply and demand by using this pair of activities alone.

This does however suggest that we may base an algorithm upon the systematic



examination of all pairs of activities {and in the general case with n
sectors, all subsets of n-1 activities), until one is found satisfying

all three of the above conditions.

It is easy to see however that this approach, reminiscent of the
simplex method for linear programming, cannot be successful in general,
1f, in our example, the seventh activity is replaced by one in which a large
quantity of labor is needed to produce a single unit of new capital, then
the competitive equilibrium will requive only one activity, the fourth, to
be operated at a positive level. It will therefore be impossible to deter-
mine relative prices by the zero profitability conditions alome. This
phenomenon is quite general and indicates that a completely different type

of algorithm is required for the sclution of this problem,

The conventional price adjustment mechanism, in which prices are
modified in proportion to the excess demand for the corresponding commodity,
may algo be conceived of as an algorithm for the computation of equilibrium
prices. Aside from the relatively minor problem of a non-unique supply re-
sponse to a given price vector, the gradient method has the serious draw-
back that very stringent conditions on the demand functions, such as "gross
substitutability, ™ are required for its convergence. While the demand func-
tions of our particular example do exhibit gross substitutability, this

occurs rarely and the gradient method is not of wide applicability.

Virtually any algorithm which can be shown to be successful in
the general Walrasian model will, at the same time, be capable of providing

a proof that equilibrium prices do exist. The existence problem has been



recognized during the last two decades as one of the most difficult areas
of mathematical economics, and requires the use of techniques known as

"fixed point theorems."

An effective algorithm must, therefore, be inti-
mately related to this branch of mathematics, and involve considerations

whose economic interpretation is not immediate.

V. Introducing the Algorithm

Since the equilibrium prices are determined up to a scale factor
it is sufficient to restrict our attention to those price vectors g =

(nl, s n3) which are non-negative and sum to unity. We begin by selecting

a positive integer D , and consider only those price vectors on the unit
simplex, whose components are rationai numbers with denominators equal to

D . 1In any particular example, the accuracy of the computation will be im-
proved by Increasing the value of D, but at the same time the number of
basic iterationg and therefore the total computation time will be increased,
roughly proportionately to D . A typical example with ten sectors might
require a D of 150 or more, in order to obtain sufficient accuracy. The
number of price vectors potentially under examination would then be excep-
ticnally high, but the algorithm will typically terminate with fewer than

two or three thousand iterations.

Let us begin our example by selecting D to be equal to 10, a
number which is too small for serious computation, but which is sufficient

to illustrate the algorithm.



10

(0,0,1)

(‘Lf’ﬁj -l"} ."*O)

FIGURE 1

The vectors on the simplex with denominators equal to 10, are used to par-

tition the simplex into the small triangles shown in the figure.
Each such price vector ("1’ Ty "3) will be associated with e

specific commodity vector, which is elther the vector of market demands at

the set of prices (“1’ T “3) or the negative of a particular activity,

according to the following rules:

1. TIf the price vector has a zero component, it will be associated
with a “slack" vector containing a 1 in the place of the first zero price
and 0's elsewhere. If all of the components are positive rules 2, 3, and

4 are followed.
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2. Examine all of the available activities to determine which

yields the maximum profit at the price vector (wl, Ty n3) .

3. If this profit is greater than or equal to zero, then
(nl, Tys n3) is associated with a vector whose components are the negatives
of the profit maximizing activity.

4, If the maximum profit at these prices are negative, then

(nl, Tos n3) is associated with the vector whose components are the market

demands at these prices.

A few examples may be in order. At the prices (.8, .1, .1),

the profits associated with activities 4 through 7 are given by

4(.8) - 8(.1) - 1(.1) = 2.3

4(.8) - 6(.1) ~ 2(.1) = 2.4

4(.8) - 4(.1) = 3(.1) = 2.5
~2.4(.1) + 1(.1) = -, 14,

and since the maximum profit is positive (.8, .1, .1) 1is associated with
(-4, 4, 3) . On the other hand, the price vector (.4, .4, .3) vyields as

profits

4(.4) = 8(.4)

8
L]
i

.
o

1(.3)

1

4¢.4) - 6(.4) - 2(.3) = -1.4

4¢.4) - 4(.4)

L
i
0

3(.3)

~2.4(.4) + 1(.3) = -.66,
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and since all of these profits are negative the vector (.4, .3, .3) is
associated with (8.325, 4.0, 13.9) , which as the reader may verify, are

the market demands at these prices.

