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STRUCTURAL RESTRICTIONS AND ESTIMATION EFFICIENCY
IN LINEAR ECONOMETRIC MODELS
by

*
Thomas Rothenberg

I. INTRCDUCTION

One of the important stochastic models used in econometric
research is the system of linear regression eguations commonly known
as the simultaneous equations model. This model, in its simplest form,
relates a vector of random variables y linearly to a vector of pre-

determined variables x and an additive random error vector u :
By +Ix=nu

wvhere B and TI' are mabtrices of parameters. The error vector u is
usually assumed to be normally distributed with mean zero and covariance
matrix X . A major econcmetric problem is to estimate the structural
perameters B , T, and ¥ (or certain functions of them) based on a
random sample on X &and y . In particular, often the alm is to estimate

the so-called reduced-form parameters

I=-3B1T and Q= 3 isp L

The author ie Assistant Professor of Economics at Northwestern
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which completely characterize the conditional distribution of ¥

given x .

If B, I', and Z are entirely unknown, the statistical
analysls of the model is elementary: The structural parameters are
unidentified and cannot he estimaﬁed; the reduced-form parameters can
be estimated by the method of least sguares which yields minimmum-
variance-unbiased estimates. However, the traditional treatment
of the simultanecus equations model usually assumes that certain
elements of B, I', and I are knowma priorl and need not be
estimated. In this cage, if enough structural informetion is known,
1t is possible to estimate B , I' , and Z ; furthermore, it is
possible to use the information to obtaln reduced-form estimates

more efflcient than those given by least squares.

In its traditional form, the simultaneous egquations problem
is a special case of the following statistical problem: Let f(x, 8)
be the 'likelihood function for a sample vector x and an unknown
parameter vector 6 . However, it is known a priori that 6 belongs
to some‘subset A of the possible parameter space. {(In the
simuitaneous equations model, 6 consists of the elements of 1T
and Q ; the restrictions on €& result from the a priori informa-
tionon B, T, and % .) Under the classical minimm-variance-
unbiased approach to statistical estimation theory, three interesting

questions can be asked of such a model:

(1) When will the restrictions improve the efficiency of estimating 6 2
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(2) What is the optimal estimate of 6 2
(3) By how much is efficiency increased as a result of using the

a priori information?

In an earlier study [14], the present author has investigated
these questions by generalizing the classical Cramer-Rao inequality.
Our purpose here is to apply these results to the similtanecus
equations problem in an attempt to give a unified classical treat-
ment of that topic. The value of overidentifying restrictions in
increasing the efficilency of reduced-form estimation is analyzed
in some detail. In addition, the well-known identification problem

is viewed in a new light.l

2, THE MODEL®

Tet Y be a G-dimensional vector of random endogenocus
variables which are related to the K-dimensional vector of pre-
determined variables x, by a system of G linear equations with

aedditive random errors u.t :

(2.1) By, + I'x, =u_ .

Our approach follows closely that of Kocpmans, Rubin, and Leipnik [11].
Indeed a major part of this paper consists of rederiving and finding
an explicit expression for equation (3.127) of that article. Our
approach is also similar in spirit to that of Chipman {5] and Klein
[9]. A few of the results of the present paper appear in a recent
article by Rothenberg and Leenders [13] although the derivation

and approach is gquite different.

For a more complete description of the model, see Koopmans, Rubin,
and Leipnik [11, pp. 58-75].
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The G x G matrix B and the G x K matrix I contain unknown
parameters which are to be estimated from the sample which conslsts

of n observations on the G + K variables Ve and x, . The

t

matrix B 1s assumed to be nonsingular. The error vectors Ups esos U

are agsumed to be independently distributed normal random variables
egch with mean vector zero and nonsingularl covariance matrix X . The
X, are assumed to be distributed independently
2

of the errors uS for t <s5 .

predetgrmined variables

Since B is nonsingular, the structural form (2.1) may

be written in the reduced form

- -1
Vg = - B lth + 3B u,

(2.2)

= ID{t'l'Vt

where I is a G x K matrix and v, 1is a normally distributed vector

t
with mean zero and nonsingular covarlance matrix £ . The reduced-form
parameters (I[, §) are related to the structural parameters (B, T', I)

by the equations

I =-35T

Q=3 Bt

(2.3)

The assumption thet £ is nonsingular means (2.1) can contain no
identities. This assumption is msde solely for ease of exposition. In
Appendix C the analysis is extended to include identities.

That is, the errors are independent of current and past predetermined vari-
ables., This permits lagged endogencus variables to be included among
the predetermined variables.
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The joint conditional density function for Yqs eees ¥y

. 1
glven X,, eee; X, 1is

-2 nG o= n
(2.4)  2(ysm, Q) = (2x) © K exp {-

ik
-

t -1 -
E Gy, - )07, )}

This csn be written more convenlently in terms of the observation matrices
X, an nx K matrix of observations on the K predetermined variables,
and Y, an nx G matrix of observations on the G endogenous

variables. We shall assume that

n

(2.5) XX= I =xx',
tmy EE

the matrix of sums of sqQuares and crossproducts of the predetermined
variables, is nonsingular. The density function (2.4) can now be

written in logarithmic form as
1 1l =1, N7
(2.6) 1log f = \(-wér-nlog det 0 - 3 tr [ (Y - mX')(Y - X1I*) 1}

where }{ is a constant.

The probability law for the endogenous variables (given X) is
uniquely determined by the parameter matrices (I, Q) . Yet for any

pair (1°, 8°) there are an infinite set of different matrices (B, T', I)

1 More precisely, (2.4) is the conditional density for the endogenous

varisbles Yys <vos ¥y given those elements of Xy ones X which

are elther (1) exogenous (i.e., not lagged values of y) or (2)
lagged values Yy with t <0 . For a derivation of (2. 4) see

{11, pp. 72-731.
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which satisfy (2.3). Hence the structure (2.1) is not identified

unless some a priori constraints are placed on the parameters. We

shall concentrate on the case where the identification restrictions

take the form of knowing specific elements of B, I' , and £ . This
seems to be the case most often met in practice and the one most often
dealt with in the econometric estimation literature. The case of more
general restrictions i1s discussed briefly in Section 8 but the results are

very formal compared to the detalled analysis of the rest of the paper.

Knowledge of specific elements of (B, I', &) will be referred

to as "zero-order" restrictlons. The knowledge that a given element of
(B, I', £) dis zero will be called a homogeneous zero-order restriction.
The knowledge that a parameter is a given nonzero number will be called

a8 nonhomogeneous zero-order restriction.

ILet @ be a column vector consisting of those elements of
(B, T, Z)} which are not known a priori. Iet 6 be a vector consisting
of all the elements of (I, @) . Then (2.3) is a set of equations of

the form
(2.7) 8 = h(a)

and (2.4) 1s a probabllity function expressed in terms of © alone.

If the rank of the transformation h 1s less than the number of elements
of © , the allowed parameter space of 6 is restricted by (2.7). Thus,
if enough structural parameters are known a priori, the transformation

(2.7) serves to express constraints on the reduced-form parameters 6 .



