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QUIZ SHOW PROBLEMS®

by

Joseph B, ¥adane

1., Introduction

A quiz show contestant may choose the category of his next

guestion., Associated with each category & 1is a probability P,

of knowing the right answer to the question. If he answers the ques-

tion correctly the contestent will be given a reward X, and he re-

guired to choose & category not previously chosen. If he answers

ineorrectly, he will receive the consolation prize Ve and will leave
the game with e, plus his previous earnings. Suppose also that enter-

ing category &a will require time ta to recover and be ready to
shonge another question. Knowing a discount rate B >0 , and the

paramelers Py ¥y Yy and ta , how should the contestant maxi-

mize his expected discounted winnings?

This gquestion divides inte tﬁo connected parts: Given r
rategories it has been declded to attempt, what 1s the optimal order
in which to attempt them? Second, 1f there are n possible categories
(n <®) of which the contestant may choose r , which are the optimal

categories to choose?

*In preparing this paper, the author benefited from discussions with

Dr. Daniel Levine of the Center for Naval Analyses and Professor Herman
GChernoff, L. J. Savage and Harvey Wagner. Mrs. Joan Odland Coker did
helpful rnumerical cemputations during the summer of 1963.

Thig study was begun while the author was employed by the Center for Naval
Analyses, Office of the Chief of Naval Operations. Its campletion was sup-
ported by contracts Nonr 225(52) et Stanford and Nonr 3055(01) at Yale
University. Reproduction in whole or part is permitted for any purpose

of the United States Government. It does not necessarily represent the
views of the U.S. Navy, nor of the Center for Naval Analyses.



Intuitively, the contestant seeks an appropriate balance
between immediate rewards (x&, ya) and future rewards made less

likely by the probability of fallure (1 - pa) end less profitable

-Bt
by discounting (e =) .

At first, one might suppose that the ordering problem in-
cludes the choice problem because one could find the optimal order
for all n categories and then choose the first r in that order.
Consider, however, a situation in which there are several easy and
not wvery valusble categories, and one d4ifficult and valuable one.
It should make sense to do the easy ones first and then try the
hard one. However, if all but one can be tried perhaps it is op-
timal to eliminate one of the easy and less valuable categories.
Thus further reflection leads one to suspect that the solutions to
the choice problem and the order problem need not be the same, and

this is indeed so,

By & strategy is meant & sequence of categories, finite or
infinite, without repetitions, indicating which category is to be
tried first, which second provided the contestant was successful on
the first question, etc. Define the expected value of the category

a as
¥ia) = px_ + (1 - p )y, (v(a) >0)

and the delay factor of the category a as

-Bt

8(a) = € a

(0o <s(a) <1)



If b is a finite strategy and c¢ is a strategy disjoint from b ,
then be is a stretegy. The functions V and S can be extended

to strategies by the relations

V(be) = V(b) + S(b)V(c) and
(1)
S(be) = 8(v)s(c)

™is functional equation is basic to the discussions and proofs below.
"he theorems apply to any problem satisfying (1). At least two spe-
clal cases of this model have been discussed by others: the gold-
mining problem and the obstacle-course problem. A third problem,

discrete search, is closely related but is not a quiz show problem.

In the gold-mining problem, a mean possesses h gold mines
and s delicate gold-mining machine which functlions with probability

pj " if agsigned to the kth mine for the jth time. If it does
5

function, it will process a fraction of the amount of gold

Jsk
in mine k after j-1 excavations., If it does not function, the
machine is broken and cannot be repaired. How should this man decilde
to which mine to assign the machine in each period if he wishes to

maximize the expected amount of gold he will mine?

Let the jth excavation of mine k correspond to a cate-

gory. Then Pj e is the probability of success at the category
3

(i,k) , Xk = Jigj(l - rj',k)rj,kgk » Where. g  is the amount of

gold originally in mine Xk . Also the consolation prize yj K = 0
J



and the discount factor B = O . In order to prevent making bad
cholces today to permit lucrative ones to bhecome avallable in the

future, two regularity conditions are imposed:
(i) the amount of gold mined does not ilncrease:

r.. >{1

3k 2 - rj,k)rj+l,k forall j>1, and 1<k<h.

{ii) the probability of success does not increase:

pj}kgpjﬂ,k forall j>1, and 1<k<h

Notice that a constraint mist be imposed so that the (j+l)St

excavation will follow the jth excavation in emch mine and for each
j for any strategy that is at all attractive. Bellman [1, pp. 66 ff]
proposed this problem in the special case in which the success pro-

bability Pj k is a function only of k , and the machine mines a
2

k

fixed fraction r,_ of the gold in mine k each time, so X k= (1~rk)3"l
?

