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SOME EXPERIMENTAL NON-CONSTANT-SUM GAMES REVISITED

PART iII

oy

Martin Shubik and David H. Stern’

1. ZIntroduction

In a previous paperl/ we reported our analysis of a series
of 2x2 payoff matrix two-person non-constant-sum game experiments
in which subjects lknew only their own payoff matrix entries and not
those of their opponents. 1In contrast with the earlier paper, which
analyzed the effectiveness of five standard game-theoretic solutions
as predictors of observed outcomes in such situations, the present
paper suggests new theory and measurements of behavior that are better
suited to game environments in which players do not know their op-
ponent ‘s payoffs. This paper examines the indirect effects of the
information conditions present during the play of the games; we put
of f discussion of the direct consequencesuntil Part IIT.
flthough the papers are highly related, inasmuch as they deal with
the same setl of experiments, they may be read completely separately

as they analyze different aspects of the games.

Research undertaken by the Cowles Commission for Research in
Eeonomics under Contract Nonr-3055(01) with the Office of Naval
Research.



1.1 Form of the Experimentsd/

Figure 1 shows the six geames used in the experiments.
In each game the subject labeled "Player 1" chose the row and the
subject labeled "Player 2" the column; the labeling of the players
was arbitrary. In each cell of a matrix is first the payoff to
Player 1 and second the payoff to player 2 resulting from the two

players' corresponding strategy choices.

6, 3 6, 7
Game 1
10, 3 10, 7
1, 3 2, 3
Game 2
1, 1 2, 1
2, 1 -1, -1
Game 3
-1, =1 L, 2
3, 3 -1, -1
Game 4
«1, =1 2, 2
3 3 -2, T
Game 5
7, =2 -1, -1
5, & -10,-13
Game 6
h, 1 -20,-23

Figure 1



In our experiments subjects did not see the matrices shown
in Figure 1 but instead say only their own payoffs, shown as the first
two columns of matrices in Flgure 2, vhere Player 1 chooses a row and
Flayer 2 a column.

f'or certain purposes in this discussicon it will be convenient
to think of both players as choosing rows; for Player 1 this involves
no change, but for Player 2 it implies transposition of the matrix {re-
flection about the main diagonal), as shown in Column (3) of Figure 2,
When a player's payoff matrix is displayed so that he chooses rows

we say the matrix is In its standard aspect; when it is displayed in

the manner in which 1t is actually played, we say it is in game as-
pect, I'or Player 1 standard and game aspects coincide; for Player 2

they generally do not.

Playoer 2's Player 2's
Player 1's Poyoff Matrix Poycdd Matrix in
Payoff Matrix in Game Aspect Standard Aspect
(v) (2) (3)
¥ 5 b 7 3 5
[STIERTS PRSP I
10 10 3 7 7 7
L 2 3 > 3 1
Game 2
1 2 1 1 3 1
21 -1 11! -1 L1 -1
Game %
=1 1 -1 2 -1 2
Figure 2
31 -1 31 -1 3] -1
Game 4
-1 2 -1 2 -1 2
3] -2 3 T 5] -2
Game 5
7T -1 -2 -1 T -2
5 |-10 21-13 2 1
Game 6
I |-20 1|-23 -13 | -23
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1.2 Motivation of Subjects to Maximize Their Payoffsé/

No monetary rewards were used in any of these experiments
to motivale the players to eguate maximization of their scores with
maximizatcion of individual utility. However, most of the subjects
were students of game theory in classes taught by one of the authors,
who advised that these experiments would teach non-constant-sum game
prhenomena in an easily assimilable way. Furthermore the students
were specifically instructed to maximize thelr scores. These students,
cager to learn and eager to please their instructor, should have been

well motivated subjects.

The experimenters may, however, have introduced a distract-
ing element themselves by reguesting that each subject after playing
coch game drav a 2x2 matrix and eanter in it what he bhelieved to be
the ranking of hils opponent's payoffs. This interference with the
scere-maximization motive resulted if a subject altered his stra-
tegy choices in order to gain information about his opponent's matrix.

Further discussion of this is deferred to Part IIT.

2, Ganes With the Opponent's Matrix Not Known

We shall approach a theory of playing matrix games in which
vie opponent 's payoff matrix is not lknown by considering from the
politt of view of the player various stages in the iterated plsy of

guch pames,



2.1 The Initial Move: Theory

Initially =such a nlayer has only his own matrix, and his
tosk is to choose a move 1n periocd one: strategy 1 or strategy 2.
In the one pericd subgame where players move simultaneously, nove
and strategy are cquivalent., Althousgh it is possible even at this
noint for considerations of the effect of his own move on his op-
nonent 's thinking to enter his calculations, we shall, as a first
anproxiration, assume that his first move 1s based entirely on

efforts to maximize his own payoff.

Several segquentlal decision rules can be imagined which
will determine o first move, depending on the structure of the
alaver's wayoff matrix. For example:

o Dominant Strategy Subrule: If the matrix contains a

dominant strategy (in the strong sense), choose it.

(3 Bavesian Subrule: If @ fails to select a strategy,

‘ . . . L
choose the strolegy with the highest expected valuo,-/

v Sceurlity Mexindzalion Dubrule: If P fails Lo selece
o strategy, choogse the strategy with the highest mini-
mum value; choose the strategy which maximizes the
"security level."

& Randomlzabtion Subrule: If ¢ fails to select o unigue

strategy, randomize.
A Teor cxamoles are presented here to illustrate the use of the above
Initial liove Decision Rule. In the following four metrices row 1

4

ovios Co chiozen by osubiute O



In the two matrices below subrule « does not select a strategy,

but subrule B specifies row 2:

In this matrix no decision results until subrule 9 1is invoked, pick-

ing row 1:

Finally, the following matrices require the application of subrule & :

The sequence OByd 1is a reasonable first-move rule but not the
only one. A player might reasonably reverse the order of subrules
f and ¢ , which would meke a difference in selecting an initial row

in the matrix




for example. An optimist might insert at some point in the decision
sequence the rule:

€ Maxmax Subrule: Choose the row conteining the highest

entry.

