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SOME EXPERIMENTAL NON-CONSTANT-S5UM GAMES REVISITED-
PERCEPTION OF OFPONENT'S PAYOFFS

PART ITI

by

¥*
Martin Shubik and David H. Stern

1. Introduction

In two previous papers}/ we analyzed the play of subjects
in a series of experiments involving 2 x 2-payoff-matrix two-person
nonconstant-sum games in which the players knew only their own
payoffs and not those of their opponents. In this paper we ex-
plore the effects of the last mentioned feature, the lack of information

about the opponent's payoff matrix.

First, however, in order to make this paper self-contained
we summarize from the earlier two papers that material which forms

essential bpackground for this presentation.

1.1 Form of the Experimantsg/

Figure 1 shows the six games used in the experiments.
In each game the subject labeled "Player 1" chose the row and the
subject labeled "Player 2" the column; the labeling of the players
was arbitrary. In each cell of a matrix is first the payoff to
pleyer 1 and second the payoff to player 2 resulting from the two

players' corresponding strategy choices.

¥*
Research undertaken by the Cowles Commission for Research in

‘Economics under Contract Nonr-3055{01) with the O0ffice of Naval
Research.
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In our experiments subjects did not see the matrices shown
in Figure 1 but instead saw only their own payoffs, shown as the
first two columns of matrices in Figure 2, where Flayer 1 chooses a

row and Player 2 & column.

For certain purposes in this discussion it will be convenient
to think of both players as choosing rows; for Player 1 this involves
no change, but for Player 2 it implies transposition of the matrix
{reflection about the main diagonal), as shown in Column (3) of
Figure 2. When a player's payoff matrix is displayed so that he

chooses rows we say the matrix is in its standard aspect; when it

is displayed in the memmer in which it is actually plsyed, we say it
is in game aspect. For Player 1 standard and game aspects coincide;

for Player 2 they generally do not.

Player 2's Player 2's
Player 1l's Payoff Matrix Payoff Matrix in
Payoff Matrix in Game Aspect Standard Aspect
(1) (2) (3)
61 6 T 3 3
Game 1 SRR R
A0 110 el T S N
Game 2 12 | 5 S 1
1 2 1 3 1
[ [ —
2 1-1 1l -1 1 -1
Geme 3 311 112 I
Figure 2
3 -1 5 {-L 3| -1
Game k T2 T2 T E
3 |-2 317 3 -2
Geme 5 7T = T 7T
5 1-1C -1% 2 1
Geme 6 Ty 1125 T




1.2 Motivation of Subjects to Maximize Their Payoffs

No monetary rewards were used in any of these experiments
to motivate the players o eguate maximization of their scares with
maximization of individual utility. However, most of the subjects
were students of game theory in classes taught by one of the authors,
wno advlsed that these experiments would teach non-constant-sum game
phenomena in an easily assimilable way. Surthermore the students
were specifically instructed to meximize their scores.

The experimenters may, however, have introduced a distract-
ing element themselvee by their requirement that subjects provide
information about the matrix they believed their opponents had faced.
This interference with the score-maximization motive resulted if a
subject altered his strategy choices in order to gain information
about his oppornent's matrix. Further discussion of this is given in

section 2. 1. 1. Dnelow.

1.3 Taxonomy of Standard-Aspect Matriceséj

In Part II a rationale was developed for a taxonomy of
stendard-aspect matrices based on first a decision rule for picking
tne lnitial strategy from any metrix, and second; the various
motivations to switch strategies that a player might encounter in
iterated play. The initial-strategy decision rule used was:

@ Dominant Strategy Subrule: If the matrix contains a

dominant strategy (in the strong sense}, choose it.

B Bayesilan Subrule: If o« fails to select a strategy,

choose the strategy with the highest expected value.

L Security Maximization Subrule: If B fails to select

a8 strategy, choose the strategy with the highest



minimum value; choose the strategy which meximizes
the "security level .Y
unique strategy, randomize.
The three motivations for switching after using rule o B A ® Initially
were defined as follows:

Maximizing Incentive - Subject cen inerease his payoff by

switching if opponent continues to use his same strategy.

Investment Incentive - Subject can increase own payoff by

switching provided opponent also switches.

Signalling Incentive - Subject can increase own payoff

if he can Induce cpponent to switch without switching himself.

In order to do this he switecnes in order to disturb the

status quo; if he succeeds in getting his opponent to

swlteh, he switches back again.
The three motivetions can be dictinguished by their desired endpoints,
as shown 1n Figure 3. "S" 1s the starting outcome, "E" the desired
ending outcome; the subject in each case is switching rows, though in

the last case only temporarily.

S s | s | B
E c s c E | C c
Maximlzing Investment, Bignalling
Figure 3

A switeh fails if the ending outcome is other then R, specifically,
1f it 1s an outcome labeled C . If C <8 , the switch is called

>
"eostly" ; if C =8 , it is called "costless".



Table 1 clessifies all possible 2 x 2 matrices, with payoffs

specified ordinally: A >B >C >D . Row 1 is picked initially

(except of course where subrule ® must be invoked ). The “"overall

measure of incentive to switch" summarizes the information in columns
; L/

(4) - (9); it is explained in Part II

A matrlix will be referred to by ifs ldentification tag for Column 1

of Teble 1; if 1t appears exactly as in the table, the tag is followed

by 11; if columns are interchanged, 12; if rows are interchanged, 21;

if both rows end columns are interchanged, 22. Thus g g is

matrix 4a-12 . Where interchanging mekes no difference, the number

is replaced by an x : g g is matrix 1b-1x . The number

of distinet forms of eech matrix is shown in column (11).

2. Perceived Matrices of Qpponent

In these experiments each subject, after playing each game ,
reproduced the game-aspect ordinal mstrix he believed his opponent

had faced. These perceived opponent's matrices provide the raw data

for the present peper.

The questions which interest us concern, for example, how
well the perceived opponent's matrices (POM's' agree with the actual
opponent's matrices (AOM's), what factors sre related to good snd bad
guesses, and what sorts of effects on play follew from players' having
had accurate or inaccurate notions of their opponents' peyoffs.

There ere two matters to be dealt with first: motivation and
measurement. Then we examine a variety of questions including those in
the preceding paragraph, dividing our efforts into three parts. In
section 3 the factors that affect the individual in his specificetion

of a POM are discussed, in sectlon L the factors that affect a pair
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Table 1 - Taxonomy of 2x2 Ordinael Matrices

Type |Matrix]| Subrule Incentive to Switch from Initial Strategy Choice |Overall jNumbexr
Nimber Selecting Measure jof Dis~
Iden- Row 1 as Maximizing Investment Signalling of tinct
+ifica- Tnitial} Exists Ts. Exists Is Brxisgths Ts Tnren. [Forms
tion Strategy Cost- Cost= Cost- |tive to] of
Letter Choice less less less Switeh {Matrix
(1) (2) (3) (k) (5) (6) (7) (8) (9) | (10) | (11)
la ‘;‘é‘ o No Ko No No No No 0 L
1b gg o No No No ile] No No 0 2
le ig‘ o Yo No No No No No 0 h
28 ‘é‘g Q No No No No Yes No 1 4
“b IA):S o No No No No Yes No 1 it
2c 23 o No No No No Yes No 1 I
2d gg a No No No No Yes No 1 L
2e ’éﬁg o No No No No Yes No 1 L
3 ];Ag a No No No No Yes Yes 2 L
La gg o No No (Yes) No Yes No I 3 Iy
Ib ﬁ‘g Q No No Yes No Yes No 3 L
5 .i;g‘ o No No (Yes) Yes Yes Yes 5 b
ba gg B &\ (Yes) No No No Yes No 5 L
&b ﬁ B & A Yes No No No Yes No 5 L

&
7 i‘g ?P Yes No Yes No No No 6 or 7 i
8 gg B (Yes) Yes No No Yes Yes 7 It
9a, Eg »® Yes No Yes o {Yes) No 7 or S B
9b g 7&9 Yes No Yes No {Yes) No 7 or 8® I
10 ﬁ B No No Yes ® Yes Yes * Yes 8 2
11 g‘i 5 Yes® | Yes No No Yes&| Yes 9 2
2
12 ﬁ 3] Yesf Yes Yes* Yes Yes‘i Yes 12 01:% 1




Notes to Table 1

With ordinal matrix entries subrule B 1s inconclusive.

