Yale University

EliScholar — A Digital Platform for Scholarly Publishing at Yale

Cowles Foundation Discussion Papers Cowles Foundation

3-1-1967

The Role of the Neyman-Pearson Lemma in the Theory of
Discrete Search

Joseph B. Kadane

Follow this and additional works at: https://elischolar.library.yale.edu/cowles-discussion-paper-series

b Part of the Economics Commons

Recommended Citation

Kadane, Joseph B., "The Role of the Neyman-Pearson Lemma in the Theory of Discrete Search" (1967).
Cowles Foundation Discussion Papers. 453.
https://elischolar.library.yale.edu/cowles-discussion-paper-series/453

This Discussion Paper is brought to you for free and open access by the Cowles Foundation at EliScholar - A
Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Cowles Foundation
Discussion Papers by an authorized administrator of EliScholar — A Digital Platform for Scholarly Publishing at
Yale. For more information, please contact elischolar@yale.edu.


https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/cowles-discussion-paper-series
https://elischolar.library.yale.edu/cowles
https://elischolar.library.yale.edu/cowles-discussion-paper-series?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F453&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F453&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/cowles-discussion-paper-series/453?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F453&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

Box 2125, Yale Station
New Haven, Connecticut

COWLES FOUNDATION DISCUBSION PAFER KO, 220

Note: Cowles Poundation Discussion Papers are preliminary
materials eirculated to stimlate discussion and
eritical ccament., Requeste for single copies of a
Paper will be filled by the Cowles Foundation within
the limits of the supply. References in publications
to Discussion Pepers (other than meve acknowledgment
by a writer that he has access to such unpublished
material) should be cleared with the suther to protect
the tentative character of these papers.

THE ROLE CF THE NEYMAN-PEARSON LEMMA IN THE
THBORY OF DISCRETE SEARCH

Joseph B. Kadane

March 3, 1967



The Role of the Neyman-Pearson Lemma in the
Theory of Discrete Sesrch¥*
by

Joseph B. Kadane

1. Introduction

Suppose an object is hidden in one of n boxes. It is in box %k

with probability Py k=1, .v.p, n. If it is in the kth box, a seerch

t
of the k h box may overlook it with probability ak, 0 < ak < 1. The events

Ej k that the cbject is found in the jth search of the kth box are disjoint,
2
and
(1) P =Pr [E ]=p o (1-a)
Jk 3,k k % %

for k=1, ..., n and all positive integers Jj. Suppose alsc that each
search of box k costs ck > 0. The main problem considered 1n this paper is
how to search in order to maximize the probability of finding the objeet spending

no more than g fixed emount C.

For the moment we leave aside the consideration that if a procedure
speciflies that the tenth search of box 1 1is to be conduected, the first nine
searches must have been conducted. This 1s the requirement that a procedure
be feasivle. Later we will show that the best procedure for the more general

problem is feasible, and hence is the best feaslible procedure as well.

*
Research underteken by the Cowles Commission for Research in Economics
under Contrect Nonr-3055(00) with the Office of Naval Reseserch.
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Probability measure and cost measure are both measures on the space
EEj,k! 1<k<nl<j<w ] of searches. If both had total measure equal
to 1, our problem would be roughly the problem solved by the Neyman-Pearson
Lemme.. This powerful result tells how to choose a set (eritical region) so
that its integral with respecﬁ to one measure (null hypothesis) is less than
or equal to a fixed o« (size of the test), end its integral with respect to
another measure (alternative hypothesis) is as large as possible (power of the
test).
Therefore the first therorem of this paper extends the Neymen-Pearson
Lemme. to arbltrery o-finite measures. This result is undoubtedly not new;
however it does not appear to be conveniently availeble. It is stated in
Section 2; the proof is a straightforward generalization of the proof in
Letmann [7, pp. 65, 66 ]. Using this theorem, Section 3 discusses the search
problem stated above.
The results generalize a result of Chew [4], and give the solution
to a slightly modified version of a problem stated by Mosteller in Bellman
[L,pp. 49, 50]. A corollary generalized a theorem of Staroverov {9], and bears
a close relation to work of Blackwell [3) and Black [2].
In Section k, this theory is extended to searches with arbitrary
probablility Pj,k of success at the jth segrch of box k, and arbitrary

cost C, 1
J,k

A Bibliography on search problems is given in [6].
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2. Extenslon of the Neyman-Pearson Lemma

Theorem 1 Let (¥ ,B) be a measursble space, and let u; and u, be eny
non-negative o-finite measures on (¢ ,H). Let i be eny measure with
respect to which 4, end B, ere absolutely continuous (n = By * oy will

suffice). Let fl and f2 be the Radon-Nikodym derivetives of My and Hos
respectively, with respect to u.