In the obstacle-course problem, each obstacle i will be

overcome with probability Pi , 0< pi < 1l . There is a value xi

for doing so, and zero consolation prize. A runner is permitted to

contioue until he falls to overcome an obstacle,

Goodman [2] considers the special case of the obstacle course

problem in which the x,'s are equal, and finds that the ordering

i
putting the easiest obstacle first is optimal in the (strong) sense

that the payoff is stochastically largest. He proves the same result

k8 °



where a fallure diminishes, but does not necessarily eliminate, the

probability of future success.

In the discrete-search problem (see¢ [3)] and the references

cited there), an object is hidden in one of n boxes. Again & category

aorresponds to the jth search of box k , and each category has a

probability of success p and a cost ¢ Superficially it

J,k

might seem that the expected cost of finding the object satisfies

3k’

{1})e But this is not the case.
If C(il i, +es) 1s the expected cost of finding the object

using the strategy (i; i, ...} then

2

’ *
{2) C(il ie nbu) = cil + (l - Pil)c (12 otn)

where C*(ie ees) 1is the expected cost of the strategy (12 ces)
in a new problem with parsmeters

P
'S
S

k il

*
124 k>1

Another way of understanding the distinction between the
quiz show problem and the search problem is to examine the probabil-
ity processes they generate. Suppose that the rules of both games
are changed slightly, so that the quiz show and search go on indefinite-

ly, regardless of whether the contestant has missed a guestion in the



quiz show, or whether the object is found in the search. However
the 2ost funetlion is unchanged: the contestant receives only the
sum of the x's for successes before his first fallure, plus the
consolation prize when he first falls (all appropriately discounted).
Similarly the searcher is charged only for all unsuccessful searches
before the object is found, and for the successful search., There
may be any number of failures in this modified quiz show preblem,

but still the objeet can be found at most once by the searcher.
Despite this difference, there is a connection between the ordering
result for quiz shows and for search, which will be pursued in a

lster paper.,

The results and methods of this paper are similar to those
of dypnamic programming. The most closely related material is found
20 (17, {especially Chapter II). Bellman's functional relations,
nowever, are on the state space (amount of gold left in the mine),

whiie (1) is a functional relation on strategy space.

Section 2 considers the ordering part of the quiz show pro-
blem, section 3 the cholice part, and section L algorithms for computing
optimal cholces. Proofs of certain theorems are to be found in the

appendix.

2 EEE?EE& Ordering

In this section, assume that a choice has been made of which



T categories to attempt, and ask in what order they ought to be tried.

For eage of exposition, assume V(a) >0 for all categories a .

Define the postponability P(b) of b as
B(b) = v(v)/(1 - 8(b)) .

The natural idea in considering optimal ordering is to find
out what happens if two adjacent categories or finite sequences of

categories sre reversed.

Lemma. 1 If P{c) >P(d) and f = Dbede and g = bdce , then

v{f) >v(g).

H

Froof v(f) ~ V{g) = s{b)[¥(cd) - ¥(ac)]

i

s{b)[v{e)1 -~ s(a)] - v{a)[1 - 8(c)I]

i

s(p)[1 - s(a)1[2 - 8(c)][P(c) - P(a)] >0
This leads immediately to

Theorem 1 ILet o = (dl 5, «ss) be a strategy such that
(3] P(o;) gp(cj) for 1<}

Then o is optimally ordered among all strategles including (al 02 eao} o
tf V{g) <= , then only strategies satisfying (3) are optimally ordered.

fhis property of P{a) corresponds to Bellman's ([1], Chapter

TL) "decision regions.”



Theorem 1 raises the questlon of existence of strategies
satisfying (3). If sequences of any order type are allowed, such
strategies certainly exist. OSince & sequence of ordinality not
would involve a difficulty of interpretation, it is of some interest

to see when strategies of ordinality o and satisfying (3) exist.

Let o= (&b co0s) be a strategy satisfying (3). Whether
o is of ordinality o depends on the 1list P(a), P(b), .cv . {In
8 set, repetitions of the same element can be'eliminated; in a list
they comnot.) ¢ is of ordinality o if and only if the list

L = P{a), P(b), ... setisfies the following conditions:

(¥) L is bounded from above
(#*#) I has no more than one limit point, =

(#*x) If =z exists, P(a) >z for all categories a in o .