One point is added to the measure of incentive to
switch when pf selects a different inltial strategy

than vy

The sterred incentives and tactics exist 1in both rows

of +the matrix.

The incentives exist, technically, but they are not
really attractive because nothing is to be gained
by switching (nothing is lost either). The measure
of incentive to switch is 12 if +the three

asterisked yeses are counted, 6 if they are not.



of subjects playing against each other, and in section 5 the elements
that arise when the POM's are considered as the output of a group

of players of the same game.

2.1 A Mctivation Conflict

A player of a game of this sort forms a pleture of his
opponent’'s matrix not as an end in itself but as a means to assist
his strategic reasoning ("If I do this, he'll probebly do that," ete.).
However, occasionally subjects were tempted to pursue |
identification of the opponent's matrix as & final rather than as
an intermediste goal. They would use nonoptim al strategies
(nonoptimal for the purpose of meximizing thelr own scores) in
the hope of deducing from the opponent's reaction the appearance
of his matrix. Not having formulated clearly the problem of how to
identify which moves by an opponent provide useful information a&bout
his matrix and which reflect his behavioral ldiosyncrosies, these
subjects often ended up with poorer guesses than their more conventional
fellows--in Game 1 of our six games, for example, as we shall see.
On the other hand, in some games--Game 1 not being one of them--
rational play, i.e., play aimed at long-run score maximization, probably requires a
certain number of "exploratory" moves at first in order to determine the
configuration of the opponents' payofis.

2.2 Measuring How Well The QOpponent's Matrix is Perceived

2.2.1 Definition of =

In order to answer the questions we shall be asking, we need
t0 be able to measure the degree of agreement between two ordinal payoff
matrices; for the purpose we use Kendall's Rank Correlation Coefficient, 1

The method of calculating and using this statistic in testing hypotheses
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has been described by SiegeL:y so that here we need only conceptualize

the formula Tor computing < in a way that applies to our purposes:

where

[#]
il

the muiber of palrs of payoffs in the POM that are
renked in the correct order as compared with the AOM
w = the number of pairs of payoffs in the POM that are
reanked in the wrong order as compared with the AOM
n = the number of possible comparisons (n = 6 when
nejither the AOM nor the POM contains tied rankings;
Siegel explains how n is to allow for ties.é/)
A few examples are given in Figure 4 using the ordinal versionlof the

AOM from Geme 5 (see Figure 2 for the cardinal matrix actually used)

c A B D b c A
B D A C | D B
POMl POMé POM3
W X B D T =0 T =1 T = =1
Y Z A c
Generic AOM D B C D B C
A C A B A B
POMh POM5 POM6
T=0 T = 667 T = .913



=11 -

Uslng the "generic" matrix let us refer to the payoff in the upper

left corner of any matrix as W , the payoff in the upper right

corner as X ; ete. Thus in the AOM the six paycff pairs rank as follows:

W>X, WY, W>Z, X<Y, X<2Z2,Y>2

POMl has the payoffs ranked:

W<X, W<Y, W>2, X>Y, X>2, Y>2

It is easily seen that three of these rankings are correct and three

gre wrong. Thus ¢ =3, w=3, n=6, and T = —2%2:= 0 .

POM2 is 1dentical with the AOM and is thus perfectly correct; hence
¢c=6,w=20, and = =1.

POM, 1is perfectly wrong --the rankings are reversed--so that

3
06

c=0,w=6, and « = —é*-“ﬁ-nfl.o
POMu s though different from POM 17 also receives 1 = 0 because it

too has three rankings right and 3 wrong. ;POM5 is nearly correct=-~

only one raoking is reversed (W <2} ; so that ¢ = 5, w = 1, and

o3
il

POM.6 is identical to POM5 except that w = 2 . This is counted as

neither correct nor incorrect, so that ¢ =5 and w =0 . In this

case n 1is adjusted to allow for a tied ranking;

Thus ] ==2:=9=—- = .,915 -
J6 5

2.2.2 Is <« a Satisfactory Measure?

Defining a measure does not guarantee that it will do its

job well. Let us see how it works in practice. Table 2 presents
B

data for all the POM's in Game 1. The ACM in standard aspect was ]

for both players. The POM's are arranged in order of decreasing =t ,

can be seen from Column (4).

———k

667

as
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Table 2 -~ Perceived Opponent's Matrices in Game 1

POM POM Taxonomic| T Number Cumulated | Number of Subjects Guessing This POM
Number in Type of |of Subjects|Percent of
Standard of POM Guessing Subjects |Whose Opponents Who Themselves
Aspect PoM This Guessing |[Used Strategy 1 Used Strategy 1
POM This and |At Least|Initially At Least |[Initially
Preceding |{Once Once
POM's |During During
Play Play

(1) (2) (3) (k) (5) (6) (7) (8) - (9) (10)
1 iﬁ 1b-2x  |1.00 36 54.5 1 0 5 1
2 ig la-21 .89 1 56.1 0 0 1 1
3 gﬁ 1g-22 .80 1 57.6 0 0 1 1
4 gi 222 .89 1 59.1 o 0 0 0
5 gg 28-21 .82 3 63.6 2 0 3 2
6 ig ob-21 82 1 65.2 1 1 0 0
7 gﬁ 2d-22 67 2 68.2 0 0 0 0

BB

- , . 0

8 oA %22 58 1 69.7 0 0 0
9 gg 6a-21 A1 1 1.2 1 0 0 0
10 gi §-22 22 1 72.7 1 0 0 o
11 gi 10-%2 0 6 81.8 1 0 1 0
12 gﬁ 9a-12 0 1 83.% 1 1 0 0
13 ﬁg 10-x1 0 1 84.8 1 0 1 0
1k gg Ga=?l 0 1 86 .4 1 0 0 ¢
15 gg 811  |-.22 1 87.9 1 1 0 o
16 ﬁﬁ 46-12 | -.22 1 89.4 0 o 1 0
17 ig le-11  [=.50 1 90.9 1 0 0 0
18 gg 2a-12  |-.82 1 92.4 0 o 0 0
19 ég oa-11  |-.82 1 9%.9 1 0 0 0
20 3 incom-  |ppdey 1 95.5 1 0 0 0

