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THE APPROXIMATION OF FIXED POINTS OF A CONTINUOUS MAPPING

by
Herbert Scarf*

1.  Introduction

Brouwer's fixed point theorem states that a continuous mapping of
a simplex into itself has at least one fixed point. In this paper I shall
describe a numerical algorithm for approximating, in a sense to be explained
below, a fixed point of such a mapping.
n .
Iet 8 be the simplex x| @, =1, w, >0 .
i i i~
=1
A continuocus mepping of the simplex into itself is given by a collection

of n functions :E'l(::), cee fn(:t) , continuous for all =:.€S5, and having

n _
the properties; I ‘fi(“) =1, and fi(n:) >0 . Brouvwer's theorem
i=1 .

states that there exists a m.¢ S such that f£(x) =% .

The theorem msy be demonstrated by means of a combinatorial result
known as Sperner's Lemma [1], which will be useful to review., Let :rl, R :rk
be a sequence of distinct.points selected arbitrarily on the simplex S5 .
By connecting :rl to each of the n vertices of 8 we partition 5 into n
subsimplices., We then connect 11:2 to the n vertices of each subsimplex to
which i} belongs, and continue the succesgive refinemegt with n5 5 eeo :rk .
The result is a particular type of partition of 8 into a number of
gubsimplices, whose maximun diameter can be mede arbitrarily small by a

suitable selection of the sequence ul, soe :rk .

The research described in this paper was carried out under a grant
from the National Science Foundation.



We associate with each vertex :t‘j an index i such that :rcg >0

and fi(:rj) < xg_ . There clearly will be at least one such index for
each ve:;'teic and if there are several we make an arbitrary cholce smong thém.
Spei'ner's Lemma Ithen states that at least one subsimplex of the parti‘tion’
hes sll of its vertices indexed differently. In other words a subsimplex
may be found so that at each of the n vertices a different coordinate

is not increased by means of the mepping f .

As vertices are added the partitions become more refined, and the
vertices may be selected in such a way that the maximum diameter of the
a_su'bsin@lices .eppearing i:n the partitions tends ‘to zero. Bach partition
containg a subsimplex all of whose vertices are labeled differently, and a
subsequence zﬁay be found whose vertices converge to a single point x .
Since the mapping is continuous, f i(%) < ?ti for all i , and therefore

;: ig a fixed point of the mapping. |
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We can think of approximsting % numerically in two distinct
ways. The first, is to attempt to determine a rey? - of small diameter
in which ;” must necessarily lie.' This approach requires us to anticipate
the limit points of & seguence from a finite emount of data and is non-

constructive for general mappings.

An slternative epproach is to determine, for arbitrary e , a point
1 vwhose image is at & distance less than ¢ from itgelf. Sperner's Lemma
may be used to approximate a fixed point of f in this sense. BSince f is
continuous, for & given € >0 there is a & such that | £(x') - £(x") | < e
whenever | #' - x" | <& , where the norm |x| is taken, to be specific,
as max (|x,], ... {x |) . If the maximum diemeter of the subsimplices in
tl‘;artition is B, then a.ny point =n in the subsimplex whose vertices
are labeled differently will satisfy | f(x) - = | < (n-1){(e+d) , and will

therefore serve as an approximate fixed pbint in this sense.

There is a very serious practical difficuliy however in this
approach, The nmumber of vertices required t{o determine a peartition of
small diameter is enormous even for moderate values of n . For example,

if n dis 7 and if the vertices are selected as the lattlce points

n
(kl/D, vee kn/D) » with k, nonnegative integers satisfying Z k, =D,
) 1

then some 80 billipn vertices are required for D = 200, and the number of
subsimplices in‘the partition is of coufse larger. Moreover Sperner's Lemma
suggests no procedure for the determination of an approximate fixed point other
than an exhaustive search of all subsimplices until one is found with all

vertices labeled differently. Clearly some substitute for an exhsustive
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search must be found if the problem is to be considered tractable, and
the current proofs of Sperner's lemms offer nc = gzestion in this

direction.

In this paper I will degcribe & new combinatorial theorem,
which may alse be used to demonstrate the Brouwer fixed point theorei
This theorem 1mrolvés, as does Sperner's Lemms, the selection of a fine
grid of points on the simplex S , but it differs from Sperner's Lemma
in that a systematic a:lgorithm ig used to determine the\sequcnce of
points to be examined, Moreover, the algorithm seems to work re-markably
well in practice. The computational experience, which is discussed iﬁ
Section 5, suggests that the elgorithm is quite practical for the
epproximation of fixed points of eertain mapping, when n is less

than 15 or 20.

