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DISTRIBUTED LAGS AND UNOBSERVED COMPONENTS

IN ECONOMIC TIME SERTES

by

Marc Nerlove

I. Introduction

Irving Fisher [9] was the first, to my knowledge, to use and
discuss the concept of a distributed lag. Theoreticalily, such a lag
arises when any economic cause (for example, a price or an incomes change)
produces its effect (for example, on the quantity demanded or on the quan=
tity supplied) only after some lag in time, so that this effect is not
felt all at once at a single peint in time but ise distributed over a
period of time., In a later paper [10;, p. 323], Fisher described the
central problem in applying the theory of distributed lags as primarily
a statistical one. It was, he said, "... to find the "best?® distribution
of lag, by which is meant the distribution such that ... the total combined
effect [of the lagged values of the varlables taken with a distributed
lag has]... the highest possible correlation with the actuasl statistical
series with which we wish to compare it." We have learned, however, in the

years since Fisher wrote, an lmporfant principle of which he himself wag

This paper i1s an outgrowth of research on methods of analyzing
economic time series conducted jointly by David Grether and the author
under National Science Foundation Grant NSF-GS-818 to Yale University.
I am indebted to Mr. Grether not only for his important general
contribution but also for a large number of detailed comments and
suggestions on the present paper. T. C. Koopmans has also made a
number of helpful suggestions which are gratefully acknowledged.
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certainly not unaware: In econometrics we can rarely solve our
problems by statistical means alone; many assumptions are necessary
before such data as we liave can begin to yleld new knowledge; these
assumptions are more frultful the less arbitrary they are and the
better founded in the general corpus of economic theory and empirical

knowledge of economic behavior.

Early users of distributed lags such as Fisher himseif, Alt {11,
Tinbergen [34], and later Koyck [19], recognized the need for assumptions
on the form of the lag distribution. But the assumptions they made
were largely based on considerations of statistical convenience and
nad little or no underpinning in theoretical models of econcmic
behavior. Following the lead of Cagan [5] and Friedman [12], Nerlove
(23, 24, 25, and 26] formulated models of expectation formation and
partisl adjustment towards eguilibrium. In simple cases, these models
resulted In a form of distributed lag originally proposed by Koyck for
reasons of statistical convenience. For systems, however, of related
behavioral equations (e.g., related demand functions or supply functions
for industries consisting of multiproduct firms) the expectational model
and the partial adjustment model were found to yield implications with
important differences. Both the expectational medel and the partial
ad justment model were given a certain amount of theoretical under-
pinning, but this was only of a most general character and at neo time
could the explieit difference equation formulations of the models be
regarded as more than a relatively crude approximation for statistical
purposes., There is clearly a need, as Griliches [1i] has recently

reemphasized, for more rigorous derivation of the precise forms of
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distributions of lag from theoretical models of behavior,

In the case of partial adjustment models of consumer behavior,
for example, a natural approach would be to assume that a consumer has
only local knowledge of hls utllity function so that when prices or his
income change, he cannot proceed immediately to a new equilibrium position
but must iterate by some convergent gradient procedure to the new
maximizing position. Such a procedure might be chosen arbitrarily or,
for example, deduced from a model assuming maximization of discounted
utility over time, In the case, of models of firm behavior, distributed
lags of & partial adjustment sort may be derived on the basis of models
assuming additional costs of rapld, as opposed to slower; changes in input
levels, OSee, for example, Nerlove [27], Nerlove and Arrow [29], and
Eisner and Strotz [8, pp. 61-116]. The distributlons of lag implied by
such models are more complex than the simple distribution suggested by
the original partlsl adjustment model which assumed adjustment in

proportion to the difference between current and equilibrium pesitions.

The simple adaptive expectations model has recently been given
a foundation in terms of optimal forecasting procedures; see Muth [22],
Nerlove and Wage [30], and Couts, Grether, and Nerlove [6]. In this
approach, the dlstribution of lag resulting from simple adaptive
expectatlons or somewhat more complicated adaptation schemes, is
derived as a minimum mean-square-error forecast on the basis of certain
assumed stochastic structures for the causative variable in the
anglysls. Thus, the justification for the lag distribution involves
a number of distinct hypotheses: First, we assume that the economic
agent's behavior is in response not to the actual value of a causative

variable but rether to a forecast of a future value. For example, it
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is plausible that farmers plant not in response to what prices actually
are but in response to what they think they will be at harvest time.
Often, the precise date of the forecast is not specified, but rather

H

some "normal" or long-term average is sought [25, pp. 51-2]. It is a
remarkable fact, however, that for certain nonstationary time series

the optimal forecast, in & sense to be described below, is the same for all
future periods. Second, in the application of this approach we assume
that economic agents base their forecasts on the past values of the
variable in question and that they optimize their forecasts given knowledge
of some stochastic specification of the mechanism generating the time
series of the causative variable, At this point, one may adopt either

of two hypotheses, each of which has quifte different implications for
estimation. One might argue, for example, that the economic agents have

a clear conception of what the stochastic mechanism really is; then
anelysis of their behavior might plausibly begin by estimation of the
stochastic structure of the time series to which they react; then
determine optimal predictors, and, finally, use such directly as

variables in a subsequent statistical analysis of the behavioral relation
or indirectly to transform the equation to be estimated. Alternatively,
we might assume some rather general stochastic structure, derive the

form of the optimal predictors, then determine the actual values by

means of an analysis of the relation between the predicate variable and
past values of the causative variables the form of which will have been

suggested by our earlier assumptions.
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It is, of course, clear that precisely to what forecasts our
economlic agents ought to react, and indeed the sense in which such forecasts
ought to be optimal, should be determined by some sort of theory of
optimization over time. To do so, however, greatly complicates the
analysis of behavior, and it thus appears fruitful to explore approaches
glmilar to those described in the preceeding paragraph while recognizing
the desirability of deeper levels of analysis. AL such levels, considera-
tions underlying attempts to derive lags due to partial adjustment, merge
with those which have implications for what forecasts should be
considered and how they ought to reflect past values of the variables

in question.

In the present paper, I shall examine an gpproach to the
derivation of lag distributions which is very much in the spirit of
derivations as optimal forecasts. In contrast, however, to the forecasting
justification, I shall assume that the causative variables are divided
by economic agents into two or more unobserved compeonents having definite
stochastic properties, and that these agents react not to the observed
varigbles but rather to egtimates of the current values of the unobserved
components. We will derive such estimates in a manner which minimizes
the expected value of the squared difference between the estimated and
the actual value; that is to say, our theory will be that the values of
the variables to which ocur economic agents react are the minimum mean-
square~error “extractions"” of the unobserved components. Such extrac-
tions are related to, but not, except in special cases, identical to
predictions of the observed variables. The sort of justification for

distributed lags offered by this approach is thus distinct from one based



-

on the notion that certain lag distributions arise because economic
agente react to forecasts rather than actusl values of certain

varlables.

The idea that one may divide an economic time series into
several unobserved, but separately meaningful components goes back at
least to the work of Buys-Ballot [4]. The class of models embodying
this idea was once fashionable in economics and includes the well-known
errors~in-variables models. In the simplest case of such a model, we

suppose that the two observed variables, x

+ and Y, » are divided

into two unobserved components, the "true' values, e, and 9,
respectively, and the "errors," v, and v, , Trespectively:
xtzgt'['ut
(1.1)
Ve = Mg Vg

