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SOME EXPERTMENTAL NON-CONSTANT-SUM GAMES BEVISITED

PART I¥

by

Martin Shubik and David H. Stern®*

1. Introduction

In 1960 an experiment was carried out on six simple non-
constant-sum two-by-iwo matrix games with five pairs of students
(Yale seniors in a class on Industrial Organization). The theory,
analysis and results were reported in a paper entitled: 'Some Ex-
perimental Non-Zero Sum Games With Lack of Informetion About the
Rulesn“l/ The qualification, "with lack of information about the
rules," in the title means that each player saw only his own pay-

off matrix and not that of his opponent.

In the present series of papers the authors make use of
data from the original experiment and five later replications. This
paper applies traditional game-theoretic analysis, while Parts IT

and ITI suggest new theoreticel approaches and behavioral measures.

1.1 Form of the Experiments

Figure 1 shows the six games used in the experiments.

*
Research undertaken by the Cowles Commission for Research in

Economics under Contract anr-3055(01) with the Office of Naval
Research.

*%
The authors wish to acknowledge the kind assistance of Avraham
Beja and Richerd Hackman.



In each game the subject labeled "Player 1" choose the row and the

subject labeled "Player 2" the column; the labeling of the players

was arbitrary.

player 1 and second the payoff to player

In each cell of a matrix

players! corresponding strategy choices.

Game

Game

Game

Game

Game

Geme

first is the payoff to

2 resulting from the two

6: 3 6: T
10, 3 10, 7
1, 3 2, 3
1, 1 2, 1
2, 1 -1, -1
-1, -1 1, 2
3, 3 -1, -1
-1, -1 2, 2
3) 3 "2J 7
T, =2 -1, -1
5, 2 -10, -13
b, 1 -20, -23

Figure 1



In our experiments subjects did not see the matrices shown
in Figure 1 but instead saw only their own payoffs, shown as the first
two columns of matrices in Figure 2, where player 1 chooses a row and

player 2 a column.

(1) (2)
Player 1's Pleyer 2's
Payof'f Matrix Payoff Matrix
6 6 3 7
Game 1
i0 | 10 3 T
i 2 3 3
Game 2
1 2 1 1
2| -1 11 -1
Game 3
-1 1 -1 2
31 -1 34 -1
Game L4
-1 2 -1 2
> -2 3 7
Game 5
Ty -1 -2 | -1
5 {-10 2 1-13
Game 6
4 [ -20 1|-23

Figure 2



Figure 3 shows a typlcal Decislon Form; this one would
be used by Player 1 in Game 5. At the top is the appropriate matrix
from Figure 2. In any period the subject writes "1" or "2" in Colwmn
(2) of the form, corresponding to his strategy cholce of Row 1 or
Row 2 that period. A monitor reports the opponent’s choice of Column
(1)}or{2)of the matrix in Column (3) of the form. The subject writes

in his own payoff in Column {(4) The procedure is repeated each

period.
1 2
Game 3
Your'<::::zl 2 -1 Player 1
hol
Choice s l.1 7 Team
(1) (2) (3) | (%)
Period Your Decision |Your Opponent's Decision) Tour Payoff
1
2
3
Iy
2
6
Figure 3

Subjects were not told how many periods would be played, but

they were told at the approporiate point, "The next period will be the



last.” The purpose in withholding this information was to elimin-
ate end effects except as might be induced during the final period.
Although the Decision Formes had room for 25 periods of play, no
game ran more thaen 23 periods; some ran as few as 6 in some repli-
cations. In these experiments & subject was paired with one par-
ticular opponent for all six games. Also the six games were always
played in the same order. The latter tends to increase comparability
between results of different subject pairs playing s given game,
but the universality of applicability of the results is less than
it would have beenh had the sequence of games been randomized for
each team and still less than would have obtained had the player
pairings("teams") been chosen separately and randomly for each

game .

1.2 Character of Subjects and the Problem of Motivation to Perform

Table 1 presents some information about the circumstances

of the six replications of the experiment.