Though it may not be appa.renﬁ from the arguments of +this
praper, the algorithm is intimately related to the procedure described
by lemke [2] for the determination of Nash equilibrium pointe of ’cve

Person nonzerc sum games.

2, A Combinatorial Theorem

n k

- We congider a finite spt P, of vectors :rl, e Ty cau

k
in n dimensional space. The vectors ﬁn+l’ cve ztk ‘are selected arbitrarily

on the simplex 8 = { n ] b¥ o= 1, n; 20} . The £first n vectors, which
1
are not on the simplex, have the following specific form:



.

2 = (0, M, oo Ml)
(M2, O, see ME)

A
)

X = (Hn, Mn, tosoi )_,

with the lifI1 satisfying Ml >M2 2 eae >Mn b
jl jn
Pefinition: A set of n vectors =z 7, .aa =« in Pk will be called a
. | | 3
primitive set if there are no vectors = in P_k with
J J,
1 h
> nﬁ.n (:{l 3 o 7(1 )
. J J

. 1 n
> min (:tn PPN ) .

18

n

B oo

As the following figure illustrates,there is a very simple geometric

interpretation of the concept of a primitive set .*

In [3] the term "ordinal basis"” was used for a primitive set of vectors,
in order to suggest a connection with the use of "basis" in linear programming.
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The vectors sa:lL s :P ; and 116 form such & set. The definition merely
requires that no vector :r’j in P,_ be interior to the particular small

k
subsimplex in Figure 2 which contains :*rlL » zf5 - :r6 .

As the figure illustrates, “2 s :(Q and zzll alse form a
primitive set. 'rgince ne vector in Pk is interior to the subsimplex
generated . by ::9 » azll » and the edge of § in which the second coordinate

is zero.

Each vector in Pk will have associated with it an index selected
from the integers between 1 and n . The index associated with a vector is
arbritrary except for the first n vectors in the list. We shall require
that zrl have the index 1 , 312 the index 2, ete. The combinatorial

theorem may now be stated,

Theorem 1. There exists a primitive get, all of whose vectors

are jindexed differently.

In the application of Theorem 1 to Brouwer's the_ore:m, each vector
:n:‘j » Other than the first n vectors, is given an index i for which
fi(:r'j) > :rjj. » A primitive set of the type referred to in Theorem 1 will
contain some vectors from the first n say [s:‘j] with j in an index set I
and some from the remaining vectors in Pk « The subsimplex asegociated with
this primitive set will be bounded by an edge #, =0 for each ieI , and by
an edge passing thro}:,gh each remaining vector in the primitive set. 'The
latter vectors will have an index not in I , so that for every i there

is some vector in this subsimplex for which fi(s:) L
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An appropriate sequence of vectors may be selected, soc that as
k tends to infinity the diameter of a subsimplex generated by a
pri:mitive set tends to zero, since no vectors in Pk are interior
to such a subsimplex. Therefore a sequence of subsimplices
agsociated with primitive sets may be found which converge to a single
vector 1 . Using the continuity of f we see that i.’i(?t) > lz;i. ’
so that = _ is a fixed point of thé mapplng.

3. A Preliminsry Temms

It will be convenlent to make the assumption throughout this
paper that no two vectors in Pk have the same ith coordinate for any
1 . This assumptlon involves no substantiel loss of generality since

the veetors in P, may be perturbed slightly, the theorem applied to

k
the perturbed vectors and the perturbations then reduced to zero.
J 1 J 31

Iet @ 7, aeo X D be a primitive set. Since =x must

itself satisfy the conditions d.escribed_. in the definition of & primitive
set we must have nil = min(ﬂil, e stin) for at least one index 1 ,
and similarly for :r'j'g , etc. But the indices for which these
equalities hold.rﬁust be different for different vectors in the
:primitive set, since no two of them have a common ith coordinate.

In other words for different i's there mst be different vectors

in the primitive set whose :Lth coordinate is equal to

J J
min(::il, ane :tin) +» It follows that by a suitable relabeling of the

vectors in a primitive set we may write
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jJ. ny-
1 mee 7y )

m o= min(

» .
L]
L)

J J
n 1 n
%= min(:tn s wee X )
and this will occasionally be useful.