L

It is also generally supposed that the "true" values of x

+ and Yy

are connected by an exact relation, e. g.,

(1.2) 1, 0 T B

while u, and v, Bare unrelated. The problems of estimating o and B

have been the subject of extensive investigetion; see, for example,
Malinvaud [21, pp. 326-363]. The essential point, however, for our
purpose 1s that the observed variables Xy

two unobserved components, and corresponding components in each geries

and yt are divided into

are related differently, i.e., U is related to Vi in quite a

different manner than gt is relsted to Ny e
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Although interest in models of errors-Iln-variables waned
considerably following the sweep of the field by the "shock" model
in the fortles, the errors in variables approach is not entirely
without recent application. Indeed, as is well-known, the "permanent
income" hypothesis of consumption behavior developed by Friedman [12]
can be viewed in exactly this way. Without attempting to do Jjustice
to Friedmant's ingenious and complex thecry, it may be described in brief
as follows: Both income and consumption as observed may be divided into
two unobserved components called, respectively, the permanent and the
transitory component. Friedman supposes that there exists an exactly pro-
portional relationship between the two permanent components, but no
relationship between the two transitory components or between these, on the
one hand, and permanent component of eilther income or consumption.
Friedman argues that "... if a consumer unit knows that its receipts in
any one year are unusually high and expects lower receipts subsequently,
it will surely tend to adjust its consumption to its ‘normal’ receipts
rather than to its current receipts<" [12, p. 10]. The permanent
component of income, according to Friedman, "... is to be interpreted
as reflecting the effect of those factors that determine the consumer
unit's capital value or wealth ...," while the transitory component
" .. 15 to be interpreted as reflecting all ‘other' factors, factors that
are likely to be treated by the unit affected as ‘accidental® or ‘chance’
occurrences, though they may, from another point of view, be the
predictable effect of specifiable forces, for example, cyclical fluctuations
in economic activity." [12, pp. 21-22]. When Friedman comes to the

analysis of aggregate consumption and income over time, he specifies a
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relation between past income and what people consider to be the Permanent
component of income which amounts to taking consumption as a function of
income with an exponential distribution of lag.&/ Indeed, Friedmsn's
Justification for this form is the continuous analogue of the adaptive
expectations hypothesis which leads to distributions of lag based on

geometrically declining weights.

The early economic statisticians also practiced the decomposition
of observed time series into unobserved components. The work of Persons [32],
Frickey [11], and especially of Kuznets [20] developed the ides in a way
which still forms the basis of present-day methods of seasonal adjustment.
In one version of this approach the observed time series is divided into
three unobserved components: trend-cycle, seagsonal, and irregular. These
components may be assumed additive or multiplicative, independent or related.
Although it is usually not very clear or explicitly indicated just what
else is assumed about the nature of these components, it appears evident
that the components of different sorts in different series are related
differently. The division 1ltsgelf would have little purpose were this not
the case. More important, the attempt to decompose the observed series
into its unobserved components would make little sense except on the
supposition that the various components were affected differently by
various economic policies or by movements of corresponding or non-
corresponding components in other series. From an analytical point of
view, it is plausible, for example, that a manufacturer deciding on
inventory levels will react somewhat differently to a change in sales

he regards as belng purely seasonal in character than he will to one he
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regards ag more permanent or longer lasting or one he regards as

exceptionally ephemeral.

As before, at a deeper level of analysis,the nature of the
decomposition into uncobserved components would be derived from a model
of optimization over time. However, in this paper, I shall take for
grented that an economic time series may be divided into economically
meaningful unobserved components with certain general stochastie character-
istics and that these components, toc the extent they are known or estimated,
affect behavior differently. T shall asssume that these components are
estimated by minimum mean-square-error methods given certain assumptions
about the underlying stochastic characteristics of the time series in
question. Together, these assumptions suffice to determine distributed
lag relationships. In particular, I shall exhibit a model which leads to
a slight generalization of the geometric lag distribution for income in
a consumption function which may be interpreted as a variant of the permen-
ent income approach, A more complicated lag distribution is also derived
which is related to, but not identical with, Solow's Pascal lag dis-
tribution [33] and which includes the geometric lag distribution as a
special casge. Finally, more complicated models involving sessonality
will be introduced and a general discussion of the type of distributed lag
relation given in which reactions to seasonal movements are different
from those to movements of other types. Some tentative implications
for the estimation of distributed lag relationships are drawn in a

final section.
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Since much of the underlying theory is unfamiliasr we begin
with some preliminary remarks on:
II. The Elementary Theory of Optimal Extraction and Prediction.g/

It will be convenient for present purposes to deal with processes

3/

points in time. The restriction to stationary processes will be relaxed

which are stationary, at least to second order, and defined at discrete
occasionally in a very limited fashion. Let such a process bhe denoted

by {yt] where the index t ranges over the positive and negative
integers and O ., In 1938, Wold (38] showed that every discrete stationary
process {yt) could be decomposed into the sum of two mutually independent

processes [g€J and [nt] such that
(2,1) yt =gt+1]t 3

where {gt] is the so-called linearly deterministic process which may be
predicted with zero mean-square error from sll past observations and

where Ny is a stationary, possibly infinite moving average process:

=]
(2.2) g = I bJ. Cpus > bo=1,
J=0
where
2
Z o] <e
b
and

g, t=t?
E “tetr 2'{ o , otherwise .E/

For a variety of reasons, including realism and economic relevance as well

as convenience, our further discussion is restricted to purely
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nondeterministic processes of the sort representable by (2.2), i.e.,
representable in general by a one-sided infinite moving average of what

is often called a whilte nolse input.

To facilitate our discussion we introduce the backwards

shift operator U defined by

(2.3) uy

t T Vheg -

Then we may write (2.2) as

(2.4) Yy = B(U)et

where

m L]
BU) = = bjUJ .
j=0

The generating traneform or z- transform of a seguence

{... L R } is defined as
> k
(2.5) Alz) = I 8,2
Kzmoo

when the summetion on the right converges. (When it does in some
region it represents the Laurent expansion of the function A(z) there. )
Note that =z 1s complex., Clearly,
m 3
Bz) = & b2’
j=0 J
converges in a region encompassing the unit cirecle and

1 > j
Blz™7) = & bjz"J
i)
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converges outside a circle inside the unit cirele, so that the
function B(Z)B(z'l) is defined and analytic in an annulus about
the unit circle. As we shall see this function evaluated on the unit

circle is proportional to the spectral density of the time series Yy -

The autocovariance function of a stationary time series is

defined as
(2.6) c(k) = By vy, .

and is a function only of the lag k . For processes which are stationary
and contailn no purely linearly deterministic component, the autocovariance

generating transform exists and is given by

(2.7) gy_y(z) *-:k_; c:(l{)zk = G'EB(Z)B(Z-:L)

as can be readily deduced from (2.2), (2.4), and (2.6). On the unit
-18

circle, i.e., for z = e ; =<6 <m, we have
16 ® 1k6

2.8 e” =2nf _(6) = Z c(kle”

(2.8) g, (e™) (6 (1)

=1 Ts o]

c(0) + 2 Z c(k) cos k6 ,
k=1

it

so we see that on the unit circle the autocovariance generating

transform is proportional to the spectral density function. Furthermore,
2 ie 2
2. T 6) =0 B{e
(2.9) (8 =" | B(e™) |

s0 that because B(z)B(zml) is analytic in an annulus containing the
unit circle we see that spectral density functions for processes of

the type considered are absolutely continuous functions of 6 .
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Equation (2,9) shows why the representation of gyy(z) as UEB(Z)B(Z-l)

is often called the canonical factorization of the spectral density

function. This factorization must evidentally exist for all Processes
of the type considered but it may not be unique unless one sets condi-
tions on the zeros of gyy(z) and may not be readily obtainable either

unless certaln other conditions are met; see Hannan [16, pp. 13-16).

Although all stationary time series with no linearly deterministic
component have a one-sided moving average representation, not all have an
autoregressive representation. A process defined by a sequence [xt}

sgtisfying

(2.10) A(U)xt = €,

where A(U) is a polynomial in U and e, is a white noise input is

t
called an sutoregressive process and may or maey not be stationary. In
stationary cases it is not necessary to restrict the degree of A(U)

to be finite, When gyy(z) is the autocovariance generating transform

of a stationary process which has no zeros and is analytic both on the

unit circle and in an annulus about the unit circle, then the process {Yf3
has both a moving average and an autoregressive representation. For,
under these circumstances log gyy(z) is analytic in an annulus about the

unit circle and therefore has a Laurent expansion there:

w© 0 . 0o

(2.11) log g (z)= £ ¢z = c, * I c.zd + % <:_.z"'J .
AN P =L Y gm
Clearly we can take ; cjzj
B(z) = e =%
(2.12) { 5 c,
o = e .
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B(z) is analytic inside a circle with radius greater than 1 and
therefore has a Taylor's series expansion there of the form

(2.13) B(z) = £ b.29
j=o I

which ylelds immediately the moving average representation of the process
by equating powers of z with length of lag in (2.2). On the assumption

that log gyy(z) is analytic, we have also that

o3
- & .2z

(2.14) Bz)) L ee 0L A(z)

J

is analytic inside the same circle and thus has a Taylor's serles

expansion

(2.15) A(z) = .z a_zj.