N

We are therefore in a position te apply the results of a previous study

[14]} concerning the efficient estimation of the basic parameters © and the
constraint parameters @ . Specifically, the purpose of the present paper is to
use the general theory of constralned estimation to answer the following
questions: (1) What increase in efficiency is gained in estimating the

reduced form parameters 6 by imposing the restrictions (2.7)2 (2) Of

what value are restrictions on the elements of X ? (3) When will the structural
parameters & be ldentified? (4) What methods of estimation yileld efficient

estimates of 6 and « %

It will be corvenient to distinguish between those elements
of & and 6 which refer to the regression coefficients (B, I', II) and
those elements which refer to the covariance matrices (Z, £) . Hence,

the vectors « and € are partitioned as

(2.8) a= 6 =

where B 1is an r-dimensional column vector of sll the unknown elements of
B and I' , ¢ 1is an r¥-dimensional columm vector of all the unknown elements
of Z, n is a GK-dimensional vector of all the elements of II , and o

is =a Ge—dimensional column vector of all the elements of § .

On forming vectors out of the elements of matrices it is necessary
to specify the order in which the elements are listed. We shall follow the
convention of first taking the elements of the first row, then the elements
of the second row, then the elements of the third row, etc. Any matrix

element that is known a priori will simply be omitted. Let ﬂi be the
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t
transpose of the 1 h row of I and let w, be the ith colum of Q .

Let Bi 3 ¥y and gy be column vectors consisting of the unknown

elements of the ith rowof B, I', and X, respectively. Then =x ,

w, B8, and o may be written as

Ty 5, o9
T o= L], o= s &8 =0 |, o =31,
! B %

where &, 1is the vector of unknown regression coefficients in the ith

structural equation:

In this study we shall concenirate on the efficlent estimation of & and = ,

treating ¢ wand o as nuisance parameters.

3. THE THEORY OF EFFICLENT ESTTMATION

3.1, Btructural Restrlctions Ignored

Before examining the usual situation where a number of

structural parameters are known a priori, we shall first consider the



case where B, TI', and I are completely unrestricted. In this case
structural estimation 1s impossible since the structure is not identified.
Furthermore, equations (2.3) impose no restrictions on the parameter space
of (I, Q) . 'I‘h’lus the density (2.4) mey be considered as the likelihood

function for (II, @) with the structure completely ignored,

In order to study the efficiency of unconstrained reduced-
form estimation, we shall use some general results of classical estima-
tion theory. Suppose f(x, ©) is the likelihood function for a sample
vector x and a parameter vector 6 . By the famous Cramer-Rao
inequality, a lower bound to the covariance matrix of any unblased estimator

. R -1
of € which does not use a priori restrictions is given by Rn where

i~ 82 log T
aei‘aeé ]

(3.1) R

i

is the information matrix for f . Furthermore, a lower bound to the
agymptotic covariance matrix of any consistent estimator of 6 is given

by le where
. 1
(3.2) R=1lim = R

is the asymptotic information matrix. Under independent sampling and
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certain regularity conditions the maximum-likelihood and minimum-chi-

square estimstors are asymptotically efficient; that is, thelr asymptotic

1

covariance matrices are equal to the lower bound R — .

The information matrix for the reduced-form parameters can be derived

from (2.6). Partitioning sccording to x and ,» we get the sguare matrix

of order GK + G2

. 5 T —
9~ log f o~ log f &2
on Ox! On dw! 11

R =-E =
32 log f 3° log f gD
| 30 3 Wi | |
(3.3)
ot @%ﬂ 0
0 %n(g'lagn'l)
__ -

where C) represents the Kronecker product and where

(3.4) ;}:l( = E[X'X] .

n
The asymptotic informatlon matrix is given by
R R o™t ®%b
(3.5) R = =

where

(3.6 N .. 1m§%n = 1im;1]= E[X'X] .

%(9‘1@99‘1)
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We shall assume that the stochastic process which generates X ig
sufficiently regular to insure that ‘ikﬁb is finite, positive definite,
and equal to Plim X'X/n 2

Unless X is nonstochastic, the finite-sample bound R;l

is not attainable. However, the asymptotic bound R_l is attained by

the covariance matrix of the least-squares estimators
-~ -1
I=P=YXXX)
Q=8= -Il; YT - x(X'%)" %)y .

Thus the least-squares estimators P and 8 (which are also the
unconstrained maximum likelihood estimators) are asymptotically efficient
with asymptotic covariance matrix given by
rﬂn ®’>ﬁ,‘l 0 ]
(3.7) R - :
0 2 @n)

3.2. Structural Restrictions Utilized

If the knowledge that some structural parameters are known
a priori is utilized in estimating 6 , the asymptotic covarlance matrix
of the optimal estimstor is less than R T . Furthermore, if there are

enough restrictions put on the structure, the structural parameters o

can alsc be estimated. These results concerning simultaneous equation

See, for example, [11, pp. 133-136]. This assumption implies that, if X
contains lagged endogenous varisables, the difference, equation system (2.2)
is stable. ’
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systems follow from the general theory of constrained estimation
presented in [14]. The relevant results of that yaper may be summarized

as follows:

THEOREM: Iet f£(x, 8) be the likelihood function for a parameter
vector 6 and iet R be its nonsingular asymptotic informstion matrix.

Suppose it is known that 6 may be written in the form
6 = n{a)

where Q@ is a vector of unknown parsmeters. Iet H , the matrix of
partial derivatives of the transformation h evaluated at the true
value o° y» hnave full column rank. Then, under certain regularity

conditions, the following hold:

a} The constraint parameter o is locally identifiedl and
can be consistently estimated. A lower bound for the
agsymptotic covarisnce matrix of any consistent estimator

of & is given by

¥ = (HEH)T .

b) The parameter space for 6 i1s restricted if the rank of H
is less than the dimension of 6°. A lower bound for the
asymptotic covariance matrix of any consistent estimator of 6
is given by

N = H(H'RH) H' .

= Let a° and 6° be the true paremeter vectors. The s$ructure & 1is

said to be uniquely identified if o° is the only solution to 6° = h(q) .
The structure & 1is said to be locally identified if there is some open

neighborhood of a® for which a° is the only solution. Cf. Rothenberg
{14] and Fisher [6, Section 5.8].
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¢c) The bounds M and N are attained by the asymptotic
covariance matrices of the constrained maximum-likelihood and

minimm-chi-gquare estimators.

d) The gain in reduced-form efficlency due to imposing the con-
straintes is given by the positive semidefinite mamtrix R"l - N .
This matrix is nonzerc as long as the rank of H 1is less than

the dimensionality of 6 .

Our analysis of the simulfaneous equations model will inveolve
the evaluation of M and N for the process having likelihood function
(2.4) and the constreints implied by (2.3). The asymptotic information
matrix R has already been given in (3.5). The remaining task is to
derive the partial derivative matrix for the transformation (2.3) which
relates the reduced-form parameters 6 +to the structural parameters o .

Partitioning according to (2.8), we define the (GK + Ge) x (r + r*) matrix

B on ox 1 B 7]
JBT  3a7 Hy,  Hyp
(5 o 7 ) H = =
S i H
05! Jot 21 20

where H is evaluated at the true parameter vector a .