The following lemma is the main tool in ocur algorithm.

J d
Lemma 1, Iet = 1 s ees % be a primitive set, and let
'j i
4 @ be & specific one of these vectors, Then aside from one

exceptional case, there is a unique vector :tj € Pk » different
rrcn o ) g 33 ;
from =x @ , and such that (= l, sae X a"l, o, aﬂ, soe X n)

form a primitive set. The ei:ceptional case occurs when the nmi

33

veetors x © , with 1 #a, are all selected from the first

n vectors of Pk .

The lemma states that aside from the exceptional case, if an
arbitrary vector is removed from & primitive set, there is a unique
replacement so that the new set of vectors is a primitive set. In the

exceptional case no replacement is possible.

As we shall see, the new vector is selected according to the

following procedure:

J J J

Let = l, cee 2 0 be 8 primitive set, and «x @

the vector to be removed,

Construct an nxn square matrix each of whose columns corresponds to a

Js
vector = l, and encircle the smallest element



J J J
1 . a n
al = min of row 1 :tl r -« :nt1 “1
; Ig ) X
a = x . * ..-——-% i
1a x ia . O . a
8, * not defined * O : : ¥
i 3 3 3
a =" min of row n b4 1 4 o x 0
n n n n

L

in each row., Iet :f.a be that row which contsing the circled element :':in column

ja s &and let 'jf‘-" - be that column which contains the second smallest element

in row 1, . (Here enclosed in a squere,) Finally let i* be that row

. which contains ‘the circled ‘-e;.ément in colﬁmn jB . We 1':hen define
a = min(:til, vee nin) for i# Lops i*¥ , and aia = _s;iz + - To determine the
replacement for = G we examine all vectors :tj € Pk with ::2 > ai for

1 £ 1" and select the one with the largest value of ng* 40 incorporate in the

primitive set.

In order to show that this rule does select the unigue replacement
J

for = @ j& will be useful to r~ssume that the vectore have been relabeled
80 that
J J J
1 1 n
a" = m:i.n(:rt:L s oewe My )
J J
n 1 n
‘J‘En = Hlin(!fn s vow ﬂn ) s

and that =x is being removed from the set.
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The matrix of vectors in the primitive set is given by

J
f. . N —_—1

. _ > 3%
Jl
1 P e e e
Jey Jﬁ
Here a = i,=1 and B =1". n,  1s the second smallest element in the
first row, and the vector a is given by a) = and ay =y

J
for i >1 eand different from i* . To determine the replacement for s« ©

we examine all vectors ﬂj € Pk for which xg >>ai for i # i* and select

vector satisfying these inequalities which gives the largest value of ni
J
We must show that if this vector replaces x . the resulting collection of

vectors is a primitive set.
Jo Jn
Except when =« 7, ... =« are all selected from the first n numbers

*
of Pk ; ni satisfies all of these inequalities, so that there are some

contenders to be used in determining the new vector.

In order to demonstrate Lemma 1 we must show that the vector
x¢ found by the above ruledoeg infact yleld a primitive set, and that no
other vector will work. Let us calculate the new minima resulting from

the application of this rule. We have

min(nJ nJE ceo njn) = ﬁJi*
A 1 1
J o 3 Jo

. 2 :
mln(ﬁg, 1 2 s ﬂen) = N

2
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min(’fi*‘_l, Tfi*-l, “aw T(i*wl) = ni*-l
J o In I Jgx

min(sx

ixr Tix oo ees Moy = min{ﬁi*, % )

3 iy J J
2 n n
min(xn, X5 e W ] o= LS
3 Jix j
But 5 < A% since otherwise x" would violate the assumption that
Jl dJ

T Ty eee X B was & primitive set.

The new collection of vectors is therefore a primitive set gince
any vector ug in Pk all of whose components are larger than the

minima we have just calculated would satisfy those same inequslities used in

determining 7 and produce s higher i*th coordinate than ﬂi* .

In order to finish the proof of Lemma 1 let us ask whether there

is any vector nz s different from ) ; such that

A PN 3y
(3 25, vae, ™) is also a primitive set.