- - undet ‘
21 A pieer sineg] 1 97.0 1 1 1 0

A- 1 « |undeg
20 A plete |fine 1 93.5 1 1 1 o

- i - unde .
23 - plete  |fine 1 100.0 0 0 L Y

Total = — — 66 = 16 5 6
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Comparison of the texonomic types of the POM's in Column
(3) with thelr 1 's reveals that < 1is a good measure of the
degree of agreement between POM's &nd the AOM, at least in Geme 1.
All the POM's with 1 > .5 are matrices in which the initial
strategy chosen by rule CAAB is strategy 2 and it is chosen by
suprule o {thet is, row 2 dominates). Intuitively we regard all
such matrices as at least fairly good approximations of the AOM.
The POM's with O <1 € .5 have row 2 chosen by subrule g , those with
T = Q0 &are inconclusive about which row is chosen at first; those
with negative 1's have row 1 chosen at first by rude gy
end the very lowest 71's are awarded to POM's with row 1 the
dominant strategy--which is exactly what we mean in this gsme by
8 "bad guess'-

Inspection of the POM's , their taxonomic types and their
T's for the other games reveals a similar correspondence between
intuition and our measure, but in Game 2 the correspondence is

perhaps less clear. In this geame Player 1's AOM in standeard
A8 ‘%§*:%§F as his PO M,

aspect is I Te
it gets & 1 of -1 , the lowest possible, because he has reversed

If he submits

the entries. Yet out of the 75 possible matrices he has picked

one of the 5 that require the Randomization Subrule, & , to

choose an 1nitial strategy. On the other hand, withtihis POM ,

Pleyer 1 will believe Player 2 would like him to pley Strategy 2,
whereas in fact exactly the opposite is true. One might use the
absolute value of 1 rather than the signed value as a measure Iin
this game--but this too has flaws when &pplied %o particular matrices.

Though 1t is not perfect we will stick with our present measure.
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3. Factors Affecting The Indlvidual's POM

3.1 Are POM's Chosen Randomly?

The fact that one regquires of subjects that they submit
a POM does not prove thet they have given the matter any thought.
Our first task will be to test the null hypothesis that the POM's
submitted are simply chosen at random from the 75 possible distinet
ordinal matrix forms. |

Teble 3 classifies the POM's inte five groups saccording
to wheat subrule is needed to pick an initial strategy and whether
the strategy so picked is right or wrong. The observed frequencies
of POM's in these five classes and the freguencies expected under

HO are shown for eech geme. The group into which the AOM itself

falls is indicated by & cirecle around the observed frequency; and
always the encircled observed frequency exceeds the corresponding
expected frequency. With fowr exceptions (all underlined), all
other observed frequencies are less than expected. This suggests
that POM's are chosen in an organized way rather than at random
and tend toward being spproximstely correct. But we shall apply

a more impartial test.

Table 4 shows the results of testing Hy by a test.Z/ HO

1s clearly rejected in Games 1, 2, 3, 4 and 6 but not in Game 5.
The Prisoner’s Dilemme evidently is very difficult to apprehend

correctly when the opponent ‘s payoff is not known.
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Table 5 - Observed and Expected Frequencies of POM's of Various

5 X

S

Data Specification

Ubserved Frequency
Expected Frequency

Observed Frequency
Expected Frequency

Observed Freguency
Expected Frequency

Observed Freguency
Expected Frequency

Observed Frequency
Expected Frequency

Observed Frequency
Expected Frequency

In Game 2 the first move is chosen randomly (by Subrule 8);
with initial strategles chosen by subrules o , p and A cannot be separated
"incorrect."

into “ecorrect"

and

P O M Matrix Class

Correct
Initisl
Strategy
Chosen by
Subrule o

@

28
38.2

11
19.6

20
18.7

D

19.6

G
18.4

Correct Initial
Initial Strategy
Strategy | Equally
Chosen by | Likely to be
Subrules | Correct or
g or A Incorrect
{Subrule 8)
3 I
9.9 L.l
2, | @
20.5 3
A
10.3 4.3
& L
9.8 4.1
8 2
10.3% §.3
3 2
9.6 k.o

Incorrect
Initial
Strategy
Chosen

by
Subrules
B or A

2
9.9

16
10.3

10
5.8

L
10.3

N
9.6

Incorrect
Initial
Strategy
Chosen
by
Subrule ¢

19.6

7
18.7

15
19.6

>
18.4

hence the POM's

Total
Number
of
Differ+
ent
PCM's

62
62

6k
6l

6h
ol

61
61

6l
64

60
60

Table 4 - 2? Test of No 11 Hypothesis that POM's are Chosen Randomly

Game

(R g N VI

o) VI gl VI
O OV=—] OWWNWN

x

2 Degrees
of
Freedom
.1 4
.6 2
.6 Iy
.5 i
.9 L
.9 4

Probability

That

AVAANAA

HO is True
0000001
L0001
.0000001L
.00001
.15
0000001

Incomplete
POM
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3.2 Relationship between Accuracy of POM’s and Irrational Strategy Choices

by Opponent and by Self

Whet factors are likely to influence the guality of agrespent
between POM and AOM? We think it likely in Geme 1 that poor guesses
will result when the opponent uses his Ffirst strategy. The "first
order of inference" rationale in "solving simultaneocusly" the information
problem posed by an astute subject 1s that it is natural for a player
in guessing his opponent’s matrix to assume his opponent behaves
rationally and attempts to meximize his score.(This sets aside for
the moment the possibility of immediate deliberate false signalling.)
While in some games this assumption does not by itself imply a unigue
pattern of moves, it does in Game 1., Therefore we propose these two
hypotheses for Game 1l:

l. ¢ will be lower if the opponent has used strategy

one at any time during the course of play.
2. T will be lower Lf the cpponent has used strategy
one initially.
The first hypothesis is the stronger. since it implies the second.
We also may test hypotheses that cne’s own irrational behavicor will be
sssocisted with poor guessing-~but we have no resson to expect them to
he true.

3. <« will be Llower if the subject himself has used strategy

one at any time during the course of play-

b, % will be 1.0w§:r if the subject himself has used strabegy

one initially.

As before, Hypothesis 3 implies Hypothesis L.



Columns (7) - (10) of Table 2 display the rew data, and Table 6
below organizes the results of the four tests. The information
contained therein can be used to generate a 2¥?2 contineency
table for each hypothesis.

Thus for hypothesis 1:

Table 5: Centingency Table For Hypothesis 1

Number of Subjects DNumber of Subjects Totals

Whose Opponent: Whose Opponent
Used Strategy 1 Used Only
At Least Once Strategy 2
During Flay
Number of Subjects Whose POM ‘ 5
had 1 > .5 L ll“-i o 811 g
Number of SubJjects Whose POM
had T < -_5 lz\m] 8 l5°2 20
I
Totals i6 50 bo

If there is no asscciation between cppoerent's use of strategy 1 and the
subject’s achievement: of a POM with 1 > .9, we expect Lo observe the
four categories with the frequencies shown in the triangles in each cell.
The actual values from samples, if HO is true, will be distributed

about these means. To test HO s A is calsulated for each of the four

hypotheses by Siegel's formmla allowing for continuity of the underlying
variable {which is reasonsbles in the case of degree of agreemenﬁ)ﬁgj
The value of 2 and, the sssociated probabiliitiss thet the null

hypotheses are true are given in Table 6.
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Table 6 - Factors Affecting Agreement of POM and AOM in Game 1

Number of Subjects
Level of « Total : ? J
Number Whose Opponent Tsed. | Who Themselves Used,
of Strabegy 1 Strategy 1
Subjects| At Least Once*lnitially,Ab Least Once Initislly
During Flay During Play
Larger than .5 L6 b 1 10
Less than .5 20 12 4 6
Total 66 16 5 16
2 . .
2 14,56 %.92 14 .16
o <.0001 <.025 >.% >.3

These figures confirm our expectations: opponent's irrational
behavior does reduce the quality of POM's, but one’s own irrational

behavior does not, in Game 1.