Iet B = f £y (x) dp(x) = pl(%), end let « be a number such

Xx

that 0 <@ < B <®. Then
(a) there exists & function ®(x), O <&(x) <1 and enumber r, 0 <r <,

such that

(1) Jo(x) £.(x) au(x) = a

; X)) > b 4
(2) ®(x)_l £, (x) >r £,(x)

0 f, (x) <r fl(x)

(b} If @ satisfies (1) and (2), then it maximizes

[ o(x) £, (x) du(x) subject to
X

Joo(x) £; (x) du(x) <a end 0<0(x) <1
x

(¢) If ¢ maximizes [ ¢(x) £, (%) du(x) subject

to f tb(x)fl(x) du(x) <o and 0< Q0 (x) <1,



- b .

then for some r it satisfles (2) a. e. p provided [ @¢(x) fe(x) du(x) <= .

It also satisfies (1) unless there is & functlon ¢* with

£ 00 500 ) S e 0n (1) ) 0w =, (%) -

Thus even in the infinite-measure case the ratio of densities

(likelihood ratio in the testing problem) 1s the appropriete decision function.

The unfortunate device of the funetion ¢ 1is forced on us by the
necessity of randomizetion (or something similaer) in the case of awkward o's.
If (and only if) «a is a partial sum of costs of some optimal policy, & can
be teken to have only the values zero and cone, end the awkwardness does not
occur. Thus the really general case in which the fixed cost is lnsisted upon
1s beyond the scope of this method. However this method does give very simple
upper and lower bounds for the probability that the optimal policy will find
the object.

This issue, and the problem of feasibility, will dominate the dis-

cussion in the next sectlon.
3. Discrete Search

A policy is a set of palrs of integers (j,k) specifying the searches
to pe conducted. A policy is feasible if the inclusion of (j,k) implies the
inclusion of (j-1, k) for Jj=2, ..., and k=1, ..., n.

For the moment we will allow randomized pollcies, whiech specify for
each pair of integers (j,k) the probebility ¢ (J,k) that (j,k) is in-
eluded in the policy. The probabllity that such a (perhgps not feasible) policy

will find the object is

I. ok 07" (1)

The expected cost (with the expectation taken only over the randomization of



the policy) is

II. 2o (3,k) c,
J,k

We wish to find a policy which maximizes the probability of finding the object

spending no more then the fixed amount C.

In order to apply the extended Neyman-Pearson Lemme (Theorem 1),
let 9{ = :fL(j,k) | 3>1,1 <k<n, J and k integers }and let{B de the class

[2] o fd P — — ‘ 2 — (j_l -
of all subsets of 76 . Now let p {Fj,k)}-— Chs My = L‘J,k)}‘— Py % (1 ak),
and let pn be counting measure.

We require, then, that 0 <o =C <B = ». Actually we can assume
that O < C < 3B since if one 1s permitted to spend B , the choice of all
searches is trivially optimal, and if one is permitted no cost, only free
searches are possible.

Then from Theorem 1 we know that
(a) there exists a function &(J,k), 0 < ®(j,k) <1 end a number r, 0 <r < o
such that

oo n

(1) z % o(i,k) e = C
j=1 k=l

. j-1.
(2)  o(3,k) = {l 1 po (1) > ”k\
0 if pkaﬁj;l (l-ak) < rck’)

(b} 1f ¢ satisfied (1) and (2), then it meximizes

=]

2 o) el (1)

J=1 k=1



subject to
© n

Z 2 ®J,k) e SC and 0 < ®(x) <1
3=1 k=l
(c) If © maximizes .§ f P, % (l-ak) o(j,k)
J=1 k=1
w n
subject to £ & 9(j,k) c. < C, then for some r it satisfies (2) (since
3=1 k=1

totel probability is less then or equal to 1). It also catisfies (1) {since
¢ < B by assumption).

Then it is clear that we wish to include in our search all pairs
(i,k) for which

Py (o)

)i+

and exclude all those for which

p o (1)
ck < r ,

There are two possibilities for interprefing ¢ when it is neither
zeroc nor one. The first, of course, is the idea of a randomized search, in
wnich ©(j,k) 15 the probability that the (Jj,k) seerch is included. It is

clear that at most one search need bhe randomized.