But then we must have

£ J J
. 2 n i
min(x, , TR ) = T

for i >2 and i # i* . For if this were not the case for some such i ,

9

the vector = would not be used in forming the n minima, and as we have

seen, this is impossible for a primitive get. The minima must therefore
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be
£ 3 J £
2 o, _ 1%
min(ng, 1,5 oo ny7) = min(my, %) )

¢ J2 ooy e
1217 Tixe1? vt Taen1/ T Taxol

min(s

y) J J L3
: 2 n i*
min(ﬁi*, ﬁi*’ vew ﬂi*)= min(ﬂi*, ﬁi* )

@
»

with only two alternatives teo be resolved.

P 2

If 1(1*>1'|:1*, then =

< jl < ﬁj‘l since otherwise :t‘-e' would
1=% i% '

da J
vioclate the assumption that (= l, vee 2 1) was a primitive set. The minima

j .
n _
will therefore he given by Tys Ty 5 sew Mgy 5 cee T o But if

£ J J
ﬂi < ﬁll all of the components of = . are strictly larger than these minima

L J
end the new set is surely not primitive. It follows that zt'l = ull so that

£ o= jl (no two elements in the same row are equal) and we are back where we

started.

In other words for the new set to be primitive we mmst have

)/ J 4 L 3 J
min( i*) = f d min(s i*) T so that the minims a

Jix . Jp £ Iy 2

given by T s Wy s e n‘i*, ces W . But then =xn” satisfles the identical

inequalities used in determining :r['j , and must clearly maximize zi‘e* subject

to these inequalities, so that .ﬂ'e is equal to 7Y and the unigueness of

the replacement has been demonstrated.
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The proof of Lemms 1 is unfortunately a tedious examination of
a number of alternative cases, but the reader should recognize that the

J

rule for selecting the new vector =n° 1is quite zimple to apply in practice.

k. The Algorithm for Theorem 1.

We recall that each vector in Pl: has assoclated with it an index
selected from the first n integers. 1In the application of Theo;em 1 %o
Brouwer's Theorem the indices'depend on the particular mapping, but for the h
present the assigmment of integere is arbitrary aside from the assumption

that =Y is assoclated with the index J , for J =1, ..o B

Our purpose is to determine a primitive set all of whose members are
indexed differently. The algorithm will begin with a primitive set whose
membhers are indexed differenfly with the possible exception of one pair of
vectors with the same index. Consider the set of vectors (are, ‘en :tn, n"j*)
with ﬂj* selected from those vectors beyond the first n so0 as to maximize
the Lirst coordinate. (learly

J J J

i 2 n
min(:ri . )

3%
1

is primitive sinece no vector in Pk can have all of its coordinates

is given by =] for 1 =1, and zero for i >1 , and this set of vectors

5%
strictly larger than (gi 5 0, ove O).
j*

If the vector = were associated with the index one, then the

Problem would be over since all members of this primitive set would have a

* .
different index. Generally this will not be the case and 29" will share

an index with one of the vectors ::2, vae :tn . Our algorithm will always be
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involved with primitive sets of this type. In other words at each step of
the algorithm we will have a primitive set whose indices have the following

properties:

1. The index 1 will not be associated with eny vector, and

2. All vectors in the primitive set will be indexed differently,

except for one pair of vectors with the same index.

The algorithm proceeds by taking one of the two vectors with the
same index and removing it from the primitive set, elther obtalning ancther
primitive set with the same properties or else termlnating with a solution.
If we are not at the initial primitive set one of the two vectors with a
common index will have just been introduced in order to arrive at the current

position., The algorithm proceeds by eliminating the other member of the pair.

In other words, at each stage of the algorithm efter the first s
there are tTwo possible removels that will take us to a primitive set with
the same properties. One of these steps has been taken to get to the current

position. We therefore take theother step. There is only one vector which

can be removed from the initial primitive set, namely that vector n’J
%
(with 2 < j <n) with the same index as %

J*

The other possibility,

that of removing = is the exceptional case referred to in Lemma 1.

The algorithm can only terminate when a primitive set is found, all of
whose vectors are indexed differently. It should be clear that the algorithm
can never return to a previous primitive set, for if the first return is made
to a primitive set other than the initial one, then there would be three, rather

than two, ways to emerge from that particular primitive set. On the other hand 1f
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the first return Is to the initial primitive set there would be two ways

of emerging from the initial set.