3.3 Accuracy of POM's as a function of Game Structure

Next we wish to investigate which games preduce, on the
average well-perceived opponent's matrices and which produce poorly-
perceived ones. Tables 7 and 8 and Figure 3 present the dsta,

Table 7 shows for a given percent of subjects the level of
v achieved. Example: in Game 3, 50% of the subjects achieved
T = .30 or better, 75% echieved % = 0 or better. The 50% line
gives the median =<

Table 8 shows the percent of subjecsts schieving a given =
or better. Example: in Game 2, 37.8% of the subjects achieved
T = .18 or better.

The data from vhis table are graphed in Figure 9. Tn this
figure a game in which the subjects de ae betier than might be expected
from random choice of POM would be represented by & curve close +to the

diagonal--as is the case with Game 5. The farther abeove the diagonal
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8 game's curve bulges, the more that game encourzges good p=: aption
of the opponent's matrix. (These curves are like the Loren r.xves
used to measure income inequality.)

From these tables and thé figure emerges & pattern resembling
that found when weexaminedthe quality of prediection of ‘the standard
game-theoretic solutions in Part 102/ The best POM's are submitted in
games in which the Joint Maximum and Non-Cocoperative Solutions coinecide
end are unique, and both players have dominant strategies (Games 1
and 6). Next best is Game 4, in which there is a unique JM-NCE
outcome but neither player has a dominant strategy. Next is Game 3,
in which the JM and NCE Solutions coincide but include two outcomes.
And the poorest POM's come from the two games (2 and 5) in which

the JM and NCE Solutions diverge.

Table 7: Quartiles Achieving 1 at least as Large as Shown

Percent Game
of
Subjects 1 2 3 L 5 6
25 1.00 .67 .91 1.00 3% .91
50 1.00 0 LG .60 0 .67
75 43 -.22 o) 0 -.55 L1
100 -.82 -1.00 -1.00 -1.00C -1.00 -1.00




- 20 -

Table 8 - Percent of Subjects Submitting POM's With 1 At Least

Ot=t=mMn -0 OO MO O MM D=I= OO D O QB i KK O
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L. Player Pairs and the POM's

L.1 Do Paired Flayers Influence Each Other's POM's?

Ance per approach is no sidestep identifylog the factors
thav affes! - and ask novoiv whether whatever affects one member
of a playin palr will a?f:2t the ofher member alsc. In cother words
we Lypotue:-ze bthat 1f Fiayer 1's < 18 high {low), his opponent’s
v is like y to be higher {lower) than random selection from the
populatsc: of Player 2 «°s would produce. The test of this hypothesis
requires s to rank the Flayer 1 ¢'s and to associate with each Player
L x vuz v of that rlayer’s cpponent . This has been done for
Game 4 wn Table 9. Data for 28 pairs are snown; in the remsining

S5 pairs at least one POM was incomplete and could not be assigned a 1 .

Teble 9 1fs  and Their Rankings for Paired Players in Game U

Flayer 1's l Fiayer 2°s Rana of Rank of

o x Flayer 1's |Flayer 2's

’ -
L) L) (5) (&)

1.00 F 1.00 1 1
1.00 i 1.00 1 L 1
1.00 L L0 i L 1 1
1.00 ! 55 ‘ 1 ; 6
.91 ‘ 60 i 2 | 5
.80 78 ) 3 1 b
78 ‘ 1.00 4 1
78 1.00 l: 4 i 1
75 i .l i ’ 2
JTE ! .18 i 4 L
60 Y : 5 11
.55 | 18 J 6 9
55 - .40 : 5 14
4o 1.00 | 7 1
O 80 ! 7 3
22 1.00 i & 1
22 55 5 8 6
18 1,00 9 1
RS 1.00 9 i 1
RS 55 9 &
G 1.00 10 1
0 100 10 1
e 60 10 5
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Teble 9- 7's and Their Rankings for Paired Players in Geme 4 (Continued)

Players 1's | Player 2's Rank of Rank of

T T * Player 1's Player 2's
. ‘ T T

(1) (2) ; (3) (4)

-.18 1.00 ; 11 1

-.18 .18 : 11 9

-.20 .80 12 : 3

-.26 N 13 i 6

-.89 P o-91 15 : 16

Fo test whether the order of the Player 2 <¢'s is sufficiently

like the order of the Player 1 «1's so that we can reject HO ,

we calculete the Kendzll Rank Correletion Coefficient for the pair
of rankings and determine whether it is sufficiently different from,
and in this case larger than, zero.ig/

Table 10 gives the results of this test for all six games.
Continuing to use Game 4 as our example, this table tells us that
the Kendall Rang Correlation Coefficient K for the data of Table

is 094,

Table 1C - Test of Hypothesis That Paired Subjects Produce

POM’s With Similar 1's

One-tailed test:

Kendall Probability
Rank Correlation S That HO is true
Coefficient K
L + .220 1.40 T .08
2 + 17k .89 .19
3 + .CL8 3T T 36
y + .09k .68 =
2 + 077 25 ~ 29
5 + .110 .79 T2l

K can be mapped. into the familiar 2z of the normal

distribution: z = EgE_ s where p = 0 = the expected mean of K
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under the null hypothesis, and ¢ under Ho depends on the number

of items ranked and the number of ties at each level of each ranking.
For Game 4, z = 68, which meang +that we could expect ¥ 2 09k
could occur under HO about 25% of the time. Therefore we

cannot reject H_ et any reasonably high signilicance level; we

9
must conclude that there is no significant relationship between
one player‘s <« and that of his opponent. And the szme conclusion

must be reached for the other five games ss well, if we use the

5% significance level for rejection of HO.

On the other hand, in every one of the games the correlation
between the two rankings is positive. Such association as there is

petween the rankings is in the expected direction.

4.2 Correlation Between Paired Players® POM's and Degree of Involvement

We may alsc ask whether the magnitudes of the correlation
that does exist between Player 1 «'s and Player 2 1's 1is
positively correiated with the degree of involvement fostered by
a game. The degree of involvement, discussed at length in Part IIbgéJ
measures the extent to which strategy changes by one player induce
changes by the other. The rationale for there being such an association
is that ia gzmes with & high degree of involvement a player might
experience grester difficulty in separating inferences about the
opponent ‘s matrix from inferences sbout the latier's reactions to

the player's own moves.



Table 1l-Comparison of Gemes Ranked Ly Degree of (Strategic)

Involvement and Degree of Information Involvement

Game Ranked by Ranked by
Degree Degree of
of Information (Strategiz) Involvement
Involvement

1 1 5
2 2 2
3 6 1
b L b
> > 5
6 3 6

Teble 11 compare: the ranking of the games according to

degree of involvement with their ranking according to K ,lgAMhere

K can be consldered a mcosure of degiree of informetion involvement.