A(z) 1is the generating transform of the autoregressive representation,
Clearly a necessary condition that A(z) exist for a stationary process
whose spectral density in canonical form is 02B(Z)B(z"l) is that B(z)
shall have no zeros on the unit circle. Indeed to make the factorization
unigue we observe that gyy(z) being symmetric has a zero outside the
unit circle corresponding to every one inside the unit circle so thal we
can separate these zeros by appropriate choice of the factors B(z) and
B(z-l) ,If this is done so that B(z) has zeros only outside the unit
circle the factorization will be unique and A(z) will be given as in

(2.14).

Although perfectly acceptable stationary processes such as

£al do not possess autoregressive representations, we will
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generally suppose throughout the reémainder of this paper that the processes
with which we deal have both moving average and autorsgressive representa-

tions.

Of substantial practical importance is the casze of a time series

with a rational spectral dengity function. In this cassz, by definition,

the autocovariance generating function may be written as the ratio of two

polynomingls:
Ff . 3
2. .1.6 -I =2 La.u¥,4%1 o
( ) Byyt 2 Q)

P

If Q(z) has roots on the unit circle, then {yt} cannct be regarded
as stationary for it has no moving avsrage representation, On the cther
hand, if Q{z) has no such roots, we know that because gyy(z) is
symmetric in z and 2=t , both P{z) and @Q{z) must be as well, and,

hence, can be factored as

L m i
o 1 (L= Bkz)(l - akz'lj
5 k:l
= T o en et
I Ve 7 z ) = Z
k=1 ak ' ak

Note 02 has been chosen so that the lesding coefficients of F{z) and
Q(z) are both oneoé/ In line with the convention mentioned earlier to
ensure a unique factorization, we suppose | By | <1 and | Q%‘| <1.
If the strict inequality holds in the first instance the process has an
autoregressive as well as a moving average prepresentation; the latter has

generating transform
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m

I(1 - Bkz)
(2.18) B(z) = k;l

Il -

kM( @ z)

and the former A(z) = [B(z)]_l . Processes with rational spectral
density are typically represented as an autoregression equal to a noise

input which is not white, i,e.,

n m
(2.19) n{(1-aqU)y = TI(L~-pU)e
K=l S k'’ Tt

Consider now two Jjointly stationary nondeterministic processes

{Yf] and [xt] . The kB lag covariance of y, and x, , 1in that order,

is given by
(2.20) cyx(k) =B ¥ X k=0, +1, +2, ...

Note this is different from By, X = cxy(k) = cyx(-k) . 'The generating

transform of ¢ (k) is
¥X

[+ ]
k
(2.21) g (z) = % c _(k)z
JX kego VX
and may be termed the c¢ross-covarliance generating function inasmuch

as its value on the unit circle is proporticnal to the cross-spectral

density function of the series {ytJ and {xt} .

Consider the problem of estimating Vi for fixed t given
the entire past of the series {xt] up to and including that time. Let
us consider only predictors which can be expressed ag linear combinations
of past x's ,

(2.22) yt=§07x_-=ﬂWﬁ,
J‘—“.
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and consider optimal that cholee of ?j for which

E(

o~ A o £l = i :
Yy o= y%) iz minimized.

Because Ext] iz stationary we can write

(2.23)

whersa

{ef} is

¥, = B{Tle

+ 14

. , . : 2
a white nolss sequence with variance ¢ and b_ = 1 .

If @{z) repregents the ganerating transform

(2.2k)

@z} = y{z}Biz]

Py . .
we can express y, in terms of the past of Let] te t oz

(2.25)

o

Yy = @(U)et = 3 o, €

=0 t-J

. . - 3 R o~ E RS
It is, in fact, more convenient to find @lz) or Y, in the form {2,25).

then determine 9{z) from {2.24), provided [B{z)]wl exists, and so

exproess ?t in the farm {2,22).

minimize

{2.26)

where

c,
d

TInder

5. - Bl T -
By Yy EL T 9ue 5~ ¥yl

the minimum mean-zguare-error cribsrion, we seek to

o 2

=

gt
no
|

=0
o0 20
=~ variy) +varl L @€, .} - 2cov{ E
gm0 d T4 50

o0 _ )
= var{y) + o @? - 25 c.0.

- Ey+)et~j . Completing the square, we obtain
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00 c, =)
(2.27) Ey, - yt)e = var(y) + o© & [q:‘j -(—%) 12 . —1—2 z
J=0 o o< =0 J
o0
>var(y) - -—J;é- s f
g J=0 J
with equality only for ®; = cj/o2 . Whence
=]
(2.28) min E(y, - v,)% = var(y) - 0° 5 o~ .
t t =0 J

The following notation will be used extensively throughout
the remasinder of this paper: If (... h_ ;5 b, h, , ..0) is a

sequence with genersting transform

w I3
H(z) = £ h,zY
jz-m J

we denote by [H(z)]+ that part of H(z) having only nonnegative

powers of =z , dL.e.,

Using thils notation we see that (2.27) implies

1 0 3 1
. = e 3 . = — .
(2.29) o(z) z 5 ¢z =z le, (2)],

We may assume {yt] has zero mean without loss of generality. Then
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o0

(2.30) g (2) = = (Eygx )2

=—co

oo k =<4
= L 2 Ey Z b.e .
o t 3=0 Jt-j-k

[+ »] [ ]
=3 £ 2 b

. B y.e, .
e e

o o s ik
= X X b.z J oyl c,
k=== j=0 J J+k

(z) B(z"™H)

gye

Hence,

: g (z)
(2.31) o(z) =~ yx
’ 02 B(z-l)

+

or, using (2.24%), and assuming the process has an autoregressive

representation,

(2.32) 7(z) = —= !-—gﬁf#
. B(z 7)

UEB(Z) +

Equation (2,32) is the fundamental formula for optimal signal
extraction and prediction. To obtain the result for prediction we set

y'bﬂxt-i-v’ v >0. Then

5]

k
(2.33) gyx(z) = % oz Ex_ . X .

kstmeo

= z_v =

k==t

Y e(kt+v)

GEB(Z)B(z-l)

v
Z
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whence

1 UEB(Z)B(z-l)
2,34 z =
(2.34) ) - s | SR

N 8
B(z) 2V + ’

where y(z) is now the generating trensform for the v-step predictor.

+

There is no need to restrict [y£] to cbservable series, it is only
that we have sufficient information about its stochastic properties to
be able to specify gyx(z) . Eguation (2.32) then expresses the generating
transform for the estimate §t . If Ye is an unobserved component of
the series x_ , we say v(z) is the generating transform of the
optimal extraction.
Clearly, if {yt] 1s an unobeserved component of an
observed time series to an estimate of which an economic agent reacts, we

can determine a distributed lag model by means of (2.32). Thus, suppose

the behavioral relation is
(2.35) hy = £(3,)

where f may include a stochastle disturbance, If we assume §£
is determined by optimal extraction from the past of the observed series
{xt] , we have

(2.36) h‘b =f{ L Y

=0 -3

where 75 is determined by (2.32). FEquation (2,36) is the distributed

lag relation sought.
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I1I. Derivation of Some Distributed Lag Models by Means of
Optimal Extraction

In this section, we derive various distributed lag models
along the lines suggested ahove for a variety of stoahastic‘models
relating The observed time series %o its unobserved components over time.
We shall examine a simple two-component model in considerable detail,
showing that in one special case we get a geometrical lag distribution.
When this model 1s allowed to become nonstationary in a specified way
adaptive expectations result and the wv-step predictor of the observed
series becomes identical with the v-gtep extractor of the unobserved com=-
ponent. A generalization of this simple model leads to a lag distribu~
tion related to Solow's Pascal lag distribution., Finally, a three-
component model and relasted behaviorsl equation are congidered in a
fair degree of generality. This model is capable of allowing differing
rezctions to what might be termed "seasonal' and "long-term”

movements of the causative variable,
Ceonsider the following model:

X, =y, +u
(3.1) {1: t T %

yt=0yt_l+vt A |a|<1,

where {uﬁ} and {vt} are independent zero-mean white noise inputs with

variance ratio

2 2
E vt cv
(3.2) A= =
2 2
: Eu o
t u

To apply (2.32), we must determine B(z) , o® , and gyx(z) .
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First, let us determine B(z) and o° . From (3.1), we see

(5.3) Ko = Bp g =¥ - Wy F U -0y
o
(3.3") (1 - Cch)xt = v, + (1 - au) u .