Unless H has full colum rank (r + r*) , the structurael

parameters will be unidentified.l We shall consider here the case of an

1 See, for example, [14, Section 6,5). Bven if H does not have full

column rank, € will be restricted if H has less than full row
rank. We ghall return to this point in Section 5.
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identified structure and shall therefore assume that H has rank r + r¥ .
An implication of this assumpticn is that the number of unknown elements of
(B, I'y ) must be no greater than GK + G2 . Bince there are a total of

( 2(}2

+ @GK) structural parsmeters, the number of zero-order restrictions
mist be at least as large as G2 . For the moment we shall also assume
that Hll has full column rank r . The meaning of this assumption will

become clear as we proceed.

If M is partitioned according to (5, o)

—Mu Mo

(3.8) M= (HEH) = ,

My My

then N can be written in partitioned form as

t ]
Nll N12 Hll 0 Mll MiE Hll H21
(3:.9) N = =
1
Vo1 M By Hpp|{¥n  Mpp| | © 20
since from (2.3) it is clear that H), is a matrix of zeros. Thus a

lower bound for the asymptotic covariance matrix of & consistent

estimator of = is given by the GK x GK matrix

(%.10) Ny, = H M HL .

The matrix Mll is the lower bound for the asymptotlic covariance matrix
of a consistent estimetor of the structural regression coefficients & ,

Using the fact that R R and Hl are zero, we can write

2+ Tar 2
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(3.8) as
_ —\-1
1 L}
HOHL R, O H, O
M=
. 1
0 Bop © Boo| | Hoy  Hop
N 1
1 o 1 1
HjpRpafhy * B Rpsfyy Ho1Roatlon
(3.11)
= ' 1
] Hoofoptlon
The matrix Mil is then given by
-lH -1
o 1 1 _ ot 1 1
(3.22) My = [Hj Ry By + HyRogHy) = By Ry H  (HY R Hp,) THAR o ]

s D) 4 @ O

as long as Hée has full row rank.l It is shown in Appendix A that
this 1s necessarily the case.
In corder to derive an explicit expression for Mil and Nll

we must calculate the matrix H . Before turning to this task, however,
let us see what can be learned from the form of (3.12). It is useful to
think of M_"Li a5 the sum of two terms: MY ana M+ M3) | 1

can be verified that both of these terms are positive semidefinite. IFf Hll

has full column renk r , then h#l) = H' R .H is strictly positive

11711711
NOINE)

definite. The sum , however, may be singuler and in an

important special case is in fact zero.

L See Goldberger [7, p. 27] for the calecuwlation of partitioned inverses.
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Suppose that there is no a priori information on the elements
of I except that the matrix is positive definite. In that case the

equation

Q=3 gpt

is a one-to-one transformation from the Gg-dimensional parameter space
of % to the G2-dimensional parameter space of @ . The matrix ng

willl be nonsingular and given by the expressionl
-1 -1
(3.13) Hy, =B @B .

But if H22 is nonsingulsr it is clear that

(@) . (3} _ s “dpeliy=
MU MTT = HyRoollsy - HéleeﬁzzHeéﬂajeﬂeelﬂéeﬁaaﬂel

= W R )
B3 Bootloy = HapRoptlsy

is zero. Thus the expression (3.12) for Mil greatly simplifies.

Furthermore, if Hée is nonsingular, B can have full column rank

if and only if Hll hags full column rank.

The above discussion may be summarized as follows: If Z 1is
unrestricted, H22 is & square nonsingular matrix. The matrix H will
have full column rank r + r* (and the structure identified) only if
Hll hag full column rank r . In this case, a lower bound for the
asymptotic covariance matrix of a consistent estimator of & is

given by

(5.14) M = (R,

1 The derivation appears in Appendix A .
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and a lower bound for the asymptotic covariance matrix of a consistent

estimator of =n is given by
(3.15) N,, = H _(H'R .H )‘l o
11 1111111 11

If £ is restricted, M, is given by (3.12) instead of (3.1k).
Furthermore, 1t is possible for H to have full column rank even if
Hll does not. That is, X ~restrictions can help identify an otherwise
unidentified structure.,

The case where there are no regtrictions on the structurszl
covariance matrix Z 1is perhaps the most important one in econometric
practice. Whereas economic theory often suggests that certain regression
coefficients are zero, rarely does the economist possess relisble prior
information on the error variances and covariances. Nevertheless, it is
possible that in some instances it is known that certain covariance
terms are zero. For example, it might be argued that two structural
equations describing two separated sectors have independently distributed
error terms. In such cases it is important to realize that the
asymptotic efficlency of the estimates of 8 and =x can be increased
by making use of the Z-restrlictions. Suppose that Hll has full column
rank so that the structure is identified on the basis of restrictions
on B and I' alone. Then, by (3.12) M), is the inverse of a matrix
which 1s the sum of a positive definite matrix and a positive sgmi—
definite matrix. The inverse of such a sum is less positive definite

than the inverse of only the first matrix as long as the second matrix
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is nonze.ro.l Hence an importani question concerning the value of
restrictions on £ is whether M(g) + Ngﬁ) is zerc. If not, we

can conclude that a priori restrictions on the matrix I reduces the

asymptotic covariance matrices Mll and Nil .2

For the next two sectlons we shall concentrate on the casge

where there are no Z-restrictions. The matrices F&l and Nl are

1

formed using (3.1%) and (3.15) after an éxplicit expression for H
is found. In Section 6 we return tc the case of ZIL-restrictions (which
require the evaluation of H,, and H22) . There it will be proven that
a priori information on the structural covariance matrix does indeed
improve the asymptobtic efficiency in estimating the regression

coefficients.

4. THE DERIVATION OF H:U_

The matrix H depends on the exact nature of the a priori
restrictions placed on the structure. We begin by describlng the
regtrictions on the regression coefficlent matrices B and I .
Consider the ith structural equation. Suppose that ﬁi , the
vector of unknown endogenecus parameters, consists of s elements
and that 75 the vector of unknown exogenous parameters, consists
of Xk, elements so that Bi consists of Ty =8y + ki unknayn

1
parameters. It wilill be convenient to define the following matrices:

For a proof of this proposition see [14, Appendix A).
2 A11 of the results in this paper concern asymptotic covariance matrices
and asymptotic efficiency. When there is. no possibility for confusion,
however, we shall occasionally drop the adjective "asymptotic” to simplify
an already complex terminology.
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C, = the gy X G metrix obtained by striking froma G x G

identity matrix the rows corresponding to the known

' endogenous parameters of the ith equation. (E.g., the

th
p row of I, is removed if ﬁip is known a priori.)

Di = The ki x K matrix obtained by striking froma K x K
identity matrix the rows corresponding to the known
exogenous parameters of the ith equation. (E.g., the

th .
p~ row of I, is removed if 7ip 18 known a priori.)

I, = Ciﬂ = the matrix of reduced form regression coefficients
corresponding to the unknown endogenous parsmeters of the

ith eguation,

Finally, it is useful to define the Ty X K matrix

(k1) W, = =

which summarizes all the prior information on the regression coefficients

of the ith gtructural equation.

The matrix Hll is obtained by differentiating the GK equations

ri
Yig

(4.2) = _=-L B

with respect %o the elements of 8 . Upon calculation one findsl

1 cr. Goldberger [7, pp. 370-1].
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ri

] i rp
(4.3) s .. 3 B Y. = » pTFd y, = - B Py
qu 1 ﬁpq is 1 is gs

for all ﬁpq not known a priori; and

- p*P if s=gq
(b.2) 5= =

8
=
-
Q

for all Yoq not known a priori. Thus

on
ro_ - rp 1 = 1
(lp.j) 5‘—3; = - B 110P B Pr
and
ot
x 1
(4.6) 55,—1,) -afpnp .