The second is to permit a partial last search, such that in the last

search one ¢8n expend some fraction s of the cost Sy of that cearch, and

have probability s qui-l(l~ak) of finding the object in that search.
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Under either of the above two interpretations of & when it is
neither zero nor one, the cum I is exactly the probability of finding the
object, and the sum II 1s exactly the cost (averaged in the case of
rendomization). Thus in both cases, part b) applies to give optimality.

Let us say that a policy is locally optimal if inclusion of (j;k' and

exclusion of (Jj,k) implies

by (o) 5 mg ()
Cpr ck

By part (¢} of Theorem 1, only locally optimel policiec can be solutions to
the problem.
Furthermore, all locally optimal policies are feacible since

2,08 M (1-cy )

k

is monotone decreasing in j for all k . Thus locally optimal policies, and
only locally optimal policies, are solutions to the problem of finding a
feasible policy meximizing the probability of finding the object spending no
more than C, provided either a partial last search or randomization is

permitted.

It is possible, of course, to consider the problem in which neither
of thece interpretations is acceptable. In general this is an integer programming

problem similar to the knapsack problem [5, p. 517 ff].



Because the cost of each search of box k 1is the same, and pj,k decreases
ir J, any optimal solution of the unrestricted knapsack problem will be
feasible. Algorithms for this problem are discussed in [10, chapter L4 and 5].
See also the references in [11],

However, from the above theory it is clear that both upper and
lower bounds are obtainable. Thus the procedure with the largest probability
of finding the object in a fixed cost € must have probasbility no smaller
than that of the largest (! smaller that C, which is a partial sum of

3

costs of the policy defined by decreasing

Pia}j:—l(l-ak)

k

Also, of course, the largest probability of finding the object in a fixed
cost C when a partisl last search is not permitted must be no larger than
the probability of finding the object if a partial last search is permitted.
These bounds can be expected to be very close if the ck's are much smaller
than C.

The special case in which e = 1 for all k has been studied
by Chew [4]. He found thet the policy of taking largest pkai"l(l_ak)
maximizes the probablility of finding the object in a fixed number of searches

(cost when ¢ =1 for all k). Then for any integer C a partial or

k
randomized last search is not required, and Theorem 1 applies to give Chew's

result.

To summarize, we have the following result:



Theorem 2

Any policy which maximizes the probability of finding the object
spending no more than a fixed cost C, 0 < ¢ < », includes all searches for

which

pkozf;l( L-o )

k

>r

for some r, excludes all those for which

pkocf;'l( 1-a )
C

k

<r

j-1
l_ :
and includes enough of those with pkak ( Ok): r to spend exactly C
K
Any such policy is feasible. A partial or randomized lact search is unnecessary

if and only if C i3 & partial sum of some optimal policy.

We conclude this section by discussing a closely related problem,
that of finding & sequence of searches which minimizes the expected cost of

finding the object.

In the problem in which randomization or a partial laszt scerch
3 o T o o r N - 3 ‘j—l -
is permitted a sequence ordered by decreasing N (1 ak) /ck
and including all searches has the property that it meximizes the probability
of finding the object with any fixed expenditure ¢ . It must minimize the
expected cost of finding the object. (Obviously any procedure hoping to finite
n

expected cost must include all searches and we must sssume % P = 1.)
k=1

However the expected cost any sequence when stopplng iz permitted the
mement the cobject is found corresponds to the cost of all unsuccessful searches
plus half the cost of the search in which the object is found in the discrete

case. Hence we have
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Corollary

Any sequence including all possible cearches and ordered by decreasing

pkaf;"l(l-ak)
‘%
minimizes the expected cost of finding the object, with the searcrer charged
for only half the cost of the successful lact search.

Steroverov [9] discusses the special case e, = 1, Pj,k = pk(l_P)J-l .
and proves that the expected cost minimizing procedure chooses according to
decreasing

13'k(1-P)j"l D .
Since the costs of all searches are equal, minimizing the expected cost of all
unsuccessful searches plus half the cost of the successful one is equivalent to
minimizing the expected cost of all searches, successful or not. Thus Staroverov's
result is a special case of the corollary sbove.