Thig would dictate the choice of row 1 in the metrix

vhereas subrules p and 7y would both select row 2. ©Still another
possibility is

{ Minimax Mixed Strategy Subrule: Use 8 probabi-

listic device to choose the starting move, with probebilities of playing
each row determined by trealting the matrix as though it represented

the payoff in & zero-sum game,

2.2 The Initial Move: Hypotheses and Results

Concerning the initiml move we have two hypotheses:
Hyp. 1: In games in which the decision sequence 0fyH

uniguely selects an initial strategy, players

will use it.

Hyp. 2: In games in which subrule @ uniquely selects
an initial strategy, pleyers are more likely
to use the strategy picked by the decision
sequence Ofy® than in games in which rules
B or ¢ must be invoked to select en initial

strategy.



Table 1 presents the essential information relevant to these hypo-
theses., Column (3) indicates for each game matrix of Figure 2 the
initial strategy selected by the decision sequence ofy5 ; Tfor Player
1 it is a row, for Player 2 a column. Column {4) shows which subrule
in the sequence must be invoked to select an initisl move uniquely;

it is seen that the sequence fails to pick a preferred first move in

Game 2.

In the six replications of the experiment were 33 teams
or palrs of players, so that there were generelly 335 cbservations
of initial moves for each player-position in each game. Due to an
experimental error it was necessary to eliminate the data from one
of the teams in Game 2, and a team failed to play Game 6; thus for

these games N = 32 (see Column (5)).

Column (6) shows the number of subjects that failed to
play the strategy picked by the decision rule. Agmeinst Hypothesis 1
we place the null hypothesls that subjects are equally likely to
plek either of the two available sirategies In period 1. Out of
33 observagtions, HO says we should expect 16 or 17 to depart
from the one picked by the decision sequence. The appropriate test
is the Binomial Test;Z/ for this size sample we use the normal
distribution to epproximate the binomial distribution in determin-
ing the probabilities, shown in Column (7), that Hy 1is true. It
is sgeen that the mull hypothesis can be rejected at the .01l gigni-

Ticance level in nine out of fen cases, the exception being that of

Player 2, Game 3.



Game

A\t

Player

Table 1 -~ Iritial Move Results

Strategy Subrule Number of Number of Hyp. 1:
Selected by Responsible Observa- Departures Probability
Decision for Choice tions from that
Sequence Strategy Tuall Hon,
oByd Selected by  is True
Decision
Sequence
oByd
(3) (1) (5) (6) (1)
2 104 33 1 <. 00001
2 o 33 5 .00006
1l or 2 3] 22 - -
1Lore 5 32 - -
1 > 33 8 -0037
2 B 33 12 .0901
L f 33 6 .00026
1 B 33 7 .0009
2 o 33 L .00001
2 o 33 2 <. 00001
1 97 32 2 <, 00001
1 o 32 0] <. 00001

To test Hypothesis 2 we put forth the null hypothesis that

the likelihood of obgerving departures from the strategy selected by

the decision sequence in Games 1, 5 and 6 is not significantly less

than in Games 3 and 4. The probability of observing a departure in

for example, that the likelihood of observing 1 depsrture out of 33

observations if K, is true (as with Game 1, Player 1) is .0034 .

0

It is seen that in two instances the null hypothesis cannot he re-

Jected at the .05 significance level, while in four instances it can.

Hyn. 2
Probabllity
that
Null Hym.

g Tore

(8)
L0054
+ 1335

L0655
.01l0L

.010L
.0C09

Games 3 and 4 is (8 + 12+ 6 + 7) ¢+ (L)(33) = .25 . Colum (8) shows,
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The evidence is very strongly in favor of accepting Hypothesis 1

and fairly strongly in favor of accepting Hypothesis 2.

We are hardly surprised. In fact it is rether astonishing
that there should be as many departures as there are from such a sen-
sible decision rule; it is the existence of any departures that seems
to call for explanation. Fortunately we can gain some insight from
the subjects themselves, After the last replication of the experi-
ment each subject was asked to report his rationale for his mode of
play. There were in this replication four instances of departure --

two in Game 3 and two in Game L.

One of the Game 3 departers confirmed a possibility mentioned
earlier, that players might use subrules other than « , B , ¥
and & ; in fact he used subrule ¢ . He wrote:
The fact that we tended toward using our second strategies
rather than our firsts stems from my initial playing of
a mixed strategy. It started with the philosophy, "I'll
piay as 1f this were & zero-sum game Just to see what
he'll do." This, unfortunately, gave him the opportunity
to assert himself right from the beginning.
While one of the Game 4 departers simply called his move

"careless," the other Game 3 departer, a Player 2, wrote a long ex-

planation which we have edited for the sake of brevity and clarity:
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"My first choice was irrational because I didn't pick the
move that would maximize my gain and minimize my loss.

But 1t 1s interesting to conjecture whether this move didn't
help in the long run, [because it misled my opponent con-
cerning my payoff matrix]. In this game, for both of us

to make a positive gain, one of us would have to give up
his best cholce. My opponent succumbed to the second best
cholce more often than I did. If my opponenmt believed

that I liked Column 1 best, as might be indicated by my
Tlrst move, but then switched to Column 2 as my less pre-
ferred strategy, he may have believed that I was in the

same situation has was in. Thus while I was actually maxi-
mizing, he may have believed I was taking second best [i.e.,
was satisficing; and therefore he may have found it easier

to acquiesce to a second-best position for himself]."

The above reasoning suggests that our first approximation assumption,
that players do not consider the effect on the opponent of thelr ini-

tial moves, must eventually be dropped.