It was noted in section 1 thal the gold-mining problem is
a quiz show problem subject to the special constraint that the (j+l)St
mining of any mine must be subsequent to the Jth mining of that mine.
More generally, let @Q be a partial ordering on categories, and con-
sider the problem of finding an optimal strategy o subject to the
condition that if ¢ includes categories a and b , and aQb ,

then o is of the form o = cadbe (here ¢, d , or e may be

empty, or sequences of categories).

The partial ordering @ 1is said to satisfy the regular

order condition if

aQb —>P(a) > P(b)



Clearly 1f Q satisfies the regular order condition, the
condition (3) is still necessary for ¢ to be optimal. Not all
o's satisfying (3) need be in accord with the partial ordering
Q , but any o satisfying (3) and in accord with Q is optimal.
If Q satisfies the regular'order condition, an optimal o exists
under the same necessary and sufficient conditions as before. A similar

theorem for discrete search is given in [3, Theorem 3].

With the regularity assumptions (i) and (ii) on the gold-
mining problem, the partisl ordering that category {j*¥1, k) must
not preceed category (3, k) does satisfy the regular order condi-

tion; sinece

L oI{l-r., ir. g | O ¢ R y
Pjgkjuq( SRR Y >Pa+lgkja<3( 5,0 e 1
Py “”’ L= Py

3. Optimal Choice of Cstegories

"he problem in this sectlion is to choose, from among n
(O <5 gswﬁ possible categories, supposing that the contestant is

permitted to choose nmo more than r of them (r <n) .

Without loss of generality, assume r < n and hence r <o

Alse continne to assume that V¥{a) >0 for all a .

The problem of optimal choice of r categories is consider-

ably more difficult then the ordering problem because the "one-by-one®



w 10 =

approach which was successful in Theorem 1l does not apply. Consider

the following obstacle-course example:

Let A and B bhave the following parameter values:

If the best two are to be chosen from [A, B, ¢} , where

pﬂ = “5 ‘X:"" = 2

direct computation shows that the best choize is {¢, A} (din that

order, incidentally, according to Theorem 1),

However if the best two are to be chosen from {A, B, D} , where

Py <L X, =T,

then the optimal choize 1s ¢k, D} .in that order;,

Hence which i1s preferable between A and B depends on
whether it will be comhined with 7 or with D . Therefore a theorem

like Iheorem l would be too strong for the prcblem of optimal cheice,

The following theorem is true; however.
Theorem 2 fFundamental Resulti FRvery opbtimal cholce of 1+l categories
includes an optimal choice of r categories,

The proof of Theorem 2 is somewhat long, so 1t is given in

the Appendix.
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In the case in which the totul number of categories, u |
is finite, Theorem 2 suggests s ~omputational procedurs. Fegin with
all n categories, {clearly an optimal choice of n ). choose the

least costly single category to expel, which by Theorem 2 yields an

optimal n-l , ebtc. This will be called Procedure I. Theorem 2

implies that Procedure I will find an optimal » .

Suppose ipstead tae comtestant uses Procasdure IL, which
begins with the most valusble single category [hnighest ¥ ), adds
to 1t the best second category to go with the one slready chosgen
ete. Were there ne ties, Theorem 2 would prove that Procedure I3
finds sn optimal r . However if there are ties, Theorem 2 proves
the tie owcurs leads o an optimel ¥ . Theorem 3, however, shows

that any choice in caszse of 3 *re lea?s to sn optimal » .

Theorem 3 If R, and R, &are two optimal choices of r categories.

gt L .- )
and 1f r, is the kest (r + 1 cnolze o add to K, , then

. . CR
Y2 I m Y ..M 1% i
VIR L v i) VIETY i )]
Where V¥EC] is the expected value of the set ¢ of categories, op-

timally ordered.

To apply this taeory t¢ the gold-mininug probiem, the effect
of the partial order Q agair is to be zonsidered. ¢ sastisfies

the regular cholce condition if

sQp == ¥(a}! >¥(b: apd 8(s) >S(v}
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If the optimal choice problem is restricted so that if
adb and b is chosen, then & must also be chosen, application
of (1) shows that there will be an unrestricted optimal r which
satisfies this restriction. The conditions (1) and (i1) imply that

the gold-mining problem setisfles the regular choice"condition.

