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PRICE VARIATION DUOPOLY WITH DIFFERENTIATED

PRODUCTS AND RANDOM DEMAND

by

Richard Levitan and Martin Shubik®

1. Introduction

It is shown in this paper that under the appropriate condi-
tions the introduction of a random component to demand in a duopolis-
tic (or more generally oligopolistic) market has the competitive ef-
fect of increasing stability in the sense that the market without a
random component may have no noncooperative equilibrium point (in pure
strategies) whereas the market with a random component has a noncoop-
erative equilibrium point.

This result is related to the previous results of Shu‘bik,1

Levitan,2 and Shapley and Shubik3 on duopolisgtic demand and competi-~

tion. These are summarized below.

Suppose two firms with identical constant average costs are
supplying identical goods to a market. As was noted by lE'.m:t]:.m:ui'fp if the

firms employ price as a strategic variable and if they have no capacity

*Research undertaken by the Cowles Commission for Research in Economics
under Contract Nonr-3055(01) with the Office of Naval Research. Dr.
Richard Levitan is with the Mathematical Sciences Department of the
Thomas J. Watson Research Center of I.B.M., Yorktown Heights, New York.



limits then after a process of price-cutting an eguilibrium will be

. . . 5 . :
established with prices equal to cost. Hdgeworth™ analyzing the competition

vetween two firms selling the identical product with rising average
costs (or equivalently capacity constraints) observed that no { pure
strategy) equilibrium need exist and that price will fluctuate in a

range which we may call the Edgeworth Cycle.

It does not seem to be realistic or reasonable to expect
prices to bounce up and down incessantly over a wide range in an
otherwise statlc situation. It has been argued that at least Edge-
worth's analysis was a step closer to reality to that of Cournot in-
asmuch as price rather than quantity offered for sale is a more na-
tural independent variasble for oligopolists. We feel that neither
price nor quantity strategy models are satisfactory but that both
price and gquantity should be treated as simultaneous independent
variables and that inventory shortages and stockouts need to be con-

sidered.

Chamberlin added & considerable amount of richness and rele-
vance to the analysis of oligopolistic markets by introducing product
differentiat10n06 He examined the equilibrium conditions for a group
of firms whose products were symmetrically differentiated and suggested
that by means of price policy they would achieve a non-cooperative
equilibrium. Figure 1 illustrates this e@uilibrium.for two firms,
each with the same constant average costs of production, eaéh selling

a symmetrically differentiated product and each facing a linear demand



when they charge the same price.
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Figure 1

The line DD' is precisely the same as in Chamberlin's
analysis7 and indicates how much an individual will sell on the as-
sumption that the other charges the same price. The line DD" may
be drawn and interpreted as the total amount sold in both markets
when each firm charges the same price. Since they are selling differen-
tiated products we are adding ''oranges and apples" when we draw this
curvejguantity actually has two dimensions, not one. WNevertheless as
the products are symmetric it is useful to draw DD" provided it is

correctly interpreted.

The line segments Dd , dED’ and d'd" describe the con-
tingent demand for omne firm as it varies its price from D to zero

given that the other maintains its price at the level of E . These



line segments are the complete description of the dd° curve of Cham-
berlin., Their properties and shapes have been investigated by Shubik,8
Levitan? and Shapley and Shubik,lo The point 4 d1s that point at
which the higher priced firm has priced itself out of its market.

The point 4' i1s the peint at which the lower priced firm will have
priced its competitor out of his market. The point 4" is the maxi-
min demand attainable for any firm in its market regardless of the
price charged by the other. This 1s easy to see when the meaning

of the segment a™" and the slope of dd' are considered. They
hoth serve as messures of the lack of substifutability beiween the

two commodities. Suppose that we smoothed away the product differen-
tigtion so that the firms sell cleoser and closer substitutes until

in the limit they sell identical products. The line d4d' will be-
~ome more and more horizontal as the differentiation diminishes.
Furthermore the distance d4"D" will shrink until in the limit 4"
approsches DY and the distance is zero, The interpretation is
dirsct. If the two firms sell the identical produst, a slight dif-
fererice in price will give all of the demand to the leower priced firm.
If their products are the same then all of the demand will be given

by DL' . When there is product differentiation the amount avallable

to any flrm will be less than DD" .