In general, the algorithm will be confronted, at each iteration,
not with a single price vector, but with three such vectors which form the
vertices of one of the small triangles in the above figure. Consider, as
an example, the lower of the two shaded triangles whose vertices are given

by the three vectors

.4 .4 !5
.3 4 .3
3|, 2|, 2

According to our rules, these vectors will be associated with

8.325 9.8 : -4
400 3.5 4
13.9 , 22.4 | , 3

respectively. The first two price vectors correspond to columms of market

demands, and the third to the negative of activity number 6.

At each iteration the algorithm will ask whether there is a non-
negative linear combination of the three assoclated columns equal to the
vector of initially owned factors, prior to production. In the present

triangle the question is whether the equations
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8.325 3.8 -4 0
Yy 4.0 + ¥, 3.5 | + s 4 [ =] 20
13.9 22,4 3 9

have a solution with Yir Y Y, > 0, which is not possible for this tri-
angle since the unique solution is given by (4.81, -2.96, 2.77) .

In order to provide a triangle for which the answer to this ques-
tion is affirmative, and to show the relationship between this question,
and the determination of equilibrium prices, consider the sub-simplex whose

vertices are

N~

—
- L)
ra

-
.
¥}

-
[

-

the upper shaded triangle in the above figure. The vectors associated with

these three vertices are given by

.0 [ -4 6.85
2.4 8 5.0
-1.0 1 9.65 ’
and the equations
.0 -4 6.85 0
2.4 v, + 8 v, * 5.0 ¥y = 20
~-1.0 1 9.65 9

have as a solution (1.24, 1.54, .90) , which is non-negative.
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The sole purpose of the algoritim is to produce a triangle with
this particular property, which can immediately be used to provide an ap-
proximate equilibrium price vector. Te see this, let us rewrite the above

equations as

6.85 c 4 0
»9} 5.0 = 1 20 § + 1.54| =B | 4+ 1.24] -2.4
9065 9 ”1 I

The right hand side of this equality is the net supply if the
Ath activity is operated at a level of 1.34, and the 7th activity at a level
of 1.24. Aside from the factor of .9, the left hand side represents the
market demand at the price vector (.4, .2, .4) , so that these equations
westiawe o Situation of approximate equality between supply and demand in
all markets. As the grid size D 1is increased, the factor of .9, will
become closer to 1.0 and the approximation will become increasingly accurate.
(In the general case in which more than one vertex of the subsimplex corres-
ponds to a column of demands, it is the sum of the weights associated with

thesé columns which tends to unity with increasing D .)

But we can say even more. The three price vectors, being the ver-
tices of a small triangle are quite close to each other, and will be even
cloéér as D 1s increased. One of these price vectors yilelds a profit less
than zero for all activities, and the others provide a non-negative profit
for activities 4 and 7 respectively. Any price vector in the neighborhood
of these three can therefore serve as an approximate equilibrium price vector,

since it will yield profits approximately zero for the activities in use,
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and profits which are either negative or quite small for all of the acti-
vities. As the figure indicates, the true equilibrium prices are quite

close to this triangle.

Before proceeding to a discussion of the algorithm which produces
such a subsimplex whose associated columns can be combined, with non-negative
weights, so as to equal the vector of initial holdings, let us see how the

approximation can be improved by increasing D from 10 to 100.

With thig fine a grid the division of the simplex 1s awkward to
reproduce in a figure, but the algorithm of the next section terminates with

a sub-simplex whose vertices are

42 <43 .43
.17 .16 .17
l41 , .41 , 040 ,

and which are associated with the colums

0 -4 5.779

2.4 8 5.353
-1.0 | , |, 9.013 | .