Since there are s finite number of primitive sets, the algorithm must
terminate in a finite number of steps with all vectors indexed differently.

This demonstrates Theorem l,

5. Computational Experience

The a.igorithm has been programmed for an IBM 7094, and several examples
have been tried. Before describing the results of the computetions, it might
be useful to indicate a few of the special techniques that have been

incorporated lnto the progranm.

The first problem encountered in programming the algorithm is that
of selecting an appropriate set of vectors Pk . PEach stsge of the
algorithm involves & primitive set of n of these vectors. A specific one of
these vectors is eliminated from the primitive set and 1is replacement found

by caleculatling a vector ai and a specific coordinate i¥ , examining all

vectors in P with zri >a, for i jfi* and selecting that vector with
the largest wvalue of ug* .

It is clearly guite useful to construct Pk so that the selection

of the new vector can be done without an exhsustive search of all of the

vectors in Pk . For example if Pk consists (aside from its flrst n

members) of all vectors (k1/D s eae kn/D) with k, positive integers

satisfying Kk, + «oe + kn =D , then each a, will be an integer divided

J

1

by D , and the new vector =

1

will either be given by =, =a, + =

J
i
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for 1 #i* and xdy=1- = (a, + l) , Or else be one of the first u
i* ’é* i D
ifd

members of Pk .

If Pk has this specisl structure, the selection of the new vector
may therefore be done by a simple computation, rather than a search over an
enormous number of vectors. On the other hand, this choice of P, does not

k
satisfy the assumption made in Section 3 that no two vectors in P, have the

k
same ith coordinate for any 1 , an assumption which is indispensable for
the application of the rule given in Lemma l. In order to avoid this
difficulty some systematlc procedure for resolving ties between two vectors

must be used. The particular procedure that I have used is to construct

at each step in the algorithm a matrix

— —
n+l
O B . 'bdl‘l 7{1 * ® ® e % ﬁl
- : :n+l :E
H:I. 0 n ﬂn

consisting of the first n wvectors of Pk and all other members of Pk
which have previously been introduced into a primitive set, in the order in

which they have been introduced. Then, if two columns in this matrix have

identical elements in the ith row, the Tirst is assumed to be larger, and

if a vector in the matrix has an ldentical entry in the ith row with some
vector not in the matrix, the former is assumed to be larger. It may be

demonstrated that this procedure for resolving ties also leads to a finite

algorithm.
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Y

In the determination of 7Y & search is then made only cover
those vectors which have been used in some previous step; the remaining
vectors in Pk are examined by a single algebraic calculation. The number
of vectors to be examined explicitly can be no larger than the number of
iterations plus n , and if the number of iterations ig relatively small
this search is quite manageable. There are, of course, other weys to resolve
ties which surely involve even less compubation, and which will be introduced

in subseguent versions of the program.

The slgorithm terminates with a primitive set all of whose vectors are
differently labeled, and sny point in the geometric subsimplex of 8
corresponding to this primitive set will serve as an approximate fixed point.

In order to select a uniqus'point, I assume that the functions fi(ﬁ) are
linear in a region around this subsimplex, and select a point which minimizes
the meximum of (fl(x) = Hqp oo fn(n) - ﬁn) ; or some other measure of
éloseness. On the basis of compuﬁational experience, this seems to be a very

usefnl way of terminating the algorithm.

The particular examples of Brouwer's Theorem that I shall describe
arise from an importent problem in mathematical economics; that of determining
equilibrium prices in a general economic medel of production and exchange.
Fixed point theorems have heen invoked by many awvthors to demonstrate the

"existence of equilibrium prices but have never been used for the purpéses of

explicit calculation.

Iet n be the number of commodities in the economy and m the total
number of economic sgents. The ﬁth agent is assumed to respond te a vector

of prices = = (xl, sos ﬁn) by a series of excess demands

gf(n) 5 ces gﬁ(u) for the n commodities.
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More explicitly the funetion gf(ﬁ) represents the net inerease in
commodity i desired by the Pt ‘agent at prices =x . If gf(ﬁ) <0
the Eth agent wishes to decrease hils holdings of commodity i. énd to
use the proceeds for the purchase of those commodities with positive
excess demand. The following assumptions are customarily made about

excess demand functions. -

1. Each gf(x) is homogeneous of degree O , an assumption
implying that demands éré determined by relative rather than absolute
levels of prices. This permits us to restrict our atiention to prices

on the simplex 8= (x| Zx, =1, x

>
i_O}a

2. For each individual £ we have = gl(m) +... +ng(x) g0,
or in other words purchases of commodities with positive excess demands are fi-

nanced exclusively by the sale of commodities with negatlve excess demands.