The point E is the Chamberlinisn noncooperative eguilibrium
pelnt. Behavioralistically it Is exactly the same as the Cournot,
Bertrand, Edgeworth or Nesh equilibria. The economic analysis may

be regarded as more satisfactory than that in other models inasmuch



as product differentiation ig more realistic. The location of E 1is
determined by examining the family of isoprofit curves and selecting
& point on the ilntersection of DD' with an Isoprofit curve such that
the curve is tangent to dd' at that point. It is easy to see that
the tangency condlition guarantees that it is not profitable to under-

cut or to ralise price if both firms are at E .,

If both firms were bheing run solely for the good of the
publis they would set price egual to marginal cost which in this case
ig equal to average cost. The rectanpgle .v"L  shows the ‘mono-
poly profit® attained by this nonzooperative monopolistiz competition.
As the product differentiation is lessened the distance EH shrinks
until (as was noted by Bertrand) with identical products price will

equal éosts and there will be no profit.

Shapley and Sl'rtﬂ:ail{l"1 showed that Chamberlin‘s analysis is
incomplete. The mere introduction of product differentiation does
not destroy the instability encountered by Edgeworth. LI average
soshs are increasing sufficiently; if there are low enough capacity
constraints or if there are inventory carrying costs the Chamberlinian
monopolistic competition equilibrivm will not exist. Any of these
sonditions cause an extra "kink" or bend to appear in the segment
of the contingent demand denoted by dE . This is shown in Figure
2, The presence of the added kink will destroy the equilibvrium when
it becomes sufficiently pronounced that a new tangency to the isopro-

fit curve is possible at G as shown in Figure 2.



The meening of the additional kink and segment ss’' is
that although the firm would lose demand along d4°' by raising price,
this demand loss 1s based upon the assumption that the competitor
can supply any increased demand going his way. If he is unable to
do so (owing to capacity limits or inventory shortege) or unwilling
to do so (owing to high costs) then the loss in demand will not be

s0 severe to the higher priced firm. Instead of proceeding along

s'd it becomes ss' . The existence of G destroys the equilibrium.
a

Price

Sales BI d'll Dll
2

2. The Inventory Problem

It is easy to see that if we introduce inventory costs the
nencooperative equilibrium mist be destroyed. Let production costs
be the same as in Figures 1 and 2, and let there be a positive cost of
holding inventory excess to the séles of the current period; and assume
further that the firm can supply consumers in the current period only
from previously ordered production. The point E can no longer be an

equilibrium point as is shown in Figure 3. If it were, thenno firmwould hold



more inventory than exactly encugh to satisfy demand at thet point.
However this is the equivalent of a very severe capacity limitation
go that the contingent demand faced by a firm raising its price is
¥e rather than Ed . This means that the higher priced firm is vir-
tually a monopolist in its price range as the lower priced firm has

inventory sulficient only for ¥ .

Figure 3

Following the deslres expressed by meny for more economically
reazonable and realistic models in the shtudy of oligopoly theory we
maintain that the addition of inventory costs is a step closer to realism
and relevance, yet it apparently helps to destroy equilibrium. We
shalllshow that the addition of a further guite realistliz compliza-
tion helps to restore the existence of the equilibrium this compli-

cation is a degree of uncertalnty in expected demand.
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3. An Oligopolistic Market with Random Demand

The general condition needed for stability is that the minimum
inventories that the firms are induced to keep by consideration of demand
fluctuations at a potential equilibrium point provide sufficient extra
stock for each to make it unprofitable for either to change his price.
The test for the condition is straightforward: solve the model for a
pure strategy equilibrium by using the first order conditions for a local
maximum; then wverify that no higher payoff can be achieved by having one
firm change its price or quantity globally (i.e. over the whole range)
given that the other firm is comstrained to charging the price and sup-

plying the quantity that is the candidate for the equilibrium,

In practice the stability will depend specifically upon the
forms of the demand, production cost and inventory carrying cest func-
tions. In this paper we are unable to offer a general characterization
of the functional forms which satisfy the conditions but confine our-
selves to the calculation of an example which established the validity

of our assertion.

3.1. The Model

T = profit for the firstr (or distinguished) firm
p = price

q = demand

x = supply

p = inventory carrying cost per unit

The same notation with a bar e.g. 33 stands for the variables

of the other firm.



We assume production costs are zero.® Profits are given by:
(1) T =pmin(qg, x) - p max(0, x - q) .