3. More Theory: Toward A Taxonomy of 2x2 Matrix Gamesé/

3.1 Inferences About the Opponent's Payoff Matrix

We return again to the point of view of a player of one
of these games. The second event of the game, after the initisl
move, is the receipt of information concerning which strategy the

opponent picked at his first move. If the player assumes his op-



- 12 -

penent is acting according to the decision sequence Of8y8 , the
player can make certaln inferences about the matrix his opponent

must be facing.

In particular, if A >B >C >D and the opponent chooses
Strategy 1, his matrix (in standard form as defined in Section 1.1)

must have one of the following formats:

AA AA AA AB AB AB or any of these witn
BC BB AB CD bC CC columns interchanged,
1f opponent used sub-
AB AB AB AC AB AC rule & to determine
BC CB BB B AC EC his initial move.
or any cf these with
gg 22 g% coluwmns interchanged,
if subrule B was used.
or any of these with
gg gf ig zg Eg columns interchanged,
if subrule ¥ was used.
cr gny of these with
gi ﬁg 22 columns interchanged,
if subrule & was used.
Flgure 3

What may be surprising at first is the great variety that still exists
-- 40 distinct matrix format possibilities, using only ordinal entries
(forty hecause two of the sbove matrices eppear twice and two remain
unchanged when rows are switched). But, as we shall see, this is a

reduction from an initial set of 75 -- a noticeable improvement.

The subject begins to form a picture of what his opponent's

payoff matrix looks like. During the ccurse of play, as a result
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of the particular sequence of moves made by himself and his opponent
and in consequence of thelr reactions to each other’s moves, these
pictures change., Upon request, at any point in the experiment, a
subject could write down what he believes at that moment to be true

about his opponent's matrix.

In our experiments, we asked for such a statement at the
end of the play of each game. Thus we have no record of the manner
in which the beliefs of subject concerning his opponent's matrix
developed during the course of play. But we have his [inal beliefs,
tnose based on the largest body of experience., The analysis of

these 'perceived opponent's matrices" will occupy us in Part III.

3,2 Motivations To Swltch From Initlal Strategy Chelce

After the subject's initisl move and the report of his
opponent 's move, what kinds of behavior are reasonable? Will he
stick with his initial strategy or willi he want to switch? The
answer depends not only on his opponent 's moves, but on the struc-
ture of his own payoff matrix. There are three distinguishible
"long~run' reasons why one might switch strategies during the course
of play, and the structure of & given payoff matrix may imply a1l
three, two, one, or more of them. The three incentives tc switch

during play we call the maximizing incentive, the investment incen-

tive and the signalling incentive. They are"long~run" incentives

because their alm is tb effect a stable solutlon which will endure

throughout the »lay of the game.



R .

A ¢ '
Consider the matrix with A >B>C >D .,
D B

By either the Bayesian Subrule B or the Security Maximization Sub-
rule y we choose row 1 initially, insuring a payoff no smaller
than C and possibly as large as A . Suppose the opponent plays
column 1. We recieve A and are perfectly satisfied; we have no
incentive to switch. But if the opponent plays column 2 we receive
only C . If the opponent will continue to pley column 2 we can
lmprove our paycff by switching to row 2; we will then receive B .
Cf course we take the risk that our own switch will induce him to
switch to column 1, In which case after receiving B for one
period we will receive D henceforth. But our focus at the moment
1s only on the fact that the structure of the matrix provides s

possible incentive to switch rows, depending on the opponent's

initial move. Contrasi this matrix with , which pro-

vides no such incentive. Row 1 maximizes with respect to either
column the opponent chooses. We say the first matrix provides a

"maximizing incentive" to switch, while the second does not.

Next, examine the matrix « Row 1 dominates

row 2, hence we pick it initially by subrule « , and we have no
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maximizing incentlive to switch, even 1f the opponent picks column 2.

' which we define as

But we do then have an "invesiment incentive,’
a switch which we hope will induce the opponent to switch. This

is the “opposite" of the maximizing incentive, which we hope wiil
result in the opponent's not switching. If an lnvesiment succeeds
we will recleve B ; 1if it fails, D . The following matrix con-

talns both maximizing and investment incentives to switch from row

1, which 1s selected as the initial strategy by the Maximizing Se-

B C
curity Subrule, ¥ : . If the opponent picks column 1
A D

we maximize by switching to row 2. If he picks column 2 we can in-
vest in row 2, and hope our investment will induce him tc switch

to column 1.

Finally, there can be a more complex incentive to switch

strategies, or, more accurately, not %o stick with the Initial

A B
strategy always. In the matrix row 1 dominates, so
C D

we pick it initially by subrule <« . If the oppenent chooses column

2 we have nelther a maximizing nor an investment incentive to switch.
Yet we are not eltogether pieased to receive B . Rapoport and Guyerz/
use the term "aggrieved" tc deseribe a player of a 2x2 matrix game

who gets less than the meximum entry in the matrix, i.e., less than

A, and call the player who does receive A 'satisfied." Somehow

we would like to communicate to the opponent that we would prefer
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fim te piay column 1. Presunably he chose column 2 initially for

a good reason; yet, the structure of hig matrix may be such that he

A | A A | B
can be induced to switch. Examples might be s
B B D c
A C A B
B « In each of these instances the opponent
D B C B

night reasopably choose column 2 initially (by the Randomizing Sub-
rule & in the first case, and by subrule % or possibly B (de-
pending on the numerical entries) in the other three cases); yét
the opponent can be induced to switeh. In the last three cases he
has his own maximlzing incentive to switch; in the first, he is pre-
sumably dndifferent. Our own motivation in switching teo row 2 is
not to stick with it, but to dilsturb the status que, to let the op-
ponent know all is less than well at the present outcome (1,2) .
Whether the message will get through will depend on the relative
advantage o disadvantage of cutcome (2,2) to the opponent, as
well as on his own perceptiveness and understanding of a relatively

recondilie ard sophisticated game tactic., Of course, if his matrix

CiA
DI’

looks, for example, like this:

no amount of signalling, no

matter how well received and understood, will move him to switch
to column i,
The signalling motlvation is itself ambiguous, because it

can be sither an attempt to induce cooperation by indicating Joint

interest or an sttempt to lesd the opponent astray. This problem
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has been considered from the viewpoint of a noncooperative solution
combined with an a priori distribution on what might be the struc-
ture of the payoff matrix of the opponent by Aumann, Harsanyi and