3. Bach excess demand function Is continuous on the simplex S .

For each commodity 1 we define
Sy’
gi(ﬁ) = 4 gi(ﬂ)
fe=l T

to be the market excess demand for that commodity.

A vector of prices is in equilibrium if at these prices the
market excess demand for each commodity is less than or equal to zero, and actually
equal to zero if the price associated with that commodity is strictly
positive, It is a simple matter to demonstrate, by means of Brouwer's

Theorem, that an economic model satisfying the above assumptions does
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have at least one equilibyium price vector.

The mapping used in Brouwer‘'s Theorem is defined, for prices on the

simplex S , by

%, + & max(0, g, (x))

fi(’t) = ’
1+ % & max(0, gk(ut))
k .
with A & small positive constant. The mapping is clearly continuous and
takes the simplex into itself, so that Brouwer's Theorem is applicable.

let x be a fixed point. Suppose, first of all, that I max(0, gk(ﬁ)) >0.
k

Then ?ri + A max(0,g (x)) = ¢ }}i with 1 >1 , and it follows that

gi(;t) >0 for every 1 with . ;;i >0 . BSince this violastes the assumption that

’?lgl(;;) +... + % g (%) =0, we may conclude that £ max(0, g (%)) =0 and
n-n - X Xk

therefore gi('ﬁ), <0 for each i, Again appealing to %l gl(?t) + ... =0,
we conclude that gi(?:') =0 if ;;i >0, so that a fixed point of this

mapping does indeed yiéld an equilibrium price vector.

In the application of ocur algorithm a vector x wlll be lebeled

with an index 1 for which fi(:r:) > or

i 2
mex(0, g, (%)) > =, z max(0, g (x)) .

It will ‘clearly be sufficient to select that index 1 which maximizes
In order to proceed with the slgorithm we need to specify the

individusl excess demand functions gf(n) . I shall select the following
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from the many that have been described in the economie literature. Iet
W= (wzk) and A =(a£k) be two strictly positive matrices with m rows
(one for each agent) and n columns (one for each commodity)., Also let

b5 ... b be a strictly positive vector. We define gf(n)‘ as

8oy TV Ty
ib£ ﬁl-bJg £3
i i Tk

La

Aside from a possible discontinuity on the boundary of the simplex, the
assumptions previously made are satisfied for these excess demand functions, and
the algorithm may be applied. For those readerg who are curious sbout

economics these excess demands arige from a model of exchange in which the

th

£ individusal initially owns w units of the kth commodity, and has

£k
a utility function given by

l—aﬂ
uﬁ(x) = ( i (aﬂk)

=<
a a8
)/ :

x5 7

with b, = lKJ.-aE).. Other readers may find it sufficient that we are

studying a class of continuous mappings which are highly nonlinear, and to
which simple gradient methods do not apply. Let us consider the following

examples,

Example 1.

In this example the number of commodities is five and the number

of econcmic agents is three. The parameters of the excess demand functions
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are given by

1.5 5. 15, 5e 10.8

2, 1. B 1.5 1. +9
A = 3. 5 1.2 1.6 1.8 b = 1;5
.9 .8 2. 1. 1.8 .8

| ] L

The set Pk aside from its first five members consists of all
k
1
vectors (335—’ oo i;%—) with k, positive integers summing to 160.
There are some .26 x 108 such vectore. 'The algorithm terminated after
only 158 iterations, with the following primitive set:
3y J J J
1 1 i e n 5 n N n >
101 102 10% 102 103

13 12 13 1% 12

15 15 14 15 14

where the components of each vector add to 160 rather than 1.

When these five vectors are averaged according tc a linear
programming problem which treets the excess demands as locally linear,

the following price vector is obtained
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7 = (10k.9, 12.3, 5.2, 23.6, 14.1) ,

and the market excess demsnds are given by

(g,(x)) = (.02, -.02, -.27, =.01, -.00)
The image of % under the mapping is given by

' %, + A mex(0, gi(ﬂ))

k: 8 -
i 1+ A Z max(0, gk(n))
k

after the prices have been divided by 160. The degree of approximation of

the mapping depends on the choice of A , bub the excess demands are a very

small fraction of total supply, and this is the relevant consideration.