Replication Date

1

Table 1 - Summary of Clrcumstances of Six

Replications of the Experiment

Number of pairs

of subjects

Place

1960 Yale University

1963 t

1964 &

1965 Instituto de
Economia, Santi-
8go, Chile

1965 Yale University

1967 "

Characterizaticn
of subjects

Seniors in cless on
Industriel Organi-
zation

Graduate students in

class on microeconc-
mic theory

Graduate students in
Class and Faculty

Graduate students in

Subjects' knowledge
of Game Theory, as
reported by them

Nene

Had been given sev-
ergl lectures on
game theory and were
somewhat acquainted
with basic concepts
of zero-sum game
socluticns.

LA

L

class on Microeconomics

Graduate students in

class on Specisl Topics

in Eccnomic Analysis

Ko monetsry rewards were used in any of these experiments

to motivate the players to equate maximization of thelr scores with

maximization of individual utility.

However, it can be seen from

Table 1 that the subjects were for the most part students of one

of the authors, and it may reasonably be inferred that all were in-

terested in learning more about game theory. The subjects were



told that these experiments would provide a good and painless in-
troduction €0 non~constant-sum game phenomena, Furthermore they
were specifically instructed to maximize their scores. Between

their desire to learn and their desire to please, these subjects

should have been highly motivated to perform.

The experimenters may, however, have ilntroduced a distract-
ing element themselves by requesting that each subject after play-
ing each game draw a 2x2 matrix and enter in it what he believed
to be the ranking of his opponent's payoffs. This interference
with the score-maximization motive resulted if a subject altered
his strategy choices in order to gain information about his oppon-
ent's matrix. Further discussion of this is deferred to Part III

in which the study of incomplete information is stressed.

2. Theories of Reasonable Behavior in Games

Analysis of the results of these experiments means com-
parison of actual behavior with reasonable behavior. What is rea-
sonable behavior in repeated but finite play of two-person non-
constant- sum 2x2 matrix games in which the players know only their

own payoffs?

To provide a benchmark, we review in subsection 2.1 four
well-known scolution concepts which are applicable when players do
know thelr opponents' payoff matrices. In subsection 2.2 we com-

pare these theories with our experimental results. We shall pre-



sent elements of a theory more appropriate to the present games {n Part II.

While there is little doubt that in the develop-
ment of a satisfactory theory for dynamic games, psychological and
sociological factors must be taken into account, we have not done
so formally here; although some informal discussion of these fea-

tures is given with the interpretation of the date.

2.1 Four Game-Theoretic Solution Concepts

Let Plﬁsl, sg) stand for the payoff to Player 1 when

he employs his strategy s and Player 2 his stralegy 85 3 Pg(sl, 52)

1

is the payoff to Player 2. The pair (sl, 52) determines the outcome.

We must distinguish between strictly competitive and not
strictly competitive games. A game is strictly competitive if an
inerease in the welfare of one player implies an egual decrease

in the welfare of the other. That is,
P s, 5,0 = ~Pyisy, s,) + k

for all outcomes. This is equivalent to stating that the sum of
the two payoffs is a constant (k) , no matter what strategies
the players use, Strictly competitive games are called zero-sum
when k = O ; otherwise they are called constant-sum. 1% will be
observed that the games 1llustrated in Figure 1 are not constant

sum games; i.e., the sum of the payoffs to the players may vary



from one outcome to another. Hence there is room for cooperation

which will yield rewards to both players.

Yon Neumann and Morgensterng/ suggest that in a non-con-
stant-sum game the players should jolntly maximize the sum of their
two payoffs and then work out some arbitrated division of the pro-
ceeds between them. This presupposes that they are in a position
to comminicate with each other and are also in a position to mske
side-payments. Von Neumann and Morgenstern do not explicitly in-
clude the bargaining and haggling over side-payments as part of
thelr description of the play of the game, but as something which
takes place outside of it. The des:cription of the behavior of the

players in the game is given mathematically by the condition:

1] Max. Max. Plisl, spj + P2(51’ sa) .
5 S ‘ = ‘

1 2

This merely states that each player should select his strategy in

such a manner that the sum of their payoffs is maximized. By way

of example, examine the matrix for Game 2 in Figure 1; the
joint maximm solution yields s, =~ 1 and 55 = 2 ; for at out-
come {1, 2} , F, + B, = 5, which is maximal.

wohn Kashgf has suggzested a theory of non-cooperative play
which is a generalization of economic theories of equilibrium. His
theory applies to situations where communication between the players

is limited and they are not in a position to make side-payments.