To obtain the demand we follow the calculations for contingent
demand illustrated in Figure 1 and 2 as shown in Section 1 and developed
, . 12 , 13 ., 14
mathematically by Shubik, Levitan =~ and Shapley and Shubik. Here, how-
ever, we introduce a random component. The constant term is replaced

by a random variable.

Let us give a derivation of the curve Dss'd'd"” shown in Figure

2. We define the (normalized) ordinary linear demand curve,

(2) alp, P) =¢-p - 7(p - p),

which describes the demand for the distinguished firm when there are no
stockouts or ‘price-otts.” This function is represented by segment s'd’
The segment d'd" describes the demand when the distinguished firm has
priced its competitor out of the market. The demand on this segment is
given by

& g =4 E D)

which is derived by imputing to the non-distinguished firm that price,

(e - yp)/ (1l + 7) which causes its demand to be exactly zero. TFinally,
the segment ss' gives the demand of the distinguished firm when the non-
L]

distinguished firm's demand exceeds its supply, X . The demand on ss

is given by

_ (429 - p) - 7x
147 )

(4) a(p, X)

*This assumption is made for the sake of economy of notation in the sequel,
All results are easily generalized to the case of constant costs by sub-
stituting p-c for p 1in the demand and profit functions.
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This function is derived similarly by substituting for P
the price, (¢ - X = yp)/ (1l + 7) , which makes the second firm's demand

equal to its supply.
It is easy to see that the demand function wkose graph is
Dss'd'd" is equal to
9p(P; P x) = max(0, q(p, x), min(q(p, P); q(P))),

and the actual sales of the distinguished firm are given by

s = min(q,, %) = min(x, max(0, a) min(q, a))) .

T}

In the sequel we introduce the random component into the demand
by considering e to be a random variable,
Expressing (1) as a function of actual sales, we can write the

profit of the distinguished firm as
(3) M=ps - p(x=-5s5)=(p+on)s - ox

and by linearity, we can write the expectation of 11 as:
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(6) B(1) = (p + P)E(s) - Px .

We ma&Y now derive expected sales. This involves deriving
the conditions on ¢ for sales to have the values respectively of

’Q:a.a-ndx'

Q'

0,
s =0 &> max(§, min(q, 3)) L0
this implies § <O and min(g, %)50
&= §<0 and (q<0 or 4<0).

@ € < m(se) min(elJ p))

(7) where sy = {1+ v - YD and
= .
(8) € =P+ T X -

In a similar manner we may calculate the other four conditions:

(9) saaﬁ)m(ee, e5)_§e_<_37,

(10) s =q /™ max(s:l, eh) <e< min(es, 36)
(11) s =8 & p<e<min(ey )

and

(12) s =x & ¢ > max(e,, mn(eg, 8)) -
where

(13) e3=P+i:2Yx ;
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(14) e, = (1+Y)F - v ,
(15) e =(1+ )P~ v+ %,
(16) g = (L+vy)p-vp+x,
and

(17) o mp s B2 Y

There always is a range for s =0 and 8 = X to be satisfiled,
the other cases however mey be degenerate. ‘I'he conditions for non-de-
generacy must be specified. Consider (9), for s = § to be a possi-

billty we need

e, > ma.x(ee, 35)

vt e, > s, and €. > €5 ; since e > e, by definition

®e > ¢ éjp+yx+(l+Y)x>(l+y)§-yp+§

77 T+ ay
or (L+2y)(p-Dp)>%x~x
or
(17 P>+ .—)lg—;%—y- .

Similarly for the interval in which s = g to be nondegenerate

w |

-— x —
- —n < —e»
(18) -1y SPSPH Ty

and for s = a
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(19) p<pD.

RS o
p =p + x/(1427)

P =p 4+ (x-x)/(1+27)

J

R4

Price

R6

p = p - x/(1427)

R3
R2

xl-—-—_-__

Supply

Figure 4

Figure 4 1illustrates the six regions in the decision space
of the first player in which sales exhibit different qualitative char-

acteristics.

In Rl
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x if

g 1f
B = R

q if

0 1ir

s

In R max P + = ,
L P+3 2y P

/

o

+

I A

FA



In R5; P2PpP+

5 = § if e2§e§-€

Finally in Rgl p<p<p+ %?; gy

<
0 if e =5 el

Expected profits have been denoted by E(II) ; for brevity

I will now be interpreted as E(I) .