If negative V's were available, it would not be profitable
to choose any of them. Hence the theory of this section could be
used to choose the best sel containing no more than r categories,
and Theorem 1 shows the best order for that set. The main reason
for presenting the theory in this fashion is that if negative V's
are permitted, the natural sum representation for V of a strategy
might not converge absolutely, and hence V might not exist in the
sense necessary for this paper. If V were negative for a finite
number of categories,it could still be extended to take a value for

every strategy.

L. Three algorithms for optimal choice of categories

In section three an example was given to show that the pro-
blem of choosing the best r out of n possible categories is sub-
stantially more complex then the problem of optimal ordering. Addition-
ally two procedures for choice were briefly dlscussed. This section
gives more detall about Procedures I and II, and intrcduces Procedure

IIT, which I think is of some practical importance.

The class of subsets of n categories.is trivially a
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familiar distributive lattice under the inclusion relation, with

(2) nodes on the rth level, 0 <r <n . According to Theorem
2, there is at least one optimal chain and no descending optimal chalns
that stop, and according to Theorem %, there are no ascending optimal

chalns that stop.

Procedure I starts at the top of this lattice, expelling
the least profitable category at each stage as it descends an optimal
chain. Procedure II starts at the boltom, picking the best single
category, the hest pair, etc., thus moving up an optimal chain. Pro-
cedure III starts at the appropriate level with any r categories
and moves across the lattice changing one category at a time, until
the optimum is reached. A fuller description, an upper bound on the
number of iterations required, and a reference to the proof that each

reaches an optimal cholice is given below:

Procedure I (Start at the top).

1. Description: Start with all n categories. Expel the lesast
profitable category, then the category least profitable among

the n«l remaining ones, etc.

The loss in expelling category 1 between the sequences

g and f in optimal order ig given by

() v(gif) - v(gf) = 8(e)(1 -~ s(1))Ip(i) - v(£)]

2. Bound for Procedure I: an upper bound on the number of compari-

sons required is given by



3.

- 1k

n*(n-l)+...+(r+1)=(n-r)£n+r+1)

Termination at optimal r : Follows directly from theorem two.

Procedure II (Start at the bottom).

L.

2.

3

Description: Pick the best category (highest V ) , the best
second category to go with it, etc. However it is not necessary
to recompute the gain from adding each category each time. In
going from an optimal r to an optimal r + 1 , the ordering

of the oplimal =r divides the unchosen n - r categories into

r + 1 groups, where any menmber of the jth group would be ordered

jth were it chosen to be in the optimal choice for r + 1 .

The gain from adding a category i in group J is given by the

expression in (4}, which cen be updated similarly.

Bound: An upper bound on the number of comparisons required is

given by
n+(n-21+ .0+ {n-r+1)= %(2n -r+ 1)

The procedure terminates only when the optimal r haes been resached,

according to theorems two and three.

Procedure III (Start with any r cotegories).

1.

Description:IITa (step-up, step down). Start with any set of r
categories (preferably a carefully chosen r ) and try to add

each of the n - r others, one by one. After adding each, yielding
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a set of r + 1 cstegories, see which one is least waluable.
If the one added is least valuable each time, terminate; if not,
expel the category which is least valuable, yielding a set of

r categories with greater expected value than before and continue.

IIIb (step-down, step-up). Start with any r -categories,
delete each one in sequence, yielding r - 1 categories. Now
see which among the n - r + 1 not included would be most valu-
able to add. If it is the one deleted each time, stop; if not,

take the most valuable addition and continue.
2, Bound: There are (g) possible subsets of size r , and each
can take &s much as r(n-r) comparisons to check, so the upper

n .
{(r-1l) ! (n-r-1) ! °

bound is But this bound will be far larger,

in general, than the actual number of iteratlions required. Any
prior information, such as a near optimal solution, can be used
in Procedure IIT. In the absence of such prior information, I
recommend the use of a convex function of V(a) and P(a) as
criterion for the initisl r , &and for order in which to try new

candlidates.

3. Termination at the optimal r : See Theorem Four.

Theorem 4 Procedure III stops only when an optimal r has been

reached. The proof is given in the appendix.

Example of the three Procedures.
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Consider the three cobstacles given below:

P X X P
A .85 1 .850 5.67 V(AB) = 1.56k
B A2 2 840 1.45 v(CA) = 1.5225
¢ 87 .9 .783 6.02 v(CB) = 1.5138

Procedure I1:

Start at the top with all three chosen, and see which obstacle

would cost least to expel. Let g(a) =1 - 8(a) « Then the cost of

expelling
A iz p,(p,x,-q,V(B)) = .6298
B is pcpA(prB) = ,62118
¢ is pcvc-ch(AB) = ,57968

Hence obstecle C costs least to expel, and {A,B} is the optimal
pair. The resultant expected value is V(CAB) - .57968 = 1.564 as

before.