Nash shows that in any finite game which can be described by & set

of payoff matrices there will exist at least one palr of strategies

s; and 8% such that the two zonditions
=
E . B *
S, = Max P I8 8.}
1 15y Bod

=

"1

A%

® R )
and By = Max FE\slj B5)
&,

are simultaneously satisfled by the choice of s and s by the

*
1

N

first and second players respectively. In words, if the first player

believes that the sexond player will utilize s;

against him, his
optimsl reply (in the sense tha® it will maximize nis own payoff against

that strategy) is 8{ and viee verss, In Game 5, for example, the

Non~"ooperative Solution is the outcome (2, 2) .

It ig possible thet both players may strive to play in a
meanner that defends against the worst that can happenoif Suppose
a player believes or pretends that the entries in his opponent’s
payoff matrix are the negative of those in his own, and that his
opponent will play to maximize his payoff. This implies that the
opponent will be attempting to minimize the player‘s own payoff.
The player attempts to maximize his own payoff on the basis of this
pessimistic assumption concerning the pattern of his opponent's in-
tended method of play. If each player defends sgainst this sort

of hnostility on the part of his opponent, we will observe
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the Minimax Solution; which can be expressed as:

I3} Max Min Pl(sl’ 52)

81 %2

and Max Min Pz(slg 32) .

5> 5y

While the Minimax Sclution requires each player to play
as 1f his own payoff matrix were the basis of & strictly competitive
game, the Competitive Solution has both players actually playing a
zero-sum game obtained by subtracting one payoff matrix from the other.
The ratiocnale is that the players adopt the attitude that it 1s more
important to maximize the difference in galn between them than it is
to meximize individual gain. This type of thinking is prevalent in
tactical calculations of damage exchange rategs. The Competitive So-

jution ig given bys

4] M:x M%n {Pl(slj 85) - Po(sy, s5)) .
1 2

=3

2.2 Application of Solution Concepts to the Six Experiment Games

In Teble 2 all four solution concepts have been applied
to tne six games of Figure 1, and the resulting strategy pairs which
are the solutions are noted. For exsmple, the expression (1, 1)
stands for the outcome where each player gelects hig first strategy,

ic€o, 5 = 1 and 8, = 1 . This gives the pair of payoffs in the

upper left-hand corner of the payoff matrix.



Table 2 - Four Solution Concepts Applied to the Six Games of Figure 1

- 12 =

Joint Non-
Maximum  Cooperative Minimax Competitive
Solution Solution Solution Solution
1] [2] [3] (4]
Game 1 | (2,2) (2,2) (2,2) (2,2)
1,1) {1,2) |{1,1) (1,2
Game 2 ) (1,2) %2,13 %2,23 %2,1% Ee,eg (2,1)
1) 1) oy, 378y ana
A IS 5y | B/5.25) (1,2)
R
e | | O |y a0 00
(2,2) [BIOHTY Hsay (2,2
Game 5 | (1,1} (2,2) (2,2) (2,2)
Game 6 | (1,1} (1,1) (1,1) E;:B Eé’gg

*These both involve mixed strategies. The prcbabilities employed
by each player are indicated in the curled brackets.

*0only {1,1) 1is a non-cooperative solution in the strict sense°2/

All four solution concepts when applied to Game 1 yield

the same solution pair {2,2) . A closer examination of the game

shows the structural reason why this is so. The players are stra-

tegically independent. Their fates are not interlinked. This game

illustrates the atomistic isolation between any two competitors in
a purely competitive market. Regardless of their motives, the gtruc-

ture makes thelr predicted . behavior i1s the same in all instances.
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A non-constant sum game in which the fates of the players are not
interlinked is referred to as an inessential geme. Tt is inessen-
tial in the seme way as is a strictly competitive game. There is
nothing to be gained by discussion, negotiation or collusion. In

eggence;, colluaion has no meaning in this context.

Wilson and Bixenstineéf suggest an interpretation of these
types of two-person, two-choice games in terms of social control;
thus it i1s noted that in Game 2, neither player has any control
over his cwn payoff, but each has complete control over the payoff
of his competitor. In Game 3 the amount of control is symmetric,
a8 it is in Game 4. Game 5 is the classical Prisoners’ Dilemma,Z/
and Game 6 has individual and joint interests completely correlated

~= g visible example of the "invisible hand."