{20) 1= (p+ p)E(s) -~ px

where in, for example Rl

€

3

(21) B(s) = [ iﬁ (e = yiar + (1 - Fleg))x
)

where F ig the distribution function of the random variable ¢ .

In order to examine equilibrium conditions derivatives are

needed. We shall compute them in detail in R, only.

(22) & a(s) + (p+ p>~§;Ecs)
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= 5(s) - (p+ o) 3220 (x(ey) - 7o)
(23) L a(p+ 01 - Feg)) - p

2
(2h) ?2} - 229 (a(r(eg) - FB) + (2 + 0)(t(ey) - 2(p))
P

where f is the density function of ¢ .

(25) i@p(pm(“a)f(e :

Finally

2°n
(26) TL 17y - (04 piley) -

In a like manner the expected profit formulae in the five other

regions can be calculated. All are tabulated below.

€
59\
Region 1: (p + p)[;j gdF + (1 - F(eji} - pX

€, €6
Region 2: (p + p) I qdrF + I gdF + (1 - F(e6) - px
P Eu
€ e €
Region 3: (p+ o)| [ GaF+ [ qF+ [ §aF+x(1 - F(e7)) - px
P 354_ €
5
€ €

5 7
Region 4: (p + p) I qdF + I gar + x(1 - F(GY)) - px
€ &



Region 5:

Region 6t

(p + p)

€s
(p + o)

€

1
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I qdF + x(1 - F(e6)) -

At a symmetric equilibrium, if any,

{(p, x) is at the intersection of R

At (P: x) = (5,

€1

At (P; X) = (_P, 32)

X)

2

=p+

:fz€6:fze

in all the four regions

. S
1+ 2y

- 1+y
P+ (\} + 2¥

= p and

T

, R

2 37

X

- F(eT

Ny -

px

pxX

—

p=p and x =x and

R‘+ and R6 .

=D+ X

B, » Ry, B,

and R6 the values %% and g% are the same. Their values are:

oll

P+x

J o adF + x(1 - F(p+ x)) - (1 + yMp + p)(F(p + x) - F(p))

B

(p+p)(1 - F(p+x))-p,
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We now limit our discussion to the special case of a rectangular

distribution on the variability in demand.

0 if x<a
Let F(x) = Eig if a<x< el
1 if x 2 a+l

%, if xe 459 afﬁ?
0 if x £ [a, ssp]

hernce f(x) z-%g =

At equilibrium %% awgg =0 or since at (P, X} @ = ¢ - D
then
an o ,
(21) 55 = [ (e-p)fle)ae + x(1 - F(p+x)) - (Ley)(pep)(F(ptx) - F(p!) =0
P
J1 \
(28) =@+ eil-Flp+x))-p=0

.

Let us convene that by x , p Wwe mean the equilibrium value
of o, 5 s y and X . We may use the last condition {28} to solve

for % as a function of ﬁ » We have

”~
P =1l - PP +X)=1- prx-8a
PEP

£ >
B
]



A A
or §+x—§—-er+a

giving
L ﬂf’ I3
(29) X = ﬁ + p + a - P L3
Returning to (27) and substituting in, we note F(P + %) =
and
%—f—a +8
a1l Bp_ e P
= &(p) = - + a- - (p-p) (14| 2= -
(30) 5, = 2(p) Pj (e-p)f(e) +\ 5y * 2P )5 - (eI 5

There are two cases to consider namely p<a and p > =& .

In the first F(p) =0 and the integral above is

L

(a-p)
php

App
2
{p+p)

i

DHp
(31) #(p) = e (p) =3 [ (e-pde + +
a3,

- (1+y)p

A A2
=8 + = - -—u“*’-e-—-’é‘ﬂ-(e""\('):p °
2{p*p)

In the second case, where P > a
1l Prx _XD 3 ¢
(32) #(p) =2,(p) =5 [ (ew)+Ipr(MmemNFuwﬂ=-ﬂpﬁ
p

. X 2L _XP 3 X
TR (l+'\h(P+P)u

(33) w ity [0 + (avtep)(p49) = (34 2V)(wre)" T

A

P
B+ op

F{p)
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We may observe by application of the law of signs to the numerator that

there is precisely one root greater than -p , if ;%;'> 0 . Further:
A 2
(34) 8(a) = 3,(a) = 8y(a) =5 - | —A—s & (147)a] .
2(a+p}
Also @1 may be written as:
2 . 2 3
5 (p) = 208+ 20(A + 22 - 0(237))p + (A + 2a ~ 5o(247))p" - 2(247)p
1

2€p+p)2

Since all parameters are non-negative there is precisely one
sigd alteration in the above cubic numerator, hence ﬂl(p) has precisely

one positive root.

