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RISK AVERSION OVER TIME AND A CAPITAL-BUDGETING PROBLEM

by

Alvin K, Klevorick*
Yale University

1. Introduction

Rigk aversion (or risk preference), as usually considered in
the literature, characterizes a decisionmaker's response to a gingle
period "fair gamble" or "actuarially neutral risk". The experiment
determining the decisionmaker's audacity or caution generally takes
the following form, Suppose the individual possesses wealth of value
W . Confront him with a risk or gamble with an expected wvalue of
zero, that is, one in which the expectation involves no chaﬁge from
his present position. If the individual prefers his status guo to
accepting the gamble he is a risk averter, while a preference for the

gamble would show him to be a risk lover.

Numerous writers, dating back to Marshall,l have stated and
digscussed the relationship between an individual's attitude toward risk
and the shape of his utility function. Taking the expected-utility

hypothesis as the basis for behavior in a risk environment, it follows

*The research described in this paper was carried out under grants from
the Mobil Foundation, from the National Science Foundation, and from the
Ford Foundation. This paper was prepared for presentation at the Winter
1968 Meetings of the Econometric Society. The author is grateful to
William Brainard, David Cass, Harold Kuhn, Susan Lepper, Richard E. Quandt,
and Joseph Stiglitz for their helpful discussions. They of course, bear
no responsibility for any faults that may remain.



that the decisiommaker pursues that course of action which maximizes the
expected value of his numerical-valued utility function u{W) . Then the
individual ig a risk averter if and only if u"(W) <0 and he is a

risk lover if and only if u"(W) > 0 . That is, risk aversion is
characterized by a concave utility function while risk loving is
characterized by a convex utility function. More recently, Arrow and
Pratt have refined the concept of risk aversion and have furthered our
understanding of the implications of attitudes toward risk. In particular,
as shall be discusged in detail in Section 2, Arrow and Pratt introduce

a measure of absolute risk aversion and they investigate the implications

of different shapes of the absolute risk aversion function,.

The utility function whose shape is crucial in all of these
definitions is a single-period utility-of»wealth'function. "Strictly

" writes Pratt, 'we are concerned with utility at a specified

speaking,
time (when a decision must be made) for money at a (possibly later)
specified time."2 But many decisions involving risk as a2 significant
factor are not made in a one-period or point-input {(decision made),
point-output (money results) framework, The investment-planning decision
or capital-budgeting decision of a firm is an example of a risky decision
in which a decision taken now has a stream of future effects rather

than a result at a single future (or present) point. The question
naturally arises, then, as to whether the digcussion of attitudes toward

risk and statements about the behavioral implications of thege attitudes

can be extended to such a multiperiod context.



This paper is addressed to just that question--attitudes
toward risk and their implications in the context of multiperiod
planning decisions. 1In particular, one part of the paper will focus on
a stylized version of a capital-budgeting problem in which the firm must
make a planning decision today about which risky investments it will
undertake over the course of the next several time periods. While the
outlays on a project may or may not take the form of a stream of cash
flows through time, the returns from the projects available.will be
assumed to occur at different points during the planning horizon., This
capital-budgeting problem constitutes a point-input (decision), stream-
output (returns flow) decision. Before discussing this particular
capital-budgeting model, Section 2 reviews Pratt's digcussior of rigk
aversion in the single-period case, and Section 3 discusses the question
of decreasing absolute risk aversion in the multiperiod case. 1In
Section 4, the particular and highly stylized capital-budgeting problem
is described and the implications of decreasing risk aversion in a
multiperiod sense are examined. The paper closes with several summary
remarks and an indication of several open questions requiring further

investigation.

. 3
2. Rigk Aversion in the Single-Period Case

Following Pratt, consider a decisionmaker with assets W and
a (single~period) utility funetion u(W) . The utility function is
unique up to a positive linear transformation, in accordance with Von
Neumann-Morgenstern utility theory, and is bounded so that the expected-

4 .
utility theorem may be usged. Moreover, u(W) is taken to be at least



twice differentiable with a postiive first derivative {positive

marginal utility).

The individual is confronted with a risk or gamble that
takes the form of the random variable z , the tilde indicating the
stochastic nature of the variable. He will receive (or pay, depending
on the sign of the realized value 2z ) an amount which depends on the
realization drawn from the distribution of the random variable 7z ,
As Pratt showsg, one may--without loss of generality--restrict attention
to actuarially neutral risgks, risks for which E(Z) = 0 . 1In all of
what follows in Sections 2 and 3, only such "fair gambles'’ will be

congidered,

The questions associated with risk aversion now center on the
nature of the risk premium 1 , which depends on the level of assets and
the distribution of the risk so that m = ﬂ(W,E} . This risk premium is
the deterministic sum such that the individual would be indifferent
between receiving m dollars less than the actuarial value E{(Z)--
hence, in our case receiving «mm dollars-~and facing the risk z .

In equation form, m 1is defined by
(2.1) u - m) = E{u(W +2)},
where we write u(W - 7) instead of u(W + E(z) -~ m) since E(z) =0,

One might, alternatively, discuss the risk aversion or risk
preference of a decisionmaker in terms of the amount of money he would
pay an insurance company to assume his risk. This deterministic amount

nI(W, %Z) , his insurance premium, would be defined by

(2.1") u(W - ﬂI) = E{fu(W + Z)} .



A comparison of (2.1) and {2.1') shows that when E(zZ) = 0 , T equals

Ty With actuarially neutral risks, then, the decisionmaker's risk
premium equals his insurance premium.

Since the decisionmaker's utility function, U(W) , is con-
tinuous with positive marginal utility, the function u(W - m) is a
strictly decreasing, continuous function of 7w for a given W . But,
then, the ingurance premium or risk premium is uniquely defined by
(2.1). For any given actuarially neutral risk 2z and any given level
of wealth or consumption income W , there is a single amount the

decigsiommaker would pay to avoid facing z .

In terms of these new definitions, a decisiommaker is a risk
averter if and only if his insurance premium is nonnegative for all W
and z : ﬂ(W,;) >0, all W and z . If m{W, Z) < 0 for all com-
binations of asset level and risk, the decisionmaker is a risk lover,
Pratt then introduces a function (W) , called the local risk aversion
function, to measure the degree of aversion a utility function shows

to small actuarially neutral risks. The function is defined as

2.2) _ L ut)

Since an individual is risk-averse if and only if his utility function

is concave, that is, u"(W) < 0, the risk premium n(W,2z) >0 if and
only if r(W) > 0 . The magnitude of r(W) measures the extent of the

decisiommaker's aversion to risks that are actuariallyneutral and small

2 .
in the sense of having small variances: E(z) = 0 and a, infinitesimal.



Pratt goes on to introduce the concepts of increasing and
decreasing absolute risk aversionDS‘ A utility function is said to
exhibit (strictly) decreasing absolute risk aversion in a global sense
if (W, ?) is a (strictly) decreasing function of W for all % .
Similarly, it is said to show (strictly) increasing absolute risk aversion
in a global sense if m(W, z) is a {strictly) increasing function of
W for all Z . Pratt then proves that decreasing (increasing) local
absolute risk aversion r(W) is equivalent to decreasing (increasing)
global absolute risk aversion. That is, the risk premium (W, z)

is a (strictly) decreasing function of W for all E’if and only if the

local risk aversion function r(W) is (strictly) decreasing, and
similarly with "increasing" replacing "decreasing™" in both of the relevant
places. What is, in Pratt's words,"nontrivial"about this theorem is

that r(W) decreasing implies m(W, z) decreasing since r{(W) is

a measure of risk aversion only for “smgll” riskg. The theorem shows

that if r(W) is decreasing, that is, if u'(Wu''' @) > [u"(W)1?,

the insurance premium the decisionmaker would pay to protect himself
against a given absolute risk 2 --no matter what its size--decreases

ags his wealth increases.

Why should we be concerned with decreasing risk aversion?
Pratt and Arrow offer somewhat different answers to this question. Pratt
rests his case for being interested in whether a utility function shows
decreasing, constant, or increasing absolute risk aversion on the insurance-
premium implications of the concept. He writes
These results have both descriptive and normative implications.
Utility functions for which r{(W) is decreasing are logical
candidates to use when trying to describe the behavior of

people who, one feels, might generally pay less for insurance
against a given risk the greater their assets....



Normatively, it seems likely that many decision makers would
feel they ought to pay less for insurance against a given
rigk the greater their assets. Such a decision maker will
want to choose a utility function for which r(W) is decreasing,
adding this condition to the others he must already consider
(consistency and probably concavity) in forging a satisfacto y
utility from more or less malleable preliminary preferences.
Arrow, on the other hand, stresses the results of his investi-
gation of a gpecific model of choice between risky and secure assets.
In his model, the individual must allocate his initial wealth between
one risky asset and one safe asset, which can be taken to be cash with
no risk and no return or a perfectly safe bond with no risk but a pos-
itive return. The decisionmaker’s goal is to maximize the expected
utility of his final wealth at the end of the single period consgidered,
That is, the individual wants to allocate his initial wealth, say W R
between an investment of amount A 1n an asset, whose net rate of return
is described by the random variable % , and holding cash in amount W~ A
80 ag to maximize E{U(ﬁ-+ ZAY} , with O <AL W . In the context of
this model, Arrow shows that "“decreasing abgolute risk aversion implies
that...the amount of risky investment increases with wealth, as would be
7
expected. 1In other words, risky investment is not an inferior good.™

"If absolute risk aversion increased with wealth;” he writes, "it would

follow that as an individual became wealthier, he would actually decrease
8

the amount of risky assets held.”"  "This result is empirically implausgible

, . . 9
and 'we must reject the hypothesis of increasing abgolute risk aversion.’

In sum, Pratt argues that one ought to be interested in

whether or not a utility function is decreasingly risk-averse because



of the inherent plausibility of the property-=-that people will
decrease the amount of insurance they buy to protect againat a fixed
rigk when their wealth increases. Arrow's case for the importance

of the concept of absolute riszk aversion rests, in contrast, on a
behavioral implication of decreasing absolute risk avergion--if utility
functions possess the property, risky assets are a normal good., Two
questions then arise., Firgt, can the concept of decreasing absolute
rigk aversion be extended to situations invelving multiperiod planning
]2

decisions and can Pratt's condition u’{W)u®®'’{(W) > [u (W) for the

single-period property be suitably generalized? Second, does decreasing
abgsolute risk aversion in the multiperiod sense imply that risky
investment is not an inferior good in sich planning contexts? Section 3
indicates that the answer to the former question is yes while Section 4

shows that the answer to the latter question is no.

With the summary discussion of risk aversion and the single-
period utility function completed, turn now to the more gensral case in
which the decisiommaker®s horizon extends beyond the present period.

More precigely, attention is now focugzed on the case in which a decizion
made at a single point in time (now) gives rise to a whole stream of
monetary effects {during future periods) rather than to a single monetary

effect (in the present period or in some single future period).

The decisionmaker possesses a T-period horizon and a utility

function U = U(C) defined over that horizon where € 1is the vector



(Cl’ C2""’ CT) describing the sequence of consumption incomes cver

the T periods, The utility function is again unique up to a positive
linear transformation and is again assumed to be bounded. It is also
asgsumed that U(C) is at least twice continuously differentiable with
respect to all elementg, and that dollars in each period have positive

marginal utility no matter what the time stream of consumption incomes,

-1t

that is, Ut = 3¢ >0 for all t and all C vectors. One further
t

assumption~-unnecessary in the single~period caze--will be made about
U(C), or rather about the realtionship between incomes in different
periods. It will be agsumed that there exists the same diminishing
marginal rate of substitution for substitutions in every direction
among dollars in different periods as one finds in the theory of
consumer behavior with many commodities. That is; we assume that

U(C) 1is a quasi-concave function.