We can test the hypothesin that these two rankings are related
by calculating once eguin the Kend:ll Renk Correlation Coefficient;
i~ turns out to be -~.457, which actually has the wrong sign’
Degree of Information Involvement is inversely related to Degree
of {Strategic) [uvoiveuwent--though not significantly so (an un-
laved pair of ranikiogs of six objJectis will produce a correlation
coefficient es Giflerent from zero as tuh67 with probability .272).22/
We find 17 surprising that the conjectures tendered in
this secticwn rre nol borne out by the data. Perhaps a larger
sample would coniirm them; possibly they would be more confirmable
in 2x2 gemes otlwr than the six used by us. In any case, we cannot

give any reascnunle explanation for the negetive correlation obserwved.
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4.3 Consequences for Play of Poor Perception of Opponent's
Matrix: An Example

There is an old saying to the effect that when A and
B meet there are actually four people present: A as A really is
B as B 4is, A s B +thinks he is, and B as A thinks he is.
The folk wisdom points out thet if the perceived others fail %o
correspond to the actual others, one can expect compounded confusion.
Can "compounded confusion be expected if POM's and AOM's
diverge widely? An extreme instance from Geame 4 {Table 9, last line)
suggests that it can. Player 1's POM had a v of -.89; Player 2's was
-.91. Thus each player lived and reacted in a world of his own
far from "reality's; by which we mean the AOM's. Figure 4 illustrates
the situstion. We call the game player 1 thinks he is playing

Gome hIl (1" for "imeginary"); Game LI, 1s defined analogously.

Game 4 itself has already been analyzed in Part 13£&/,-
outcome (1, 1) is expected as a steady state; but if one player
uses his second strategy, the other can maximize by switching to his
second strategy too, so thet (2,2) is an equilibrium point; how-
ever each has an investiment Incentive to switch back to his first
strategy; and if one does, the cther maximizes by doing likewilze.
Thus the structure of Game 4 encourages stsbility.

But Game hIl is altogether different. In this game we

see a maximizers' cycle: sterting, say, from cutcome {1,1) player 2

{that is, the imeginary player of Player L's ¥OM)} can maximize by
switching to strategy 2, in which cmus Player 1 maximizes by
switehing to strategy 2, after which Player 2 maximizes by returning

to strategy 1, following which Player 1 does the same ... and so on.
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‘ A c ;; A C
'—--n—-—=- ~. Actual Came e
! C E | Both Fiayers Are FPlaying I G | B
{tame i) '
Player 1's Payoff Matrix Player 2°'s Payoff Matrix
(Player 2°'s AOM) (Player 1%s AOM)
//\\ Game (ame
Flayer 1 Player 2
Thinks Thinks
He Is He Is
Pleaying Playing
, \'%
Bt A l D A
A B ‘ B c
Player 2%s Matrix as Player 1's Matrix as
Perceived by Flayer 1 Perceived by Player 2
{Flayer 1's POM) {Player 2's POM)
{7 = -.89) 1 = =.91)
Figure 4

The cycle of outcomes, which we label MM, is

{h, L) = (1, 2) = (2, 2) » (2,1) = 11, L} ...

If Flayer 1 understands that the game he is playing sets up
a maximizers' cycle he may try to beat it by anticipating his opponent's
move. Instead of suffering the low payoff from outcome {1, 2} that
results when his opponent maximizes with respect to Player 1°'s first
strategy, he will shift simultaneously. The Player-l-anticipates

Player-2- maximizes cycle {AM} is:

{1, 1) » {2, 2) » {1, 1)



£

ne
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i

Conversely., the MA oycle is

Tl 2} {2, 11 + {2, 2) ... .

o

Ard if each plaver anti~ipztes the other's efforts to maximize we
still get a determinate cycle [(AA} which is the reverse of the

MM cycele:

(L, 1)+ {2, 1) =2, 2}V« {1, 2) » {1, 1) ... .

For an outzome to be repeated in Ganme 411, one of the

players must be an anticipavor, and the cther must reason (using
outcome {1, 1) for the examplel,

"My cpponent could maximize with respest to my first
astrategy by switching to his seaccrnd. Bub he's too smart to do
that: he's caught on. He unows 1 will switch to my second strategy
in anticipation of his swiftching to his, and therefore he will
stick with his first. Therefocre 1 can stay a step ahead only if T
stick with my first stratesy. toc.” This player we call a “double
anticipator™ (D:. Eitner DA or AD <an accoun® for the repeabed
cbservation of an cutooms.

It is of inrersst “hab ia Game 41 1%t is nol possible 1o
explain the repeated cbservation of (1, 1) 4s simply the result of
both players! being savisfied--which %he players are in the

game actually being pilaysd’

Traly Player 1 is living in a fantasy
world. the complexities of which tetally block cut his ability to
enjoy the simplicity of reality!

The strusture of Same ui; is a mirror of om: 4I.78.

Here "Flayer 1" is the imaginary player of Flayer = . I¥° The MM

oycle of Game LI, 1s the sawme as the AA cycle of Gume o7 -
o~

4

1.1y s d2, 1Y s i2, 20« {1, 2) »{1,1) ... .

%



Game hIpﬁS AM cycle is Game kIl's MA cycle and vice versz. Game

412“3 AA cycle is Game hIl's MM cycle. A repeated outcome explsined

by DA in Game ulg'would'be explained by AD in Game AIL , and vice versa.
If we adduce the structure of Game & itself to explain
the observed strategy switching in terms of responses in period t

to opponert®s move in pericd t-l1 we get the fcollowing:

Opponent's move, Subject’'s move, Explanation
Period -1 Period t
1 1 Subject is maximizing (M)
1 2 Subject is irrational (X)
2 1 Subject is investing (1)
2 2 Subject is maximizing (M)

Tnat is, the structure of Game 4 can <xplain any sequence except
opponent 's strategy 1 followed by subject's strategy 2; thlis sequence
is simply irrational--which is what se mean when we say outcome (1,1)

is expected as a steady state.

Table 12 cffers thres alternative "explanations” of the sequence
of outcomes observed in the 19 periods of play of Game 4 by these two
subjects.

In this context Gams Hli can be interpreted as the conceptual

framevork FPlayer 1 uses to rationalize his own and his opponent's

pehavior: it is his Weltanschauung. Geme LI, performs the same

function for Player 2. Significantly the structures of these games are
such that every strategy choice, both of one’s own and of one's

opponent--except one's own initial strategy, can be "rationally explained".



Table 12- "Explanations” of Play of Game 4 by A Pair
of Subjects With Poor POM's

Period Player 1l's Player 2's BExplancticn of Outzome in Terms of

Strategy Svrategy Fna Surws bure of
(ame L 7 o= By Game ]+I2
1 2 2 =X KA ¥4
2 2 2 MM L or DA DA or AD
3 1 1 I AM MA
L 2 L M AA MM
5 L 2 M MA AM
6 2 2 MK MM Al
7 2 2 M AD or DA DA or AD
& 1 2 iM AA MM
9 1 2 iX AD or DA DA or AD
10 2 e MX M AA
11 2 1 MI MM AA
12 1 e MM MA AM
13 1 i M AA MM
1L 2 Z XX AM MA
15 2 2 MM AD or DA DA or AD
16 L 1 1T AM MA
17 2 2 XX AM MA
18 1 1 It AM MA
19 1 2 MX. MM AA



Note:
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Table 12 Notes

In the explanation columms the first letter explains the
strategy chosen by Player 1 in period + as a conseguence
of Player 2's strategy choice in period t - 1; the
second letter does the same for Player 2's period +
gtrategy with raespect to Player l's pericd t - 1

strategy. The Inltial strategies are explained in terms

of rule oprE . The symbols used have these meanings:
M Meximizes
I Invests
A Anticipates opponent’s maximizing
D Anticipates opponent’s anticipating own meximizing
X Behaves irrationally (choice cannot be

explained In terms of the strueture
of this game)

¥y Chooses initial strategy by the Security
Maximizaticn Subrule, v

3} Chocses initial strategy by the Randomization

Subrule, & .