If %(a) >0, then &, has a zerc greater than a and @1

2
does not have a zero less than a . Hence, & has a unique zero above
a. If 3(a) is 0, then a is the unique zero of & , and finally,

if #%(a) < 0, then @1 has a zero in [0, a) and @2 has no zero
above a , and again, & has a unique zero below a .

Hence there exists a unique point at which the first order neces-
sary conditions for a pure strategy equilibrium is satisfied. The reader
may verify for himself that if the zero of # 1is greater than a the

zero of ﬁz is less than a#A .

In the second case (where p > a ) we can write down the

unique root of P immediately from 52 = 0 where @#, is defined in

2



(32). This gilves

2
~ a4+ A+ o+ + A+ L(: 2
(35) 5. p J(a5+2yp) + (34 29)h0 |

When o =0 the roors of both Eil and 92 have simple expressions.

g, =e~ {2+ vy

'I.‘husiff)<a

- » &
(5U) P - 2 + Y
and

P R RV
(38) X 2-5%%~% € + % ;
for f)?_' a
o . %)

(39) IR
and

y a 2(L + v}
L L ST XS
(Loj x35+2\{(a+a),

We now proceed to discuss necessary and sufficlent conditicns

for a pair of pure strategies to be in equilibrium. That 1s, given

a specific pair of strategies (p, x} sard (D, X} , the expected

profit function N(p, x, -1;, %) defined as in {20} has the property

n(i) X, -I-;: ;) Z I(p, %, ?55 (5‘5) » and

a oA A

— - - e -~ -
n{p, X, Ps x) > (e, % Ps x}

1



- 22 -

for all p, X, 5, X >0 . In the case of symmetric equilibrium stra-

tegles, the above two ilnequalities are identical.

It will be useful in the sequel to exploit the fact that

ol )
5% is a piecewise linear, decreasing continuous function of x .

Therefore, for each p , p , and x , there is an optimal value
of x; ecalled =x(p, p, x) or x(p) which gives a meximum of I .

It can easily be shown that x{(p) can be expressed as

142 - A
max(0, -l—-ﬁ{ (ﬁ% +a - p)) if (l4v)p-vp >;;-I§ +a

o, 7y V) = ¢ max(0, 'ﬁ% +a-(14y)ptyp) AT (14y)p-yp < ﬁl{; + 8 < (1+y)P-vorx

ey AP Lo 0y . R s Sevpix < —2P
max{0, TIv (P"“'P +a-p) Tay %) if {lay)p-¥pix < s 48 .

o » by e N g -
Since 1(p, x(p), P, x) dominates U(ps, x, p, x) for all
¥ >0 , the sufficient condition for a symmetric pure strategy equi-

librium at p , %X 1is that T(p, x{p), ﬁg x) bave its maximum at p

and that §(§) =X o

We note that Ii{p, x(p), D, X) has & continvous first deri-
vative and a discontinuous second derivetive, Second crder conditions
necessary for equilibrium could be written baeged on & two-gided second
derivative. However, since it turns out that such conditions are not
sufficient for equilibrium, we shall content ourselves with a remark
that a result is derivable there from that at 5 the 1imit of the

upper second derivative of Il 1is plus infinity when A approaches zero



and ¥ >0 . This gives a proof for the remark noted above that in the

nonstochastic case there is no pure strategy equilibrium,

For deriving sufficient conditions analytic methods turned
intractable and we resorted to numeric methods of calculation. Our
method consisted of a numerical calculation, for any given set of values
of the parameters, ¢ s A, ¥, and ¢, the pair of values p P
% which satisfy the first crder conditions for equilibrium and then
a search of the function TI{p) for the location of its maximum. If
the maximum is at 5 then the solutrion igs indeed an equilibrium, In
Figure 5 we give sample curves, representing T{p) and Q{p) in a
case where II{p) has a secondary maximum exactly equal to H(ﬁ) .