5- Experimental Results Compared With Standard Game-Thecretic Solutions

It was the belief of the authors that of these four con-
cepts the Non-Cooperative Equilibrium Solution would best explain
the results of our experiments, in which information concerning the
payoffs of the other was scanty; communication was difficult, com-
plex, expensive and hard to interpret; and sociological and personal
knowledge of one's competitor was minimal.-because the NCE Solution
is an "inner-directed" theory, in contrast with the Joint-Maximum
Solution which is “other-directed" and mex-min of the difference

in payoffs which is competitive or possibly "status" oriented.
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We expected the NCE Solution to predict better in those games (1,

3, 4 and 6) in which it coincides with the JM Solution, for in them
the game structure presents no disharmony between these two approaches
to play -~ the structure promotes implicit collusion. Finally, we
expected the best performance from the NCE Solution in those games

(1, 4 and 6) in which the NCE and JM Solutions together specify a

unique outcome.

3,1 Test of Behevior During Penultimate Five Periods of Play

In formulating statistical hypotheses based on these sur-
mises we were faced with a formidable problem: the solutions do not
accommodate random error. The expected frequencies with which the
four outcomes (1,1) , (1,2) , (2,1) , and (2,2) will be ob-
served in Game 1, according to the JM Solution, are 0, O, O,
and 100%. A chi-square test 1s undefined in such a situation, as
its statistic then ies the sum of terms containing zero in the de-
nominator. That is, & single instance other than the outcomes pre-
dicted by the solution being tested would suffice to reject the
hypothesis that that solution explains the observed behavior, no
matter how many instances occur in which the solution outcomes are
obgerved. The reason 1s that the chi-square test, whlch is the most

common way of determining whether observed correspond to expected

(015 - E13)°
Eij

frequencies, consists in summing the quantities over
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all outcomes, where Eij 1s the expected frequency of outcome
(1,3) and 0ij 1is the observed frequency. If Eij = O for any

outecome, the statistic :x? is undefined.

Columns (5)~{8) of Table 3 show the expected outcome fre-
quencies for the four solutions in each game, and it can he seen
that each of the four yields a zerc expected freguency in seversl

games.

Though a chl-square test is ruled out as a means of test-
ing these four solutions, 1t can be used to test the null hypothesis,
illustrated by Coiumn (9), that there is no pattern to the observed
outcomes. This null hypothesis, the "Random Solution," asserts
that strategies will be chosen at random, so that all four outcomes
will be observed with equal frequency. For our two-by-two games
the expected freguency with vhich any cutcome is observed in N

trials is always 25% of N .
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Table 3 -~ Qutcomes Observed and Expected During Penultimate

Five Periods of Six Gemeg

Observed  Observed Expected Percentage Frequencies
Game Outcome  Absolute Percentage Joint Non-Coop Minimax Competitive Random
Frequency Frequency Max
(N=165 or 160")

(1y (2 (3) () (5) (6) (1) (8) (9)
1 1,1 2 1.2 0 0 0 ) 25
1,2 2 1.2 0 0 0 0 25
2,1 11 6.7 0 0 0 0 25
2,2 150 90.9 100 100 100 100 25
2 1,1 21 13.1 0 25 25 o] 25
1,2 45 28.2 100 25 25 o 25
2,1 48 30.0 0 25 25 100 25
2,2 L6 28.7 0 25 25 0 25
3 1,1 L9 29.1 50 50 2l 0 25
1,2 33 20.0 0 0 16 100 25
2,1 10 6.1 0 0 36 0 25
2,2 73 4 .8 50 50 2k 0 25
u 1,1 151 91.6 100 100 18.k 25 25
1,2 6 3.6 0 0 24.5 25 25
2,1 6 2.4 0 0 24,5 25 25
2,2 L 2.4 0 0 32,6 25 25
5 1,1 5 3,0 100 0 0 0 25
1,2 19 11.5 0 0 0 0 25
2,1 20 12.0 0 0 0 0 25
2,2 121 T3.4 0 100 100 100 25
6 1,1 155 96.9 100 100 100 25 25
1,2 3 1.9 0 0 0 25 25
2,1 2 1.2 0 0 0 25 25
2,2 0 0 0 0 0 25 25