Maschler.§/

A rough-and-ready comparison of the three motivations to
switch suggests the notion that maximizing is a stronger incentive
than investment, which in turn is stronger than signalling. This
Judgment is based simply on degree of cobviousness of the tactiec and
on the mumber of periods required before the desired ocutcome can be
experienced. The maximizing ocutcome will be experienced immediately,
though only for one period if opponent is thereby induced to switch.
The investment outcome will not be experienced for at least one per-
iod w« 1if at all -«- for 1t will take that long for opponent to re-
act to the switch. The signalling outcome may not he experienced
for one or two periods -- at least one, so that opponent can switeh,
and one more if we wall to see whether opponent will switch before

we switch back.

If & switch fails to accomplish its desired end, it may

or may not result in a lowered payoff. Consider these two matrices:

A C A C
? . In the first we choose row 1 by the
D B C B

Bayeslan Subrule, B or by the Becurity Maximization Subrule, o ;
in the sccond we choose row i by Subrule B . In either case if

cpponent plays column 2 we have an incentive to meximize by switch-
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ing t¢ row 2., But in the first case, if opponent switches to column
i in consequence of our switch, we are worse off then if we had not
switched; while in the seccnd case we are not. We say in the second
case that meximizing is costless, while in the first case it is not.
Clearly a costless tactic is more attractive than a costly one; thus
the second matrix provides a greater switching incentive than the
first., Signalling we define as costless 1f neither of the inter-

mediate outcomes 1s less than the initisl outcome.

5.5 A Table (Classifylng 2x2 Matrices

Table 2 presents & taxonomy of 2x2 matrices based on the
above digcussion. Matrix entiies are specified ordinally, with

A>B>C >D . Twenty-one structurally distinct matrices are dis-

played in Column (2). Two matrices are considered structurally

identical or indistinet if one can be transformed into the other
by interchanging rows and/or columns. Generally a matrix is as-
sociated with three structurally identical ones, making altogether
four forms of each matrix; although four of the 21 matrices shown
have fewer distinct forms, &s indicated in Column (1), so that
there are altogether 75 matrix forms instead of 8%, Since any of
the 21 structurally distinct matrices may be palred with any of
the 75 distinct matrix forms to form a distinct game, we may con-

clude that there are 1575 distinet 2x2 games.

In the table the player is assumed to choose initially

row 1 of the matrix shown in Column (2) by the decision rule in-
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dicated in Coluan (3). The preferred payoff of the preferred ini-
tial strategy is always outcome (1,1). Colummns (4)-(9) show for
each matrix which incentives to switch from the initial strategy
choice exist and which are costless. A "Yes" in parentheses means
that even 1f the switch is successful the player will not be “satis-
fied," but will still be "aggrieved"” -- that is, he will still not

be recelving the payoff A .

On the basis of Columns (3)}-{9) the 21 matrices are divided
into twelve numbered types, as indicated in Column (1). In Column
(lO) of the table is a number M which attempts to quantify the de-
gree to which a player may be tempted, because of the structure of
his own payoff matrix, to switch awsy from his initial strategy.

The measure is unashamedly ad hoe, but though based upon Intultion

it does not altogether outrage reason. M 1is computed as follows:

Source of Contribution Increment to M
Initial Strategy selected by o 8}
Initial Strategy selected by B or ¥ 1
Initial Strategy selected by B 2
Matrix offers meximlzing incentive to 3
switch

Matrix offers investment incentive to 2
switch

Matrix offers signalling incentive to 1
switch

Added for each costless incentive 1
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It will be seen that the matrices are listed in order of Increasing

M, The maximum possible M 1is 12,

In Columns {11) and {12) are shown the maximizing and in-
vestment tactice., The payoff above is the one received before the
switch to row 2, The payoff in parentheses is received if the tactic
is unsuccessful; the remaining payoff is the one received if the

tactic succeeds,

Column (13) provides a quick look at the number of dis-
tinet entries in each matrix., Six of the matrices have four dis-

tinct entries, nine have three, five have two and one has one,



Table 2 - Taxonopy af 287 Ordinal Metrioss

Overall

Type | Matrix|Subrule ® | Incentive to Switch from Initial Strategy Cholce Tactics | Number| Number
Numbex Selecting '| Measure| Maxi{ In- | of Disiof Dis
Iden- Row 1 as Maximizing Investment Signalling of miz=|vest-| tinet jtinct
tificad Initial |[Exists Is Exists Is Exists Is Incen- |ing |ment { En- |Forms

ticn Strategy Cost- Cost- Cost= tive tries of
Letter Choice less less less to @ in |[Matrix

Switch Matrix
(1) | (2) (3) (&) (5) (6) (1) (8) (9) (10) (1)) (12) | (13) | (k)
AA
la BC o No No No No No No 0] 3 L
1ib g‘g o No No o No Ko No 0 2 2
lc ﬁg o' No No No No No No 0 2 4
AB
2a, poy o No No No No Yes No 1 b 4
2b gg o No No No No Yes | No 1 4 4
2¢ ‘é]g o No No No No Yes No 1 3 L
2d ch o No No Nc No Yes No 1 3 L
AB
2e cB o No No No No Yes o 1 3 L
AB ‘ ;
3 BE Q No No No No Yes Yes 2 2 L
, AC i C
ha | @ a No Ne | (Yes) Wo | VYes e | 3 BE (D) k& L
; : ! R
_ AR i ; ! ‘ b
I . od o No o i Yes | No | Yes No 1% 5 A (3l 3 | o