Noting that the model is homogenecus in the parameters e ,
A, and p , we conducted a search for the maximal value of ¥ con-
sistent with equilibrium over a range of the ratios pfe and AT,
and tabulated them in Table !. It was our computational experience
that values of ¥ above the tabulated value always resulted in no
equilibrium and those below always give an equilibrium scluzicn in

pure styategies,

We shall conclude cur analysis of the stochastic duopoly
model by examining the sensitivicy of equiiibrium price to changes in
the values of the parameters. Since the vessuls 1s guite apparent, we
shall state without proof that ? is a decreasing function of ¥ and
an increasing function of € . We been left to deal with changes in
the parameters p and A . The analysis differs depending on whether

p, the equilibrium price is greater than or less than or equal to

a , the lower bound of the random variable ¢ .
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In the case where 5 2 a, we have from equation (35)

S LEro M2+ /(o + /)% 4 4(3 4 27)00
2(3 + 2%)

It is immediately apparent that S is an increasing function of A .
The behavior of p as a function of p is more ambiguous. For large

P s ﬁ behaves like

e+o+ A2
3 + 27 P

]

which decreases linearly with p . However, at o ¢, we have

) S S S
% 32y T A

Since p = (g +A/2)/(3+27) >a =3¢ - AfZ, which implies that I3 + 27)

Z {e +A/2)/(e - AJ2) , we have

“A/2+h A .1
+ af2 e + Af2

=0,

o
v

€
€
Thus we have that p increases with p for small p and then decreases

for large p until the regime changes and % <a.

]
Finally we examine the sensitivities in the case where p < a .,
Here we do not have a closed form soluticon for p 3 but since we know

that p is a zero of 91 at a point where 3f/3p < 0, we can compute

3p/d8 and aﬁ/ap respectively as
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TABLE 1

MAXTMAL GAMMA FOR PURE STRATEGY EQUILIBRIUM

ale
ple 0.025 0.05 0,10 0.20 0.30 0.40 0.50 0.60 0,70 0.80
0.0 0,71 .02 1.55 2.54 3,61 4.84 6.30 7.50 8,31 8.8%
0,010 0,70 1,01 1,51 2.43 3.38 4.40 5.53 6.47 7,02 7.32
0,020 0.69 0.99 1.47 %.33 3.19 4,08 5.01 5.81 6.25 6.45
0,030 0.69 0.97 1.44 2.25 3.04 3,83 4.63 5.34 5.71 5.86
0,040 0.68 0.96 1.4: 2.18 2.91 3.62 4.33 4.97 5.31 5.42
0. 0%0 0,67 0.94 1.3 2.12 2.80 3,45 4.09 4,67 4,98 5,07
0, 060 0.66 0.93 1.3 2,06 2,70 3,30 3,88 4.43 4,72 4,80
0,070 0.65 0.92 1,33 2.0: 2,61 3.i8 3.7% 4,21 4,50 4,56
0,080 0.65 0,90 1.30 1.96 2.53 3.06 3.5 4,03 4.31 4,37
0,090 0.64 0.89 1,28 1,91 2.46 2.96 3.43 3.806 4,14 4.20
0.190 0.63 0.88 .26 1.87 2,40 2,88 3.31 3.72 4,00 4,05
0.:10 0.63 0.87 1.24 1.84 2.34 2,79 3.21 3.59 13.86 3,92
0,120 0.62 0.86 1.23 1.80 2.29 2.72 3.11 3.47 3,75 3.8C
0,130 0.61 0.85 1,21 1.77 2.24 2.65 3.03 3,37 3.64 3,70
0,140 0.61 0.84 1.19 1.74 2,19 2,59 2,95 3,27 3.54 3,60
0. 150G 0.60 0.831 1,18 1.7t 2.15 2.5 2.88 3.19 13.45 3.952
0,200 0.58 0.7¢ 1.1f 1.59 1,97 2.30 2,59 2.85 3.07 3.18
0, 300 0.54 0.7% 1,01 1.42 1,73 2,00 2,23 2.4 2.59 2.73
0, 240G 0.51 0.68 0,94 1.30 1.57 1.80 2.00 2.16 2.30 2.41
0. 500 0,48 0.65 0,88 1,21 1.46 1.66 1.8& 1,98 2,10 2.20
0,600 Q,46 0.62 ©.83 1.14 1.37 1.5 1.72 1.83% 1.96 2.05
(i, 700 0. 44 0.9 0.80 1.08 1,30 L.47 1,62 1.74 1,85 ..94
J, 800 0,413 0.57 0D.76 1.0% 1,24 .40 (.96 1,66 1,76 1.B&
g, 904 0.41 0.55 0.74 0.99 1.19 .34 1.48 1.59 1,68 1.76
1, O 0,40 0.53 0.71 0.96 1,14 1,29 1.42 1.53 (.62 1.7G
1,100 G.39 0.52 0.69 0,93 1.10 1.2% 1,37 Ll.48 1.57 1.64
L. 200 0.38 0.50 0.67 0.9 1,97 1,21 1.33 1.43 1.52 L.>9
1,300 0,37 0.49 0.65 0,87 1,04 .17 1.29 i.39 1.47 L.%5
ey Q.36 0.48 0,64 0.85 1,01 1,14 1,25 1.35 1.43 1,51
1,200 0.36 0.47 0.62 (.83 0,99 1.11 1.22 1.32 1.40 1,47