Blackwell {3] and Black [2] show that the procedure in the corollary also
minimizes the expected cost of all unsuccessful searches plus the cost of the
successful last search. In a later paper, using entirely different methods, I

will show that this same procedure minimizes the expected cost of all unsuccessful

searches plus any fraction f of the cost of the last search, 0 <f<l.
i, A More General Discrete Search

Suppose now that the object will be found in the jth search of the

Xk and that the jth search of the kth box will cost

cjk > O to conduct. The purpose of thig section is to show to what extent the

kth box with probebility Pj

argument of section 3 carries over to this case.
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Making the obvious extensions of definitions, we see that once again
theorem 1 applies, and that the critical quantity is ij‘/cjk . IT ij/cjk
is monotone decreasing in Jjk +then any optimel policy is feasible. Thus we

obtain the following summary statement:

Assume that ij/cjk is monotone decreasing in j . Any policy which
meximizes the probability of finding the object spending no more than a fixed

cost C, O0<C< & Cjk includes all searches for which
3ok

ij/cjk >

Tor some r, excludes all those for which

ij/cjk <r
P.k
and includes enough of those with 64— = r to spend exactly C . Any such
Jk

policy meximizes the probability of finding the object spending no more than C.
Any such policy is feasible. A partial or randomized last search is unnecessary

if and only if € 1s a partial sum of some optimal policy.

Corollary

Any sequence including all possible searcnes and ordered by decreasing
ij/cjk minimizes the expected cost of the unsuccessful searches plus half the cost

of the successful search.

However a special difficulty can occur in this more general case for
the problem of minimizing the expected cost. Consider, for example, a two-box

situation vhere



= l :\—X L_ .

le =3¢ (j-1)! X le = 1/2
-1 2

Lo - A J _ A 2 -\
CJl BT G ER ) z le = 5= A7+ 1-e™ "]
P, = (/)" £P., = 1/2
Je je
ch = 1
P, P 1

Then 4L oogrl= 1+ 1/, and g2 (1/2)70

Cip 3 Cip

Thus to maximize the probability of finding the object spending C

2
< % 'Xz + l-e—k], as many secarches as possible of box 1 should be conducted.
2
For C = % 22 + 1-e™] all cearches of box 1 should be conducted. For
Y oY
¢C=3 I + l-e 7] + 1, all searches of box 1 and the first search of box 2

should be conducted.

For the problem of minimizing the expected cost of finding the object,
however, order matters, and it would be optimal, if it were possible, to have
all searches of box 1 followed by all searches of box 2. This difficulty arises
because the solution to the problem of maximizing probability is a get, while
the solution to the problem of minimizing expected cost is a sequence. For
the above problem, only €-optimal solutions exist to the probiem of finding
the expected-cost minimizing sequence.

Thus the corollary above is true, but in this case no sequence in-

cluding all possible searches and ordered by decreasing ijﬂijk exists.
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We have assumed that ij/cjk is strictly monotone decreasing in j . Since
thece ratios are bounded from below by zero, for each k

= lim P,

P Jk/cjk exists ,

“k
Becauce of the decrcesing cheracter of the ratios, 8, is never attained. In
the example above, al =1 and by = 0. A necessary and sufficient condition
thet a sequence including all possible searches and ordered according to de-
crecasing ij/cjk exist is that there exists an a such that
(3) a = a, k=1, ..., n.
Thus in particular if Cjk's are bounded sway from zero, (3} will be satisfied
witn a = 0.

If instead we ascume that ij/cjk is merely non-increasing in J ,

several changes must be made In the above argument. In the probability
maximizing problem, no longer is every optimal policy feasible. However, an

optimal feauible policy doec exist, and the theorem holds for ell optimsl

feasible policies.

In the problem of minimizing expccted cost only searches with ij # 0
necd be ineluded in the desired seguence. Then a neceszary and sufficient

condition for the existence of a feasible sequence ordered by P'k/Cjk is that
J

= £ = 1 5 > 0 n
(1) a = a lim ij/cljk for all k such thet Pig 70 %

el

3 and

(2) 4if tue limit a is attained by any ij/cjk such that ij > ¢, then

it must ve attained, for some Jj, in ecach other sequence ij/cjk with

ij > 0 for all j,
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(3) ij/c‘j_k > a for all (Jj,k) such that ij >0

In conclusion, we have the following

Theorem 3 [Final Version].

Assume that ij/cjk 1s non-increasing in j for each k . Any
policy which maximizes the probability of finding the object spending no more

than a fixed cost C, 0<(C < Zj Sgn (ij) includes all searches
2

C
k jk
for which
>

ij/c,jk r
for some r , excludes all those for which

ij/cjk <r
and includes enough of those with ij/cjk to spend exactly C . Any such
policy maximizes the probabllity of finding the object spending no more than C.
Not any such policy is feasible, but a feasible sudh policy does exists. A
partial or randomized last search is unnecessary if and only if C is a

partial sum of some optimal feasible policy.