While in the single-period case the decisionmaker was con-
fronted with a single risk, Z , in the present case the decisionmaker
is confronted with a vector of risks (random variables)
7= (El, Eﬁ,..., E&) , one occurring in each period. The vector Z is

thus a T-dimensional random variable., The distribution of each random

~ . . . th
variable z, represents the decisiommaker's perception of the ¢t

rigk he faces. The probability distribution may be objective or sub-
jective in nature, but where an actual risk is specified to exist in

the tth period, it iz assumed that E; is not constant with probability

one. Once again without loss of generality, in defining decreasing



risk aversion attention is restricted to vectors of "fair risgks,"

that is, vectors 2 such that E(E) =0, or E(Eé) =0 for all ¢t .

In place of the single period's single risk premium ™ , in
the multiperiod case one has a vecter II of risk premiumsg, one for

each period: I = {m eo oy HT) . The vector II represents a vector

15
of money amounts such that the decisionmaker would be indifferent

between facing the risks E} for t =1, ..., T and receiving the

deterministic amounts -, (that is, T legss than the actuarial

amount E(Et) =0) for t=1, ..., T . A vector of rigk premiums
must therefore satisfy the condition
(3.1) u(c - m = efuic + Y .

Whether a particular vector does or does not satisfy (3.1}
will depend on the initial consumption~income stream and the vector
of risks, that is, I is a function of C and 7 . That some vector
N does exist is guaranteed by the assumption that E{U(C + Z)} exists
and is finite, and the assumption of positive first partial derivatives
and continuous second partials for U{C) . Since attention is confimed
to a vector of actuarially neutral risks, a vector of risk premiums is

algo a vector of insurance premiums, just as was true for m and e

in the single-period case. Thus, a vector HI is a vector of period-
by-period insurance payments the decisiommaker would willingly make
to avoid the risk vector 2 when his consumption incomes are given by

C if and only if it satisfies (3.1).
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Completely analogous to the single-period case, an individual
is defined to be risk-averse if he prefers (or is indifferent between)
his certain gtatus quo position C to (and) the fair risky result
determined by the realization of the vector random variable C + 7 .
For a risk averter and only for a risk averter, U(C) > E{u(c + Z)}
for any risk vector with E(Z) =0 . For a gggggg_fisk averter the
weak inequality is replaced by U(C) > E{U(C + Z)} . By extending
Jensen's Inequality to functions of several variables, it can easily
be shown that an individual is a risk averter if and only if his multi-

period utility function U(C} is concave,11

There would appear, however, to be gome difficulty in defining
risk aversion in terms of insurance policies or vectors of risk premia
in the multiperiod case. The crux of the problem is that the vector
T is not uniquely defined by equation (3.1). In the single-period case,
the assumption of a continuous utility fumction with positive marginal
utility implied that the risk premium m was unique; but more than one
NI-vector can be found--in fact, an infinite number can be found--which
satisfy (3.1) for a given C and a given Z . It iz easy to see why
this occurs. Given his asset vector C and the risk vector A , the
expected utility resulting from accepting the risks can be calculated.
From the assumptions about U(C) , it follows that this expected utility
E{U(C + Z)} exists and is finite, say it equals k . Equatiom (3.1)
now leads us to determine all vectors Y such that U(Y) =k .
Corresponding to each of these vectors is a vector of risk premiums
n, %) which is found by substracting the vector Y from the initial

consumption vector C . But in the multiperiod case an infinite number
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of consumption-income vectors generate the game utility level k .
All guch vectors lying on the indifference surface corresponding to
U(C) = k will have utility k and corresponding to each of them

will be a vector I satisfying (3.1).

Consider, for example, the situation of the decisionmaker in

Figure 1., His initial position is C = (El, 82) and he is confronted

with the rigks Z = (51, Eé) . We assume that he is a risk averter

so that the indifferemce curve corresponding to utility level
E[U(E + % lies below the indifference curve on which C 1lies.
Corresponding to each point on indifference curve Il there is an

insurance policy the deciszionmaker would be willing to purchase

to avoid the gamble. For any point on I. , say (Ci, 05), the

1

corresponding insurance policy is given by (n1,112) = (El’Eé) - (Ci,Cé).

Cne particular insurance policy vector is shown in the figure, namely,

the one going from C to C-1.

The question arises, then, as to whether one can determine
if an individual is a risk averter or a risk lover solely by observing
the “ingurance policiesg' he would be willing to buy. The answer is
yes. To do so, however, one must examine a specific subget of such
policies, Consider an insurance-premium vector feasible for the
(c, Z) pair in which the individual pays nothing in any period but

t
the tth one. That is, define the risk-permium vector T (C,Z) such

that: U(C - N1°) = E{U(C + Z)? and 'rrz =0 for all i except 1=t .
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FIGURE 1

AN EXAMPLE OF AN INSURANCE POLICY



Since there are T periods in the planning horizon, there are T
such "all-in-one~period" policies. The following theorem, which
demonstrates the Importance of these "all-in-one-period” policies in

. . . 12
agsessing a decigiommaker's attitudes toward risk, can be proven.

THFOREM 1. A decisiommaker is a strict risk averter if
and only if for any C , Z pair Ht(C, 7} 1is a semi-positive
vector for all t ; that iz, if and only if ﬂi(C, %y > 0

t o
while ni(C, Z) = 0 for all 1 # t , for all t .

The theorem states that an individual is a strict risk averter if and
only if he would buy one insurance policy in which a premium must be
paid in the first and only in the first period, ome in which the entire

premium must be paid inthe second period, and so on for t =1, 2,..., T .

As the individual decisiommaker's initial consumption-income
vector changes one might well expect that the insurance policies he
would be willing to purchase to avoid a given risk vector would also
change. 1In particular, if one agreed with Pratt in the single-period
case, decreasing risk aversion would seem to be a plausible property
for a2 multiperiod utility function to possess if it is to be used in
making decisions under risk. Intuitively, decreasing risk aversion
has the same meaning in the multiperiod case as in the single-period
model. As the individual's consumption incomes increase so that
he becomes better off (as a result of the assumed positive marginal
utility of dollars in any period at every point in consumpt ion-income
space), he willwant to pay less for insurance against a given vector

of risks.
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Formalizing this intuitive definition is not a straight-
forward matter. The stumbling block, again, is the multiplicity of
ingurance policies a decisionmaker would be willing to purchase in
order to avoid a given set of risks when his consumption incomes in
the T periods are at given levels. The following line of reasoning,
however, points the way to a most reagonable formal definition of
decreasing risk aversion. Note that at any point in consumption-
income space, C , the decisiomnmaker has a set of subjective rates of
time preference which indicates his relative valuation of dollars in
different periods. The rates of time preference at a point, C , are
defined by the normal at C to the indifference surface on which C
lies. In the two-dimensional case shown in Figure 1, the decisionmaker’s
time preference is simply given by the marginal rate of substitution
of dollars in period 2 for doliars in period 1 . For example, for
point C- T, his rate of time preference is the absolute value of
the slope of BB' . If one evaluates the discounted pregent value
(DPV) of the individual's insurance policy at these subjective discount

factors, one then has that the DPV of 11, denoted Ho , equals

TU

t
-2_ T Yit . For example, in the figure, the DPV of the policy shown
t=1"1

there is AB .,

U

Denote EL , the discount factor to be applied to ¢
1

th

period consumption income to put it on an equal footing with today's

(the first period's) consumption income, by D, and denote
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(Dl, D2, veuy DT) by D . It is then clear that every triple of

vectors (C, %} D) defines an ingsurance policy, and the discounted

present value of that policy, denoted 1° , 1s HO(E; Z, D) =

D, m (C, Z, D) . Decreasing absolute risk aversion in the multi-

13

t=1

period sense is then defined as follows. A decisiommaker with utility
function U(C) 1is decreasingly risk averse if as C increases--that

is, at least one element of C increases and none decrease--the dig-
T

counted present value of his insurance policy, HO(C, Z, D)= % Dtﬂt
t=1

-

decreases for all risks Z and all sets of positive discount factors

A———ca—

D = (Dl, DZ"'“’DT)’ That is, a decisionmaker (or his utility function)

is decreasingly risk averse in the multiperiod sense if for any risk

~

vector Z and any vector of discount factors D, n°¢ct, Z, n)

< HO(E; 2; D) for all C' > c (where > means semipositively related),
and this is true for all positive D-vectors, and all Z-vectors. In
terms of Figure 1, this states that for the given 7 wvector, as the
point C 1is moved northeast, the length of segments corresponding

to AB will decrease, and this will be true no matter what slope one
gives to BB' . And, moreover, it states that this will remain true

no matter what risk-vector Z 1is chosen.

There are two basic reasons one can offer for the desirability
of this definition. One line of argument runs in terms of the existence
of a perfectly competitive capital market. This argument observes

first that a perfectly competitive multiperiod capital market can be defined
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by a vector of single-period interest rates (rl, rz,.oo,rT), where

the decisionmaker can borrow or lend in period t at the fixed

single-period interest rate T Suppose the decisiommaker faces such

a market, and consider a sequence of gituations in which he begins

at different C positions but always faces the same risk vector.

For each C vector in the sequence, there will be a different equilibrium
position, and each such equilibrium point will be the point on the
relevant indifference curve, the one corresponding to the value

E{U(E.+ f)}', where the normal to the indifference surface is given

by the D-vector.13 The appropriate measure of the discounted present
value of any policy ! 1in a perfect capital market of this kind is

then found by applying the discount factors Dl’ Dyjseonsy DT where

= 1 , ,
Dt = (1+r1)(1+r2),°.(1+rt”1) to the regpective insurance premia

T Moseeay Mo o The definition given here states that the decision-

maker is decreasingly risk averse in the multiperiod sense if for any
arbitrary 7 vector, the value (DPV) of his insurance policy
decreases as his endowment vector increases semipositively, no matter

vhat perfect capital market he faces. (The only restriction on the

market is that no interest rate be -1 sgo that each Dt is ensured
of being finite.)

The second justification for the given definition runs
soley in terms of the decisiommaker's preferences and does not involve

any appeal to a perfect capital market. It rests on the observation
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that the added difficulty that arises in discussing attitudes toward

risk in the muliiperiod case, as contrasted with the same discussion

in the single-period case, derives from the fact that the multiperiod
utility function is the repository of information about both (1)

the decisionmaker’s time preferences and (2) his attitudes toward

risk. In order to isolate the latter--our primary concern here--
onewants to focus on the changes in the decisionmaker’s ingurance
purchases that result from given endowment changes, holding his

time preference '"constant.'" This is essentially what the measure presented
here accomplishes. The positions the decisionmaker attains via insurance
purchases that we examine to see whether or not he is decreasingly
risk-averse are all marked by the same rates of time preference=-

the vector of discount factors, D , is the same at all of these

points. Hence, any changes that occur in the value of hie insurance
policies as his consumption-income vector changes are the result of

his risk preferences {or aversion) working alone. 1In order for a
decisiommaker to be clagsified as decreasingly risk averse it is

required that for all configurations of his time preference, as repre-
sented by all positive D-vectors, the DPV of his insurance policy
decrease as his consumption-income endowment is augmented by a

gemipogitive vector.

Having defined decreasing absolute rigk aversion with regard
to multiperiod situations, it is desirable to characterize utility
functions that display this property. I have been unable to obtain

a general set of necessary and gufficient conditions for a utility
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function to be decreasingly risk averse under this definition. What
can and will be provided iz 1) a get of gufficient conditions for a
utility function to exhibit decreasing absolute risk aversion in the
face of independent risks, 2) a statement about a necessary condition
for decreasing absolute risk aversion in the multiperiod case, and

3) a statement of the necessary and sufficient condition for a par-
ticular class of multiperiod utility functions to be decreasingly

rigsk averse in the face of independent risks.