This conforms to the belief, subscribed to by the authors, that

people in general have a need to be able to explain both thelr own
tehavior aud Thet of cothers. no wmatter how foolish or jrresponsible

it may "really"” be, as reasonable in the face of eircumstances;

and they will develop models of the world which serve no other purpose.

It is equally signifirant that the structure of Game 4 is

not equipped %o perform this functiomn for these players, for it
dismisses a number of moves as simply "irrational." Mere importantly,
the structure of Game L is also imsufficient to explain these moves

an impartisal cbserver or game theorist. A scientist possessing

i‘:!n

the structure of Game b may pride himself on "seeing things as they
really are;" yeb his clear vision avails him nought in explaining
the outcomes observed in pericds 4, 6, 9, 10, 1k, 17 and 19. A
truly comprehensive explsnstion would have to include both the real

world of Game 4 and the fantasy worlids of Games 1;11 and hj:_p

in some still breoader framawors of thought.

5. Are Many Heads Better Than One? - Analysis of POM's as the Qutput
of & Group
Still ancther spproach to the analysis of the POM’s
considers the players neither as individuvalsnor as pairs bul as a
group. Do the players independently submitting POM's develop a

consensus?

Table 13 presents the raw data.

We start with the frequencies with which A; B, C and D are
assigned to each outcome by all the Player 1's and by &li the
Player 2%s of a game. We assigo these ranks the following

aumerical values : A =4, B=3, C=2,D=1. Then the average



Table 1% -Raw Data for Analysis of Jrcup’s Perception of

T

Oppeonent:’s Matrix

Player 2°s POM

e o

Outconme

“_“H””““WF"M;“*”““Wwﬁiéiérmi?ém

Data Specification

{1.1" (1.2} {2.13 {2,

Quucome

(1,1) 11,2) 2,1) (2,2)

Total
or

Mean

1 [Frequency of A{=L)
[ - " B(=3)
ci=2)

: D{=1)
Toral cbhservations

| ‘Frequency of blanks

I ;Awerage of POM Ourrome ranks

Consensus POM

I

26 !f 59 |
J

ol
[
2

1
5.3492.675 2.84k 3.
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Table 13 {Continued )

Player 1's POM

Player 2's POM

frAmE Data Specification Qutcoms Total outiome Tonal
{1,1) {(1,2) {2,1) {2,2) Meg; {1,1) (1,2) (2,1) (252)‘M2§n
I Frequency of A{=L) 23 5 6 5 39 25 2 2 6 135
¥ " B{=3) 7 13 10 15 | k5 5 6 \ 20 | kO
“ "ol =2) : 13 10 30 22 16 3 143
" " p{=1) 1 0 b I 9 1 1 5 2 G
Total cbservations 32 3L 30 50 | 123 33 31 32 31 ng
Frequency of blianks 1 2 3 3 9 o) 2 1 2 E 5
Average of POM Outcome ranks|3.625 2.742 2.600 2.700 b0927 5.636 2.290 2.25C 2.968R.795
Consensus POM A B D C g A o D B
AOM A ¢ C B | *? A ¢ C B .
5 Frequensy of Af=L4) 7T 11 9 11 ? 38 11 7 10 lz2 4o
" " B{=3) 10 9 T 10 % 264 13 10 5 10 |36
g voo=2) w27 6 81 33 10 10 32
| " " pi=1) 5 5 10 % i 21l 2 5 10 5 (%2
§ Total cbservations A2 32 32 32 ﬁ 128 33 32 33 32 #30
| Frequepsy of blanks 11 1 A o 1 0 1] 2
¢ Average of POM Outcome ranks|[2.656 2.813 2.469 20906;2.711j 3.000 2.59k 2.39k 2.90H2.72%
. {onsensus POM G B D Al A C T o
by B A 0o ch W s o Aol |
& ! Frequency of A{=L) 31 3 4 0 ; 58y? 2k 9 z #fﬂmlan
§ . " OR{=3) 1 16 19 9 § L5 5 1k 12 9 |40
o "oei=2) 0 11 6 9 § 26 1 6 i3 6 |26
" *Di=1) 0 11 12 1] 2 1 311 |17
Total cbseryations 32 31 30 30k 1238 3@ 30 31 %0 [io3
Frequency of blanks o 12 2 s o 2 1 21 5
Average of POM Qutcome ranks||?.968 2.677 2.667 1.90d 208797 3.594 3.033 2.484 2.20q2.8%7
Consensus POM A G B D % A B C D
. AoM A C B D | A C B D
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Taple 14 - Analysis of Variance for Consensus POM

~ Player 1's POM

Player 2's POM

ams Source of Legrees | Sum of Estimane ((Degrees Sum ot Esvimaie
of _ of of of
Variation Fresdom [Sguares Variance [[Freedom | Squares | Variance
(1) i2) {3) (1) (51 (6) {7) (8)
1 Tetween Ranks 3 15.791 5 . 26U 3 19.000 6.333
Within Renks 122 50 . 8l 416 124 61.000 492
Toual S 66.635 127 80.000
2 Between Ranks % 2.205 L35 3 1.3%6 s
Within Faoks 128 118.606 .928 124 100 513 810
Total 131 120,811 127 101 -Hok
3 Between Ranks p) 16.67% 5.558 3 L.9% 1.660k
Within Raoks 125 99.341 793 128 124 .48k 968

Toral

Betwesn Ranks
Within Ranks

Toral

Betwaen Banks
Within Banks

Total

Pefwesn Ranks

Within Ranks

Tohal

128

114,016
21 .06
82.935

AN]
1Y)
o)
;|
e

131

12%
126

126
129

119
122

129477
41.686
66.991

108.677

7.71k
142,317
150.0%5
35.520
9% .228

13%.895
540
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Table 15 - Test of Hypothesis That Consensus POM is Significant

Game Player F-Ratic | Probability Rank of Game
That HO is In Order of
True Degree to Which It
Encourages Consensus
In Perceiving
Oppcnent’s Matrix
1 12.68 < .0C001 3
2 12.89 < 0001
2 1 .19 > .05 6
2 55| >0
% 1 7.01L < .00L b
2 L.72 > .05
4 1 LO.27 < 0001 2
2 25.51 < 0001
5 1.0k > .05 5
i 2 ? .28 > .09
!
i 6 28 13 < 0001 1
] 2 1u 81 1< .000i
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Table 16 - Accuracy of Consensus POM

Game ¢ for the Consensus Mean Median < Degree to Which Game
) A m ] — Encourages Accuracy of
POM of All The Consensus of Imdividually Perception of Opponent’s
Piayer 1's|Flayer 2's POM Submitted Matrix, As Ranked by
¥ FOM s Colume i 4 |Column (5}
o 2} (3} (4] (5) {6} (1)
1 .82 .82 .82 1.00 2 1
o 41 bl 0 0 6 55
! 55 55 55 Lo Iy L
i 55 51 T3 60 3 5
> .33 0 L7 ¢ 5 DD
& 1.00 N 83 67 1 2
Table 17 - Variability ofwguesses for Bach Qutcome of Each Game
Player l's POM Player 2's POM Average o, | Rank of Game by
S Per (b o's forlf ., o ~ "s Both Play- | Degree of Consensus
Game 9 N fof Outicome Whole } a's, for Oft”O@ﬂ mgg{e &rs, Whole | Encouraged. as
(L) (1,2 (2.1) (?Héqlmatrix‘ﬁlnl} (1 2) 2. 1) 2.2 MatrixMatrix Measured by Average a
TERG (709 | L61g [ LA enE  [ore ] 7e8 [[Bo6 7655 o2 | -6k ' T

1.861 | .79% [1.029] 895 {1900 932

1 ‘ ‘
2 n o8k f.o53 | .967 | .&3u] 065 |

| r
|
!