The rp block of the partitionel matrix Hll is given by
aﬁ:n- TRy
= - LI
(4.7) ggg p P

The complete matrix H is given by

11
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[ on 3. | B ]
1 1 11, 1
'6_8-{ ‘o, ggg B lWl .« . B GWG
=L S : . - . :
11 88T . : - -
3 o
e 7o BGl"i s p%e
C.
aai 38, 3 ]
(3.8) ﬁllI R ﬂIGI weo0 ... 0
=] e o
5 : .0
N A W,
I - Lo o

@ - (B‘l ® W

where W is a block dlagonal metrix with the W, as diagonal blocks. The

i
partial derivative matrix Hll is thus & K& x r matrix where

(L.9) r = L r

ig the number of structural regression coefficients to be estimated.

If there are no other restrictions on the structural parameters,
the possibility of structural estimation and the existence of restrictions

on w depend on p , ‘the rank of H; From (4.8) it is clear that the

l -
rank of H,, 1s equal to the rank of W since (B“lcg) I) is nonsingular.

Furthermore, because of the block diagonal form of W , +the rank of W 1is

the sum of the ranks of the Wi .



- 22 -

If each Wi has full row rank, then so will W and the
structural pérameters will be locally identified. In fact, since the

consiraint equetions may be rewritten in the linesr form

(L.20) m’=-r,

loeal identificsation implies unique identification. TFor suppose that
there exist two pairs (BO, 1“0) and (Bl, rl) whlch both satisfy (L.10)
and satisfy the a priori reétrictions. Thén for any real number A ,

AB ) + (1 - A,)Bl and AT + (1 - x)r'l will elso satisfy (L4.10) and the
a priori restrictions. But this implies an infinite number of sclutions

in any neighborhood of 80 and hence 80 cannot be locally ildentified.

The block diasgonal form for W elsc indicates that any 81 is
identified if Wi has full row rank. However, if any Wi has less than
full row rank, then in general none af the coefficients in the ith equation
are ildentified. Hence, under the zero-order constraints considered here,

each structural equation can be studied separately as far as identifica-

tion is concernsed. The crucial factor is the renk of the r. X K matrix,l

Since the rank of a metrix cannct exceed its smallest dimension, it is
clear that the rank of Wi is no larger than K . Hence, a necessary
conditlon for ldentifiability is that the number of parameters to be
estimated for the ith equation be less than or equal to K , the total

number of exogenous variables in the system. Furthermore, since " is

This rank condition for identifiability i1s Precisely the one given by
Koopmans and Hood [10, pp. 137-138].
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homogeneous of degree zero in all of the elements of the ith row of B and T ,
at least one of the zerc-order restrictions must be nonhomogeneous. (Thet is,
at least one of the restrictions 613 = k, 715 = k must have nonzero k) .
Otherwise n will also be homogeneous of degree zero in Si and, by Euler's

theorem, Wi will necessarily have rank less than r (For convenience we

)l

;-
shall assume That the nonhomogeneoug restriction is on an element of 51 .
We can summarize the results of this section as follows: The

matrix H), is given by (4.8) as the product of a nonsingular matrix and a

1
block diagonal matrix W . TIf there are no other types of a priori restric-
tions, the ith structural equation is ldentified if and only if Wi has full

row rank. A necessary condition 1s that (1) r, is no greater than X and (2)

i
at least one of the a priori constraints involving the ith structural equation

is nonhomogeneous.

5. THE VARLANCE BROUND

We now may evaluate (3.14) and (3.15) to obtain the lower bounds
on the covariance matrices of efficient estimates of & and x . From
{(3.14), (L.8) and (3.5) we can write

-1
—r 1
My o= (HjR;H,)
-1 - -1 -1
MET @ 1) QG @ W]

wEt @mw

[H

(5.1)

]

This is the conventlonal normalization rule. Since each equation must
have at least one nonzerc P 1n order to be stochastic, normalization
on P is always possible.
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where use is made of the fact that X = BQB' . Hence,

= ' = 1
(5.2) Ny o= Ep(HRE)TE
= (g7t © Izt @)n)w']"lw(s'l @I .
The matrix Mil may be rewritten in a somewhat more meaningful
way. Using (3.6) we can write — -
11l 1G
L] 1 1 T
| WlX XWlG ces WlX XWGG
{(5.3) W(Z“’l(ig'ﬂ)w' = limZE |
n Gl GG
WX'XW!o ces W X'XWIO
L q L G G

But, by the definition of Wi s

| - 1 t
X! x[ni Di]

(5k)

1
~al
Al

= [Y:L' v, Xl i

where Yi is the matrix of current endogeneous variables that appear in the
ith eguation with unknown éoefficients, Vi is the corresponding matrix of

reduced form errors, and Xi is the matrix of exogenous variables that

appear in the ith equation with unknown coefficients. Hence Zi is

the "purified" matrix of variables which appear in the ith structural

eguation with unknown coefficients. Then

— =]
= 11 == 1G
! 1
Z Zla O/ ZGQ
(5.5) M, = Plimn . : ,
=5 Gl =5 GG
Z Zlc cee & ZGg
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a form equivalent to the covariance metrix given by Zellner and Theil [15, p.

58] for the three-stage least-squares estimator.

Bquaticns (5.1) and (5.2) express compactly the covariance
matrices of asymptotically efficient estimators of the structural and
reduced form regression coefficients. These expressions are derived
under the assumption that (1) every structural equation is identified, and (2)
there is no g priori information on X . It is of some interest to consider

the question of relaxing these assumptionms.

The problem of underidentification can easily be handled. Suppose
that the first structural equation is underidentified; that is, the rank of

Wl is Py which is less than Ty Then Bl camot be estimsted con-

silstently. Let Wf be the matrix consisting of the PL independent

rows of Wl.° Then, if W{ replaces W. in W , equation (5.2) is still

1
valid for the lower bound on the covariance matrix of an estimator of =z .
Furthermore, if the first p, TOWS and columns of Mil are ignored and

W¥ replaces W ‘5.1) remains valid for the lower bound on the covariance

1 1’
matrix for an egstimator of (62, cess BG) . It W{ should be nonsingular
(i.e., if o, = K) , then the K x K identity matrix will serve for W

since both will span the same space. These observations follow from the

discussion in Section 6.5 of [1k].

The assumption that there is no a priori information on £ 1is
quite crucial to the derivation of (5.1) and (5.2). As was pointed out
in Section 3, in the presence of IZ-restrictions the expressions for

Mil and le become much more complicated. We turn to this case next.
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6. COVARIANCE RESTRICTIONS

6.1 Introduction

Although & priorl information concerning elements of the structural
covariance matrix is probably rare in practice, it is still of some interest
to examine the effects of such information on estimation efficiency. TIf it
turns out that I-restrictions are very valuable in inereasing the efficlency
of estimating & and =z , then it would seem that more attention Ought‘to be
placed on learnihg about the varlances and covariances of the structural
disturbances. In any case, from a purely logicael point of view, it is quite
asymmetric to limit oneself to coefficient restrictions in a theoretical

study of the similtaneous equations problem.