Focusing attention on the class of independent risks means

we are considering risk vectors %7 which can be written as

(3.2) 7= %

. th
where Et is a vector each of whose elements is zero except the ¢t

which is the random wvariable E; . The risk faced in a specific

period is assumed to be independent of the risk faced in any other

period sc¢ that the distribution of Ek is unaffected by the realization
of any other risk ;; for s # t . The class of risk vectors con-
gidered has been resgtricted to such independent risks in order to
derive meaningful results concerning multiperiod decreasing risk
aversison.
ot . .
The wvector Z thus removes all the risks the individual

was originally supposed to face--as given by Z-«except for the one

. th . ~t e
occurring in the ¢t period. Each Z is a T~element vector with
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;ﬁ = 0 for all 1 except i t and Et

il
|

Z where Z
¢ e zt is the

h ~
¢t element of the original risk vector Z . Similarly, define a

t
set of consumption vectors, C  for t =1,.,., T, that are derived
. o ot ~
from C in the same way the Z  vectors are derived from 2 . Each
t
new vector ¢ leaves the individual with the same amount of con-

sumption income he originally had in the tth period but with nothing

in any other period., Hence, each Ct is a T-element vector with

t . t th
Ci = 0 for all i # t and Ct = Ct where Ct is the t  element of the
original consumption-income vector.

In order to state the set of sufficient conditions, it is
necessary to introduce some further notational structure and a new
set of random variables. Specifically, we introduce the following

functional notation:
U-l[p,alt] is defined as the T-element vector C such that

(3.3) (1) U(C) = p and (ii) Ci equals Ei for all i except

i=1t.

Hence, for example, the insurance policy which requires the individual
to pay a positive amount in the tth period and nothing in any
other period--denoted Ht(c,f)--can be written as

(3.4) nte, %) =c¢ - U“l[E{U(c + D, ¢, t) L

As a last preliminary before the statement of Theorem 2,

a new set of random variables is introduced. Let b = U(C+ Z) .
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The risk vector Z generates a vector of stochastic additions to

the original consumption-income vector. This results in a new random
variable, C + Z , which in turn yields a random variable describing
the decisionmaker's utility. It is this latter random variable--the
individual's ( stochastic ) utility level resulting from the risk
vector Z--that we call % . The risk vector Z maps into a unique

distribution for h but the converse is not true: UalﬂT) is a

correspondence not a function.

Similarly, define ﬁ; = U(Ct +'75 . This says the following.

Suppose the decisionmzker has consumption income in the tth period
and only in the tth period. Assume, moreover, that the level of
consumption income in that period is the same as what he was allotted
by the original consumption-income vector C . The decisionmaker is
then confronted with a risk in the tth and only the tth period

and that risk is identical with the tth risk he faced in the original
risk vector, Z . The vector 7' generates a stochastic addition to
his tth period consumption income and yields the new stochastic
variabie Ct + Et . This new stochastic variable then generates a

distribution of the individual'’s utility level. It is this stochastic

utility level that we denote Ht .

. w~t
With ¢ , and hence Cg given the risk vector Z  maps
inte a unique distribution for E; . In addition, since each period's
consumption income is assumed to have continuous positive marginal

utility, with Ct given each E; maps into a unique risgk vector

Et since Et containg only one possibly nonzero element. Hence,
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(3.5) i, = vt + 2% ana ¢t + % = U"l[E‘t, ¢, &) .

Similarly, with Al given each ¢t maps into a unique distribution

for E; and by the assumed continuous positive marginal utility of

each period's consumption income, each distribution of E; maps into

t
a2 single C ', Finally, if attention ig restricted--as it is here--
to actuarially neutral risks, E(@) = 0 » then there is a one-to-one

mapping betwéen distributions of 3% and (Ct, ﬁt) pairs.

With these new definitions of variables and functions at
hand, one can proceed to the statement of a set of sufficient con-
ditions for multiperiod decreasing absolute risk aversion in the

face of independent risksol5

THEOREM 2. 1f U(C) is the utility function of a strictly
rigsk-averting decisionmaker; then the decisiommaker is
decreasingly risk-averse in the multiperiod sense with
respect to independent risks if the following conditions

are satisfied.

T
{(3.6) u{zx Ug1[3; 5 Ct st]) 1is convex in the Eg variables:
t=1 '
T 1. ¢t
(3.7) du(z U [ht , €, t]) is convex in the ﬁk variables

t=1
where the differential is with respect to nonnegative

increments in the T initial consumption incomes;

(3.8) setting all C, = 0 except Ct in U(C) ,

i
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2y . v /3% \2
3 3¢ A and thig is true for all ¢t .
act t act

In view of our objective of seeing whether the concept of
single~period decreasing absolute risk ave?sion and Pratt's condition
for the single-period property can be suitably géneralized, it 1is
important to note the relationship between the set of sufficient
conditions given in (3.6) -~ (3.8) for decreasing risk aversion in the
multiperiod sense and Pratt’s result for the single-period case. As
Pratt shows,16 a single-stage utility function u(W) is {strictly)

decreasingly risk averse if and only if

u'(u-l(a)) is a (strictly) convex function of ¢ or,
(3.9)
equivalently, u'(Wh'''(W) > {u"(W)]2 R

where q 1is the random variable indicating the stochastic level of
utility. 1If the horizon T 1is set equal to unity, the conditions in
(3.6) - (3.8) reduce to Pratt's single-period condition given in (3.9).

Let us verify this now.

Examining the conditions in the theorem in reverse order,
we see that (3.8) simply requires that the decigionmaker be decreasingly
risk averse in the single~period sense if he has consumption income
in only one period and faces a single-period risk in the same period,
Hence, with T = 1 condition (3.8) is exactly the second equivalent
form of Pratt's condition in (3.9) , Condition (3.7) , on the other

hand, is the multiperiod analogue of the first equivalent form of
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Pratt’s condition given above. With T = 1 , condition (3.7) requires

1

-1
that duU(U [Kl, €7, 11) be convex in ﬁl where the differential

is with respect to positive increments in the only initial consumption

income Cl + Since the mapping in (3.5) is one-to-one and since the

vector involved contains only one element, this is equivalent to

requiring thar du(unl(ﬁi)) be convex in Kl for a positive
differential change in C1 « But this means u'(uwl(ﬁi))dcl convex
in E& for dC; >0 or, therefore, u'(uﬁl(ﬁl)) is convex in ﬁl .
This is precisely the condition in (3.9) .

There is, however, no analogue to condition (3.6) in Pratt’s
statement of necessary and sufficient conditions for single-period
decreasing absolute risk aversion, Some interpretation of {3.6) there-
fore seems in order. It can be shownl7 that this condition is

equivalent to the statement

T ,
(3.10)  u(c - (¢, T > uc - ¢ et , 7)) forall e,
i=1

which has the following interpretation. It expresses the decisionmaker’s
preference for an insurance policy that allows him to consider simultan-
eously all the risks he faces in all periods and to decide on a premium
or set of premiums to cover such risks rather than having to insure
againsgt each risk out of the consumption income of the particular period
in which the risk must be confronted. A decisiommaker whe shows such

a preference will be called a "risk balancer over time," or in what

follows simply a "risk balancer."”
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Assume there were two insurance companies from which the
decisionmaker could buy a policy. Suppose the first company, Allrisk
Incorporated, offered the individual a policy in which he paid a
certain premium in the tth period which insured him against hig T
risks. The second company, One-At-A-Time Incorporated, makes
available a different type of ingurance. It tells the decisionmaker
that in insuring against a given period’'s rigk it does not want to
congider his congsumption income in any other period or the other riskg
he faces. Instead, One-At-A-Time wants each risk ingured against
separately and strictly out of the consumption income the decisionmaker
possesses in the period in which the risk occurg., If the individual
in question is a risk balancer he will purchase his policy from Allrisgk
while if he is not a risk balancer, One-At~A-Time will have gained
itself a customer. This pairing of customers with companies follows
because Allrisk is offering the individual the policy T (C, %) while

T
i, 1
One-At-A-Time 18 offering him the policy T Hl(C s 2i) .
i=]

It should be noted that the risk-balancing property does not
imply that the individual necessarily prefers an insurance policy under
which he pays the whole premium in one period to a policy in which he
pays a premium in each period. On the contrary, it can be shownl8
that for any strict rigk averter there is at least one insurance

policy (generally an infinite number of such policies if his utility

function is smooth) he would purchase that involves payment of a positive
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premium in every period. Call this policy II* . Then since
u(c - m*(c, 2)) = E{uc + %} and Ulc - T(c, Z)) = E{UC + D,
one has, using (3.10),

o T 1,1 i
(3.11) U(C - m(c, 2)) >2u(c- T T ,Z7)) .

i=1

For a rigk balancer, the policy [TI*(C, 7) 1is also preferred to the
policy offered by the One-At-A-Time company. Thus the risk-~balancing
aspect of the decisionmaker‘s behavior does not mean he does not like
to spread his premium payments over time. Rather, it means that he
does not want to have to meet each risk from the consumption income
of the particularperiodinwhichthe risk occurs. This risk~balancing

property would seem to be a natural property of rational decisionmaking

under risk in a multiperiod setting.

Returning to the relationship between conditions (3.6) - (3.8)
and Pratt's condition (3,9), it is clear that there is no single-period
analogue to condition (3.6) since there is no meaning to risk balancing
over time when there is only one period. Nevertheless, formally setting

- 1
T =1 in (3.6), the condition becomes that U(U 1[§1’ ¢, 1]) , with

C1 a single-element vactor, must be convex in ﬁl . But

U(Uhl[ﬁi s C1 , 11) = E& as a result of the one-to-one nature of the

mapping defined in (3.5) . Since Ei is convex in itself the first
condition of the theorem is met by any single-period utilicy function.

In summary, then, if there is in fact only one period to the



- 27 =

decisionmaker's planning horizon, Pratt's condition (3.9) and the
sufficient conditions (3.6) = (3.8) are identical. The results just
described lead one to answer affirmatively the firgt question poged
at the end of Section 2. The concept of decreasing absolute risk
aversion defined in terms of insurance policies can be extended to
multiperiod planning decision situations and a set of sufficient con-
ditions for the property is a generalization of the Pratt condition

for the single-period case.

While I have been unable to find a complete set of necessary
conditions for multiperiod decreasing absolute risk aversion--and in
particular have been unable to prove that conditions (3.6) ~ (3.8)
constitute a set of necessary conditions--one such condition 1is
clear. From Theorem 1 it follows that for any C vector and any 2
vector, there will exist T ‘"all-in-one-period" insurance policies,

™, t=1, 2, ..., T with rrE>0and n§=0forall i#t, that a

strictly risk-averse individual would be willing to purchase. That is,
for any consumption-income vector-risk vector pair, there will be an
insurance policy a risk averter would purchase in which he would pay
nothing in any period but che tth one, and there will be one such

policy for each of the T periods in his planning horizon,

Now consider a case in which the decisionmaker possesses an
h R .
initial consumption income in only the tt period and faces a risk
h . .
in the tt period alone. In this "corner'-itype case multiperiod

. t
decreasing risk aversion requires that Te s the only nonzero element
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of the tth all-in-one-period insurance policy, decrease as Ct R

th R
the t ~ element of his consumption-income vector, and only Ct increases

in the face of the given risk. Decreasing absoclute risk aversion in

the multiperiod sense thus requires that if all €, are set equal to

i

th . .
zero except, say the t , the resulting single-period utility function
must exhibit decreasing absolute rigk aversion in the single-period

sense. The utility function U(0, 0,..., 0, C 0, ..., 0) must

t 2

meet the Pratt condition (3.9) when considered as a function of Ct

alone. Thus, condition (3.8) is also a necessary condition for decreasing

absolute risk aversion in the multiperiod case.