I
3 i 918 | .89% | 62k [ .g2k]] .8o1 968 [L.003 | .971] 1.00L{984 938 5
4 l 707 | 2729 ] 969 | 915 (834 foru2 | 6uz| 803 T5RATEE 786 3
5 f w37 L.0GL p.?iS O96|IL.063%  B.9CL |L.01L]1.223] L.08g]1.062)|L 062 6
6 { J180 | L7022 ) 681 | BLSY .6L3 fn8§7 JO0G) DL 1‘09ﬁ1 .89% e 2




rank is calculated for each oubcome. Example:

in game 1. of the 33 players. 2 falled to assign a4 rank 1o ocutcome

(1,2} of the remaining 3L, twenty-three assigned A , six B, one esach

C and D. The average of the ranks for cutcome {1.2) is

;%—-ﬂBf)xl.tfﬁré»xB-ﬂlfl.‘xQ*-lxl):5.,645.

&

The four averages ars themselves ranked to give the "consensus POM" {CPOM)

seen by the Flayer 1's in Game 1; that matriz is D| B

L Cl A

By construction we get two CPOM's for each game. bun in some
games the consensus s more pronocunced than in cthers. Speaking
heuristically., if the averages of ranks are very <lose to each other
{and to the mean of all four)., the group has nct reached a strong
consensus sbout how the four ouhbzomes of the opponent's matrix shouwld
be rankad. To determine whizh CEOM's are based on averages of ranks which
do in fast summarize @ group opiaion we have performed an analysis of

L5/

| ] : z B
variance ~=r¢ determine whebther the wvariaricn bgtween the oubzome ranks

i8 slgnificmntly largsr than the wvariaticn apcng The players estimating

the cutzomes I "w

noranks” ). Tabls 1k crganizes the data for this

analysis of variance and Tablie 1% presants +the results. HO is that the

consensus ranks de net diffsr from =ash cther sufficiently to allow us to

assert they zrs oot randowm produsts.  UF HO 15 rejanted we conclude the

CPOM is not a random production but dees rsasult from some systematic
process affecting to a greater cr lesser degree all the members of the
relevant group (a1l the Flayer 1's or all the Player 2's).

The Feratio in Games L, 4, and 6 are so large thab we can reject

HO ar the .01% signifirancs lsvel. 1In games 2 and 5 we cannot reject
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HO at the 5% significance level and must conclude that the CPOM's

may be meaningless. In game > we have an anomalous result: for the

Piayer 1l's HO can be rejected at the .1% significance level but for

the Player 2's it cannot be rejected even at the 5% level. Since the
roles of the players in this game are symmetrical we are at a loss to
explain the difference between their abilities tc reach a consensus and
must accept it as a statistical freak.

Column (5) of Table 15 makes use of the F-ratios as a measure
of the degree to which a game encourages the players to arrive at a
consensus in perceiving the opponent's matrix. The two F-ratios for
each game are averaged; the average is ranked.

We have determined whether the CPOM's reflect any real
consensus; now we analyze the CPOM‘s themselves. Teble 16 gives the
r's for the 12 CPOM's. These numbers can be interpreted as measuring
for the game as a whole the degree to which its structure encourages
azcuracy of perception of opponent’'s matrix by the group; to get a single
mumber for esch game the <'s for the iwo CPOM's are averaged in Celumn (4).
An alternaitive measure of degree o which a game's structure encoureges
accuracy of percephion is the median « of the individual POM's; this
is taken from Table 7 snd presented in Column {5). The two measures are
in close agreement. in the way fThey raonk the games, as can be seen from
Columns (6) and {7), but the mean CPOM < is higher in four out of six
games and lower in only one. While not conclusive it calls to mind the
thought that the group may have a "consensual intelligence” which is better
(with respect to this problem) than the average individual intelligence--

in short. many heads are [a little] better than [an average] one.
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Finally in Table 17 asre shown the differences in varisbility
displayed by guesses Tor each outcome of each game. The figures are
gtandard deviaiions from the average of POM outcome ranks presented in

Table 13; ‘nus for Game 1, Player 1, outcome {1,1),
1

o, p 2 0D
o =k (4-2.935) + 23(3-2.935)" + 2(2-2.935)° + 2(1-2.935)° )° .

The ¢ for the "whole matrix" is the square root of the within-ranks
variznce shown in Tsble 4.

We conjecture that the o's for outcome (2,2) in Game 1 and
curzcome {1.1) in Games 4 and 6 w:ll be lower than the o's for the
other outcomes in these gemes. The rationale is that the players can
ersily infer from the course of play that A should be assigned these
cutcomes, while they remain uncertain about the payoffs from other outcomes.
* Lock al the fable does rct give our conjecture uneguivocal support;
it is confirmed for three of the six POM’s {iame 1, Player 1, with o (2,2) = .519
< g for the cther thres outcomes; 0Game L, Flayer 1; and Game 6, Player 1).
The Flayer 2°'s managed to arrive at a betier consensus (lower ¢ ) for

at least one cther ourcome in each of rthese three games.

The bighest o was reported for both players at outcome (2,1)
in Game 5. A glanre back at Table 13 reveals for both players a bimodal
distribution, with ithe greatest fregquenciss being for A and D; the high o
is thus explained btwut the bimodal distribution is not. Perhaps the players
expected some sor® of symmetry between their own and their opponents’ metrices--
in which case they ranked their opponents’ peyoffs the same as or opposite to
their own. Since the paycffs were A's and D's we lock for A's and D's
among the POM‘s in outcomes {1,2) and (2,1) ...and we find them--that is,

we find a bimodal distribution with modes A and D.
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Tha average o Tor the whole wmatrix (next-to-last column, Table 17)
~an be taezn as s ner measure of degree of consensus encouraged by the
game; “ho lash coiapn ranks the games accordingly. The ranking is not
ldenticsl wrriy wour in Table 159, but the top thro: games and the bottom

thres arc vhs e in both.