Corolliary

Any feasible sequence including all possible searches such that

# 0 and ordered by non-increasing ij/C minimizes the expected cost

Fix 3k

of the unsuccessful searches plus half the cost of the successful search.

Such a sequence exists if and only if

(1) a=a = lim P

for all k such that P, >0 V.
X e Jk

i/ Csx 5

and



(2 i the 1imit a is otteined vy ony P C. cuch that P.. > O, then
(2) yoony P fCa j sp 00 U

it must be attained, for some J , in each other seguence ij/cjk with

P,, >0 for all j .
Jk

(%) ijfcjk >a for all (Jj,k) such that ij >0 .

Acknowledgements
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- 16 -

Appendix

Proof of Theorem 1

For o=0 and « = B, the theorem is true when X = = and
k = 0 are permitted. Therefore assume O < g < B.
(2) Let ofS) - [ £,(x) du(x)

(x| £(x) >8 £,(x), £(x} >0}

o(C) - B, af«) =0, end « is right continuous snd non-

increasing. Then for any « , 0O <a < B, there is an SO, 0 < SO <

such that a(SO) <a< a(SO—O).
If a(so) = a(so—o), then let
1 f >5 T
o(x) = E(X) o L & and
L0 fE(x) <s, fl(x)
Joolx) (=) an(x) = [ 1y(x) du(x) = a(8.) =«
{a | £(x) >s_ £,(x), £;(x) >0 )
If a(so) # a(so - 0}, 1let
S e (x) > sofl(x)\
o - a(SO) ‘
a(so__c)_—a(s—o) fa(X) = Sofl(.u) T
. o fa(x) < Sofl(x)_:
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Then [ @(x)fl(x)dp(x) = f fl(x) dp(x)

e

{x|f2(x)>50fl(x), £.(x) > 0}

L O c.'(so)

o{S_-0)= {S_) [f (x)au(x)

(]2 (x) = 5,2,(x), £,(x) >0 )

- o {8 )

. S + 0 | - -
Y cs’(So'O)--oz(So)'r H8o70) - (5) ]

Thus in both cases 5, will suffice as r in the theorem, end part (a)

is complete.

(b) oSuppoce that @ satisfies (1) and (2). If

[ oa(x) fe(x) dp(x) = », ¢ cleerly maximizes

I

7
[ o(x) fe(x) du(x) end we are donc. Therefore
7
suppose [ oo(x) fg(x) dp(x) <e |
#

Let &* be any other function, 0 < &¥(x) <1,

and [ oox(x) fl(x) du(x) <«

P

Let & = {(x

o{x) -~ o*(x) > 0; and 8 = {x] o(x)-0%(x) < 0}
Then X € S+i} ofx) 4 0= feix) >r fl(x)

xe s Lex)41 - fz(x) <r fl(x) , S0

[ ‘et [ (e)-re () an(z) = S o) 0% (x))( £(x) 22, () ] ap(x)
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Then 5£( @(x)-@*(x))fe(x) dp(x) > k ?i (Q(x)-¢*(xj)fl(x) dp(x) > 0

as was to be shown.

(c) Suppose 0¥(x) maximizes
(%) fe(x) du(x) subject to [ ¢*(x) fl(x) dp{x) = «
* FAl

(with ?é o*(x) fa(x) du(x) < ») and suppose &(x)

satisfies (1) and (2). Let S be the intersection of the cet stu 57,
on which @ and ¢* differ, with the set [x|f2(x) #r fl(x)], and

suppose wu(S) > 0.

Then since(¢(x)-¢*(x))(fe(x)-r fl(x)) is positive on S , it
follows that

I (@(x) - @*(x)){}g(x) - fl(x)du(x) = f {@(x) - @*(x))(}e(x)~rfl(xi> >0
sus” 8

and therefore

£ (o) - ox(e)ey(x) anx) >+ f{a(x) - ex(x)) £,(x) > 0
* X

which contradicts the assumption on ¢*. Then p(S) = 0 as claimed.

If o* were such thet [ o%(x) fl(x) du(x) <o and [ex{z) £ (x) du(x) < (%)
it would be possible to inerease @% slightly, inereasging toth integrals

wntil either [ o%(x) fl(x) du(x) = a or [ o*(x) fe(x) du(x) = pe()é )
Q.E.D.
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