-‘[8_
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Letter Choice i i | to & in
- | . ay | Switch Matriz
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AC
5 e a No No (Yes) | Yes Yes Yes 5 3
6 AC ) N Ye N (D)B I
a OB B &Yy (Yes No No o és o 5
6o | 2B B & Yes | No No | No Yes | Mo 5 |(c)a 3
CA 7
B
7 ig 7® Yes No Yes No No No 6 or 7% a(c) 3
8 AC (Yes) | Y N N Y Y ¢
B B a8 es o} o es es 7 (C)B 3
B
9a ﬁg ® Yes No Yes | Mo (Yes) | Mo 7 or 8% A(D) b
CB @ @ C
9b 2D ¥ Yes No Yes No {Yes) No 7 or 8% A(D) b
. A &

100 f\?ﬂ B No o Yeg Yes Ye S ves & 2
B j ! | |
B ! g i T T !

. L AR i : o !
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—.88.—
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Notes to Teble 2
Subruleg are:

& Row 1 is a dominant strategy.

P Row 1 maximlzes expected value on the Bayesian assump-
tion that cppcnent is egqually likely to play either

column.
v Row 1 maximlzes security level.

& Rows 1 and 2 are equally likely to be chosen by a ran-

dom device (neither row is preferred a priori).
(#) This is explained in the btext,

® With ordinal matrix entries subrule B is inconclusive.
One point is added to the measure of incentive to switch
when B selects a diffevent initial strategy than 5 .

Py

The starred 1lncentives and tactics exist in both rows

of the matrix.

* The incentives exist, technically, but they are not really
attractive because nothing is to be gained by switching
(nothing is lost either), The measure of incentive to
switch 1s 12 if the three asterisked yeses are counted,

6 if they are not.
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IT will be convenlent to have a system for referring to
the matrices classified by Teble 2, Using type 2a matrices for the
example, Figure & illustrates the four forms z standard aspect ma-

trix can take and the way we shall label them henceforth.

A B B A C D D C i
MATRIX - .
C D D C A B B A
Type 2a ma- . ; N Rows ond
FORM trix as shown CgiEQEZhan ed inteigzz ed Columns
in Table 2 S neg interchanged
CCDhE 2a-11 2a-12 2a-21 2a-22

Figure L

Thus the first number and the letter (if any) refer to the
matrix type according to Table 2, the digit after the hyphen indicates
which row 1s chosen initially, and the final digit tells whether the
highest entry of the initially chosen row is in column 1 or in column
2. The matrices with less than four forms {see Column (1L) of Table
2) have =x's in place of one or both digits following the hyphen.

In the cases of matrices of types 7, 9a and 9b, the symbols ! and

7 are used as mnemonics instead of the row digits 1 and 2, in order

tc remind the reader that in these matrices Subrules B and y may
select different initial strategles depending on which cardinal values
appear as matrix entries (seenoteto Table 10 and text in Section 3.1.1).

A few more examples should provide sufficient clarification:
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B B B A A A D A B B
A A B A A A c B A C
1b-2x% 11-x2 12-xx 9a-72 T=-:il

3.4 Charccteristics of Games Formed by Pairing Two 2x2 Matrices

The title of this part of the paper promises more than will
be dellvered. One of the authors 1s currently attempting to develop
ways of classifying the structural characteristics of the 1575 dis-

tinct games thet can be formed by pairing 2x2 matrices.

Among the questions being investigated is, "Which games pro-
mote steady states and which do not?” While Rapoport and Guyerg/
can answer in terms of threats, inducements and forcing mboves, these
tactics are hard to apply when the opponent's payoffs are not known.
Qur analysis is founded on maximizing, investment and signalling tac-
tics and thelr costs. The distinction may be seen as "other-directed”

versus inner-directed motivations.

While we are not yet prepared to present a complete taxonomy
of all 1575 games, the remarks that we make in the next section about
cur six games not only Provide conceptual ballast for the discussion
of our data but also suggest the kinds of approaches that can be fol«

lowed in developling the mere complete classification scheme.ig/



4, Dynamics of Play:

Theory and Results

nomenon that emerges from the

Our method in this section is to select a particular phe-

lterated play of 2x2 matrix games and

attempt to gain insight into it by examining the structures of thosze

poames that illustrate it best, after which we look at the relevant

data,

To aid in this purpcse we present Table 3, which summarizes

from Figure 2 and Table 2 whet we lknow thus far sbout our six games.

Table 3 - Structure of Six Games

Game| Ployer| Cardi~; Ordi-|Matrix; Initial |Overall Switching Motivations
Mg@l:‘ Mgn%%” Move Measure] Meximizing] Investment| Signaliing
fRix) Magrix Sub-| 6tra-| of In-|Exists|Cost] Exists|Cost Exists] Cost]
Stan- | Stan- rule| tegy|centive less less less
dard dard to
Aspect| Aspect Switch
1 1 6 6| ||BIBl [1o-2x | o 2 0 No o No No No o
10/ 10| | TAlA
2 {33 B[Rl |1b-2x | «@ 2 0 No [ No| No | No| No | No
7T Al A
2 1 2 BjA] |10-x2 | & ilor 2 8 No No Yes | Yes | Yes |vyes
12 B[ A
2 371 AlBl |10-x1 | & [lLor 2 8 No No Yes |Yes | Yes |ves
S Al'B
3 1 2] -1 1 ]Alc 8-1141 B 1 7 (Yes) | Yes No No Yes: | Yes
ST RIEE
o “a7-1][IB]C 8-22 1 B 2 7 (Yes) |Yes No No Yes | Yes
=1 21 ClA 5
o
Iy 1 F3l-1 Al C 8-11 | p 1 7 (Yes) |Yes No No Yes | Yes
=172 | T¢I B
2 |1 3[-1|TAlcC 8-11 | B 1 7 (Yes) | Yes No No Yes | Yes
SIIEREE %
!
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Table 3 (Continued)