There are, of course, many ways to express glgriori information
about % . The most natural extension of the analysis in the previous
gsections is to consider the zero-order restrictions of knowing the
mumerical values of some of the Uij . 'The constrained Cramer-Rac bound
for & can be calculated from (3.12) after expressions for H21 and H22
are found. These expressions are relatively simple although the derivations
are rather tedious and are given in Appendix A. Although there is ho
difficulty in evaluating H for the general case of zero-order restrictions,
the resulting expressions are not very illuminating. For any given set of
restrictions, equation (3.12) can be evaluated numerically; but general
algebraic expressions for the Cramer-Reo bound are not interpretable.

However, for two special cases of zero-order Z-restrictions, an algebraic

anglysie is quifte useful. The first case, which we will discuss in
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Section 6.2, assumes that the statistician knows every element of I .
The second case, which we will discuss in Section 6.3, assumes that the matrix

Z ls known to be diagona o

6.2. I Completely Known

The assumption that Z 1is known & priori is, on the face of it,
very implausible. It is difficult to imegine many real-world problems
where the econometrician knows the true value of % but not the true
values of B and I’ . Consider, however, the following case: A structure
has been estimated in the past from a large sample and the very precise
estimates of B, I', and X have been obtained. Because of certain
technological changes, however, some elements of B and I’ have shifted.
It is now desired to reestimate the model on & new (small) sample. Those
elements of B, I, and I which have not shifted (and these might include
every element of I) may be assumed to be known. ‘The problem then is to
efficiently estimate the remeining persmeters under the agssumption that & and

certain c¢ther parameters are known.

Another justification for studying the case of a known Z is to
be able to compare the results with other problems involving covariances
as nuisance parameters. It 1s well known that in the "traditional®
normal linear regression model, prior information on the covariance
matrix does not increase the efficlency of estimating the regression
coefficients. This is a résult of the block diagonal form of the informa-

tion matrix. For example, in the unconstrained reduced form (3.3),
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e s L th th (2) . .
to the 17 and J elements of & , m 13 will be nonzero only if

poth &, and &, are elements of B . If 8, is B and &, is B .
i j i ool J rs

then

(6.3) nl2) oy T p3TpSP |
ij gs

From (5.5) we can obtain the corresponding element of M(l) = H R, H ., o

1) mqa 1oy pr 1 . o
myyl Flim o T = Plin (yq - vq) (ys - vs) G
{6.1)
o Flim & viv oPF pr
= Plim o ;y“qysg - mqsg .

Henze , the matrix Mil is obfained by inverting a matrix which is
{11

identical to M*l’ except for those elements corresponding to a pair of
clements of R . For those elements, méi) is replaced by
- 1) (2} aa L pr gr.sp
16.5 mg_ +m = Plim = y'y o + .
6.5) i3 y 5 Vo BB

There gtill remains the question of how important the knowledge of
& i in Increasing estimation efficiency. If the structural parameters
are ldentified by the coefficlent restrictions alone, then the parameter &
can be egtimabted by ignoring the ZZ-restrictions. The minimom asymptotic
covariance matrix ig then given by (5.5). Using the fact that I is
known redvces this minimum covariance matrix by
=1 -1
) )T

(6.6) (H:.R__H

1 1
1181800 7 - (BfpRyqHyy + HpRyH )

This matrix is necessarily positive semidefinite and will be nonzero

£ Mo H!' R__H is not zero. Examining (6.3) we see that

21 22721
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Tor the diagonal element corresponding to Bi = ﬁpq p mgf) is given by
(2) _ PP . ,9P.9P
(6.7) A BB,

a number which is strictly positive. Hence knowledge of X necessarily
increases the efficiency of the maximim-likelihood estimator of & as
long as there exists al least one unknown element of B . Similarly, the
efficiency of the ML estimator of =n is alsc increased since the

covariance matrix is now
( -
Hll[M‘l) + M(E)] ]7{' 3

1 B ; ! TR .
a matrix less positive definite than Hll(HllRllHll) lHll

If the coefficient restrictions taken by themselves are not
sufficient teo identify the structural parameters, then the knowledge of 2
may enable one to estimate parameters which otherwise would not be estimable.,
In this case;, however, there is the possibllity that the efficiency in
estimating x iz unaffected. If the structure 1s identified without the
Emgonstraints then the addition of these constraints necessarily increases
ﬁh@ efficiency of estimating both the structural and reduced form regression

coefficients.

6.3. & Diagonal

A more realistic form of a priori information is the knowledge that
Z 1ig a diasgonal matrix. This assumption has been made in a number of

econometric models (e.g., Basmann [3] and Klein [8]), although one suspects
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it 1s mathemmtical convenience rather than economic realism which has
been the motivation. It is, however, the author's opinion that the
zero-covarlance assumption can often be justified in practice. We shall
examine the effects of making this assumption without further Justifica-

tion.

The task i1s similar to the one of the previous subsection. We
muist find expressions for the Cramer-Rao bounds Mil and Nll when,
in addition to the zero-order restriétions imposed on B and I' , there
15 also the restriction that I 1is an unknown diagonal matrix. The
asymptotic variance bound for 8 is of the form (3.12). That is,

assuming that H has full column rank,

-1 -1
- t 1 1
Roghoy = HoyRoHon(HaoRo 0 ) "HAR, Ho ]

) B B

- T 4+
Mil [HllRllgll H21

(6.8)

Since M(l) and M(g) have been evaluated already, the remaining
W3

task is to evaluate Again, the algebralc derivation has been placed

in Appendix A. The result iz that M(i) is an r x r matrix of zeros
except for those elements corresponding to a pair of elements of B .

If the 1" element of & is B,y ond the i*® element is B » then

0 if p#r

(6.9) n(®) .
iJ - EBQ.PBSP if p=r

To form the matrix Mil we add the three matrices M(l) + M(E) + M(j) and
(2) , 4(3)

invert. Since M is necessarily positive semidefinite, the
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a priori knowledge that X is diagonal increases estimation efficiency
as long as M(g) + Mﬁj) is not zero.l Examining (6.3) and (6.9) for
the dilagonal element corresponding to qu R
(2) . (3) PP | ,GP.QP ap, 4P
+ == -
m ¢ m7 wqqﬁ + BB BB

d

=5 ﬂQJUjJBQJ
i#p
. . th -1
The lest expression is zero only 1f the q row of B is zero
except for qu (which must be nonzero since not all elements of a row
of a nonsingulsr matrix can be zero). But in this case, the qr element

of B”lB is

ai =83 o
? p Bir B Bpr =0

for all r not equal to q . Hence the expression in (6.10) is zero only
if every element in the pth row of B 1is zero except for the unknown ﬁpq .
But thiz is not possible since by our normalization convention each row of
B contains at least one nonzero element known a Eriori.2 Thus we can

conclude that (6.10) is not zero and thet knowledge that £ 1s diagonal

Again we are assuming that M(l) is invertible so0 that estimation of
the structure is possible even without the I-restrictions.

2 Cf. Sectlon 4, last paragraph.
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makes Mil and XN smaller than they would be if only the regression

11
coefficient restrictions were used. Again, these conclusions are based

on the assumption that the structure is identified even without the
Z-restrictions. If this is not the case, the addition of the XI-restrictions

may not affect efficiency at all.