Bxsmple 2,
3. 1. .1 .1 5. .1
A 10, Ad .1 5. .1
W = 1 9. 1o. .1 L. i
.1 A1 .1 10. 1 3.
i 1 .1 .1 .1 %1 .1
mi. 1. 1. 1. 1. 1.
2. .8 1. 5 1. 1.
A= 1. 1.2 .8 1.2 1.6 2.
2. .1 6 2. L. 1.
1.2 1.2 RS 1. 1.2 A

.1

ﬂl

A1

«1

1.’

N

1.

3

Il

.1

o1

3
102
.8

2,
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Here there are eight commodities; and the vectors were selected

5 "8 13
as (556 s sen 555) , with ZRi = 200 . There are some .22 x 10

such vectors and the algorithm terminated in 640 iterations with a primitive

set glven by
— -—

51 53 35 52 53 52 53 53

7 6 T 7 T T T 7
1 13 13 W% 14 1% 14 13
20 20 2 19 20 2 19 0
15 15 1k 15 ik 15 15 15
58 58 58 58 58 b 58 58
23 23 23 23 22 23 22 23

12 iz 12 12 12 i2 iz i1
- f—

After averaging, the following price vector and excess demands were

obtained:;
7 = (56.4, 6.3, 12.7, 18.5, 13.6, 60.0, 21.5, 11.1)
(gi(ﬁ)) = (-.1, -.2, .05, .05, .05, .07, .05, -.Ok) .

The answer here seems not to be as close a fit as the answer to the first problem,
but my impression is that this can be remedied by either an extension of the
terminal linear programming problem, or the imposition of a finer grid

for the first two commodities.



- 2h -

Example 3.

This final problem terminates'quite rapidly with a remarkably good
fit, even though it is a larger problem than the previous ones, involving

10 comedities. We have

.6 .2 .2  20. L 24 9. 5. 5 15.
L2 1. 12, 3. 1k, 15. 16. 5 5 9.
W= A9, 8, 7. 6. 5e Lk, 5. Te 12,
1. 5e 5e 5¢ 5 Se Se 8. 3. 17.
8. 1. =22, 10. 3 9 5.1 1 6.2 1.
L _
| . 1. 3. A .1 L2 2. i, 1. o7
1. 1. 1, 1., 1. 1. 1. . 1. 1.
A= 9.9 5 .2 6. .2 8. 1. 1. W2
1. 2. 3 he 5. 6. Te 8. 9. 10.
1. 13. 11, 9. k. 9 8, 1. 2. 10,
— : i
and
—
1.3
b= | °°
.2
.6




- 25

10
The prlces were selected by I k.i = 250 . There are some .37 x 1016
1

such vectors and the algorithm terminated with 466 iterations. After averaging
the ten vectors in the primitive set, the following prices and excess demands

were obbained:
x = {(47.0 285 24,0 10,0 26,7 19.3 29,4 25,7 248 12.6)
(gi(?:)) = (-.07 .0 .03 .00 .02 .00 .02 .02 .02 ~.07)

The excess demands for this last example are very clése to zero,
when compared with the total supply. What is even more surprising is that
the total time on the 7094 reguired to do all fhree problems was one minute
and 36 seconds. This suggests to me that with improvements in the algorithm
and its programming, the apprékimation of fixed woints qf mappings involving

15 to 20 dimensions might very well be feaslble,

6. Some Extensions of Theorem 1.

The argument that has been given for Brouwer's Theorem may be extended

to a more general problem. As before let nn+l, was ﬂk be a seguence of

vectors on the simplex 5 , and let ﬂl, eee % have the specigl form

previously deseribed, Consider the system of equations

Ax = b,

with A ann x k matrix of the form

O +ee O a

-
-
-

1

R

see

o
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and b a strictly positive vector. A feasible basis for this system of egua-
tions (in the sense used in linear programming) is a collection of n columns

jl, see jn , Wwhich are linearly independent and such that the equations

Za, . X, =Db,
a g da Ot

have a nonnegative solution.

As I have shown in [3] the arguments of this paper may be extended
to demonétrate the following theorem:
Theorem 2. If the set of nonnegative soclutions of Ax = b forn
J J
a bounded set then there exists a primitive set = l, veo w0 such that

(jl, -« J,) is & feasible basis.