Game| Player| Cardi-| Ordi-jMatrix| Initial Overall Switching Motivations .
nal nal | Mpve Measure| Maximizing| Investment| Signaliing
Matrix|{Matrix Sub-| Stra-| of In-|Exists|Cost Exists|Cost] Exists| Costd
in in rule| tegyl centive less less less
Sten- | Stan- to
dard | dard Swiltech
Aspect| Aspect | _
5 1 3]-2]||B[D|] |4a-2l | & 2 3 No No | (Yes)] No Yes | WMo
TI-111 [A[C
2 31 -2} || B{D| fLha-21 | 2 3 No No | (Yes}| No Yes | No
TE=-11| Al C
_ l
6 1 5 -10t {[A[C] |[ba-11 | @ 1 3 No No | (Yes)| No Yes | No
L1 -20; | B|D
2 2 Ll |AlB|l |2a-11 | @ 1 1 No No Ho No Yes No
-13:2%| | C|D !
|

4.3 Degreé of Involvement

It has already been observed that Game 1 is inessential, mean-
ing that there is no structural reason why either player's move should
be affected by the other's. The game's structure fosters total non-in-

volvement.

Can this notion be generalized? Can we characterize some games
as more "involving” than others? We are not yet prepared to map the en-
tire array of 2x2 games into a measure of degree of involvement, but we

feel the tople worth exploring and do so in this section.
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l{'.lﬂl

Table > reveals that Game 1 1s the only one in whieh both
players are faced by a matrix with M =0, M being the overall mea-
sure of incentive to switecha. Is incentive to switeh the same ag de-
gree of involvement? No; the former measures the motivation to switch
provided by a player’'s own matrix "a priori," that is, independently of
which opponent's matrix it is paired with to form a game. That the de-
gree to which a player will be involved depends on more than M 1is il-

lustrated by comparing Games 3 and k.

In these games both players are faced by type 8 matrices,
for which M =T ; so that to the players the game structures are ini-
tially indistinguisheble. But in Game 3 the matrices are paired in a
way that promotes instability far more than in Game 4; for in the latter,
outecome (1, 1) 4is the unique Joint Maximum and Non-Cooperative Solution,
and both players are "satisfied" with this outcome in the Rapoport-Guyer
sense; whereas in Game 3% the JM and NCE solutions specify the two out-
comes (1, 1) and (2, 2) , and at both of them one of the players is

motivated to switch because he is "aggrieved."

For this reason the strong incentives to switch provided ini-
tially by the type 8 matrices have entirely different conseguences in
play. For example, in both games Player 1 initially chooses row 1 by
the Bayesian Subrule, B . Player 1 will have both maximizing and
signalling incentives to switch from his initisl cholce, and both tactics
are costless. But if Player 2 follows the initial choice decision rule
opyd , Player 1 will not be moved by these incentives in Game U because

Player 2 will choose strategy 1, which will yield Player 1 a payoff of A.
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In Game 3, on the other hand, these incentives will be present because
Player 2 will choose strategy 2, yielding Player 1 a payoff of only C .
Similar reasoning applies to Player 2. Therefore we should expect out-
come {1, 1) to be a steady state in Game 4. We note, however, that

if for some reason one of the players uses his second strategy, the other
player will be motivated to switch to his second strategy too. Since
this is not the case in CGame 1; thus we may say Game 4 fosters a higher

degree of involvement in both players than does Game 1.

In Game 3 at best only one player can be satisfied at a time;
the other always has an incentive to improve his payoff. At worst both
are moved to switch -- and if both do neither improves his paycff, for
outcomes (1, 2) and (2, 1) alike give the players their worst pay-
off, € . In iterated play of such a game unless onhe player gives in
to the cther, accepting B 1instead of A , we can expect to observe
chronic instability as the players jockey for position, attempting to

influence each other to give in.

This game is known in the literature of game theory at the
Battle of the Sexes. Luce and Raiffa, for example, examine it at
some length, but their discussion is predlcted on the players' knowing
each other's matrices. They also note a third possibility, that of co-
ordinated mixed strategies.ig/ If the players know each other's matrices
and can communicate freely they may agree to swltch strategies in a pre-
arranged way, resulting in a sequence of outcomes such as (1, 1),

(2, 2), (1, 1), (2,2) ., ..., which would guarantee each an average



- 27 -

A+ B
2

4
long-run paycff per periocd of (= %M in Game 3 for both players).

When communication is barred formidable chstacles are placed in front
of achieving this happy resolution; and when the players are ignorant
of their opponents' matrices it would appear obvious that they are very
unlikely to hit upon a mutually satisfactory way of coordinating their
moves. Even if this dictum does not seem so obvious, we can say at

least that none of our player teams was able to do it.

The upshot of the discussion is that we expect more instabllity
in the play of Game 3 than Geme L4, because the former is "more involving"

than the latter.

k.1.2

The ideal measure of degree of involvement induced by a game's
structure ought not to depend on observed behavior at all. But as a
first approximation, when it is not evident precisely how strueture
influences involvement, we will design a behavioral or empirical mea-

sure.

We begin by defining the degree of involvement evidenced by

a particular pair j of players playing Game T' ag

- C

. c., . .
J o o | 1J 23'
IP =1 c,. + ¢
1 23
where cij is the number of strategy changes made by player i1 (i =1, 2

of peir 3 . The rationale becomes clear when we remind ourselives that
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involvement means that if one player switches strategies the other will
tend to be induced to switch also. Thus If player 1 of pair j shifts
once in a game that fosters a high degree of invelvement, Player 2

will be likely to shift also. In this case, 013 =1, czj = L , and

Ili =1 - J—%—-;——}-L =1 - % =1, If Player 1 shifts once in a game that

fosters 2 low degree of involvement, Player 2 will probably not shift,

I that case ¢,, =1, c

_ Jog . =1 - 1=
13 =0, and IP 1 5 = 1 T = Q.