*33 player pairs playing 5 periods yields N = 165 forGames 1, 3, 4 and 5.
In Game 2 one set of data had to be rejected because of an error; in

Game 6 one team did not play at 8ll; thus for Games 2 end 6, N = 160 .
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Columns (3) and (4) of Table 3 present the absolute and
percentage frequencies of observed outcomes during the penultimate
five periods of play for &ll six games. The last period is excluded
because cf possible end effects, while earlier periods are elimin-
ated because solutions tnemselves are relevant only after learning
has ceased; that is, the four solutions, regardless of their dif-
ferences, are alike in predicting s stable outcome (stable over time),
which cannot reasonably be expected during the early periods of play

in this kind of experiment.

Table 4 shows the 7&2'5 calculated from observed fregquen-
cies and those expected if the Random Solution is true. With 3 de-

grees of freedom, g :zg 2 11.3% means thet the null hypothesis is
true with prcbability p < .01 , jég > 16.27 implies p < .001 ,

and xe >27.63 implies p < .C0CO1 .

Table 4 - Test of the Random Solution

Game 3(2
(1) (2)
1 383.5
2 12.15
3 51.25
b 389.7
5 208.6
6 4y .9
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Since the value of 7{2 in all but Game 2 are far larger
than 27.63 , we can conclude that our sample of outcomes is not
from a population in which the frequencies of cbserving any outcome
are equal. Even in Game 2 we reject the null hypothesis at a signi-
ficance level of .0l, but it is of interest that in thie game, where

the Random Solution coincides with the NCE Solution, the value of

)12 is much lower than in the other games.

3.2 ZREffectiveness of Solutions as Predictors

We use the following measure of how well the solutions com-
pare in predictive quality, "predictive quality" being defined by our

measure, which is:

H

=

7
Bl

[5] )

2 2
where L = Z I joij - Ei1y| .
2] j=1

o

i=l j=

Q@ = 1 when the observed frequencies and those predicted by & solution
coineide; Q = O when none of the observed outcomes fall into the pre-
dicted categories. It varies continuously toward one as the frequencies

observed approach those expected,

Table 5 shows Q for all six games for the four game-theore-
tic solutions and the Random Solution. The averages over the six games
are shown also, and the solutions are ranked on that basis as predictors

of behavior.
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Table 5 - Quality of Outcome-Prediction for Five Solution Concepts

Line Game Jeint Non- Minimax  Competitive Random
of the Maximum  Cooperative (mur1
Table : Hypothesis)
1 1 .909 .909 909 .909 .3hY
2 2 281 .881 .881 .300 881
3 3 THO «THO «TOL « 200 LT61
4 4 .915 915 .268 <335 335
5 ) -030 133 -T33 T35 .21
6 6 969 969 .969 281 281
7 Average § .64l .858 o Thl - 460 .529
8 Rank .3 1 2 5 4
9 Average Q .883 - 873 821 .881
when
solution
colnecides
with
Non~Cooperative
Sclution
10 Rank 1 3 L 2
11 Average @ .156 - 4Bl 279 ST
when
solution
does not
coincide
with
Non-Cooperative
Solution
12 Rank i 1 3 2

It is seen from lines 7 and 8 of the table that @ = .858
for the Non-Cooperative Equilibrium Sclution, which makes it the
best predictor, as we expected. In games in which the JM and NCE
Sclutions coincide; § = ,883 , as seen in line 9. 1In games in
which they differ, the JM Solution is the poorest predictor, with

Q = .156 (line 11), while in those games {2 and 5) the NCE Sclution



Q averages .807 . This lends support to our belief that the NCE

Solution is a better predictor when it coincides with the JM Solution.

In Games 1, 4 and 6, where the JM and NCE Solutions pick
a unique outcome, Q = 931 , confirming our expectation once more.
In those games {1 and 6) in which the JM, NCE and Minimax Solutions

all coincide, & rises still nigher, to .939 .