Because of the sssumed independence of Vi and U, gnd thelr assumed

lack of serial dependence, it follows straightforwardly that
-1 2 , -1, 2
(3.4) (1-02)(1-a)g (2z) =0 +(L-a)0-a ) ,

so that

2 | A+ {1 -az)(l - ocz'l)‘! _
v | (1 - az)(1 - Gz-l) '

(5.5) g (2) =0

In order to express this in the form GEB(Z)B(Z—l) , it is necessary
to factor the polynomial A + (1 -~ az){1 - az"l) which appears in the

numerator on the right.

When @ >0 the two roots of this polynomial are

(1L + a + q?) - J (L + 2+ a?)? - bof

B <1l
2¢
(3.6)
1 (L+ A+ a?) +\/'(1 + A+ 0:2)2 - 4P s1
ﬁ Ea ’
L

When «a < 0 +the inequalities are reversed, bearing this in mind, however,

there 1s no loss in generality in taking o >0, Thus £ in (3.6)



- 25 -

is the root lying inside the unit circle. Thus we take

(3.7) B(z) = +—£2

z

To determine the constant 02 » oObserve that, since B and are roots

1
B
of A+ (1-o0z)(2-ah),

(3.8) == (1 - 0B)1 - a/p)

Inserting this in the polynomial and equating like powers of z in

(1-am)(1-0™) - (1-08)1-a)=c(l-pz)(1-~pz"),
we easily deduce that c¢ = @/B , so that

2
(3.9) o° = 2 o7,

u

Next, let us determine gyx(z) . In 80 doing, we use the

independence of w, &and v for all t, t' , which in turn implies

t t!

the independence of Y and. Uy

of equations (3.1) by k periods multiplying by ¥, ond taking

for all t, t' . lagging the first

expected values we deduce

(3.10) 8,(2) = g (2) +0

where the last egquality follows from the final equation of (3.1) .

2 2 2
o, = M, so substituting for B(z) , ¢o° , and gyx(z) in (2.32)

we obtain
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o ]

g (z)

(3.11) 7(z) = — X
o28(z) Bz | +
o BMY - az) 1

o (1 - Bz)

(1 - az)(1-pz) |,

L. BL-®)-ap)-a)| 1, pa
(1 - Bz)(1 - oB) 1-a  1-pzt s

-

Now the second term in the [ ]+ sign contains only negative powers of 1z ,
whereas the first contains only positive powers of 2z , so that the [ ]+ op-
erator annihilates tThe second term and does not affect the first.

Conseguently, we find at last that

(3.12) 2(z) = %=B _1

a 1 - Bz

o s
J=0

since ; ﬁjzj converges in a circle containing the unit cirecle by virtue
=0 .
of the choice of B such that | B | <1 .§/
Tt follows from equation (3.12) that the’ optimel extraction
§t is expressible as a geometrically weighted average of past observed
values of Xy H

(3.13) v, = &2 3 pk

S

It is interesting to note that by differentiating (3.8) with respect

to A holding @ constant we obtain

(3.14) %’% - —t <0
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since we assume & >0 and so B <1 . The expression (3.14) shows
that as the ratio A = 03 / ci increases less weight is given to
observations in the distant past and more to recent observatlons. If we
interpret, as must now seem plausible, v, @s the “permanent™ component
of, say, income, and u, as the "transitory" component, (3.13) and (3.1k)
together assert that the greater the proportion of variance of measured
income contributed by the transitory component, the smaller A » and

the less weight will be given to recent values of measured income in

the calculation of each estimate of permsnent income.

By subtracting a§fnl from both sides of (3.13) we arrive at
an equation relating values of §t over time which bears a remarkable
resemblance to the adaptive expectations model earlier proposed for the

generation of distributed lags
~ ~ _ QO" - E -~
(5° 15) .Vt - thl = [x't - ay.t_l} °

Indeed, if we let & tend to one from below i (3.15) reduces to the
familiar form of the adapfive expectations model with coefficient of

expectations (1-B) :
(3.16) Yo =Ygy = (1-8) Ix, - ¥ ).

Of course, when @ =1 the model (3.1) yields a nonstationary time series,
but this may bve reasonable for economic applications,§/ Further-
more, one can show that all results derived for stationary models can be

extended to nonstationary models of this limiting variety in exactly the

faghion here proposed.
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When we consider the nonstationary model, (3.1) with =1

3
another remarkable conclusion emerges, Conglder the minimum mean-square-
error forecast of xt+v . Let the generating transform of the weights

applied to X be

t 2 Fgal? 2

(3.17) 0.(z) = F5y >

=l-om) 1l -pz
1 - Bz (l az)z?

. -
Toom vy ol g s oy 3*ly

1
Lt

.

2P e 5=0 .
_l-om a'(1 - p/a)
T 1-pz ° "1l -0z

il

g Ve
KOJ - @)av 5 B'jZJ
o 120

<o PR
When O = 1 this reduces to (1 -pB) I BY2Y which is exactly the
J=0

formula for the optimal extraction ?t when @ =1, Thus, for this

gimple nonstationary model, we see that the same weighted moving average

of past observed values Xy

future periods and the optimal extraction for the current period as well

gives both the optimal prediction for all

2/
as all future periods, -

In {25, pp. 51-59], I proposed that farmers base planned
output not on prices currently prevalling at time of planting but

rather on ‘“expected normal price” which I interpreted essentially as
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an average of future prices expected to prevail, Furthermore, in the
course of analyzing the results it was found that the coefficient of
expectation (L - B in the above formulation) varied inversely with

the varliance of actual prices for the three crops considered (25, p. 221].
On the assumption that increasing cbserved variance is associated with a
greater than proportional increase in the variance of the "transitory

component” in prices, this result is implied by (3.14). Thus (3.1)
with @ = 1 provides an extraordinarily strong justification of the
"expected normel price” model. Since, however, we would not expect
farmers to base decisions on & stochastic model of price behavior very
far out of line with reality, the present discussion also suggests

a further test of the hypothesis advanced in [25]: namely, to explore
the degree to which (3.1) with a =1 actually fits annual data on

agricultural prices for the period prior to 1933.

Although (3.1) leads to the most common form of distributed lag
employed in current studies, it represents an extremely simplified
scheme as far as most economic time series are concerned. The results
of Orcutt [31] and Ames and Reiter [3] suggest that éutoregressive
schemes of higher than first order mey provide a better description
of the slower moving components of many important economic time sgeries.
In what follows, we derive a distributed lag scheme from an optimal
extraction of a compeonent which coheys an autoregressive scheme of
arbitrarily high, but finite order. A specialization of this result
leads to a distributed lag which is similar in some respects to the

Bolow Pascal distribution,
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Consider the following model:

Xt = yt + ut
(3.18)
Q(U)yt - v-t

where Q(U) is a polynomial of degree n in the backward shift operator

U with generating transform

n
(3.19) Qz) = m (1 - ajz)
J=1

such that | &, | <1 for all j . Note that Q(z) is normalized

5 |
so that the coefficient of the current value of y in Q.(U)y,c is
one, The restriction | aj [ <1l for all J ensures that the roots

of Q{(z) all lie gutside the unit circle; hence, if we take [ut} and

[vt} as independent, zero-mean white noise inputs with variance ratio
E v2 02
A= t = v
E u2 02 ’
t u

the series {yt] will have a one-sided moving average representstion and
{xt] will be a stationary process. Should some roots of @Q(z) lie on
the unit circle the process [xt] will be nonstationary but our results

will hold if we let some of the G,'s tend to values for which !aj | =1.