In [3], Theorem 2 was used to provide general sufficient conditions
for the core of an n person game to be nonempby. It may also be used to
demonstrate Brouwer's Theorem for a mapping of a polyhedral convex set, other
then the simplex, into itself. To do this we proceed by means of an

intermediary theorem which has some interest in itself.

Theorem 3. Let C cos Ck be closed sets on the simplex, whose

l.’
union is the entire simplex. Assume that Ci
Then, if the set of nonnegative solutions to Ax = b form a bounded set,
there 1s @ feasible basis _(jl, e Jn) such that the intersection

N ¢
Q=1 ja is not empty.

<+
To prove this theorem we take a finlte set of vectors 7 l, .es ﬂﬁ

on the simplex, which, as £ tends to infinity, will beccme

D{x e8| ™, = 0} fori=1, ..



- 27 =

everywhere dense on 8 . The vectors n% N ﬂn are constructed as
before, We define an nxf matrix E to which Theorem 2 will be
applied, as follows., The first n colums of - K form a unit matrix. To
determine the entries in column r s with r >n , we select one of the

sets Cj vhich contains #° ; and enter

alJ

\ "
in the rth column of A. As we see, A is composed of some of the

columns of A suitably repeated.

The hypotheses of Theorem 2 are clearly satisfied by A s, and we may
therefore find a primitive set of ='s which correspond to a feagible basis for thr
equations Ex = b . But slince the columns of & basis are necessarily
linearly independent, no two such columns can be identical, and a basis for
Ex =D will also be & hasis for AX = Db ., If the columns of the basis are
denoted by jl, P jn » the primitive set described in Theorem 2 will

3 ode C. a

conglst of a single vector from each of the sets Cj i
. 1 n

If we let 4 tend to Infinity in such a way that the vectors
nn+l, s nE becdme everyvhere dense on the simplex we may select a
subseguence of* £'s 80 that the bases 4o not change and such. that the
vectors forming the primitive set converge. But these vectors must all
converge to the same point = . If some of the first n vectors are used

in forming the privitive set, then the corresponding coordinates of = are

equal to zero., =« is therefore contalned in (ﬁ)cj and Theoren 3 is
o o
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demonstrated. It should be realized that the vector = may be approximated
by an algorithm quite similar to that used in approximating a fixed point of

a conbinuous mapping.

Now let C be a convex polyhedral subset of the simplex S defined
by C={x| xes8, = L >0 for j=n+l, ... k} , and
£(xn) = (fl(x), e fn(n)) a continuous mapping of ¢ into itself. We assume,

as before that the set of nonnegative solutions to Ax =1 1s bounded; where

1. 0 al,n+1 ou al,k
A= . .
© n,ntl °°7 n,k
It will also be useful to assume that the equations Z a,, x, = 1l have a

Sa Yo
strictly positive solution if jl’ coa jn is a feasible basis, This is a

nondegeneracy assumption quite familiar in linear programming,

Define the sets Cl’ ere Ck as follows. Cj containg all

vectors in S with X ﬂiaij <0. Moreover, if n ¢ C , then x € Cj it

b ﬁiaij <Z fi(ﬁ)aij . At least one of these inequalities must be satisfied

so that U c, =85 .

If Theorem 3 is applied we obtain a feasible basis jl, .o jn for the
equations Ax =1 , and a vector = ¢ Q]Cj . I claim that nn e C , for
. o .

if it is not, then X =x.a <0 forall «. But if x, 1is the positive

iij, — J

a a
solution to the equations Z aij xj = 1 , we obtain
o a

O>ZZqx, a,,x, =Xx =1.
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Since w e C, we have Z x, a,, <ZI f (a)a,.
i %13~ i 1]
x o4
for all o . But then

l=Dqx, =2Z

< Zrf(a)a,.x, =Lf(x) =1,
1 o ai * *

7, &, . X. . .
11y Iy g dg

and since x, >0 we see that I (n, -~ £,(x)})a,. =0 for all «a. But the
Jo i i iJa

columns of a basis are linearly independent, and therefore o= fi(x) . We
therefore have a proof of Brouwer's Theorem for continuous mappings'of ¢ into

itself, and an algorithm for the approximation of a fixed point.
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