6.4. X-Restrictions and Identification

We may now summarize some results on structural identification.
When the zero-order restrictions involve only the elements of B and T ,
the identiflability of the elements of & depends on the matrix Hll .
When there are ZX-restrictions in addition to the restrictions on B and T ,

the entire H wmatrix must be examined. Recall that H 1is the

(o + Gaj x (r + r¥) matrix

Hll 0
H =
Hyy iy
, u—

The submatrix Hll is given in equation (4.8); typical elements of H,

and H22 are given in Appendix A . Applying the general theory developed
in [1k, Section 6.5}, we cen conclude that the camplete set of structural
parameters o = (&, o) 1s locally identified if H has full column rank.
The question of identification for simultaneous equation systems is thus

one concerning the rank of the Jacobian matrix H .

The rank of Hll hes been analyzed already in Section 4. In

Appendix A it is shown that H22 always has full column rank under



LT

zero-order restrictions (given that B is assumed to be nonsingular).
Hence, a sufficlent condition for the idenmtiflabllity of the'complete

set of structural parameters is that Hl have full column rank. However,

1
depending on the number of ZX-restrictions, this condition is not always

necessary.
When there are no restrictions on I , H22

that case Hll having full column rank is both necessary and sufficient

for the local ldentifiability of « . With Z-restrictions, however, the

is nonsingular. In

condition is no longer necessary. It is possible for H +to have full rank
r + r* while Hy, has rank less than r . For this to be the case, it is
clear that H mist have no more yrows than colums. Hence a necessary

condition for identification is that r + r¥ < oK + G2 . Or
2
(GK+G2 -r) + (G2 - T¥) >G ;

the number of coefficient restrictions plus the number of covariance
restrictions must be abt least as great as the number of structural

equations squared.

An analysis of sufficient conditions for identifiebility is quite
aifficult when ZXZ-vestrictions are present.  Since ldentifiability is not
the major topie of this study we shall not pursue the matter further.
Fisher [6] using a different approach from ours, has studied the topic
extengively. With perseverance, it is likely that his results could be

reproven on the basis of the matrix H studied here.
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T« EFFICIENT ESTIMATORS

7.1 Introduction

Up to now we have described the asymptotic covariance matrix
off effic;ent estimators under various types of a priori information, but
we have not discussed the problem of finding an asymptoticelly efficient
estimator. It is not our purpose to present new estimators or to develop
computational algorithms for old ones. All that will be done in this
section is to determine which of the previcusly proposed estimators

of & and ¢ are asymptotically efficient.

We shsll restrict ourselves to zero-order structurszl parameter
restrictions as we have throughout this paper. Returning to the general

notation of Section 1, we shall write the likelihood (2.L) as
(7.1) £(m, w)

and the constraints as

(7“2) n o= hl(a)

(7.3) o = he(ay a)

As before x and w are vectors consisting of all the elements
of I and § ; & and o are vectors consisting of only the unknown
elements of (B, I') and % . We define the unconstrained least-squares

estimators

(7.4) P= rfx(X'x)'l and 8 = ;11_ Y1 - X(x'x)’]x'}y
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which, in veclor form, are p and s ¢
(7.5) p = vec P g =vec 8 .

Finally we define ﬁll and §22 to he the asymptotic information matrices

Rll and R22 evaluated at n=p and w= s .

We shall assume that H has full column rank so that the structural
parameters (5, o) are identified. Since reduced-form estimates can
easily be obtained using (7.2) and (7.3), we shall discuss only structural
egtimation. Specifically, we shall consider the following estimators:
(1) full-information maximum likelihood, (2) linearized msximum likelihood,

(3) minimum chi square, and (4) three-stage least squares.

7.2. Full-Information Maximum Likelihood

The maximum-likelihood estimator of (8, o) is the solution

to the extremal problem

(7.6) max £[n,(8) , n,(8, )]
8,0

which, under our assumptions, is egquivalent to

(7.7) mex 2n log | det B| - n log det T - tr[z'l(By' + IX')(YB' + X0')1 .
5,0 .

If there are no S-restrictions, the maxlmm-likelihood estimator of -5

can be expressed as the solution of the "concentrated" extremal problem *

(7.5) i (B XO(m ¢ 00|
8 | B|

See, for example, Koopmens and Hood [10, pp. 160-161].
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The maximum-likelihood estimator of (8, o) given by (7.7)
is conslstent and asymptotically efficient as long as all of the structural
restrictions are taken into account, That is, the function (7.7) is to be

maximized only with respect to the unknown elements of (B, I', £). In

particular, if Z is restricted, the solution of (7.8) is not efficient.
The maximum-likelihood estimator of (x, ) can be obtained from the
maximm-likelihood estimator of (8, o) by using (7.2) and (7.3). These

reduced-form estimates are efficient as long as the structural estimates are,l

7.3. Linearized Maximum Likelihood

The maximum-likelihood estimators are difficult to compute since
the normal equations for (7.7) and (7.8) are nonlinear. Suppose however
some consistent, but inefficient, estimator of (8, o) is available, An
example would be the two-stage least-squares estimetor. Then one could
linearize the log likelihood function (7.7) around the inefficient estimator
and maximize it instead of the true likelihood function. Explicit formulas
for the linearized maximum-likelihood estimator are given by Rothenberg and
Leenders {13]. They also prove that the linearized estimator is

agymptotically efficient.

These results on the efficiency of meximum-likelihood estimators follow
from the general theory of constrained maximum-likelihood estimation
discussed in [1], [2], and [1k].
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7.4, Minimum Chi Souare

The minimum-chi-square estimator of (8, g) is the salution of

the extremal prob.leml

(7.9) win (p - n,(8)] _??11[p - ny(8)] + [s - ny(s, 0)3‘1?{22[5 - h,(8, o}
B0 '

which, upon substitution for ﬁ and h , 1is equivalent to
(7.10) min trls"HE + FIOX (P + 370)" ¢ (1 - 5 2y
8,a
If X is unresiricted, the second term can be made zeroc for any estimate ﬁ

py setting -
~ N
Z = BSB!
Thus, in the case of no Z-restrictions, the minimum-chi-square estimator

for & is the solution of

(7.11) min tr{8™H(P + 3TI)X"X(P + B7)'] .
&

The minimum-chi-square estimator of (8, ¢) given by (7.9)
iz concistent and asymptotically efficilent if all structural restrictions are
taken into account. The reduced-form estimates found by using (7.2) ang
{7.3} are also efficient. These cobservations follow from the general theory
of censtrained estimation developed in [14]. The solution fo (7.11) is
called by Malinvaud [12, pp. 576-577] the minimum distance estimator of 5 .
It is clear from the preceding discussion that this estimator is efficient

only if X is unrestricted.2

1 The minimum-chi-sguare approach to constrained estimation is discussed

in Section 6.4 of [14].

See Appendix B for a discussion of Malinvaud's analysis.
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{:5. Three-Stage Least Squares

The three-stage least-squares (3SI8) estimator of & may be expressed
ag the solution to the problem;
(7.12) min tr[E£(BP + P)X'X(BP + T')']

3]

vhere & 1is some consistent estimator of I (e.g., the two-stage least-
squares estimator). Unlike the maximum-likelihood and minimum-chi-square
methods, three-stage least squares 1s computationally convenient since (7.12)
is quadretic in & . It involves only solving a large system of linear

equations,.