Actually, it is clear from line 9 that any solution pre-
dicte well when 1t coincides with the NCE, though of the four, the JM
is best. Line 11 makes it equally clear that when a solution does
not coincide with the NCE it predicts poorly. It is of interest,
however, that lines 11 and 12 show the Minimax and Random Solutions
(which like the Non-Cooperative Solution are "inner-directed" in
that they do not depend on correct perception of the opponent's
payoff matrix) to be better independent predictors than the Joint

Maximum and Competitive Solutions.

It should be re-emphasized that @ as a measure of pre-
diction quality is arbitrary in the sense that cur loss funetion
L , the sum of the absolute differences between observed and ex-
pected frequencies, is arbitrary. Were it possible to show on econ-
omic grounds that some other loss function, as, for example, the
more commonly used sum-of-~-squared-differences, should be minimized
by a predictor, our Jjudgement on these five solution concepts might

have to be revieed.
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3.3 GSteady States

Ancther way to determine whether any of the four game-theoretic
solutions is a good predictor of observed behavior is to examine
steady states. The question resolves itself into two parts: how
frequently are steady states observed, and to what extent are the

steady states observed the ones predicted by the four solutions.

Table 6 presents the necessary raw data in Columns {2)-{5),
8 steady state being defined as the observation of the same outcome

during all five of the penultimate five periods.

The first question is answered in Columns (6)-(8), with
Column (8) showing the percent of instances in which a steady state

was observed.

Table 6 - Steady States

Game Number of Steady States QObserved Total | Number ‘Steady
at Outcome Number of States
of Obser- as a

(1,1) (1,2) (2,1) (2,2) Steady |{vations Percent of

. States * Number of

Observations

(1) {(2) (3) {») (5) (6) {7) (8)

1 0 0 0 25 25 33 7.7
2 1 I 0 2 7 32 21.9
3 T 0 0 11 18 33 54,5
b 28 0 o} 0 28 33 84.8
5 0 0 v 15 135 33 39. 4
6 29 0 0 0 29 32 90.5

* See note to Table 3 for explanation of variation in N .
In Part IT we will reconsider these data from a dynamic point of

view, for our solution concepts cast no light on how frequently we
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should expect steady states. Nevertheless we may note here that

the greatest stability frequencies (over 75%) were in games in which
the NCE and JM Solutions coincide, while the lowest frequency was

in the game in which the NCE has no resolving power. Intermediate
frequencies were seen in Game 3, which has two coinciding JM-NCE

outccmes, and in Geme 5, in which JM and NCE Soluticns differ.

Table 7 answers the second guestion by using cnce again
the measure § defined above; in its calculation from Formula (5]
N is taken to be the total number of steady states as shown in
Column (6) of Table 6, rather than the total number of cbservations.
In other words, the question i1s taken to be, "Of those steady states

observed., how well does Solution X predict the particular outcomes

seen?™
Table 7 - Quality of Prediction of Steady
States of Five Solutions
Game Joint Non-Cooperative Minimax Competitive  Random
Mexx 2 mam Solution Solution Solution Solution
Solution
1 1. 000 1.000 1, 000 1.000 . 250
2 . 571 643 o 0 . 6L3
3 .889 .889 & 0 . 500
bk 1, 000 1. 000 % . 250 . 250
5 0 1. 000 1. 000 1. 000 . 250
6 1. 000 1. 000 1. 000 . 250 . 250
Average Q .7T43 .922 @ W17 .357
Rank 2 1 B 3 b
Average Q
when solution .972 - o 1. 000 .643
coincides with
Non-Cooperative
Solution
Average Q .286 - o . 063 . 300

when solution

does not coincide
with Non-Cooperative
Sclution
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Table 7, continued

# Where the Minimax Solution requires mixed strategies, it implies
by definition that no long-term steady state will occcur. The pro-
bability of observing a run of five cobservations can be calculated

for each outcome; in all cases here that probability is very small,

the largest being for outcome (2,2) in Game 4, where it is %g;f = . 0037 .

For this reason it seems inappreopriate to adapt the Minimax Solution
to the prediction of steady states except where it specifies a pure

strategy equilibrium pair.

Once again the Non=-Cooperative Sclution emerges as the
most accurate predictor, and again when a solution is deprived of
its association with NCE it performs poorly. Compariscon of Table

T with Tahle 5 is suggested.
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