To determine the distributed lag implied by (3.18), we
determine the minimum mean-square-error extraction of Ve by the

formila given above, equation {2.32). First, note that
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4

(3.20) Q(u)x, Uiy, + Uy

H|

vt + Q(U)ut

so that, by methods used above, we deduce

2 a + Q(z)Q(sz)
“{ a(z)a(z"h) }

(3.21) ng(z) = o

Conslder the polynomisal

(3. 22) P(z) = a» + @(z)az™?) = » + ﬁ(l-a.z)(l-a.z“l)
3=1 J d

Clearly if Zg is a root, so is .1/zo . There are thus 2n roots
which come in reciprocal palrs: one member of each pair lies inside the
the unit circle, the other outside. Let the roots be Bj and, 1/53 R
J=1l, ..., n, and let BJ be the member of each pair lying inside
the unit circle, Thus factor P(z) as

- -1
(3.23) P(z) = ¢ I (L-B.2)(1-B.2z"),

=1 J J

J
where c¢ 1is a constant of proportiocnality so chosen as to make
coefflcients for corresponding powers of z in (3.22) and (3.23) equal.

Since B, , k=1, ..., n isa root of P(z), we have

n
Q. 2k ) A o= - jgl(l - aJ.Bk)(l - aJ/sk) , k=1, ..., n.

It may thus be readily verified that ¢ should be chosen so that

-
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P ; (1 + aﬁ)

(3.25) ¢ = =
T (1 + 5?)
3=l J
n o n
] J-El(l *d) 'jml(l - aB )1 - a/By)

n
o1+ a?)
J=1 )

10/
where X may take on any velue from 1 to n., Following the
convention, described above, that we take both numerators and denominators
in the canonical factorization of a rational spectral density to have

roots outgide the unit circle, we choose

n [ 1 -B.z
(3.26) B(z) m}t\ffa% , 1B <1, |a) <1,
=1 N 5 J J
and - -
n n
| m@a+d) -1 (1-ap)-ale)
(3. 27) o = de = o q—IZk J=1 3
u u n 2
n (L)
J=1

where B ig any root of P(z) .

To find g&x(z) from (3.18), we again make use of the fact that

v, end vy are independent for all t and t' , so that vy and u.,

t
are independent for all t and ' . Thus,
2
) (2) (2) i
(3.2 g (z) = g _(z) = ——e———0
-1
Ix yy Q(z)a(z™)
2
(0]
v

n 1
OI(1~o0.2)(1~a:z")
521 J J
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Applying (2.32), we immediately have

~ n 1 =
) 1-apz .El(l - o5z )
(3.29)  7(2z) = (2) S
H (- o z)(1 - a; Z )(l - ﬁ z" )
J=1
nil-q.z _T
A J 1 !
= ("“‘) II } 3
c =1 L o= 53 n 1.
I(1-az)(1l-Bz")
- —
where A and ¢ are given by (3.24) and (3.25) respectively. Unfortunately,

the expression inside and including the operator [ ), 1s not so very easy

If o

to evaluate explicitly. 5

BJ s

inside the operator

J=1, ve.y 0,

J=21, vs., n , and A were known,

could be found numerically; then the expression

[ ], could be expanded in partial fractions, the

coefficients of which might easily be determined by numerical methods.

Having separated terms involving

—-—1“—»-; and --.—.—-:La-—:;i—
l - aj 1 - ﬁjz

it would be relatively easy to obtain that portion of the expression

involving only nonnegative powers of

Z .

difficult to proceed beyond (3.29) at this level of generality.

7(2)

it to say,

Analytically, however, it is

Suffice

in (3.29) is the generating transform of a rather

general lag distribution which includes the geometric lag distribution

a5 a speclal case,

derived next,

It also includes an interesting spescial case o be
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Suppose that Q(z) in (3.19) can be written
(3.30) a(z) = @A-a)", |af<1.

Thus Q(U) dis what I have called elsewhere [25, p. 257] an nth-order
quasi-difference with parameter & . It has been found that, apart from
seasonality, quasi-differences of order 1, 2, or 3 with parameter

@ = 0,75 reduce many economic time series to a good approximation

to white noise.lé/ It is thus not implausible to assume that the long-
term or slowly moving components of many economic time series can be well

approximated by a relatively low-order guasi-difference scheme of the form:

n
(l-w) ytmvt.’

where v, 1s white-noise. In this case the polynomial P(z) in (3,22)

which must be factored in order to obtain B(z) takes the Form
als ot
(3.31) B(z) =x+ [(1-02)(1~a2™)] .

Although Q(z)Q(z"l) = 0 has only two distinct roots, it is not in
general trué that P(z) = 0 will have only this limited number. The 2n
roots of P(z) will, however, come in pairs Bj and l/BJ , oOne member
of which lies inside the unit circle and the other outside, As before

let ﬁj be the root lying inside and factor P(z) as

(3.32) P(z) =c I (1-p2)(1-p2™),
3=
where now
a? n
(3.53) ¢ = A1)
I (1 + 5?)

J=1
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and

n
(3.34) o= - T (1-0a/B )1 -08) k=1, ..., n
J=1

= - [{(1L «-a/g)(1 - Cﬁ)]n)

where B i1s any root of P(z) , we now have

n
I (1 - ﬂjz)
(3.35) B(z) = &= n
(1 ~ oz)
and
(5.36) o® = oc

with ¢ given by (3.33), and

2
»)
(3.37) gx(2) = A .

[(1 - az)(1 - ™))"

Applying (3.32), we find the transform for the optimal extraction to be

n
(3.38) 7(z}=(%) (i - az) 2
I (1-p.2) (1-o02)"1(1-p.27h
j=1 x =1 X
e o

The expression inside and including the operator [ ], may be evaluated

by means of a highly useful theorem due to Whittle (Theorem 1, [37, p.93]):
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THEOREM. Iet R(z) be aralytic in an anmulus about the
unit circle and let 6 Ye a parameter such that | 6 | <1 .

Then

@Z) e (1 - QZ)P iz—l—

(1 - 62)%
A+

= np(z) + LR(z)h ’

where Hp(z) is a polynomial of degree p-1 in z such

that
p-1 -
T(z) = £ =xn.(z -8 :}')‘j .
P j=0 9

The coefficients ﬂj are determlined by

» - g._ dJ[[R(Z)]a} .

J Je dzj
Z = G"l

where the operator { ]_ means we consider a function
defined by taking only the negative powers in the Laurent

expansion of R(z) in the annulus about the unit circle,

To apply this theorem we set up the following correspondences:

(3.39) {6 = q

o
—
™
~
1
i
B
H
]
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The power serles on the right hand side of (3.39) is obtained by

expanding each term

)
_L-n—l_ = 2 Bl';-z"k.
1 - ﬁjz k=0

which can surely be done in an annulus about the unit cirecle since

I B | <1 22/ 1t follows that

z k
(3. 40) R(z) = {5 rkz' =1,
. + k=0 +
and that
n-1 1
(3.41) B(z) = & =n.(z-a")
P §=0
J—
with
. w0
d (& rkz-k]
(3. 42) x = %_ k=l - |
dz {2 = ofl

If we let

J -
o= (-1 aYx,
g (-1) 3

we can then write y(z) in (3.38) as
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n-1 .
(3. 43) v(z) = ~ O [e) { 1+ % gj(l - qz)? wr

T (1l -8.2) J=0
j=1 !

If P(z) had had only two distinct roots, the first term in this
expression would be the generating transform of the weights in a Pascal
distribution; Solow [33, p. 396]. In general, however, there will be more dis-
tinchk roots., The first term will still represent a "cascaded" series of
geometric lags, but one more general than the Pascal case. The presence
of the second term, adds a further degree of complexity, for this term
implies that the first n weights {counting the zero order lag as the
first), will differ still more from those of a Pascal distribution,

It does not appear to be true that; as o =+ 1 , the distribution of

lag (3.45) tends to a Pascal distribution, but I have been unable to
find a convenient form for the limitqié/ In any event, the case =1

is surely not highly plausible from an economic standpoint, and for

this reason the more complicated form (3.43) may be preferable. Further-
more, the estimation problems raised by a distribution of lag defined

by (3.43) are very similar to those encountered in estimating a Pascal
distributed lag. In the next section, we will see that the advantages for
estimation of the more complicated form arising from its interpretation

as an optimal extraction outweigh the advantages of using the simpler

Pascal form.