Combining the necessity of (3.8) for multiperiod decreasing
risk aversion with the.sufficiency of (3.6) - {3.8), we can state the
gsingle necessary and sufficient condition for an additive multiperiod
utility function to be decreasingly risk averse in the face of independent
risks, Assume the utility function U(C) is additive in the individual
periods' utilities: U{C) = tglut(ct) , where the decisionmaker's rate

of time preference is reflected in the relative magnitudes of the parameters

of the different ut(Ct) functions. Condition (3.6) is then satisfied

because we have
T 1 t T oot ot ¥
(i) U( T U ['ﬁ’t,c , t]y=0(zcic +Z1) =vuc+2)
t=1 t=1

from (3.5) and the definition of Ct and 2% , and
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t
u(ct + 2%) from the additivity property,
1

(ii) v+ %) =
t

[

and finally

T ¢ " T
(iii) T U{c +Z )= ¥ ﬁ; from (3.5).
t=1 t=1

T
ut(Ct) ,u{Tu [

T
%, ct, t]) = £ K which is
1 t=1 =

T
Hence, if uvic)= % .
= t=1

t

convex in the ﬁ£ variables since it is the sum of them. 1In

T
addition, with U(C) = T ut(Ct) , it can be proven that condition
t=1

(3.7) will be satisfied if each ut(Ct) is decreasingly risk averse
in the single-period sense; that is, if each ut(Ct) meets condition

19
(3.9). But in the case of an additive utility function, condition
(3.8)~-which we have just seen to be a necessary condition for multi-
period decreasing risk aversion--is precisely the requirement that

ut(ct) be decreasingly risk averse in the single-period sense for

each t .

The substance of these remarks can be summarized in the form
of the following theorem.
THEOREM 3, If U(C) 1is an additive utility function so that
T
u(c) = t§1ut(ct) , then U(C) is decreasingly risk averse in the

multiperiod sense with respect to independent risks if and

only if each ut(Ct) satisfies the Pratt condition (3.9).
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g _Problem"

A. The "Capital-Budgeting' Model

Having answered the first of the two questions raised at the
close of Section 2 in the affirmative by showing that the insurance-
policy interpretation of decreasing absolute rigk aversion could be
extended to the multiperiod case and that a set of sufficient conditions
for the property represented a generalization of the Pratt condition,
let us now turn to the second question raised there. Specifically,
does decreasing absolute risk aversion in the multiperiod sense imply
that risky assets are a normal good in a multiperiod planning context?
As a decreasingly risk-averse decigiommaker becomes wéalthier, does
the amount of risky assets he purchases increase? This question will
be discussed in the context of a highly stylized version of a firm's

capital-budgeting decisionozo

The decisiqnmaking unit of the model is an existing firm
planning an investment program for the next T periodso21 The resources
the firm controls before the investment program starts (that is, at
t = 0) are expected to generate a stream of returns over the firm's
investment-planning horizon. Specifically, in each of the first T-1

periods the firm anticipates a nonstochastic cash throw-off of xt

dollars, t = 1, ..,, T -1 , from operations apart from the investment

program's returns. In addition, the enterprise has on hand XO dollars

at the start of its investment-planning horizon., These are internal
funds that have been generated prior to the start of the investment

plan and that are available for use for the capital program in period 1.
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The firm's investment program is not limited, however, by
the cash throw-offs generated by the asggets it owns at t = 0 ., Instead,
the firm faces a "perfect' capital market in which it can enter into
one-period contracts, which are de facto renewable, as either a lender

or a borrower, If the firm lends Lt (> 0) dollars in period t ,

where Lt denotes the net amount loaned in period t , it makes this
amount available to the borrower at the start of the tth period.
At the end of period t , it receives from the borrower the amount

(l+r)Lt , where r is the single-period riskless rate of interest

. X 2
assumed to be constant over the course of the T-period horizon.

This sum, (1~+r)Lt , is then available for use by the firm in period

t+1 . Since the planning horizon extends over only T periods, the
firm will make such loans only in periods 1,2,..., T-1 because the

benefits of any such loans made in the Tth period would go unracorded.
Similarly, if the firm borrows th (> 0) dollars in period

t , it receives this amount at the start of period t . On the last
th .
day of the period, when it is also receiving the ¢t period cash

throw-off from its original assets;, Xt , the firm must pay its
creditors (L+r)(-Lt) dollars. Since it must repay the principal

and interest on the last day of period t , the firm reduces the

amount it has available for investment in period t+1 by the amount
th

(L+r)(~Lt) . It repays the principal and interest on a ¢t period

loan out of the cash throw-off Xt . Since the model stops at the
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horizon period T , if the firm were allowed to borrow in period T
it could then borrow unlimited quantities which it would not have ro
consider repaying. Hence; the option of borrowing in the herizon

period is also completely removed.

There are two constraints imposed on the firm's borrowing
and lending strategies. The %irst ig that the capital market in which
the firm operates-~-for examples, the bank from which it borrows and
through which it lendsg--requires that the firm state at t=0 how much ‘
it will borrow and lend in each pericd of the planning horizon. That
is, thenfirﬁ must not only get cut a‘?{ég“pf(its investments for its

creditors and owners but it must also set out a plan of borrowing and

lending; it must specify all T~1 elements of the vector [Lt} . The

second constraint requires that the firm be golvent with probability
one at the end of the plamning horizon. During the courge of the first
T-1 periods for which investments are being planned the firm may be in
debt as often ard to any extent it thinks is necessary to effect the

"hest" investment plan. But at the start of period T ; at _which point

it is also agsumed the income-earning assets possegsed by the firm at

the gtart of the planning horizon disintegrate or evaporate, the firm

must be solvent with probability ome.

Within the setting of the capital market just described, the
firm solves its capital-budgeting problem. Taking account of its
anticipated cash throw-offs and the capital-market options available to

it, the firm chooses the optimal subset of investments to be made from
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among the opportunities available over the plaﬁning horizon. It
remains for us to describe the investment possibilities available to
the firm and the way in which the firm measures whether ome subset of
projects is better than another. It will be assumed that projects

are perfectly divigible so that the decisionmaker must decide not only
which projééts to accept and which to reject but also on what scale

to undertake each accepted proposal.

Each project will be assumed to require a gross cash outlay
of funds in at least one period, and some projects may require funds
in several periods. Let s denote the lagt period in which a par-
ticular project requiresa cash outlay by the firm. The scale cf the
project will then be defined =o that 1 unit of the project involves
a cash outlay which is the discounted-present-value equivalent of one
dollar spent in period s . That is, one unit of a project whose last
gross cash requirement occurs in period s will be that amount of
the project that could be purchased by a stream of cash outlays
equal to (].+r)ws dollars. It will also be assumed that a project
does not begin providing gross cash returns to the firm until, at
the earliegt, the period in which its last gross cash cutlay is made.
Finally, it will be assumed that when the gross return from a project
is made available for withdrawal from the firm, for example, in the
form of a payment to stockholders, the project is terminated. That
is, each project's gross return can be made available for withdrawal
from the firm in one and only one period. Hence a project can be

characterized by the two important periods in its life--the last
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period in which it requires an outlay of corporate funds, s , and the
period in which its gross returns are made available for withdrawal

from the firm, t .

Since there may be more than one project whose last outpayment

occurs in period s and whose gross return ig withdrawn in period ¢t ,

one more index will be needed to fully characterize a project. Let

ISt be the set of projects whose last cash outlays occur in period s

and wvhose gross returns are withdrawn in period t . The projects in

this set will be indexed by the triple ist . Denote by Aist the

th

scale on which the 1 project in the set Ist is accepted so that

Aist > 0, and denote by the random variable 8ist the net return

factor of that project measured in_terms of period t dollars. Hence,

when project ist is terminated in period t the amount available

for withdrawal is given by the random variable (1 + gist)Aist o

The only restrictions placed on the return factors are:

(1) all returns are finite go that Bigt < for all i , s , and t ,

and (2) the worst the firm can do on any project is lose its investment
and the riskless return it could have earned on the amount invested in

the asset so that > -1 for all i, s, and t . Except for these

Bist
two restrictions the vector of random variables {gistT may POSsess

any arbitrary probability distribution,

While this description of the projects available is obviously

not perfectly general, it is, in fact, flexible enough to admit a wide
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range of possibilities. It may be worthwhile to indicate briefly,

and by example, how wide this range is so that the model is not
thought to be overly restrictive. The key feature of the description
is that no specificaticn is made about what happens between the last
period in which an outlay is made on the project and the period inwhich
its return is used for financing withdrawals from the firm. Any
arbitrary set of events may occur between those two pointg in time.

In particular, a "project” is not necessarily the same thing as, or
coterminous with, a single physical investment. Instead, a project
simply represents a definite sequence of events with the iast planned
outlay neéded to support the sequence occurring in period s and with
the set of events ending with the availability of funds for withdrawal
from the firm in peried t ., The probability distribution of

1+ 8iat is thus the unconditional distribution of the funds that

project ist representing this sequence of events makes available

for disbursal in period t .,

For example, a pfoject might begin with the purchase of a
new machine. The returns from the initial physical investment could
be withdrawn immediately or they could be reinvested in another risky
asset (be it a physical investment of the same firm or a rigky
gecurity of another firm) or they could be reinvested in the riskless
asset until the decisiommaker wants to use the returns to finance cash
withdrawals from the firm, 1In combination with the original purchase

of the machine, each of these alternative uses of the machine's returns
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would congtitute a different investment project in the terminology being

used here. The returns from a particular physical investment can be a stream

through time. All that is required here is that the return from a project

be concentrated at one point in time.

It should be noted, in particular, that the definition of a project
used here does not require that the entire stream of returns accruing from
a particular physical asset be withdrawn in the same period even if it is
undegirable to incur any further risk with those'fundsb Suppose, for
example, that the purchase of a2 machine 1 in period s 1leads to returns

in only period to . The firm need not withdraw all the funds in t0 but

it can, instead, define a set of projects ist0 s istl B istz, and so on,

with project 1ist representing purchase of the machine in period s and

3

reinvestment of the returns accruing in period to in the riskless asset

for j periods. The sum of the Ais over j would then indicate how

t,
J

much of a machine was purchased while the value of each Aist would in-
h|

dicate how much of the machine's return was being used for withdrawal purposes

in period tj v

It ishoped that this brief discussion has served to indicate the
asserted flexibility of the model. Of course, the present definition of a
project implies that the firm will face an enormous number of projects from
which to choose, But this paper is concerned with some characteristics
of the total capital budget chosen, not with the problem of choosing
particular assets. The great difficulty any firm would face in actually
computing the solution to the capital-budgeting problem posed here is

not of concern to ug in the present paper.
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In addition to using the cash throw-off it has available in
a given period for cutlays on projects and for loans, the firm can
also distribute part of these internally generated funds to its owners.
It can also borrow in a given period in order to increase the amount
available for nonstochagtic disbursement within that period. At
the beginning of each period, then, the firm will set agide a non-

negative sum of money, Wt dollars, for removal or withdrawal from
the firm.

The question that remains to be answered is: Given the
set of opportunities described, how does the firm decide which subsget
of projects to accept,; how much to borrow or lend in each of the T
periods for which it is planning, and how much to withdraw from the
firm nonstochastically in each of the T periods? Stated im other
terms, what is the objective function of the capital-budgeting problem?
I would argue~-and I have arguedzswwthat the appropriate objective
function for a corporation budgeting capital in the presence of risk
is the maximization of expected utility. The utility function to be
used is management's perception of the owners® utility defined cover
the owners' consumption alternatives during the budget's T-period
horizon. The arguments of the utility function are taken to be the
amounts available for withdrawal from the firm in the several periods,
with thege amounts serving as proxy variables for the true but non-
measurable increases in stockholders' consumption pogsibilities that

the firm'g plan makes posszible.