Procedure II:

Chooge the first obstacle according to highest V , namely
A . Then the gain from choosing B (which is in group 2 because
were it chosen to be second with A it would be second in order)

is pA(prB) = 714 ; the gain from choosing C , which is in group
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1, is pcxgch(v(a)) = 6725 . Hence B is chosen to be second, and

thus the optimal pair is found.

Procedure IILs

Suppose the function f = %ﬁ' + %P is used as the discri-

minator function. Then f({A) = 3.26 , £(B) = 1.145 , £{C) = 3.4015 .
Hence A and € would be chosen to be the initiel solution. In Pro-
cedure IIXa, test to see whether to add B by going through exactly
the same analysis as in Procedure I. In Procedure ILIb, test whether

to expel A and add B (no), then test whether to expel ¢ and add

B (ves).

Discussion: Procedure I is clearly most useful for r/n large, and
Procedure IL for r/n small. The chief question is the usefulness
of Procedure LIL., The advantage of Procedure IIT is that it can use
knowledge of any near-optimsl solution. I conjecture that with &
sultable convex combinmestion of ¥ and P , Procedure ILL may be

faztest in a middle range of r/n for large n .

5. fonclusion

The ordering problem for guiz shows is very simple, and
the solution similar to Bellman's "decision regions.” The choice
problem is reminiscent of the problem of choosing the best, r regressors
of n possibilities. Procedure II is quite similar to stepwise re-
gression. Perhaps something like Procedure IIL would find the best

T TIegressors.
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Also it may be poted that Procedure ITX is similar to the
simplex method of linear programming. In an n variablie problem
with T linear equaelity constraints, according to a fundamenfal linesr

programming theorem there is an optimal solution with at most r  wari..

ables strictly positive. @Given which variables are allowed to be strictly

pogitive, it fs eamgy to find the value for the cbjertive function.

Thus the linear programming problem reduces to finding which r wvari-
ables are allowed to he strictly positive, ILf there is a candidate
set of r {a "basis") having the property that it is not profitable
to expel any single variable and include any previously excluded vari-
able, then according to ancther fundamental linear programming theorem,
the candidate basis is optimal. Thus this latter thecrem 1s similar

t.o Theorem L of this paper.

‘"ere appears to be a complexity scale for prohlems in whizh
ordering for quiz shows appears simplest, choice for quiz shows and
linear programming next most complizated, and the choice of regressors

more complicated still.
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Appendix: Proofs of Theorems 2, 3 and 4

Notation

# and R° are the null set and the complement of R ,

respectively.

Theorem 2 [Fundamental Result] Bvery choice of r + 1 categories

includes an optimal choice of r categories.

Proof

Suppose the contrary wera s0. Then for some r 4+ 1 there
is an optimal choice R¥ which contains no optimel choice of r
categories. Consider some set R which is an optimal choice of r
categories. It will be shown that R¥ can be improved {strictly)
by the inclusion of R , which contradicts the hypothesis that r¥

is optimatl.
Since R has r elements and R® has r + 1 elements,

B* 1 R® # ¢ . Order R* optimslly and select the first category
f in this optimal ordering of R* such that £ ¢ R . It will be

shown that VI[®*] <¥{rv [f}] .
Case T. If T occurs first in the optimal ordering of R* s then
vIR*] = v{£) + S(£IWIR® - (£}] < ¥(£) + s{(£Iv(R) < VIR U {£}]

by the optimality of R and sub-optimality of r® - (£} .

Case II. If f does not occur first in the optimal ordering, the

same idea is used. Move f +to first position R* at some loss L



in expected value, insert R for R* - {f] et a strict gain, and
then move f to its optimal position in R U {f] at a gain G in
expected value. If it can be shown that G >L , the theorem will

be established.

Without loss of generality , R in optimal order can be

written as blba coo bnfg , and R in optimal order as c¢.b,c.b. ... c.b e ,.fh

117272 nnn+l ?

where g , ¢ ¢ and h may be empty. Then

1° "ntl
L = V(bl bn:fg) - v(fbl bng)
= vgbl bnf) - v(beL oo B) and,
G = V\(clbla” cnbncn+lfh) - v(fclbl..., cnbncm_lh)

e bc_..)