When X is unconstrained, 3SLS is consistent and
asymptotically afficient. This follows from the discussion in Section 5
where the asymptotic bound for S was found to be (5.5), the same expression
ag derived by Zellner and Theil for the 3SIS estimstor. However, when I
is constrained, 3SLS 1is no longer efficient since its asymptotic variance

remains unchanged although the asymptotic varlance bound decreases.

8. A GENERALIZATION

By assuming that all a priori information takes the form of zero-
order structural restrictions, we have been able to derive explicit
expressions for the minimum variance bounds N&l and Nll +» We shall now

consider more general structural restrictions which include zero-order

1 This interpretation of three-stage least squares is due to Basmann [4].
The original presentation is given by Zellner and Theil [15].
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restrictions as a special case. Unfortunately, it will not be possible to

derive resulis as explicit as those in the previous sections.

Ilet QO now be interpreted as the vector of all the elements of

(B, I', ) . fThen
(8.1) 6 = hiQ)

is the set of equations (2.3) relating the 6° + GK reduced-form parameters
2
6 to the 25 +GK structural parameters « . The matrix of partial deriva-
tives
o0
(8.2) H= Sat
cannot posaibly have full column rank since 1t has more columns than rows.
In fact, from the results of Section 4 and Appendix A, it follows that H

has rank G2 + GK .

Previously we have considered restrictions which set certain
elements of @ equal to known numbers. A more general assumption ig that

the restrictions can be represented by a set of equations
(8.3) ¥ (@) =0

where ¥ is a vector of k dlfferentiable functions. It is clear that
zero-order restrictions are a special case of (8.3). We shall assume that the
k equations (8.3) are independent in a neighborhood of the true parameter

o}

" . That 1z, we assume that + ,  the matrix of partial derivatives of

¥ s has full row renk k for all ¢ 1n some open aneighborhood of aO o

If there are enough structural restrictions (8.3) then the reduced-
form parameter space is restricted. In that case, the minimum variasnce bound
for estimating € is smaller than the unconstrained bound R”l . Differentia-

ting (8.1) and (8.3) we have in & neighborhood of o
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(8.4) 49 = Haq
and
(8.5) 0 = ydx

where H and ¥ are evaluated at the true o’ . We are Interested
in whether the vector space of elements d@ defined by (8.k) and (8.5)
haz dimension less than Ga + GK, the dimension of the uneonstrained

reduced-form parameter space.

It is easily verified that the set of vectors da which

satisfy (8.5) is a vector space spanned by the colurms of

(8.6) - )

an idempotent matrix of rank 2G2 + GK - k . Then it follows from

(8.4) that the parameter space of d6 1is spanned by the columns of

2
the (G + GK) x (2(}2 + GK) matrix

ity

(8.7) Az HT - v (W) Nl .

Since H has rank G2 + GK , the rank of A. is necessarily less than

G2 + GK if k 1is greater than G2 « That is, the reduced form is
res%ricted if there are more than G2 independent restrictions of the
form (8.3). This is notla necessary condition, however, A neéessary and
sufficient condition for the reduced form being restricted is that A have

less than full row rank. The minimum variance bound for estimating 9 is

glven by

(8.8) A(ARE)
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where A is a matrix consisting of the independent columns of A . This

reduces %o Rwl if A has full row rank.

Begldes increasing the efficlency of reduced-form estimation,
the constraints (8.3) may identify the structure and permit structural
estimation. By definition, « is identified if and only if there exists
& unique o satlsfying (8.1) and (8.3) when @ equals the true 0° .

Local identification of Q@ requires that the only solution of

Hao

it
o

YaQ = O

be the zero vector.l A necessary and sufficlent condition for local

identification is that the (G2 + GK + k) x (2G2 + GK) matrix

(8.9) i

have full colum rank. Since the rank of a matrix cannot exceed its
smallest dimension, a necessary condition for identification is that Xk

be no less than G2 o

If the matrix (8.9) has full column rank, then the matrix

(8.10) Fos (HERE+yy)T

1

Ses, for example, Rothenberg [1h4, Section 6.5]1 and Fisher [6, Section
5.9}, :
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existgs., In that case it follows from the results given in Section 6.6 of

[1k] that the variance bound for estimeting o is given by

(8.11) P - Py (V) THE .

The variance bound (8.8) for estimating & may then be expressed as
(8.12) HIF - va(wa')“le]H'

If there are no ZIZ-restrictions (i.e., none of the constraint

equations ¥ involve I) > V¥ may be partitioned according to (&, o) as:

¢ =y, 0]

where ¢. is a k x (G + GK) matrix. Again some simplification of (8.9) -

1
(6.12) ocecur. In particular, identification now depends on the rank of

(8.13) ¥
11

and the szxistence of restrictions on I depends on the rank of

g 1 -1
(6.14) LT - i) gl

9. SUMMARY

In this paper the theory of efficient estimation with prior
information in the form of constraint parameters has heen applied to the
Cowles Commission “simultaneous equations" model., An expression for the

asymptotic minimm variance bound was found for both the redueced-form regression
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coefficients I and the structural coefficients B and I' . This was
done for the case where all a priori restrictions were zero-order and
involved either (B, I') alone or (B, I'y L} together. It was found

that overidentifying restrictions indeed do increase the efficiency of
estimating II and that ZI-restrictions are valuable in thils respect.
Finally, it has been shown that the three-stage least-squares estimator

and Malinvauvdte minimm-distance estimstor are asymptotically efficlent
only if thers are no restrictions on I . The maximum-likelihood estimator
and the minimum-chi-squere estimator which take into account all the

restrictions are both asympbotically efficient.

The algebra produced in this paper ylelds only very modest
qualitative results. The important question is whether the efficiency
increases due to a priori restrictions are numericelly lmportant. The
formulas derived her= must be applied to some actual econcmetric problems
in order to answer this question. Some interesting quantitative results
nlready obteined suggest that the magnitude of the efficlency increase may

be substantial., These results will be reported in a later hpaper.
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APPENDIX A

We shall derive in this appendix the typical elements of the

and also of the matrices H!.R..H

Jacobian matrices H 5 21 Ropfloy

o and H2

T s M o
ang HEIREEH22 . Finally, for the case where £ 1is diagonal, we shell

derive an expression for the typical element of the matrix

H ¥ Tyt ; :
H21R22H22(H22R22H22) 37{223221{21 . The matrices H,, end H,, are

obtained by differentiating the G2 elements of Q ,

_ ri 8]
(4.1) W, = ? ? p cijB s

with respect to & and o .
Each element of the G-2 xy matrix H corresponds to an

21
element of Q and an element of & . It is clear from (A.1) that the

derivative of any W with respect to an element of I' is zero. Hence

H21 containe A column of zeros for each element of & that comes from T .