30
3

While I would argue strongly for this position, it is not
possible to present the argument in full in this paper, and there
remains much room for debate on this question. Since some readers may
disagree with this pogition, let us simplify the discussion by supposing
that the firm is owned by a single individual whose entire livelihood
is derived from this firm. This simplifying assumption does not reduce
the importance of the results obtained here since the problem under
cangideration remains a bona fide multiperiod planning decision even
if there exists only one owner. The objective function of the capital-
budgeting problem described is thus to maximize the expected utility
of the consumption stream the firm provides to its single owner over

the course of the planning horizon, that is,

{4.1) Maximize E{U(Gl s> Cyr ey cT)} 5
where Ct is the consumption income the firm makes available in period

This consumption income Ct iz equal tfo the sum of the

nonstochastic withdrawal the decisiommaker plans to make in peried t ,
Wt , and the returnsg his risky assets provide for consumption purposes
in period t . In terms of timing, it is assumed thar all cagh outlays
in a period--for the firm's ongoing cperations or its investment program
or the nonstochastic withdrawal--are made at the start of the period
while all cash inflows are assumed to occur at the end of the period.
These inflows include the cash throw-offs generated by the assets owned

by the firm at time t = 0 and the returns from the risky assets.
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th
Hence, the owner'’s ¢t period consumption income is

nst t=1
{4.2) Ct =W_+ ¥ T (1+¢g

JA
t =1 =1

2

ist" it

where it is assumed that the number of risky projects whose last cash
outlay occurs in period s and whose gross return ig used for with-

drawals in period t is n, .

Given this "story'" about the timing of returns, projects
undertaken in the Tth period are beyond the preview of the current
planning~period decision. That is not to say that the returns on in-
vestments made during the planning period which accrue in periods T+1 ,
T+2 , and onward are ignored., On the contrary, the value of these
returns, discounted to the horizon T at the market rate of interest,
is included in the return factor of the projeéf which corresponds to
this physical asset and terminates in period T . Hence, such post-
horizon returns are fully taken into account in the Tth consumpt ion-
income argument of the utility functiom. All that we exclude from

consideration are projects "originating'--in the sense of having their

lagt cash outlay--=in the Tth period and beyond.

It is assumed that the decisiommaker is a strict risk averter
and that he is, in fact, decreasingly risk averse in the multiperiod

sense, The assumption of strict risk aversion means that U(Cl’ C2,.,.pT)is

a strictly concave function and, hence, since nonnegative linear com-

binations of strictly concave functions are strictly concave
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E{U(Cl, Cosvves CT)] is strictly concave. The capital-budgeting

problem being discussed can thus be represented by the following non-

linear programming model with strictly concave objective function and

linear constraints.

Maximize E{U(Cl, Cos -0 CT)1
Mt T
Subject to: Wl -+ L1 + .§ ? Ailt = XO
i=1 t=2
nst T
W+ L - (l+r)L + 7 v A, =X
t t t-1 i=1 t=s+l ist t-1

t=2, ..., T-1

(4.3) . .
Wy = (0L o= X
nst t-1
; Ct =¥ + 'Z v (1 + gist)Aist t=1, ,.., T
! i=1 s=1
|
Wt >0all t ; Aist >0all i, s, t.

Several comaents are in erder. PFirst, the nonnegativivy vequirement on

WT represents the solvency constraint in this model. This follows

because WT 2 0 means that XT-l

+ (l+r)LT_1 > 0 so that at least in

the final period the decisionmaker is able to cover his previous borrowings
using the funds he is certain to have available. Second, the budget
constraints are written as equations rather than inequalities because

with riskless lending and withdrawal for consumption purposes always

available options, and with each period's consumption income having
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positive marginal utility, the decisionmaker will always use all

funds at his disposal in a particular period.

This last fact enables us to simplify the constraint set
enormously. (Indeed, since the decisiommaker faces a perfect capital
market, one ;ould expect that only the discounted present values of
the relevantlcash flows should matter.) The fact that all the budget
constraintg hold as equations enables us to reduce the entire set of
T budget constraints to one discounted~present-value financial cone
th

straint, Beginning with the first budget constraint, uge the t

budget constraint as the definition of Lt and substitute this

definition into the t+1°5% congstraint, This process of forward

substitution reduces the T budget constraints to

] T T- S T- 1 T" 5 n t T - -
(4.4") Z(I4r) "X, - 3 (L+r) b T oA tW (=W 20
a=1 s=1 i=l t=gtl

Constraint (4.4') states the financial restriction on the firm in terms

of the horizon value (the value at time T ) of the set of planned ex-
=T

penditures, loans, and withdrawals. Multiplying (4.4') by (l+r) =,

the constraint is stated in terms of discounted present values as:

T .s T i T-1 "st T s
44) TR - (M)W - T % 5 () A =0,
s=1 87" =1 ® g=1 i=1 t=gtl
W20 .

Before restating the capital-budgeting problem in its final
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form, let us introduce the last assumptions to be made about the
decisionmaker. First, it will be assumed that his utility function

igs additive in the several periods' utilities, so that

]

(4.5) U(C)s Cps vors Cp) = tzlut(ct) ,

where, again, the decisiommaker's rate of time preference is reflected

in the relative magnitudes of the parameters of the different ut(Ct)

functions. This assumption enables us to draw upon the result in
Theorem 3 concerning the necessary and sufficient condition for multi-
period decreasing risk aversion with additive utility functions. Sec ond,
it will be assumed that the decisiommaker sets aside part of the
available cash throw-off for nonstochastic withdrawal in each and

every period. That is, the solution to (4.3)iis assumed to be interior

with respect to Wl’ Wz, .vey W, SO that Wt >0 for all ¢t=1,.,.,, T.

T
This requires that the individual have some positive consumption with

probability one in each period, no matter how his risghy irivegtments fare.

The capital-budgeting problem faced by the firm of the model

presented can thus be written as (4.6) .



-43*

—
Maximize E{U(cl, Cos ceey cT)l
T e T-1 "t T
Subject to: T (l+r) °[X ,-W] - % ¥ ¥ (1+r)°%A, =0
s=1 s=1 78T 21 171 t=stl ist
(4.6) < $
nst t-1
C. =W + =
¢ ¢ 131 SEI(I + gist)Aist t=1, 2, ..., T
Wt >0all t; Aist >0alli; s, t.
—— -
The Lagrangian form for problem (4.6) is then
- 12 "3 2
= + +
Maxgf = E{U(W;, W, I el Wyt B ol g0A,
Der T-1
ooy Wp b T Tl 4 g, 14 O
i=l g=1
(4.7) a
T -s T=-1 st T s
+ N ¥ (IH+r) (X ~W)= £ ¥ T (l+r) ®a, .
s=1 sv1 787 o) i=1 t=g+l ist

Wt >20allt; A >0all i, s, t,.

ist
As noted earlier, since the decisionmaker is a strict risk averter,

E{U(Cl, Cys wvss CT)} is a strictly concave function of the C_
variables, Since each Ct is, in turn, a linear function of the Wt

and A, variables, it follows that E{U(Cl, Chs =14, CT)} ig also

t 2?

concave in the Wt and Aist variableg., If, moreover, mo project

used for withdrawals in period t is perfectly correlated with the

other projects used for withdrawals from the firm in period t , and
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if this is true for all t = 1,..., T , then E{U(Cl, Cosanss cT)1 is

strictly concave in the Wt and Aist variables.24 From this point

on, we shall asgume that this condition of imperfect correlation is met.

It follows, then, that the problem whose Lagrangian appears in (4.7)

calls for the maximization of a strictly concave function of the Wt

and Aist variables subject to a linear congtraint and nonnegativity

constraints on these variables.

From the standard theory of nonlinear programming25 it follows
that the Kuhn-Tucker conditions are necessary and sufficient for a
maximum of (4.6), the problem whose Lagrangian form is given in (4.7). For
the capital-budgeting problem in (4.6) these conditions are (4.8) - (4.13),
where we make use of the fact that Wt >0 for all t , by assumption.

(4.8) _ﬁég = g{u 1l - K(l+r)~t =0 for t=1, 2, ..., T .
awt t

(%9 3L _ . -s .
vy E{Ut(l + gist)’c A(1+r) © < 0 for all i, s, t

ist
such that 1 e I ’ s<t .
st
T T"l nst T
(4.10) g%= s (14r)"S[x agWl- 2 % T (1+r)‘SA,st =0 .
s=1 $71 8 g=1 iml t=stl :

af .
.11 (A ) GEo) = 0, A,

i h
<A ist >0all i, s, t such that
ist

iel <t .
el ., s



- 45 =

(4.12) Wt >0 for t=1, ..., T.

(4.13) A>0 .

The optimal solution value of XA , denoted A° ; is the marginal
expected utility of the discounted present value of the firm's

nonstochastic cash throw-offs at the global optimum; that is,

(4.14) 20 < 3[E{uN®

a( )

8

t 1

(1+r) 5% .
1 8-

. 0 s .
where superscript indicates optimal values,

Our interest in this model concerns the changes that occur
in the decisiommaker's purchase of risky assets as his wealth increases.
Given the perfect capital market the decisiommaker of the model faces,
this question becomes: What happens to the discounted pregent valwe

of the decisiommaker's purchases of risky projects,

T-1 nst T _
T T T (l4+r) SA,
s=1 i=1 t=g+l 18

¢+ 28 the discounted present value of his

T
endownments, T (l+r) SXSHl s, increases? To investigate this quegtion
s=1

totally differentiate the system of first-order conditions with respect

to a change in the stream of nonstochastic cash throw-offs which increases

the discounted present value of those throw-offs; that is, the Xs's

change but r and the gist's do not. Recall that sgince

T
L I = = . b i
U(Cl’ 82, s CT) t§1ut(ct) s Ust 0 forall s# t One obtains
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nst t-1
(4.15) E{U_[aW_+ ¥ S (1 +g
te ot
i=1l s=1

-t
ist)dAist]} - (4r) "da =0

t=1,2, ..., T.

n
st t-1
-8
(4.16) E{Utt(l + gist)[th + £ T (1l + gist)dAist]? ~ {14r) “an

i=1 g=1
7.
3A,
ist

for all i, s, t such that iezst,skt,

T s T-1 Tt T X T
(4.17) (o) %aw + ¢ ¥ T (+r) %A, = ¥ (1+) Sax . .
s=1 & 8=l i=1 t=s+l 1st s=1 s-1
(4.18) Q—‘ﬁ-‘m. +4A, d A ). 0 alli, s, t such that
aAist ist ist aAist

iel <t .
st 7 %

From (4.15) = (4.18), it is clear that some prior information
about the sign of dA would be very helpful in trying to determine
qualitative changes in the holding of risky assets. The inequality in
(4,13) provides us with no such information since all it states is
that A must stay nonmegative: dA may be positive, negative, or
zero if A° >0 . But the interpretation of 2C  in (4.14) in con-
junction with the following well-known result does provide some

6
definite information about dhaz

LEMMA, Given the maximization problem
Maximize f£(y) Subject to: h(y) <b,y2>0,
the function o(b) = Max £(y)

h(y) <b

¥y 0

1AV
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is a (strictly) concave function of b if f(y) is a
Btrictly) concave function of y and h(y) 1is a convex

function of vy .

The budget constraint in (4.6) can be rewritten as

T e T-l7st T ve T ]
(4.6a) T (Q+r) W_+ £ % T (Hr) A, = T (H+r) °x .,
g=1 § =1 i=1 t=g+l . 18t ool s-1

which is convex in the variables {Wsl s {Aistl since it is linear

in them, while the objective function in (4.6) is strictly concave.