) - V(fclbltoo n'n n"l‘l

o V(clbl. e g b oF

The following lemma completes the proof of Theorem 2
Lemms, 2

For any finite strategies s oey € oo bl oo b, f (cl’ C

possibly empty), such that P(ci) EP(bi) >P(z, ) >P(f) for all

i+l

i and non-empty ¢ ,

V(b «ee b £) = V(fb) oo b ) <V{eiby coee b fo ) = V{fo by oo e b e o)

Proof

n
v(al &n.f;') - V(fal an) = [1 - s(f)]izl( _Llis(aj)(l - S(ai))(P(ai) - P(£))
. =L .
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for any finite strategies a by repeated use of lemms 1. Therefore

G = V(clbl ‘ee cnbncn+lf) - V(fclbl coe cnbncn+l)

_;v(clbl cnbnf) - V(fclbl cnbn)
n
= [1 - S(f)liil(dgis(cjbj))(l “ S(cibi))(P(cibi) - P(£))

Since P{cb) is a convex combination of P{c) and P(b) , and

P(ci) 3P(bi) for all i , P(cibi) 3P(bi) + Then

> - = c - -
¢ >0 s(f)ligl(jriis( 531 - 8(e;p D (B(b,) - P(r))

Also note that S(cibi) <s(b;) forall i . Let X(y;, ¥y +ees ¥p)
be a real valued function of n real numbers y defined by

i n P
E(y)s Yoo ooes ) = [1 - S(f)]iil(jgiyjm - ¥, )(B(v,) - B{f)) .

Then ng(s(clbl), s(cebe)j coos S(cnbn)) and L ax(s(bl)g S("ba), S(bn)) ‘

Since %%w <0, G>L. Lemma 2 and Theorem 2 are established.
k

Theorem 3 If R, and R

o 8re two optimal choices of r

1

obstacles, and if r, is the best (r+1)Bt choices to add to R, ,

then

VIRV (r}] = VIR,V (r,}l .
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Proof

Case I: R,V [rl} = Reh) [r2} . 'Then the result is tri-

vial.

Case II: R,V {rl} # R, U {ra} - Then let ¥, be that

number of (Rl‘J {rl})(RatJ {re})c with the highest P {or one of

then 1f more than one exists). Then

ViR, {3 = vlEr 3 v (Ry U (r)) - {r)3)) < VLErd U RyT < VEir,) U R,)
by the proof of Theorem 2. Since similarly V[RE\J {rE]] < V[leJ {rl}] s
the result follows.

Theorem 4 Procedure III stops only when an optimal choice of r cate-

gories has been reached.

Proof :

Iet U bPe a set of r categories for which procedure ITI
terminates, il.e., there are no categories a ¢ ¥ and b ¢ U such
that V{U] <V[UU (b} - {a}] . A proof that U is then an optimal

choice of r categories sufficies for both Procedures IIIa and ITIb.

U must contain an optimal choice of one category, with
highest V , as otherwise such a category could be substituted in

last place in W ;, increasing expected value.

Suppose U contains K , an ophtimal set of k categories,
but no K¥* DK, K¥* an optimal set of k+l categories {for k+l < r)
which exists according to Theorems 2 and 3. Let a be that member
of U r\Kc last in an optimal ordering of U . Then that optimal

ordering of U can be written



- 23 -

Ulkerk2 oo Uﬁgkm

where ki is a finite {non-empty) sequence of elements of K and

u, is a finite sequence of elements of U , with 4, and u

1

possibly empty. ILet

akm) .

1122

L=vV(u kuk, oo umakm) - V(uluz voo W K ene ko

Now Ky oee km=-lakm is a fortiori not an optimal choice of k+l
categories. Suppose that K¥ = KUi{b} , where b ;! U . The remainder
of this proof shows that VU] <VvI[u U {b} - {a)] , a contradiction.
Then U contains (and hence 1s) an optimal choice of r categories
by induction. To establish this, distinquish two cases according

to where b falls in an optimal ordering of K¥ .

o £ 3 0v s 13 11
Cage T: An optimal ordering of K¥ is kl kmmlbkm

et = 7 L] .
where kmkm km and one of km 5 km might be empty. Then

v[s] = v{u kuk, ... u 8k )
= L + vﬂ(u]-‘a e umk.l en s m“lakm)
3
<L+ v(ulua co W ko wee kK kiDk

=3 "( L 2 4
= V(U kU ok umkmbkm)

= Viu v {b) - {a}] .
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