WS P oW b



- 26a -

TABLE 1 (continued)

Ale
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3P, /aA 3p. /30
- e and - -——l—-—_
3p, /3p 38, /3p °

We have, from equation (31),

2
B, =¢ - (2 +7)p - —AB——

1 >
2(p + 9)2
which immediately implies that 38 /3A < O and hence 3p/34 <O .

Finally,

3
91 e e—ABP3 .,
ap ?

(p + 0)3"

£y

and in this regime p 1is a decreasing function of both A and p .

Conclusions

We have shown that if one improves the realism of the Chamber-
linian model by adding inventory carrying casts and making the assump-
tions that production takes time that the pure strategy noncooperative
equilibrium postulated by Chamberlin never exists. Instability of the

type suggested by Edgeworth is all that remains.

By introducing a further complication into the model the equi-
librium may be restored. This too is a step towards realism., It is

the introduction of a random element to overall market size.

We leave as open problems the generalizations and the extension
of our work to the n-person symmetric and nonsymmetric cases. OQur ex-

perience with models of this variety indicates that it is a safe con-



jecture that our results go through for the nonsymmetric market model we
have develeoped elsewhere. Although our results are mathematically inele-
gant, our conjecture 1s of substantive and theoretical interest. While

our proof of the nonexistence of the Chamberlinian equilibrium is per-

fectly general, our proof of the existence of equilibrium under uncer-
taiﬁty uses 4 specially simple example. 1In order to cobtain a more gen-
eral result, a more powerful and different type of mathematical approach

is undoubtedly needed,



- 29 -

FOOTNOTES

1Shubik, M., Strategy and Market Structure, New York, Wiley, 1959, Chs,
4 and 5.

2Levitan, R.E., "Demand in an Oligopolistic Market and the Theory of
Rationing, " RC-1545, Yorktown Heights, IBM Watson Research
Center, January 21, 1966,

3Shap1ey, L.S. and M. Shubik, "Price Strategy Oligopoly with Product
Variation, ' Kyklos, I/1969 (Forthcoming).

4Bertrand, J., "Theorie Mathematique de la Richesse Sociale' (review),
Journal des Savants (Paris: September 1883), pp. 488~503.

5Edgeworth, F.Y., Papers Relating to Political Economy, I, London, Mac-
millan, 1925, pp. 111-142.

Edgeworth, F.Y., Mathematical Psychics, London, C. Kegan Paul, 1881,
pp. 18-19,

6Chamberlin, E.H., The Theory of Monopolistic Competition, Cambridge,
Harvard University Press, (6th ed.), 1950,

"1bid.

SShubik, M., "A Further Comparison of Some Models of Duopoly," Western
Fconomic Journal, (Forthecoming}.

9Levitan, R.E., op.cit.

108hap1ey, L.S. and M. Shubik, "Price Strategy Oligopoly with Product
variation, " Kyklos, I/1969 (Forthcoming).

llIbids

12Shubik, M., Strategy and Market Structure, New York, Wiley, 1959, Chs.

4 and 5.

13Levitan, R.E., op.cit.

14S‘napley, L.S. and M. Shubik, "Price Strategy Oligopoly with Product
Variation, " Kyklos, 1/1969 (Forthcoming).



	Price Variation Duopoly with Differentiated Products and Random Demand
	Recommended Citation

	tmp.1624192072.pdf.1OAOs