For a given r and a given vector of returns on risky assets {gist} s

the maximum value of expected utility, [E{UY]® , is a function of

T ‘
T (1+r) SXS_I alone. Hence, the problem in (4.6) satisfies the
g=1
T
conditions of the Lemma with b = T
s 3

(1+r)-sXSw1, and it therefore
1

follows from the conclusion of the Lemma that for {gist} and r

- T )
fixed, [E{UN° is a strictly concave function of T (l4r) SX3wl :
: o1
2 o
(4.19) 2 (E{ul) <o,
2% () %P

1

8

Combining (4.14) with (4.19), one_tﬁerefore obtains:
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(4.20) . AL

<90

a(
s

)

I 4 +3

-3
+
1(1 r) Xs_1

so that the sign of dA in (4.15) - (4.18) is negative. This is exactly
what one would expect: as the value of the decisiommaker's endowments
increases, the marginal expected utility of the endowments at the

global optimum decreases.

B, A Counterexample to the Normai=-Good Character of Rigky Agsets

A counterexample will now demonstrate that in the context of
the capital-budgeting problem under discussion, an increase in the
discounted present value of the firm's period-by-period endowmentsg--
its cash throw-offs~-does not necessarily lead a decreasingly rigk-
averse decigsiommaker to increase the discounted present value of hig
risky investments. That is, Arrow's single-period result cannot be
generalized to the multiperiod case; decreasing absolute risk aversion

does not imply that risky assets are always a normal good.

To see this, congider a firm with a three-period planning
horizon. Suppose the firm has only one project available in each of
the first two periods of its horizon and that each of these projects
terminates in the third period. Let g1 denote the net return factor
for the project coming available in period 1, g, denote the net return
factor for the project coming available in period 2, and let A1 and
A2 denote the scale on which each project is undertaken, respectively,

The Lagrangian in (4.7) thus simplifies to
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Max & = E{U(Wl, Wy, Wy + (14 gl)Al + (1 + gz)Az)}
(4.21) ER .
+ A szl(l+r) (X W) = (Lr)7°A

-2
1" {1+1) A2 »

and the conditions for an optimum become:

4.22)  E{v)} - A =0 =12 3.
(4.23) B{U;(L + g,)} = M) 5 0 .

(4.24) B{U, (1 + g,)} - Mi+r) 2 <0,

3
(4,25) v () % (x - W) - (1+r)"1A1 - (1+r}'2A =0 .

=1 s-1 2
4.26 -~ L _
( ) Al %, 0; 4,. oA, 0 .
(4.27) W, >0 for t=1,2, 3.
(4.28) A>0 .

Since the utility function is additive in the several periods'
individual utilities, it is clear from (4.15) - (4.18) that the changes
in the amounts of risky assets purchased can be determined as a function
of dA alome from the total differentials of the equilibrium conditions

for the third period. The reason is really quite clear: since
3

the utility function is additive, U(C,, C,, C;) = Z u (C),
17 72 73 vl t' e

A, and A, just do not enter the equilibrium conditions for wl

1 2

and W Assume (and this assumption will presently be justified)

2 L]
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that at its initial optimum the firm undertakes both projects, so
that (4.23) and (4.24) hold as equations., Totally differentiating
(4.22) with £ = 3 , and (4.23) and (4.24), one obtains the following
system describing the changes in the acceptance of risky projects

and the nonstochastic withdrawal in period 3 for small variations

3
T (L)%K

s=1 1

(4.29)

B{Us a0, + B(U,,(l+g))aA, + E{U,, (1+g,)}dA, = (1) " 3an
(4.30)
E{U 5 (1+g, ) W, + E{033(1+g1)2}dA1 + E{U33(1+g1)(1+g2)1dA2 = (1+r)’1dx
(4.31)

(1+r)-2dh .

2
E{U33(1+g2)}dw3 + E{U33(1+gl)(1+gz)}dAl + E{U33(1+g2) 1dA2

The relevant information about the returns from the two risky
ventures, the interest rate, and the decisiommaker's utility function
is presented in Table 1. The market rate of interest is .098114 in

each period. There are three states of nature, 81 5 92 , and 63 s

which are equally probable as indicated by the fact that the probability

of a particular state Bi occuring, namely w(ei) , is 1/3 for each of

the three states. The first risky project yields a third-period net

return per first-period dollar invested of -1 in state 61 , and

+ 1/2 in each of gtates 62 and 63 , while the second risky project
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yields third-period net returns per second-period dollar invested of

42 in the first state of nmature, +1 in state 92 , and =1 1in state

83 .

It is assumed, as indicated in Table 1, that the individual's

asset holdings--that ig, the quantities A1 and Az—ware guch that
C(Bl) > C(92) > 6(93) « It is then assumed that the rate of change

of marginal utility in the gtate with the lowest consumption income,

state 63 s 1g =30 ; the rate of change of marginal utility in 62

is assumed to be -6 ; and the rate of change of marginal utility in
gtate 61 , the best state of nature from the point of view of total
consumption income, is -2 . The marginal utility of congumption

income in the several states of nature is taken to be 20,0045 in

state 81 , 26.0045 1in gtate 62 , and 56,0045 in state 63 . The
Usg
ratio - —E“ shows the value of Pratt's local risk aversion function
3

in each state of nature.

Esgentially all we have done is choose a structure of returns
for two asgetg, a rate of interest, and three pointg on a utility
function. Two important facts must be verified. TFirst, it must be
gshown that one can fit a decreasingly risk-averse utility function
to the three given points with the ordering of states of nature in
terms of congumption income being C(Bl) >-C(62) > 0(63) . Second,

it must be shown that a decisiommaker whose utility function fits
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TABLE 1

THE STRUCTURE OF RETURNS AND THE DECISIONMAKER'S UTILITY FUNCTION

8, 0, 5,
3 3
I+ gl 0 5 3
1+ 8y 3 2 0
1 +r 1.098114 1.098114 1,098114
Uss -2 -6 30
U3 20,0045 26,0045 56 .0045
Uss
- »09998 .23073 .93567
U
3

1 1 1

n(ei) 3 3 3
3] W, + 3A W. + BL-A W, + gﬁ
C5(8y) 3 2 3T 3t
Al and A, are such that (33{(91) > 83(82) > (33(63}
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these three points would find himself purchaging both available risky
projects at his equilibrium position, that is, that (4.23) and (4.24)

obtain as equations., Consider these two points in order.

Ag a result of Theorem 3, in verifying that the decigionmaker
in question is decreasingly risk-averse in the multiperiod sense, all
one needs to do is show that each of his single-period utility functions
satisfies the Pratt condition (3.9) which is equivalent to

u'(c)
3.9')y -~ ? .. 4 [In u'(C )] is a decreasing function of C_ .
ut(ct) dct t t

Since one can essentially choosge any single-period utility functions
for periods 1 and 2, with the consumption incomes in those periods
depending only on the respective nonstochastic withdrawals, there is
no difficulty in choosing arbitrary decreasingly risk-averse utility
functions for those periods. What must be verified is that the three
points shown in Table 1 could be points on a decreasingly risk-averse

single~period utility function.

It is clear that the utility function whose points appear in

Table 1 belongs to a risk averter since U33(Gi) is negative for all 1 .

To see what requirements must be met for a decreasingly risk-averse
function congider Figure 1 where the consumption income in period 3
appears on the horizontal axis and the negative of the natural logarithm
of the marginal utility of consumption in period 3 appears on the

vertical axis. Table 1 gpecifies three triples (C3, Uy U33) . In
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FIGURE 2

REQUIREMENTS FOR FITTING A DECREASINGLY RISK~AVERSE
UTTILITY FUNCTION TO THE THREE GIVEN
(C3, Uy, Uyy) POINTS
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other words, we have specified, in terms of W, , Al » and A2 , the

abscissa C3(93) , the ordinate -1n U3(93) or the height of point D,

and the value of the absolute risk aversion function = /- U33
3
3 93
d InU St ‘ .
=] 3 or the slope of D'D" ; and similarly the abscissa
dC3
6

CB(SZ) » the height of point E , and the slope of E'E" ; and finally the
abscissa 63(61) ; the height of point F , and the slope of F'F" . 1in

order to be able to fit a smooth curve to the three given points D, E, and
F with thé tangents at these points having the indicated slopes D'D",

E'E" , and F'F" , respectively, it must be possible to find Wy s Al s

and A2 values such that the implied values of cB(al) , 03(92) , and
C3(83) satisfy the conditions:
slope D'D" > glope DE > glope E'E"™ > glope EF > glope F'F' .

In sum, in order to be able to fit a utility function with decreas-
ing absolute risk aversion to the three points indicated in Table 1, it

must be posgible to satisfy the following set of inequalities:

Uy ~1n Uy(6,) = [~In Uy(8,)] N Uss
Uy . €3(8,) = C3(83) Uy A
3 2

(4.32) . ~In UB(BI) = [«In U3(92)] o U33
C3(81) ~ C3(8y) Uy .
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Given the data of Table 1, this set of inequalities becomes:

(4.33)  .53567 > &%%1§A> .23073 > “ngg%__ > .09998 .
? Ay = A

The constraints implied on Al and A2 are then

(1) 1.4325 < 2A

5 < 3.3255 or ,71625 < A, < 1.66275

(4.34)

(1) 11373 < 4, - %Al < 2.6246 .

Clearly, there are positive values of Al and AZ satisfying these

constraints. For example, choose any A2 such that 1.1374 < A2 <

EA > 1.1373 . We

1.66275 and then set A, > 0 such that A2 -

1

conclude, then, that the information Table 1 presents concerning
the decisionmaker's utility function could be generated by a bona fide

single-period decreasingly rigk-averge utility functiom.

Turning to the gecond point requiring verification, it must
be shown that in equilibrium the firm will be undertaking both risky
projects, Examining the three relevant equilibrium conditions, it
is clear that conditions (4.23) and (4.24) will hold as eguations

if the following two conditions are met:

(1) E{Uy(g, - 0¥ =0

(4.35)
(11) E{u3(1 + g;)}

E{U;(1 + g,)!

= 1+r .

If {4.35)(i) holds, then E(UB(l + gQ)} = 3{03(1 +r)l or (1+ r)E{U31
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= E{Ué(l + gz)l . Since W3 >0 implies E{U33 = Al + r)ms , this

means we also have E{U3(1 +-g2)? = Af(1 +-r)c-2 which is €4.24) as an
equation, And, if (4.35)(ii) obtaims, then E{U3(1-+ g1)7 =

(1 + r)E{UB(i + gz)} = a{l + r)ml which is {4.23) as an equation.
Given the data of Table 1, one finds that E{UBgQ? = 10.0090 and

E{Uarl = 10.0090 so that (i) holds, while E{Us(l + 31)1 = 123.0135

E{U3(1 + g,)7
EfU3(1'+ g;)1

and E{Ué(l + g,)1 = 112 0225 so that = 1,098114 and

(ii) also obtains. Hence, given the utiliry-function properties and
the investment opportunities in Table 1, the decisionmmaker would be

in equilibrium pursuing both risky projects.

With this assurance that the individual whose utility function
possesses the points shown in Table 1 is decreasingly risk averse and
that equilibrium conditions (4.23) and (4.24) would hold as equations
for him, the data of Tabie 1 can be used in the gystem of total differen-

tials (4.29) - €4.31) to determine the changes in asget puichasges

3
resulting from small variatioms in T (1+r)msXSm1 . Letting
s=1

an' = 3(1+r) dA , system (4.29) - (4.31) becomes

(4.36) 38dW3 + Sl&dA1 + 18dA2 = =,82928d)’
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(4.37) S4dW, + 8ldA, + 18dA, = -dM!