Solving the resulting equations, we obtain

[ 5,779 0 4 0
99l 5.353 | = | 20 | + 1.43] -8 | + 1.35] -2.4
9.013 9 -1 1 ,

a very close approximation to the actual equilibrium price and activity

levels.



16

In a problem involving a larger number of commodities, this de-
gree of accuracy is usually obtained by treating the demand functions as
locally linear in the neighborhood of the final subsimplex, and then solving
a linear programming problem whose objective is to minimize some measure of
the distance between supply and demand. A terminal linear programming step
is much less expensive in terms of computer time, than increasing the grid

size to obtain additional accuracy.

Vi. The Algorithm for Determining the Appropriate Sub-~Simplex

As the following figure indicates, the algorithm begins at a tri-
angle located at a vertex of the large simplex, say the vertex (1, 0, 0),
and at each iteration moves to an adjacent triangle obtained by eliminating
one of the three vertices. The specific sequence of triangles is completely
determined by the decisions as to which of the three (and in the general

case, n ) vertices is to be eliminated at each iteration.
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At each stage of the algorithm a record is kept of the specific
vector which has just been introduced. For example, in the 1oth triangle

whose vertices are given by

05 05 .4
.1 o2 o2
‘4 -3 04 ¥

—

the vector (.4, .2, .4)' has just been introduced as a new vertex.

The algorithm is attempting to determine a triangle whose three

assoclated columns give rise to a2 system of linear equations with a unique

non-negative solution., While it is difficult to find such a triangle directly,

it is quite easy to locate a triangle in which these conditions are almost
fulfilled, in the sense that the equations based on two of the associated
colums and the first slack vector have a unique non-negative solution.

For example, triangle 2 has this property since the columns

.9 .8
s 1 . L
0 o L
are associated with
0 =&
1
0 1 3

and the equations



i8

1 G g 0

Gly, + |y, * ¢ ¥y = 20
o i 9

have a trivial nom-negative soiution. It is for this reason that the al-

gorithm begins at a vertex of the large simplex.

Only those triangles possessing this quite specific property will
ever appear in an intermedlsary stage of the algorithm. The two vertices
of the triangle, neither of which have just been introduced, will have two
columns, either market demands or the negative of an activity level, asso-
ciated with them. For the triangle to appear;, it is necessary that there
be one, and only cne, non-negative linear combination of these two associared

columns, and of the first siack vector {1, 0, 07’ equal te the rtotal supply

prior to production,

wample, the vercices

ol

hl,iiSJ K

[,4 4 6.85
I 8 4 5,00
1 3 9.65

and we are therefore insisting that the equations
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-4 -4 0
0 Y, * 8 v, + 4 vy = 20
1 3 g ,

have a unique non-negative solution, which in fact is given by (yl, Vg y3)
= (76/5, 6/5, 13/5) .

Triangle 10 is obtained by following the sequence illustrated in
Figure 2, If we wish to proceed from this triangle to a new triangle, then
the decision as to which of the two older vertices is to be eliminated is
uniquely determined if we desire the new triangle to have the same specific
property. The equality

1 -4 -4 0

76 6 13

oo |+3| 8 |+F| 4 20
0 1 3 9

may be considered as representing a feasible bagis for a linear programming
problem, and i{f the column (6.85, 5.00, 9.65)' 1is introduced into this

basis the conventional pivot operation will remove (-4, 4, 3)' and yield

1 -4 6.85 0

3.37/ 0 | + 2.05| 8 | + .72] 5.00 | = | 20
0 1 9.65 9 .

Therefore the vertex (.5, .2, .3)', associated with the column (-4, 4, 3)'
is to be eliminated from triangle 10, and we obtain triangle 11, whose new
vertex is given by (.4, .1, .5)' . A version of this pivot operation occurs

at every iteration of the algorithm,
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Let us praceed for several additional iterations. The new vertex
is associated with the column (-4, 8, 1}' which is aiready in the basis.
The old vertex associated with this column, (.5, .1, .4)" , is therefore
eliminated from the triangle. We obtain triangle 12, whose new vertex is
(-3, +2, .5)', which is associated with the coclummn (0, 2.4, -1)' , If
this latter columm is then brought into the basis, the first slack colummn
will be dropped, and the algorithm terminates since the columns associated

with the three vertices of triangle 12 form a feasible basis.