Economic time series consisting of observations taken at
intervals of less than a year, say at quarterly or monthly intervals;

exhibit a much more complicated sort of behavior than is easlly
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describable in terms of the simple two-component model discussed

above. In particuler, if I observations per year are taken at

equal intervals (I=4 for gquarterly data, L=l2 for monthly), the
spectral density will nearly always exhibit peaks of a variety of widths
at the so-called seasonal frequencies: 2%5- , k=1,2, ..., L/2 if

L iseven, or k=1, 2, ..., (L-1)/2 if L 1is odd, While such
behavior can be generated by relatively high-order autoregressive schemes,
it has been found easier and more useful to explain such behavior in terms
of three-component models having separate compoﬁents for predominantly
low frequency movements, often termed "trend-cycle," and seasonsl move
ments characterized by a spectral density with peaks of more-or-less
equal helght at seasonal frequencies. The paper by Couts, Grether,

and Nerlove [6] analyzes a nonstationary model of this type and applies

it to U. 5. unemployment data; Grether [13] analyzes a related stationary

model,

The possibility of introducing a third component in the derivation
of distributed lags also introduces an interesting solution to an old
problem in the application of the standard results to monthly or
quarterly data. It has always been something of a puzzle whether or
not the simple types of distributed lag models could be directly applied
to dats contalning an important seasonal component. The problem has
typically been handled either by using seasonally adjusted data or by
introdueing dummy variables into the behavioral relation to be estimated;
see Wallis [36, pp. 17-19 and pp. 48-51]. Neither of these solutions
appears 1o be completely satisfactory. While it is, in fact, possible

to investigate rather complicated lag relations using seasonally
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unadjusted data by means of spectral techniques, as Wallis does, a

more promising approach ls suggested in the first section of this paper:
Once we divide a time series into several unobserved components and derive
a distributed lag relationship by assuming that economic agents react

not to the observed series but to én estimate of one of the unobserved
components, it is a short step to the hypothesis that economic agents
react in distinct ways to several estimates, each of a different

uncbserved component., Thus, for example, consider the following model:

[
1

t.-.-yt-i-st-i-u
(3.44) i
|

~

h, = a§t + be, + e

t % t 7

e

where Xy is observed and Yg 2 S oo and u, are unobserved

components which have specified stochastlic properties making it

8o

plausible, say, to interpret them as "trend-cycle,” "seasonal," and

"irregular."” The variables §t and 8, are estimates of Yy and s

t t
respectively, based upon the assumed stochastic structure. The second
equation of (3.44) simply states that the variable b, which might be
inventory investment for example, is differently affected by firms'
estimates of "trend-cycle" and their estimates of the “seasonal."

e, 1s a dlsturbance in this relationship.

t
Following the same procedure adopted earlier in this paper, we

will derive a distributed lag relationship between ht and current and

past values of x by replacing ?t and ﬁt by their optimal extractions

based on an assumed stochastic structure. The main difference between
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the final result in this more complicated case and our earlier results
based upon a two-component model, is that the former now involves the
parameters of the behavioral relationship in an essential way. Indeed,
as will be brought out in the next section, one might plausibly estimate

such a relationship by creating two distinet time series, §£ and St R

from the single observed series, x and using hoth as independent

-t 2
variables in a statistical analysis. Alternatively, knowledge of the optimal
extractors in parametric form may lead to transformations of the eguation

to be estimated.

Suppose then that we augment the first equation of (3.4k4) by two
more and certain other assumptions which suffice to determine completely

the stochestic structure of the cobserved series xt :

xt = yt + S_b + ut
(3.15) Uiyt = v,
: S(U)st = W o,
-~

where {ut} s [vt] , and {wt} are independent, zero-mean white

noise inputs characterized by variance rstios

2 2
L e My %y
E 2 - 2 7’
ut Gu
and 2 2
" wa _ Uw
Eu,t Uu
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and where Q(U) and S(U) are polynomials in the backward shift
operator U chosen so as to meke the interpretation of Vg and 8y
a8 "trend-cycle" and "seasonal" plausible. At the present time, the
details of just how such a choice should be made are the subject of
intensive investigation. However, in generasl, it seems clear that

Q(U) should be a relatively low-order polynomial in U such that the
spectral density of Ty will have relatively high power near the origin
falling off not too sharply with increasing frequency, and S(U) should
be roughly the same sort of polynomlial, not in U itself, but rather in
UL , where L 1s the number of times per year we observe Xy o
Grether [13], for example, has analyzed models of the form (3.45) with

I’Q(U) = (1-a0)”

/

(3.146)
lS(U) = (1 - oul)®

with m=n = 2 l&/

*

In the three-component model there are three possible

extractions, ;t P gt , and 1 and, hence, there are three

t 3
generating transforms relating these estimates to the current and past

values of the observed variable xt :

gﬁ(Z)
—l)

(3.47) 2 z) = —

GeB(Z) B(z +

the generating transform for the weights in

o
Y. = L yX .,
t 3=0 9 T~
1 By (2)
E

UEB(Z) B(z;l) +
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the generating transform for the weights in

o

B, = Jio q)jx‘b—j )
and
g (z)
(3.49) Wz) = - = ;
o B(z) B(z )

the generating traneform for the weights in

A [--]

u = & ¥X, . .

t J=0 j t-lj

As before B(z) and ¢© are the appropriate factors in the canonical
factorization of gxx(z) + Of course, only +(z) and o@(z) are

"~

relevant directly since only §t and B, enter the behavioral relation-

ship under consideration. Nonetheless, ¥(z) is of interest because

it can be shown that

(3.50) r{z) + o(z) + ¥(z) = 1.

This follows because

(3.51) Bee(z) = 8,(2) *+ 8 (z) + g (2),

on account of the assumed independence of {ut} s [vt] , and

{Wt} , £0 that

L [ eyt= _‘ L 8, (2) L |2
- 2 = +
(3:52) 023(2) ;:'“B(z":l')___l+ UQB(Z) sz(z_l) + UEB(Z) sz(z_l) +
. 1 8. (2) .

UEB(Z) sz(z-l) +
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Now the expression on the left is the generating transform of the

optimal wvy-step predictor for xt 3

the right are the generating transforms for the optimal v~step predictors

while the three expressions on

of the components Ve 2 By s and LA For v =0, of course, these
are nothing more than the optimsl extractions of §t ’ gt , and Gt .
For v =0, however, the optimal predictor of Xy mist be X, itself;
clearly —_
1 GEB(Z)B(Z-l) 1
2 =1 *
o"B(z) B(z ™)

Thus, (3.52) implies (3.50) when v = O ,

As before, the independence of {ut} s {vi) , and now [Wf}
implies
g (2) = & () = PRzl
v Yy
(3.53) 9§ g (2) = g, (z) = o°/s(a)s(zF)
£x s8
2
B(Z) = 8,(2) = of .
-
0_2
Since —2 = o2 on account of the normslization b =1,
-] u o
B(z™) |,
2
%y
(3.54) ¥(z) =
o“B(z)
so that
2
“u
(3.55) 7(z) + o(z) = 1-——— ,
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We need only determine one of the two generating transforms and the
expression G§/02B(Z) 3 the remalning generating transform is then
deduced from (3.55). This may be of considersble practical importance
since one of the transforms, usually ¢(z) , may be guite difficult to

obtain directly. For the general model (3.45) we readily obtain

;- 5 — —
Gu)\, 1
Ay T
a 2 z Z Z
(3.56) $ - A+
W - . )
o(z) =
_ o“B(z) | s(z)s(z"Hm(z"") |,
G2
= ] e e—— 1 - A
o“B(z) Q(z)Q(z"l)B(z-l)

The function B(z) is obtained as

N
I (1 - ﬁjz)
(3.57) B(z) = <=
Q(z)s(z)

where Bj y =1, +e0; N are the N roots of the polynomial
\ ~1 -1 -1 -1
(3.58) P(z) = as(z)s(z ") +npalz)e(z ") + 8(z)s(z 7)q(z)al(z ") ,

which lie outside the unit circle. If we assume Q(z) is of degree n
and 8(z) 1s of degree mL , then P(z) will be of degree 2N where
N=n+mlL. Since P(z) is symmetric in z and 2t , the 2N roots

will come in pairs; one member of each pair llies outside the unit cirele,

N . 2 2 .
the other, inside. The variance o~ 1s determined as co where c¢ is
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chosen so as to make

: N
(3.59) P(z) = ¢ I (1-8.2)(1-~p.z")
jel J 3

equal to the right-hand side of (5.58).£§/

Having obtained ¢(z) and ¢(z) , we readily obtain the

second eguation of (3.44) in distributed lag form

(e}

s = + °
(3.60) b f—o (ayj bcpj)xt_j +‘eJG

Note that the behavioral parameters & and b now enter into the lag
structure in a more intimate way than in the distributed lag relation
resulting from a two-component model; in the latiter case the behavioral

parameter may be factored out of the lag distribution.