2J
ote that Ig is independent of the frequency or number of

i 1
1f 5 o= = S . = O s = =
shift I 5 could result from clJ 10, c2J 5 or from clj 2,

¢.. =1, TIor the voint ¢f interest is not the absclute number of shifts

25
but the reletive distributicn of chifts between the two players. If

Clj = cEj =0, Ig is defined neither mathematically nor conceptually --

natheratically because this case requires division by zero, and concen-
tvally because neither player has had an opportunity to demonstrate

vhether c¢r not he is drawn into strategy changes when his opponent switches,

It is an obvious generalization to define the empirical measure
of degrec of involvement fostered by Game T° as the average degree of
involvenent cbserved in all nairs playing it in which at least one stra-

tegy chilflt 1s choerved:



~

wnere 5 1s lhe set of pairs achieving a steady state from the very
beginning and § the set of palrs not in S , there being W such

pairs.

The chosen measures of degree of involvement can be cbjected
to on grounds that they do not actually form on the reaction of one
player to the other's moves: 1f a player switches in period t-1 ,
the meagure of degree of invelvement should be concerned only with
whether his opponent switches in period t . But this approach is open
to the criticism that & pleyer may wait a while before reacting -- and

that any definition of "a while" in terms of a certain number of periods

miet be srbitrary.

Another objectior. points out that & game may seemingly foster
a high degree of involvement during a transient phase in which the
players feel each other out, but that they may then settle down to a
steady state. The longer the steady state (that is, the longer the game

ig played), the more closely Ig approaches gzerc. To have Ig possibly

depend on the experimenter's whim as to how many periods the game will
be played is an unsatisfactory feature, but it is less likely to be an
important matter in our experiments; where no game was played more than

25 pericds.

h.1.3

We have already given reasons why we should expect Il < Iu < 7

3

v
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We also conjecture that Il < I6 < 15 and leave it to the reader to exa-

mine Table 3 and supply his own arguments. Our conjectures do not in-
clude Geme z, and they do not lead to a complete ordering for the remain-

ing five games.

Table 4 - Degree of Involvement Fostered by Six Games

Game Degree of Rank of IP
Involvement (IP)

(1) (2) (3)

. 170
. 620
. 632
450
565
133

OV =\ MO
OV B 2 oI

Tebie L gives the results. All our conjectures are confirmed,

except that it turns out that 16 < Il -~ though not by much.

4.2 Disappointment, Disillusionment, and End Effects in the Prisoner's

Dilemma.

Gome 5 is the most analyzed of 2x2 matrix games. Iuce and
Raiffaléf allot the Prisoner's Dilemma @ pages, and Rapoport and Chammahﬁﬂ/
have written an entire book about it. One would think its structure by
now fully explored, but once again the constraint that the opponent's

matrix is not known brings in new elements.
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In this game both players face type La-21 matrices., If the
players follow rule oByd they choose strategy 2 initially by the Domi-
nant Strategy Subrule, « . But instead of recelving the hoped-for A

payoff each receives C , with outcome (2, 2) belng observed.

Some players we expect to deal with their disappointment by
switching to strategy 1, either as an investment, in the hope of achiev-
ing outcome (1, 1) as a steady state with its per period payoff of B ,
or as a signal to the opponent that outcome (2, 2) is an unsatisfac-
tory steady state. Other rlayers will stick with strategy 2, either
as conservative security insurers, guaranteeing themselves a payoff no
lower than C , or as optimists hoping the opponent will switch and

allow them to recelve A .

Therefore in pericd 2 and the next few periods we expect the
frequency of outcome (2, 2) to drop. But the structure of the game
is such that the switchers will in all likelihood not succeed: invest-
ments will fail and signals, even 1f received, will not be responded
to; the reader examining Table 3 will see why this is so. Thus after
several periods in which outcomes (I, 2) and (2, 1) are common and
even (1, 1) occaslonally seen, the frequency of outecome (2, 2) should

begin to drift upward, reflecting the players' disillusionment.

When it is anncunced that the next period will e the last,
the players can infer that no possible good can come from efforts at
elgnalling or investment; therefore we hypothesize that the last-period
frequency of outcome (2, 2) will be significantly higher than in the

other periods of the game.
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Table 5 and Figure 5 show the frequency of outcome (2,2)
during periods 1-22 of the play of Game 5. The "last periocd" varied

from period 10 to period 2% in the several replications.

The evidence is consistent with the reasoning cffered. Out-
come (2, 2) accounted for 82% of the cbserved outcomes in period 1,
but only 39% in veriods 2 and 3, 42% in period k and 45% in period 5.
Trom period 6 on, the percentage varied between 54 and 80, except for

a 4% in period 18 and a 95% in period 21.

The last-period frequency was 88%. If we assume that the pro-
bability of observing outcome (2, 2) in periods 6-22 is a random var-
iable distributed normally, we can test whether it is likely to last-
period frequency comes from this population. Figure 6 shows that this
assumpbion does not appear unreasonable. It does, however, conflict
with the serial correlation implied by the notion of a stage of gradual

disiliusionment. The mean of the 17 observations from periods 6 through

oo ois 66.5%, the standard deviatien 11.5. For our hypothesis we calcu-
late = éémiiéglz = 1.87 . Using a one-talled test we find that the

probability is 0307 that our last-period frequency comes from the same

poputation as the other observations in periods 6-22: HO is rejected

at the 5% significance level.
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Table 5 - Frequency of Outcome (2, 2) Observed in the Play of Game 5

Period Number of Mumber of Column (3) Number of
Pairs Playing Pairs With as a Pairs for
Through This Outcome Percent of which this
Period (Exclud- (2, 2) Column (2) was the
ing those for _ "Last Period"

which this period
was the last)