A formal demonstration that the algorithm will always terminate
in a finite number of iterations with the desired solution may be found in
[1, 2, 5]. The fundamental ideas behind the algorithm are, however, quite
simple. At each iteration a new vertex is determined and the column asso-
ciated with that vertex is calculated. That column is brought into the
bagis consisting of the first slack vector and the two columns agsociated
with the remaining two vertices of the triangle. The algorithm terminates
if the first slack vector is eliminated by this pivot step. If not, some
other column is removed and the vertex associlated with that column is eli-
minated from the triangle, thereby producing a new triangle. The process
is then repeated. When the algorithm eventually stops it provides us with

a region on the simplex containing an approximate equilibrium price vector.

For the reader interested in carrying out his own computations,
a FORTRAN program for that part of the algorithm which determines the new
sub-simplex is included in the appendix. It must be supplemented by a sub-
routine which, at each iteration, calculates the column associated with the

new vertex, and performs the appropriate pivot step.

1The algorithm will also terminate if the mnew vertex has its first compoment
equal to zero.
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APPENDIX

A FORTRAN Version of the Main Program

DIMENSION K(40, 40), I0(40)

COMMON N, INDEX, K, JOUT

READ M, N, MAXT

N REPRESENTS THE NUMBER OF COMMODITIES; M, THE DENOMINATORS OF THE
PRICE VECTORS; AND K A MATRIX WHOSE COLUMNS ARE THE NUMERATORS OF
THE VERTICES OF A SUB-SIMPLEX.

INDEX = 1

JOUT = 1

DO 10 I =1, N

DOS J=1, N

K(I, J) =1

CONTINUE

DO 15 J =1, N

K(lL, J) =M +2 =N

K(J, J) =R(J, J) = 1

10(J) = J

CONTINUE

INPUT OVER. THE SUBROUTINE IS CALLED TO DETERMINE JOUT.

CALL SUBROUTINE

I¥ (JOUT. EQ. 0) GO TO 500

THE SUBROUTINE GIVES THE COLUMN OF THE PRIMITIVE SET TO BE REMOVED.
TERMINATION IS INDICATED BY RETURNING A VALUE OF JOUT = O TO THE
MAIN PROGRAM.

JP = JOUT + 1



500

IF (JOUT. EQ. N) JP = 1
LOO = I0(JOUT)

L10 = I0(JOUT) - 1

IF (L10. EQ. 0)L10 = N

101 = IO(JP)

L1l = IO(JP) - 1

IF (Lll, EQ. 0) L1l = N

K(LOO, JOUT) = K(LOO, JOUT) + 1

K(L1l, JOUT) = K(L1l, JOUT) + 1

1
[

K(LOl, JOUT) = K(LOl, JOUT)

1
[

K(L10, JOUT) = K(LlO, JOUT)
10(JOUT) = LOl

I0(JP) = LOO

INDEX = INDEX + 1

IF (INDEX. EQ. MAXI) GO TG 500
GO TO 16

WRITE. . .

END

22



f1]

(2]

(3]

[4]

[5]

23

REFERENCES

Hansen, T., On the Approximation of a Competitive Equilibrium, Ph.D.
Dissertation, Yale University (1968).

Hansen, T., and H. Scarf,"On the Applications of a Recent Combinatorial
Algorithm, " Cowles Foundation Discussion Paper No. 272, (1969).

Kuhn, H.W., “Simplicial Approximation of Fixed Points," Proceedings of
the National Academy of Sciences, Vol. 61, (1968).

Scarf, H., "The Approximation of Fixed Points of a Continuous Mapping, "
SIAM Journal of Applied Mathematics, Vol. 15 (1967).

“on the Computation of Equilibrium Prices, " Ten Economic
Studies in the Tradition of Irving Figher, Wiley (1967).




	An Example of an Algorithm for Calculating General Equilibrium Prices
	Recommended Citation

	tmp.1624191794.pdf.5v7b6