As a specific illustration of the type of model implied by
(3.44) and the stochastic specification (3.45), we refer the reader to
the model anslyzed by Grether [13,7pp° 16-19] , namely (3.46) with
n=m=¢2 and L unspecified. The distributed lag relation implied
by Grether's results is extremely complicated and does not resemble any
lag distribution so far proposed, although, like nearly everything, it

may be well approximated by one of Jorgenson's rationald distributed lag

functions, [17].£I/
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IV. BSome Implications for Estimation

The general problems of estimating relationships involving
even slmple distributed lags are well-known. Put simply they are,
first, the strongly nonlinear way in which the parameters of the lag
distribution enter the relationship, and, second, the difficult problems
raised by the possibllity of serial correlation in the disturbances of
the relation to be estimated. This last problem is especially severe
when the relationship to be estimated 1s transformed into an autoregres-
sive cne in order to circumvent certain of the difficulties caused by the

nonlinear way in which the parameters of the lag distribution enter.

To illustrate these problems consider the lag distribution given

by (3.13) and the relationship

(k.1) h

= - -
t a¥y €

t

where the constant term has been dropped for convenience. This simple
case contains all the elements of the more complicated models discussed

above. By virtue of (3.12), we may write

(4.2) (1 - pUn, = a(%ﬁ)xt + (1 - pU)e, ,
or

, s
(3.2') h, = a(~=aé‘)xt +Bh . te ~Be ..

Clearly, if {et) was white noise to start the disturbance in (L4.2')
will not be white, In ordinary regression, the effect of such seriai cor-

relation would be loss of efficiency in the estimation of the
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regression slopes and bias in the estimation of the residuval variance
and standard errors. In the estimation of autoregressive relationships
the problem, however, is more serious. The estimates of a(ggg) and B

will typicelly be inconsistent as well as inefficient.

Ekcept for the parameter « (which mekes (4.2) unidentified
without further assumptions}, the relationship poses no really serious

estimation problems other than the nonlinear way in which the parameters

enter provided we assume [et] is white noise. ILet @ =1, therefore,
end

(4.3) e, = & -~ Be . .

The generasting transform of the autocovariances of the sequence {et}

is 02(1 - pz)(1 - Bz'l) where oF is the variance of e, - Thus,

the variance-covariance matrix of ¢ = (el, ey eT)' is

1+ -8  0... 0
(ko) Q= Bee' = o - 1+8% -p... 0 .
O "Bl'{-ﬁeoon O
o 0 O+ooe 1+ 32

Thus, 1f e_ were assumed to be distribuled normally with zero mean

t
and variance 02 » We could set up the logarithmic likelihood function
in a straightforward fashion. As Klein [18] shows, maximization in the
usual way leads to highly nonlinear equations. Various numerical

methods are available for the sclution of this type of problem; see

Traub [35]. Alternatively one may consider this a problem in the
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minimization of a weighted sum of squared residuals, i.e.,

s gl
(5)  min {(n - e )" 0w - o))

t
where h = (hl, cooy hT)' , b= (ho’ cees hT-l) , and
X = (xl; Y XT)' . This is equivalent to maximizing the logarithmic
likelihood function if the term involving det @ 1is neglected.

Asymptotically, the procedure leads to the same estimates.lg/

When @ is not assumed known as above, serious difficulties
arise. Let 30 be an estimate of the coefficient of x4 in (4.2')

and let 6 be an estimate of the coefficient of ; then any pair

ht-l ?
& and a satisfying the equation

(46) & = B

~
8 = a
Q

will maximize the likelihood function if ao and ﬁ do. This

identification problem clearly arises in all of the models discussed

above in which the dlstributed lags are assumed to be a resull of optimal
extractions of components of stationary time series. However, as we shall
see shortly, the very assumptions giving rise to the difficulty provide

g natural solution.

If nothing is assumed about the stochastlic structure of {et} 3
except perhaps of the most general sort, the problem of estimating (4.2)
becomes more than one of merely great computational difficulty. This
is not, it should be emphasized, intended to minimize severity of the

computational problems arising in even very simple distributed lag
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models, but to stress the entirely new dimension given to the problem
when the covarliance structure of {et] is known only in a very general
way. Provided one were willing to make sufficiently strong parametric
assumptlons about the covariance structure of {et] it is again true
that maximum-likelihood methods may be employed. Iet [et] , for

exemple, be generated by a first-order sutoregressive scheme:

(%.7) e, - oe. . = €

where {et} i1s white noise. Then, assuming @ =1, (4.2) becomes
(1.8) (1 - 8U)n, = a(l - B)x, + (1 -pU)(L - p0) " e,

or

(4.81) (1-le-wmtxﬂl~mu—pw%+(1-wkt»

Equation (4.8') shows that maximum-likelihood estimates are possible

but computationally complicated.&g/

When dealing with monthly or quarterly data, it will seldom
be reasonable to assume anything so simple as first-order serisl correlation
of the disturbances. In general, the presence of seasonalilty induces much
higher order serial correlation. If we are willing to provide a parametric
stochastic structure, we can again achieve maximum likelihood estimates,
but our ability to specify the nature of the stochastic structure in such
fine detail might well be limited. Under these circumstances, methods
of the sort suggested by Hannan [l6a] and further elaborated by
Dhrymes [7] should prove useful. If the spectrum of the disturbances

were known, as of course it would be 1f @ were fully specified, a
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form of generalized least squares would be appropriate for estimating
distributed lag relationships in the form (%.2). The trouble, if [et]

is assumed to be white noise, is that Q depends on one of the parameters
we are trying to estimate. When Q , however, is more complicated, it
may well pay to ignore this information. Hannan's Procedure, then amounts
to replacing Q by a consistent estimate and proceeding, in the
frequency domain, to obtain generalized least-squares estimates of the
regression parameters. The advantage of working in the frequency domain
is that relatively complicated stochastic structures of the disturbances
in (4.2) may be consistently estimated without tight parametric
specifications. The price one pays is that a great deal of data is
required before one can do this in a reasonably refined fashion. The
consistent estimate of § , or its eguivalent in the frequency domain,
must be obtained in a "first round” in which consistent estimates of

a{l ~B) and B are obtained. The natural estimates in this case

would be found by using Xy and X,_, @S instruments. The estimated
residuals are then used to compute estimates of the spectral densities
function of {et - ﬁet_l} +« Even apart from the dependence of this
spectrum on one of the parameters to be estimated, the "second-round"

estimates are known not to be fully efficient when the relationship to be

20
estimated containsg an autoregressive component;*“/

The general conclusion one may draw from consideration of even
this simplest of cases, is that the problem of inference about distributed
leg felationships is exceptionally complex., Nonetheless, the interpretation

of certaln distributions of lag as optimal extractions may make inference
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about at least these lags easier. T?e rationale is a simple one:

I we believe that the lags are due to the fact that the economic agents
under consideration rgact not to the observed values of certain variables
but to unobserved components thereof, and if, further, we are willing to
specify the stochastic structure of the time series involved in order to
obtain parametrically specified distributions of lag, it is not implausible
to assume that the perception of this structure by the economic agents in
question is reasonably accurate. The significance of such an additional
assumption is that we can now introduce a prior stage in our analysis of
behavior: We can try to obtain optimal extractions of those components
which we believe to enter the behavioral relations directly from the
observed time series. BSuch estimates may then be used in place of the
complicated distributed lag structures deduced above. Such an approach
has the further advantage thal the identification problems noted above

do not arise in the second stage of the analysis. If, for example, prior
estimates of Q@ and P are used to obiain §t in (4,1), and then this
series is used to estimate a , the specific ldentification problem

occurring in connection with (4.2) does not arise.