(1) (2) . (3) (4) (5)
1 33 27 82 G
2 33 15 89 0
3 33 13 39 0
I 3 14 Lo 0
5 33 15 45 0
6 3% 28 67 0
1 33 21 an 0
8 33 18 S5k o
9 35 19 58 G
10 31 2% Th 0
11 31 20 65 0
12 30 19 63 1
13 30 24 80 0
1l 30 22 73 0
15 28 19 66 2
16 26 14 5l 2
17 21 12 57 5
16 16 7 Ll 5
19 16 12 75 0
) 6 10 6% 0
21 15 14 9% 1
22 9 7 78 6
//,l O O = 9
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Figure 5
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4.3 ILearning to Control the No-Control Game

One of the subjects in our experiments summarized the learning
problam of these games succinetly in his comments:
“There are twoe types of information one gets from
the successive plays of the game:
1. Whot the ovponent's matrix locks like
2, How the opponent plays

These two are not separately determinable but must
be 'solved simultaneously.'”

tame 2 affords the best example of the difficulties the players

experience in attempting to '

'solve simultanecusly* the problem of learn-
ing to play well. In this game Player 1's matrix is type 10-x2 and
Player 2's type 10x1 . This means that although Player 1 is indiffer-
ent as to which row he uses himself, he would prefer to see his oppon-
ent us2 strategy 2; similarly Player 2 would like Player 1 to choose
row 1. These two facts imply that the jointly preferred ocutcome is

(1, 2) , which is of course the Joint Maximum Solution. The problem

iz that neither kanows, at least initially, that this is the case --

and if one cucceeds in learning what the situation is he still has the
task of commnicating what he has learned to his opponent. In a sense
it ia fortunate that the investment and signelling tactics are costliess,,
tut this fact also tends to increase the instebility of the game. For
stppoese by ascident the cuteome (1, 2) 1is observed initially. While
neither is motivated to switch, neither has any inceantive not to switch.
If a player switches, he doec ndot diminish his own payoff, and he does
not know that he 1s hurting his opponent. Under such unfavorable cir-

cunmstances do subjects make any progress toward achleving Jjoint maxi-



mizatlony

One might first inguire into whether the players achieve out-
come {1, 2) as a steady state during the penultimate five periods more
frequently than other outcomes, and the jointly minimal outcome {2, 1)
. . ) . 15/ . P
iess frequently. Teble 6 of part T showed that L4 pairs achieved out-
come {1, 2) as a steady state, while none settled on (2, 1) ; and

3 palrs landed at the other two ocuteomes. This is suggestive, but it

zays nothing about the 25 palirs who did not reach a steady state.

Yet we may ask whether these had not learned something, even
though not enough to commit themselves to a steady state. We conjeocture
that the average number of periods an outcome will be observed without
either player switching is positively related to the payolTs cobtained
therefrom. Thus we expect longer "runs" of outcome (1, 27 than of
outoomes {1, 1) and (2, 2) , and we expect runs of outcome {2, 1)

to be ghortest,
maLle & presents the results, which are congistiont with our
conjerture,  Bvidently the players made some slight nroovess toward

achieving belter than randem payoffs, but their succuss wos not striking.

.@Eplﬁmimfmdgarage Length of Runs Observed at the Four Outcones of Jame 2
oot roms Average Length of Run Rank Expected Rank
(in Pericds}
1, 1 1.58 3 2 or 3
1, 2 2.7L 1 1
2,1 1.hd L L
2, 2 1.95 2 2 or 3
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FOOTNOTES

i/Shubik, M. and D.H. Stern, "Some Experimental Non-Constant Sum Sames
Revisited," Part I, CFDP 236, Yale University, October 2, 1967.

E/To make this paper self-contained we are inciuding in this and the
following subsection much material already presented in Part I {foot-
note 1 above). The only new elements are the terms, "standard aspect"”
and "game aspect," explained in the text.

2/Adescription of some of the characteristics of the subjects and of the
times and circumstances of the experiment replications presented in
Part I (footnote 1 above) is deleted from this paper.

E/See rveference to L. Hurwicz in J. Milnor, "Games Against Nature,”
pp. 49-59 in R.M. Thrall et al (Eds.), Decision Processes, John Wiley
and Sons, Inec., New York, 195k,

Q/Siegel, Sidney, Nonparametric Statistics for the Behavioral Sciences,
McGraw-Hill Book Company, New York, 1956, pp. 36-L2, 247.

é/The only cther attempt to classify such games known to the authors is
A. Rapoport and M. Guyer, "A Taxcnomy of 2x2 Games," paper supported by
FHS Grant NIH-MH-O4238-06, Mental Health Research Institute, miversity
cf Michigan, Ann Arbor. Thelr schema is founded on the assumption that
the players do know each other's payoff matrices and is more or less in-
applicable to situations in which this condition fails to hold.

Vrosa, p. b,

§/Harsanyi, J.C., "A Game-Theoretical Analysis of Arms Contrc! and Dissrma-
ment Problems,”" pp. IV, in Development of Utility Theory for Arms Control
and Disarmament, MATHEMATICA, Princefon, New Jersey, June 1066. Aumann,i.:.
and M. Maschler, "Game Theoretic Aspects of Gradual Disarmament,” pp. ¥
in same reference.

2/Rapoport, A. and M. Guyer, op. cit.

lg/'I‘he work of Thomas Schelling, as exemplified in his book, The Strategy

of Conflict, Harvard University Press, Cambridge, 1960, is also reievant
to these problems.

1‘}/Luce, R.D. and H. Raiffa, Games and Decisions, John Wiley and Sons, Inc.
New York, 1957.
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== Tmooport, A., and A.M. Chammah, Prisoner's Dilemma, The University of
Michigan Press, Ann Arbor, 1965.
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:ﬁ/snubik, M.,and D.H. Stern, op. cit.
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