4l Together:; A Measure of Strurtural Transparency

vy focus in all three parts of our study has been primarily on
heess e glrucbure affects behavior, rsther than on such variables an
w0 cersonalities and intelligence or on ldicsyneratic play. Thi. is
meaningful comparisons befweern i1udividuals or pairs reactizy to en
Loompent are of limited walue when vthe environment itself is nco under-
-l The games, of course, are the environments being studied.
We developed & number of w2ys of measuring various acspects of
nege enviromments {games). Table 18 brings tcgether thirteen such measures
criteria and applies thewm in rzowing our six games. Though it is
evident merely by lospection that they give rabher siwilar ranks to the
fames, we can measure the degrss of assosiation among the rankings by the

! in this case W = .65. 80 high a

O™

LS

kandall Ceoeffirient of Cenzordance, Wie

§

W makes the prebability thar the rankings are unrelabed less than .Q000L .
IC we gverage the thirveen ranks for each game we can make a
fourtesnth ranking based or thest gvarages. = A pame suggestive of the

element common to the scurces which heve contributed to Ranking Number 1L is

measure of strucrtural iransparency. According to this measure, the games

in order of desreasing structural transparenty sre 6, 1, 4, 3, 5, 2.
Intuivion would pub Game 1 first; we suspest that prior game-playing experience
by the subjects {nome in the ~ase of Game 1, five games in the case of Game 6)

alfected vheir play and perception encugh *o account for the reversed order
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Table L& - Six Gemes Banked by Fourteen Criteria

Bankingﬂ Source of Critverion of Ranking|Rank of 1 is ! Rank of Game .W
Ranking lassigned ~c !

Sumber ||Part Table Column | the game “ith H 2 E 3 L 5 16

Do
1 I L e H. : Frequency of ' highest, pro-
ouficomes are ibability thet
equally likely ‘H_ is true lowvest
{Random Solution) |

3 1 06 51 2 b 1

i
j'
L.
i.
I:
i.
i
i

i

2 I 5 4 Quality of predic- Q highest 3 L 5 2 6 1
tion of cutcomss by | : ; _
Non-Cooperative : 5 E ;
Solutiogm ________ . _ i i 1
3 T 6 8 W_Steadywsfate Frequency i3 6 N 2 5 1|
; frequencyv ‘highest i 3 .
b T 7 3 Quality of predic- 1Q highest 2.5 . 6 |5 ]2.5 {2525
Z fion of siteady-state!
: outcomes by Non-Co- i E
: operative Solution :

5 T 1 7 H.: Fluyers do not Probability 3 é - 5 4 2 1
uge initial strate~ {that o

gy picked by apply- Ol v .

| ) ing rule QRS is true lowest ‘

6 11 3 g Qvorall measure of [IMean M lowest 1 6 |4.5]k.5 3002

iprantive Lo switch

m initisal strate-

oy pickad by rule
r_}.ﬁlﬁ i

| U BB
7 a1 i 2 | D2gres of {strategic) I, lowest 2 5 61 3 Bl
___involvement:

N

& CIIT 4 2 | HO-' POM s are % bighest, pro- | 2 5 5 N P 1
j i ohosen randoml bability that
: v randonLy HO is true lowest

9 ITT 7 oW ? Median aocuracy of |+ highest 1 5.5 | b 5155 2
: 2 N individuals’® FOM's

i0 EIL 10 2 ' Degree of infcrma- | K lovwest 6 5 1 3 2 L
ricn involvement

11 :IIT 15 Y ! Degree of encour- Mean of F-ratios 3 6 L 2] 5 1
i | aging consensus highest; proba-
(HO; aonsensus PCM’s| bility that HO

! zre pased on aver- | is true lowest
age outcome ranks
sufficiently Llike

| each other fo h@ve

1 arisen randomly )
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Table 18 - {Continued)

Banking Source of Criterion of Ranking|Rank of 1 is Rank of Game
Ravking assigned to
Number |"Part {Table | Column the game with 1 2 3 L 5
12 III| 16 i Accuracy of Consen- |Mean o N 3 5
sus POM's highest
13 ITT| 17 13 Degree of encour- Mean o 1 L 5 3 6 2
aging consensus lowest
(variability of |
POM  guesses) j
Average of 13 L
Rankings 2.50 [5.38 k.26 2.92§4.30]1.58
7
14 IrI] 18 Cols. "Measure of struc- | Average of 2 6 ! 4 3 5 1
PoT-12, tural transparency” | 13 rankings i
! last based on average of | lowest I
\ row 13 rankings :
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of these two. Otherwise the sequence of games arranged in order of
structural transparency--empirically determined--accords well with our
a priori expectations.

6.2 Remarks to Experimental Gamesters

We wish to encourage other workers 4o run experiments like
these. The importance of replication of experiments and reconfirmation of
results is acknowledged in all the experimental sciences, which a fortiori
emphasizes its importance in the young science of experimental economics.
Freguently in this field experiments have been done, described and forgotten.
The aversion tc replication of another’s work is to be regretted; sometimes
it can be explained by poor documentation on the part of the original
experimenters, while in other instances it stems from a feeling that
following in another's tracks is & less prestigicus kind of scholarly
endeavor. We hope our presentation is clear enough to acquit us of the
f'irst charge, and we also hope that interested parties will free themselves
of the seccnd.

Qur experiments are simple, easy to duplicate; cheap, and
valusble to the subjects~-who learn something aboub non-zero-sum geme
theory--as well as the experimenters.While in the larger business-game-type
"axperiments” until much more core in design and analysis has been done l§/
thare can be doubt whether the activity is waluable for either research or
teaching, we believe cur very simple games develop a synergistic relationship

between research and teaching which recommends their more widespread use.



- 85 -

FOOTNCTES

Y Martin Shubik and David H. Stern. "Some Experimental Non-Constant-
Sum Games Revisited,” Parts T and IT. CFDP 236 and 240.

2/ Subsections 1.1 and 1.2 are lifted verbatim from ibid., Part II, pp.2-4.
[Special note: The pagination of Part IT as originally issued is in
error. All references to Part 11 in this paper are to the correct
pagination; there are altogether 42 pages in Part IX.]

é/ Subsection 1.3 summarizes pages &57 and 10-25 of ibid., Part II.
W ,
& Pages 19-20.

2/ Zidney Siegel, Nonparametric Statistics for the Behavioral Sciences,
Mograw-Hill Book Company, New York, 1956, pp. 213-223.

6/ Toid., pp. 217-219.
ny
A Ioid., pp. k2-47, 249.

Y Tbid., pp. 10k-111, 249.

2/ Shubik, M., and D. H. Stern. op. ¢it., Part I, pp. 18-23.
==/ Sliegel, S., op. cit., pp. 213-223, 247,
1L Shubik, M., and D. B. Stern. op. oit., Part 1L, pp. 27-33.

2/ 1pia, p. 3.

==/  gjegel, 5., op. oit.. pp. 213-223. 285.
b/

Shubik, M., and D. H. Stern; op. cit., Part 1I, pp. 28-29.

éz/ The rationale and method for this coften used statistical techmiques are
found in many texts., for example, Quinn McNemar, Psychological Statistics.

{ John Wiley and Sons. New Ycrk, 1962}, pp. 2u6-267, L433.

éé/ Siegel, S., op. eit., pp. 226-238.



FOOTNOTES

17/ Siegel (ibid, p. 238) says, "Kendall (1943a, p. 87) suggests that the best

estimate of the 'true' ranking of the N objects is provided, when W
is significant, by the order of the various sums of ranks..." The
reference is tc M. G. Kendall, Rank Correlation Methods (Griffin, London, 1948).

LY For further discussion, see Levitan, R. and Shubik, M. "A Business
Game for Teaching and Research Purposes " Mimeographed M. S. Yale 1965.
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