The approach suggested does not, of course, solve all difficul=-

ties; indeed, it creates several new ones,

First, the estimation of the optimal extractors used in
estimating the behavioral relations regulres estimates of parameters such
as @ and B appearing in the lag distributions derived earlier in this
paper. Estimates of such parameters with desirable properties are not
trivial to obtain. Crude estimates can be found easily, as, for example,
in Couts, Grether, and Nerlove (6, pp. 18-19], by matching theoretical
spectra to the observed spectrum of the time series to be decomposed.

But the properties of such estimates are not well-known, although it is
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fairly obvious that they are not likely to be very good. Both for this
reason, and because we do not have infinite past series of observations,
the components entering our behavioral relations must be considered to be
measured with error. In a multi-component model, the errors attaching to
different component estimates cannot assuredly be assumed independent.

Tt may, however, be reasonable to assume the errors are independent of
the disturbance in the behavioral relation to be estimated. As a first

approximation, at least, we may be prepared to overlook such difficulties,

Second, it is apparent that the behavior of the series {ht] s
which we teke as dependent in the behavioral relation to be estimated,
must cast some light on the stochastic structure of the series {xt]
under the assumptions maede. It is important in view of the difficulties
of estimating this structure to try to take all information into account.
By breaking the problem down into two stages, we have, in effect,
separated ourselves from this additional information. Such a view,
however, is perhaps too pessimistic, for knowledge of the behavioral
Darameters enables us to use information on the dependent variable to

} .

make further inferences on the stochastic structure of the series {xt
Furthermore, 1f perceptions of this structure on the part of the economic
agents are assumed to be correct, the same optimal extraction will appear
in several relationships (e.g., the same “permenent income" appears in
consumption functions for categories of total consumption). This means

that more than one dependent variable bears on the nature of the series

(=]

-
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Finally, the problem of serial dependence of the disturbances
in the behavioral relation remains. However, neglecting the difficult
matter of errors of measurement in the extracted components, it is apparent
that the approach suggested reduces the problem to a different order of
complexity, for now we do not have to take into account the dependence
of the stochastic structure of the disturbances upon some of the very
same parameters we wish to estimate. Furthermore, we are not now
trying to estimate an autoregressive relationship. This is true whether
we use estimates of & and B to obtain direct estimates of §t above
and estimate a in (4.1) or whether we use these estimates to define

new variables

(4.9)
xg = (a_&@') Xe

and estimate

#* *

. = +
(%.10) LW ax, €,
where ¢  1s given by (4.3) and has variance-covariance matrix

depending on P as well as the stochastic properties of {et] .

The importance of deducing the explicit lag structure from
explicit assumptions about the structure of the cobserved time series
is two-fold. First, we obviously need such & lag structure to estimate
the components entering the behavioral relation. More important, however,

is that knowledge of the explicit form of the lag structure will often
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rermit a greatly simplifying transformation to be carried out. One such
is given in (4.9) but the power of the method may be better appreciated
by examination of the case in which §t 1ls determined by past values of

x, using the weights generated by (3.43). 1In this case, prior estimates

t
of a and Bl, seny ﬁn Permit us to meke the transformation

n
*
hy = 51 (1 - [BJU)ht_
(4.11) 9 J
n-1 .
xf: =(l){1 + Z g {1 -~ w)J} X s
o ¢ J=0 X

which are both finite moving averages. A relationship such as (4.10)
may then be estimated. Estimates of a and of the spectrum of {et]
then permit us to draw Inferences from a cross-spectral analysis of

ht and X about the parameters o and Bl, ey Bn N
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FOOTNOTES
Friedmsi. {12, pp. 142-152]. Friedman also allows for trend in
his estimetes, but this need not concern us here.

This section is based on Whittle [37], Chapters 1-3, 6, and 8,
and on Grether [13].

I.e., have means which do not depend on the time index t and
autocovariances which depend only on the lag involved and not on the
absolute value of the time index.

Note the normalization b = 1 has been imposed. We could equally
well have imposed the alfernative normalization o2 =1,

Because of the nature of gyy(z) these coefficients cannot be zero.

Tt follows from the fact that B is the root of A + (1 - az)(l - ozz'l)

which is less than one that p <a if o >0 . Thus, the expression

Eii%ji is positive. If «a < O, we choose the other root (now less

than one), and then this value can be shown to be greater than « ;

in this case, therefore, Eii%Ji >0 too.

We cannot from above, since & must be less than one for convergence
of most of our expressicnsin the preceding pages,

B now depends only on the ratio of variance 1 , but it is still
less than 1 .

It is easy to show as well that the same formula suffices for
predictions of Vigy ° To do so, observe that when we replace Y

in the calculition of gyx(z) by ¥y, s We obtain not gyy(z)
but z)fz" .
&,,(2)/

All values so obtained must obviously be equal. This result is_l
obtained most simply by equating the coefficients of § =z + z
in the two representations of P(z) .

The value 0.75, curiously enough, although an arbitrary choice, seems
to have been almost inspired. Even the tides in Sidney harbor seem
to follow a quasi-difference scheme with parameter 0,75! See

Hamon and Hannan [15, p. 603k].
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Thus r =1
Q
I = Zﬁ + ZB. +nqa+ EB.

o) e i

and sO on.

It would be a useful exercise for the reader to show that {3.43)
reduces to (3.12) when n =1 . This is a great deal simpler than
deducing the limit as a1 ,

When € =1, this is the nonstationary model analyzed in Couts,
Grether, and Nerlove [6]. L , of course, is typically 12 or &,
since monthly or quarterly data are usually the subject of analysis.

Of course, we will certainly wish to assume Q(z) and S(z) only
have roots outslde the unit circle. Again the nonstationary cases
arising when they have roots on the unit circle may be handled
easily in the analysis which follows by our earlier device in which
we let certain roots outside the circle tend to limits on the circle.

The algebra necessary to determine ¢ explicitly in terms of the
roots of Q(z) and S(z) is s0 similar to that carried out above
that we shall not present it here,

For it to be an exact special case, both ¥(z} and @(z) must be
expressible as polynomials of finite degree divided by similar
polynomials. This is clearly the case for the lag distribution asso-
ciated with the generating function in (3.h3), but it is not obvious
that Grether's results permit of a similar characterization.,
Jorgenson [17, pp. 139-142] shows, however, that an arbitrary
distributed lag function msy be sapproximated to any desired degree

of aceuracy by & rational distributed lag function.

Solow [33] suggests this procedure for the even more general Pascal
lag distribution and shows (pp. 400-401), that one can express

the resulting problem as one in concave programming. See also
Jorgenson [17, pp. 145-148]. Use of "weighted regression” amounts
to treating (4.2') as an errors-in~variables model with one
varlable measured without error; viz.,

(b, -e) = B(h,_, -e ,) + a(%é)xt .

One can see that B and 6 are separately identifiable as follows:
Let a, be the coefficient of x_ in (4.8%), let a,_, be the

1 t 2
coefficient of x a of h and ah of h o Then

t-L’ 3 t=1 t-2
either of the following relations determine o

(Footnote 19 continued on next page)
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Footnote 19 continued from Page 55.

a8

”~ l
D) - = —
(i) a5 p (1 + ag) + 1

or

~ ~ al
- Ly .
(ii) 8, = p{p(a) l}
Because two relations may be used, E and B are in fact over
1dent1fied. One might also consider estimating

B and p from

6"’5:-—{—]3
(1ii) {53 - e,

see Malinvaud [21, p. U69}. However, a little reflection shows
that _the two quadratics obtalned from (iii), one in B , the other
in p , have identical roots. Although there are two, there is

no way to identify one as ﬁ and the other as p except by making
use of the other coefficients, & and a, -

See Amemiya and Fuller [2].
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