3

(4.38) lde3 + lSdAl + l\tZdA2 = ~, 01065d\'

for the decisionmaker whose situation is presented in Table 1 . The
golution to this system of equations is:

dW. ~ -,051219 dA' > 0

3
(4.39) dA, ~ .024029 dA' < O
da, ~ =,010029 dr\' >0 ,

where the signs of the changes are baged on the result derived earlier
that dA , and hence d\' , is negative. From (4.33) it follows that the

change in the discyor.” pressst v lon uf cleky assetc purchased is:

[

024029 d\' + (14r) 1¢-.010029) dA' or
[(,024029) - (,91065)(.010029)] d\' = .014896 dx’ < O .

Hence, the discounted present value of the risky assets purchased by
the firm pictured in Table 1 decreases as the discounted present value
of its atream of cash throw-offs increases, ceteris paribus. In fact,

since it is A, that decreases and A, that increases and !dAll > daA, ,

even the undiscounted present value of the portfolio of vigky assets
decreases as, ceteris paribus, the discounted present value of the

endowments stream increases!

C. A Set of Sufficient Conditions for Rigky Investment to Be A Normal

Good in the Multiperiod Cage

This counterexample leads one to ask the question: Under
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what conditions will the purchase of risky assets increase asg the
endowments stream increases in the multiperiod case? What further
restrictions on the utility function, beyond multiperiod decreasing

absolute risk aversion, or on the rigky projects available are necessary

T~1 nst T _
and/or sufficient to ensure that T L T (1+r) B4,
s=1 i=1 t=g+l 18

N increases

T
as X
s=

(1+r)“8){s”1 increases? In this section a particular set of
1

sufficient conditions is presented. Denoting by ,It the get of

all risky projects whose returns are made available for withdrawal in
period t , the main resulé of this section is summarized in the
following theorem.

THEOREM 4. If (a) U(C) is an additive multiperiod

utility function which is decreasingly risk averse in

the multiperiod sense, (b) the stochastic part of each

period's consumption income is derived from one and only

one risky asset so that Ais >0 for only one element

t

of It , and (c) the solution to (4.6) is nondegenerate,

then as the discotnted present value of the firm’s cash
throw-offs increases, the discounted present value of
the investment in risky projects increases; in fact, the

scale on which each accepted risky project is pursued increases.

‘ | -
The theorem states that if U{C) = ¥ ut(Ct) and each “t(ct)
t=1

satigfies the Pratt condition (3.9) or (3.9"); if Aist > 0 for
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one and only one member of the set It ; and if not both Aist =
T-1 st T .
a( g ¢ T (l+r) CA, )
T a1 e ist
and aAaof = 0 obtain in (4.11) then —i=b HT“’”S“ >0 .
ist -
s d( = (1) %X )
s=1 =

The firm may be basing each period’s stochastic censumption

on only one risky project’s returm either because each set It containg

only one element or because the optimal solution to (4.7) finds only

one Ais > 0 for all AiS ¢ I . G@Given the additive nature of the

t t t

utility function and the fact that the vigky part of each period’s
consumption income comes from only one project, the resulting sit-
uation is obviously close to the simple portfolio model discussed by
Arrow. But the two models are not the same nor is the pregent model
simply a sum of Arrow ome-period models. First, the several periods’
investments are not independent of one another. They are, instead,
tied together by the discounted-present-value budget comstraint in
(4.4). There is no analogue to this in Arrow's model nor would there
be szuch an interrelationship if the present model were just a sum of
independently made Arrow single-period decisious, Second, the firm
may purchase more than one risky project in a particular period. Of
course, given the fact that there are only as many projects accepted
as there are periods, if more than one project were accepted in a
particular period; there would have to be at least one pericd in which
no projects were accepted. Nevertheless, the option of pursuing

more than one rigky project in a particular péricd5 while present in
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the model under discussion, is not open to the firm in Arrow's model

or in a series of Arrow models extending over the set of T periods.

(4.11)

(4.9)

We now turn to the proof of Theorem 4 .

Denote by s(t) the period in which the project providing the
stochastic part of period t's consumption is purchased., For
notational convenience, assume that the accepted member of the

set Is(t)t ~«= that is, all projects available for purchase

in period s(t) whose returns accrue in period t =-- has the

index i=1 , Notationally, then Als(t)t >0 for t=2,,.., T

and Aist =0 for all other i, s, t triples. (Recall

that in the model being discussed no rigky project's returns

become available in period 1: Il is the empty set.) Equilibrium

condition (4.11) states that

>0 for all i , s, t such that
iel s B8 <t

while equilibrium condition (4.9) states that

ngéi <0 for all i, s , t such that i eI s<t.

st ¢

From (4.11) it follows that EK-*QQQL =0 , and if the
1s(t)t

optimal solution to problem (4.6) is not degenmerate so that not both
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A, . =0 and ——6£= 0, it follows from (4.9) that _@£< 0
ist — aAist DA, ¢
is

for all [i,s,t] # [l,s(t);t] for t =2,.,.., T . From this point
on we make use of the assumption in Theorem & that the solﬁtion to

(4.6) is nondegenerate.27 The total differential of (4.11), given

in equation (4.18), then implies that

(4.40) d(?-§dél—' =0 for t=2, ..., T and

BA1g(t)e

(4.41) dA, . T 0 for all [i, s, t] # [1, s(t), t] for &t =2,..., T ;

Using (4.40) and (4.41) in (4.15) and (4.16) for the triple

f1, s(t), t] , one obtains (4.42) and (4.43), respectively

_ -t
(4.462) E{Uct[dwt + (1 + gls(c)t)dA1s(t)t13 = (l+r) dn for all t ,

- -g(t)
(4.43) E{utt(l + gls(t)t)[dwt + (1 + gls(t)t)dAls(t)t]l = (l+r) dxn

for all t > 2 .

t-s(t)

Multiplying (4.42) by (1+r) and subtracting from (4.43) omne

obtains

t‘S(t) =
(b66)  ELU T+ g 0 - () aW, + L+ 8y dhyg(cye) ™0
for all t Z 2.,

t-s(t)

Denote {(l+r) by 1+rs so that To(e) 1S the net compound

()t

rigkless rate of return on one dollar loaned period by period from
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period s{t) to period t . Equation (4.44) can then be rewritten as

(4.447) E{Utt(gls(t)t ) rs{(t)t)[dwt s gls{t)t)dAIS(t)t]} =0

for all t >2 .
Since there is only one return factor, gls(t)t s, and one
net compound riskless rate of return, rs(t)t s involved in what

follows, in order to simplify notation denote 81s(t)t by g* and

rs(t)t by r* . Solving (4.44') for th , we have

E{U, (g* - r*)g*da, %t)t?

aen LS
dAls(t)t E{Utt(g* - %) for all t 3»2 .

Substituting the expreséion for dwt into (4,42), we obtain:

E{U__(g* - r¥)g*lda
o s ls(t)t| p_ -t
(4.46) E%Uttlg*dAls(t)t - TTo (o r*)}—i~%gi = (1+r)"tan

which one finds reduces to:

2 2
(e{u, g*11° - E{u  IE{U_ (g4)%

-t
(4¢47) E{Utt(g* : r*)} dAlS(t)t = (1+r) dAa

for all ¢t g 2 .

T

But (1+r) % > 0 and from (4.20) it follows that since only I (l+r) 5X

s=1
is changing exogenously, dx < 0 ,

must be negative, and it follows that

Hence, the left-hand side of (4.47)

s=1
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EfU_ IEfU_ (g%)?) - (E{U_g*1]?
(4.48) sign (dA Lt £t 14

) = sign
1s(t)t E{Utt(g* - *))

and this is true for t =2, ..., T ., It remains only to determine

the gign of the fraction on the right-hand side of (4.48).

It follows from the Schwarz Inequality that the numerator on
the right-hand side of (4.48) is positive. Schwarz's Inequality states

that

(4.49) (E{e'n1)% < E(t)E(M?) where £ and h are functions of

random variables with finite variances. Letting £ = (-Utt)lfz’

h = (-Utt)lfz(ﬂg*) , (4.49) yields

2 2
(4.50) E{Utt)E{utt(g*) 1l - (E{Uttg*l) >0 forall t22.

In fact, the strict inequality obtains in (4.50) for all ¢t 2> 2

because the equality [E{fﬂh?]z = E{fz?th21 obtains if and only if

b = 0f with probability one; that is, if and only if h is proportional
to f£ with probability one. But for this to be true in the present

problem, one would have to have

/2

1/2(--g"') = Ot(-Utt)1 or =-g* = O with probability one,

(-u_.)

tt

This would mean g* is a degenerate random variable, which is impossible

in our model. Therefore,

2 2
(4,51 E{u TE{U  (g¥)} - (efu, g*1)" >0 for all t22.
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It follows from the fact that the decisionmaker is decreasingly
risk averse in the multiperiod sense that the denominator of the right=-
hand side of (4.48B) is also positivec.28 Asg argued earlier, condition

(3.8) or its equivalent,

‘ Setting all C

i 0 except Ct in ©(C) ,

U

(3.8") - EEE is a decreasing function of Ct and this is true
t

for all ¢t ,

is a necessary condition for decreasing absolute risk aversion in the
multiperiod sense. Since the decisiommaker's utility function isg

agsumed by the hypothesis of the theorem to be additive in the individual

U

periods' utilities, - —%E is the same for all C = {Cl,
t

C oy CTT

2’03

vectors., Therefore, condition (3.8') requires in the present case of

Utt

U
/e
t

an additive utility function that { - be a decreasing function

of Ct for all t , all C vectors. Recalling that under hypothesis

(b) of the theorem C, =W, + (1+gls(t)t)Als(t)t for t >2,

this requirement implies that

U U
(4.52) { - 555 <{- 555 if gk - % >0
F)
t Ct t Wt + (1l +r )Als(t)t
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while
v t Utt
“.53) (- > = 1f gk =-r* <0,
' t c, t W+ (1 + A

1s(t)t

At the same time since U -~ 0 for all C, >

(4.54) (g* - r*)(Ut)C >0 for g%k - r¥>0
t

while

(4.55) (g% - r*)(Ut)C <0 for gk - r* <
t

o
R

Combining (4.52) with (4.54) and (4.53) with (4.55), one obtains:

U Y
tt tt
LE b @] (s - o) >{~EE . (U, (gh=r%)
tfe t £/ W+ (1 + r*)A t
(4.56) t

ls(t)t
for all (g - r¥%) # 0 .

Hence, applying the expectations operator to both sideg of (4.56), we

have

(4.57) Ekutt)ct(g* - r*)33>(}%%;) E{(Ut)ct(g* - %)},
t W+ (14 1A

1s(t)t

If Als(t)t > 0 , however, it follows from (4.11) that

*—;ngLﬂ = (0 so that

Ty (4.9) becomes for [i, s, t] = [1, s{t), t)

and
cvey Ty

(4,58) E{Ut(l'* g*)l = A(l+r)_s(t) for each t 2> 2 .
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At the same time from (4.8), one has E{Ut} = 7&.(1~!-r)"t , 80 that

t-s(t)

multiplying (4.8) by (1+r) and subtracting the result from

(4.58), one finds that

BU L+ g0 - A+ O =0 o

(4.59) E{Ut(g* - r¥)l =0

since 1l4r#* = (L+r)tu5(t) . But then the right-hand side of (4.57)

is zero and one has

(4.60) E{Utt(g* - x*)1 >0 for each t 2 2.

Combining the result of the Schwarz Inequality in (4.51)
with the implication of multiperiod decreasing risk aversion in
(4.60), we find that the fraction on the right-hand side of (4.48) is

positive. Hence,

(4.61) >0 for ea;h t2>2.

dA1 (o)t

The scale on which each accepted risky project is pursued increases.

But from (4.41) we also know that dA = 0 for all [i, s, t] #

{1, s(t); tl , t =2, ..., T, and combining this with {4 .61), we have:

-1 %st T e
(4.62) (s % (W) %A,
s=l i=1 t=g+l 1

t) >0,

The discounted present value of the investment in risky projects

increases.
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The proof of Theorem 4 is now complete. For a decisionmaker
with an additive multiperiod utility function, this theorem delineates
a set of conditions ensuring that an increase in the discounted present
value of the firm's cash throw-offs will produce an increase in the

discounted present value of the risky projects pursued.

5. Concluding Commentsg

In summary we have seen that the insurance-policy concept
of decreasing absolute risk aversion can be generalized to the context
of multiperiod planning problems and that a set of sufficient conditions
for the property to obtain is a generalization of the Pratt condition for
the single-period case. It was also shown that in the case of an
additive multiperiod utility function, the necessary and sufficient
condition for multiperiod decreasing absolute risk aversion is that
the Pratt condition obtain for esach individual period's utility function,

ut(Ct) . On the other hand, it was proven by counterexample that in

at least one multiperiod planning context, Arrow's result that decreasing
risk aversion implies the 'normal® character of risky asset purchases

does not obtain. A set of conditions sufficient for obtaining Arrow's
result in the particular '"capital-budgeting problem' considered was

then presented in the form of Theorem 4, The nature of these conditions
and the nature of the counterexample suggests that the real difficulty in
generalizing Arrow's result ariges from the multiplicity of assets yielding
stochastic returns in the same period and not from the inherent multi-
period nature of the model. This conjecture is supported by some recent

work of D. Cass and J.E. Stiglitz on singlewperidd portfolio problems
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involving many risky assets. In the context of such problems, they
have found cases in which the total investment in risky assets decreases
as wealth increases despite the fact that the decisiommaker's utility

function is decreasingly risk averse.

Several interesting questions remain open for further investi-
gation, First, it would be desirable to find a set of necessary and
sufficient conditions for multiperiod decreasing risk aversion for the
case of non-additive multiperiod utility functions. Secoﬁd, it would
be desirable to determine whether there exist necessary and sufficient
conditions on the decisionmaker's utility function alone--that is,
independent of the structure of returns--that ensure that risky assets
are not an inferior good. The results presented in this paper indicate
that if one's concern in choosing utility functions for use in normative
and positive models of decisiommaking in multiperiod planning contexts
ends with risk aversion and the decisfommaker's attitude toward insurance
against risks of a given size as his endowments are altered, then multi-
period decreasing risk aversion is a sufficient condition to impose
on the function chosen. TIf, on the other hand, one is concerned with
ensuring that risky assets will be a "normal' good for the decision-
maker whose behavior one is analyzing, the results presented here
indicate that multiperiod decreasing risk aversion will not suffice. It
would be desirable to know what conditions are necessary and sufficient

for thig latter property to obtain.
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FOOTNOTES

Marshall (1920, p. 843); Arrow (1963, p. 26; 1965, p. 31); Friedman
and Savage (1948, pp. 72-76); Markowitz (1952, pp. 151-152; 1959,
PP. 215-218); Pratt (1964, pp. 124-127).

Pratt (1964, p. 123).

The review of the single-period results is basically a summary of
parts of Pratt's article, with some notational changes.

Pratt does not require that the utility function be bounded. The
need for boundedness of the utility function if one is to apply the
expected-utility hypothesis was first observed by Menger in Meuger
(1934). Arrow (1963, 1965) also emphasizes the requirement that
the utility function be bounded if the expected-utility result

is to be used.

The same terminclogical convenience used by Pratt is emploved in
wvhat follows. Namely, 'decreasing" is used in place of the cumbersome
"nonincreasing” and "increasing' is used instead of "nondecreasing."

Pratt (1964, pp. 122-123),
Arrow (1965, p. 43).
Ibid. (1965, p. 35).
Arrow (1963, p. 26).

This sgection ig primarily a swmary without proofs of the material
in the revised version of Chapter 2, Sections 2.3 through 2.5 of

my doctoral digsertation, Capital Budpeting Under Rigk: A Mathe-
matical-Programming Approach. The revised version defines the
concept of decreasing absolute risk aversion in terms of the dig-
counted present value of the stream of ingurance premiums and states
the main theorem of the chapter-~the one that provides a zet of
gsufficient conditiong for decreasing risk aversion in the multi-
period sense--in terms of this new definition. The original version
of the chapter had stated the concept and the theorem in terms of
the set of "all-in-one=period" insurance policies--policies in
which the individual pays an insurance premium in one and only one
period, there being one such policy corresponding to each period of
the decisiommaker's horizon. Only minor changes are required to
prove the theorem uging the new definition.

Jensen's Inequality in the single-variable case states that if
f(x) 1is a concave {(convex) function of =x,, then if x 1is a
random variable E{f(x)1 < £(E[x]) (B{f(x)} > £(E[x])) .

See Feller (1966, pp. 151-152) for a discussion of Jensen's Inequality
in the case of functions of one variable.
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[16]
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(19}

[20]
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Klevorick (1967, pp. 34-38).

1

It is assumed the solution to the optimization problem occurs in the
interior of consumption-income space.

It is important to note that with C and t given, there is a
one-to-one mapping between the values E{U(C + Z)} and the vectors
Uﬁl[E{U(C +Z)), ¢, £1 . Hence, the notation in ¢3.4) informs us,
as it should, that HC(C, 7% iz a function not a correspondence:
with each {C, 7?) pair there ig associated one and only cne rigk-
premium vector that has zeros everywhere but in the tth element.,

The proof of the sufficiency of these conditions is almost identical
with the proof of Thecrem 2.2 in Klevorick (1967, pp. 51-56}.

Pratt (1964, pp. 130-131).

Klevorick (1967, Lemma 2.3, pp. 47-49).

Ibid., Corollary 2.2, p. 38.

Ibid., Theorem 7.1, pp. 253-25%;, and pp. 275-276.

Many aspects of actual capital-budgeting decisions--for example,
indivisibilities of projects, physical and cash-flow relationships
among projects, borrowing limitations, leverage considerations in
the raising of mew funds, and so on-=are ignored in the model that
follows. These features are, indeed, fundamental to the nature of
real=world capital-budgeting problems, but they can be safely ignored
for the purpose of answering the gquestion at hand: the implications
of multiperiod decreasing absolute risk aversion. For a discussion
of the problems raised by these other agpects of the capital-budgeting
problem, see, for example, Weingartner (1563, 1966}, Klevorick (1967),
The model to be presented has an altermative interpretation

| which the reader may find more appealing. It can be viewed as a

description of the portfolioc problem of an individual investor.

His decigion process is basically a sequential one as he changes
his portfolic's composition from one planning pericd to the next.
But transactions costs (which will be important if his total in-
vestment is small and transactions costs are approximately at real-
world levels) and the costsz of gathering and processing reliable
information force him to revise his portfolio’'s compositiom only
after stated intervals of time. The number of time periods covered
in the horizon of the model that follows--namely, T ~--then represents
the length of time over which he expects his portfolio to remsain
fixed. Clearly, the model becomes of greater interest the longer
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[22]

{23]

(24]
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the period for which the individual is locked into his portfolio.
The discussion in the text will congider the model as a capital-
budgeting problem, but the reader who prefers to may reinterpret
it at every step as a portfolio problem of the type just described.

In choosing the horizon, cne would like to follow certain guidelines.
Specifically, the decisiommaker would like to set the horizon T

at a point in time "such that the set of accepted projects having
outlays or revenues in year T or sooner are exactly the same
whether the model makes usze of an infinite horizon or a horizon

set at T or a point in time "such that the decigions which call
for implementation befcore this date will be exactly the same, whether
or not events past that moment are treated explicitly or implicitly..."
(Weingartner (1963, p. 153)) Unforcumately, as Weingartmer goes on
to tell us, "In dyvamic models in general such a horizon does not
necessarily exist, or there may be many of them. If there are
several, the earliest having this property mav be designated as the
preferred one” {Ipid., pp. 153-154) because of the problems entailed
in collecting data sbout prospective investments. In the cage of

a mulciplicity of potential horizon periods, Weingartner's choice
seems sound. Clearly, the real difficulty arises when no peried T
satisfies the desiderata for a horizon cut-off point. The presant
paper, however, ig not concerned with this matter. Instead, it
circumvents the preblem by assuming that a horizon period T has
been given by the decisiommaking unit, whether or not the horizon

so chogen gatisfies the conditions set out above.,

It would be possible to allow the riskless rate to vary from
period to periocd, but ne insights are gained and much notational
simplicity is lost. There is no loss in generality involved in
assuming the riskless rate of interest is the szame in every perioed,

Klevorick (1967, pp. 80-113, 235-252)., Although the argument for
maximizing utility presented in the first set of pages referred to
restaed uwpon imperfectiong cof the capital market, that argument applies
equally well to the case in which the capital market is perfect but
the enviromment in which the firm and its owners live and make
decisions iz one of risgk or uncertainty,

See Pye (1967, pp. 111-112) fer a proof of this statement. Pye's
proof is actually for a single-period utility function, but the
argument is compleiely analogous for the multiperied functiom in
ugse here, Thig agsumption of imperfect correlation between the
return factors of projects used for withdrawals in the game period
ig mot incongistent with our earlier assumption that the returns
from the same initial physical investment may be used for withdrawal
in the same period but reach that period via different routes, All
the assumption of imperfect correlation zays is 1f the two resulting
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return factors for period t withdrawals are perfectly correlated,
there is really no point to congidering both projects: either one
proposal will dominate the other or they will be identical. 1In the
former case, only the better proposal need be considered while in
the latter case, there is really only onedistinct project,

[25) Arrow, Hurwicz, and Uzawa (1961); Arrow and Enthoven (1961).

[26] This Lemma states a well-known result. Since I know of no reference
in which it is proven, a brief proof is offered here.

Proocf: Suppose ¥y and y, are vectors such that
(1) o) = £y;) and (i1) olby) = £(yy) .
Consgider w(ubl + (lwu)bg) with 0 < u < 1, that is,

(1ii) @lub, + (11Qb2) = Max £(¢y) ,
h(y) g ub; + (1-pdb,

n
o

y
But from (i) and (ii), y1 205 ¥, 2 o, h(yl) $h h(yz) <b, s

so that
(iv) wh(y,) + (1-phly,) g uby + (1-ulb, .,

Since h(y) 1is convex in vy , it follows from (iv) that

(v) hiuy, + (1=p)y,) S uby + (1-p)b, .

That is, uwy, * (1wu)y2 ig feasible for the problem in (iii). But
then we have
(vi) p(ub, + (1-udby) 2 £y, + (L=udyy) .

Since f(y) 1is a concave function of y , we have, using {i) and
(ii),

It follows from (vi) and (vii) that

(viii) w(ubl + (1“U)b2)2 pm(bl) + (l-u)w(bz) for 0<psgl.
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But (viili)states that o(b) is a concave function of b .

Note that if £(y) is strictly concave in y , then the inequality
in (vii) is a strict one and as a result so is the one in (viili):
that is, (b} 1is then strictly concave in b .

Thig assumption is trivially fulfilled if I_ contains only one
project. Indeed, if this were the case, the entire discussion
of dAist for all (i, s, t] # [1, s(t), t] , £t =2, ..., T
would be unnecessary and one could proceed immediately from the
9

1s ()t

observation that d = 0 to equations (4.42) and (4.43).

A

The fact that decreasing risk aversion implies that the denominator
of the right-hand side of (4.48) is positive is essentially the
same result as that referred to by Arrow {1965, p. 43)., The proof
presented here is a slight variation of the one Arrow presents in
his unpublished lecture notes on liquidity preference for the case
of a single risky asset and a single safe asset with zero return,
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