The elements of H corresponding to elements of B take the following

21
form. If qu is not knovn a priori, then

dw ri . 83

< ) 8] ri B

R | g, B Y +B "o, . 5—~—~]
By 13 Ppg I 1J Bpg

H

(4.2) - 23 (p7%0, 8% 4 g7, 7Y

i3 Ld

H

- (quBrP + quBSp) .
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The matrix H 1s of order G° x r* (where r° 1is the number of

22
unknown elements of L) . If 0, 15 unknown, then
(A.3) amrs ra_sb
p =p" P .
ab
; . -1 -1
Hence H22 is obtained by striking from B (:) B the columnsg

which refer to known elements of L . Since BT €2 B has full rank
(and therefore G2 independent columns), H22 must necessarily have

full column rank.

\ . '
Each element of the 1 x r matrix Hgleéﬁgl corresponds to a

pelr of structural regression coefficients. The 1] element (corresponding

‘to 8, and 63) is zero if either &, or ﬁj or both are elements of T .

I 8, = qu and 6j = ﬁp,q, , then, using (A.2) and (3.5), we have

L) -

(ByRoHo0)s 5
L rp spy rr' ss' r'p' s'p!
) 2§§§:§1(‘°qu M C O R

. L B’ ap'.a'p gp'.a'p pp’
= glayg 0™+ B P+ TR P M)

H L4 H
- wqqtcpp + plP'ga'P

2

vhere use has been made of the relation

(A.5) . 5z p*epdt .
iy
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¥* *
Each element of the ™ x r* matrix H22R22322 corresponds to a

pair of unknown elements of £ . The 1ij element, where 1 represents

9ob and J 7Tepresents Ooq » 1S giv?n by
1 ra.sh rr' ss' rte.sfd
(H =
HooPoptpn)s 5 7 T2ZE PR 0w BB
rsr's
(A4.6)
o1 Uac bd
"2 [+ °

‘ ; R v s 1 -1 -1
Hence, H%“RQEHQB is obtained by striking from 3 Z Az the rows

and columns corresponding to the imown elements of X
*
Fach element of the r x r° matrix H21322H22 corresponds to an

element of & and an unknown element of X . The rows corresponding to

elements of I* are zero., The other elements are of the following form

{where the ith row represents ﬁpq and the jth colum represents Uab)

rr’ ss' . r'a_s'hb
(8 )T B~

zzz(m arP+w¢3 B

rsr'g!

S‘OII—'

PJ 22 22)i3

(A7)
1 -
é{ﬁqbcpa + ﬁqacpb)

An important matrix for considering ZXZ-restrictions is

) Jn

(3) _
MO = - B R (AR

o

22722 22 22 22 2l

Unfortunately, although we have an expression for the typical element of

HéEREQHQE , we cannot find a simple expression for Ilts inverse except

for special cases. If the prior information is of the form that restricts

T to be diagonal, then H}! is a G x ¢ diagonal matrix with

22 22 22



the 4ii element given by

1 ii ii
! s —_

(a.8) (HyoRoHop)iy = 5070 -
The inverse is a G x G diagonal matrix with the 11 element equal
to 2 U?. + Hence, 1f &, =6 and &, =B ,» Wwe have

ii i o] J rs

2

+d

5 (Bqlcpl + 5qidpi)dii(5810ri + ﬁ51dr1)
i

nojH

(A.9) 0 if pgr

\;

- 2 p°Pp%P if p=r
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APPENDIX B

In his recent book [12, Chapter 9 and 13], Professor Malinvaud
attacks the problem of estimaﬁing simultaneous equation systems by an
extension of his "minimum-distance” approach to general regression models.
Unfortunately, there seems to be a minor flaw in his argument concerning
the asymptotic efficiency of his proposed estimator. In this Appendix
we shall briefly review his derivation and indicate where the difficulty
lies. We shall convert Malinvaud's notation into the one we have been

using.

Consider again the reduced form model (2.2):

(B.1) Yy = IX, t V.

Since T 1ise derived from the structure (2.1) we can consider I to be a

function of the structural regression coefficients o 3
(R.2) = (8} .

Malinvaud (pe. 577) suggests that B be estimated by &%¥ , the solution

of

(B.3) min [5(y, - T, )'S™ (v, - Tix,)]
5

where & is defined in our equation (7.4). As Malinvaud shows on page 308,

this problem is equivalent to the one given in (7.11) of our chapter.

In Theorem 19.2 (p. 577) Malinvaud states that &%* is

asymptotically efficient if the errors are normally distributed. His
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procf is based wltimately on Theorem 9.5 (p. 302) which concerns the general
cage of nonlinear regression with additive errors. However, for part of the
proof of Thecrem 9.5 it is implicitly assumed that the trus error co-
variance matrix Q is not a function of & nl In the simultaneous eguations
cage, £ 1z necegsarily s function of & and hence Thearem 9.5 ls not

directly spplicable. Thus, that part of Theorem 19.2 which concerns

efficiency is not proved by Malinvaud.

In fact Theorem 19.2 is correct as long as thers are no
Z-regtrictions, Since that is the case which Malinvaud seems to have in
min.djz none of his results are affected. Yet Malinvaud’s "proof™ of the
theorem nowhere mskee use of the fact that Z-restrictions are excluded.
This, Indeed, is the reagon for suspecting tﬁe derivation in the first

place.

& heuristic argument for the applicability of Theorem 9.5 to the
simltansous eguations problem is as follows: If T is unconstrained,
then the cosfflieient restrictions pub no constraints on O . Thus the
dependence of 8 on & Is not an effective congtraint and can be lgnored.
In that case Theorem 19.2 is indeed a specisl case of Theorem 9.5. This
heuristlce sargument is of course not the only way of getting around the
difficulty. 1In Section 7 of the present chapter we have proven what is

essentially Malinvaud's Theorem 1%9.2 using a quite different approsch.

L Otherwise the srgument in the footnote on page 303 is not valid.

2 Cf, the line below eguation (4) on page 568 and the line below

equation (11) on pege 578.
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Since Mglinvaud's Theorgm 19.2 is correct as long as there asre no
Z-constraints, the flaw in the proof has no ilmportant conseguences. However,
by ignoring the possibility that  may be a function of & , the results
in Chapter 9 are weaker than they need be., Furthermore, the analysis of
Z~restrictions, which car be handled by the minimm distance approach

quite eapily, ig excluded as a result of this lapse.
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APPENDIX C

The results in this paper are based on the assumption that X
the matrix of structural error covariances, is nonsingular. This means
that all G structural equations are stochastic with nondegenerate random
errvor terms., In most economic models, however, there appear linear identities
-- nonstochastic equations which contain no unknown parameters. The purpose
of this appendix is to show that, after a trivial redefinition of certain
matrices, the results of the paper apply to the case where there are linear

identities.

One way to handle the case of linear identities is simply to
"solve them out."” That is, the identities can be used to reduce the
number of structﬁral equations and the number of endogenous variables so
that the reduced system has a nonsingular covariance matrix of structural
errors. If the system is linear and B 1s nonsingular, this can always
we done. The trouble with this method 1s that the a priori consbraints
will hecome mors complicated. If the origilnal system had only zero-order
coefficlient restrictions, the process of solving out the identitlies will
introduce restrictions of a higher order. Furthermore. the parameters of
the original model are usually more easy to interpret than the parameters
of the reduced model., For these reasong, therefore, it 1s desirable to

work with models which contain the identities.

Suppose the system contains G' stochastic equatlions and G-G!
identities. We assume that there are no unknown parameters in the ildentities.

The complete system (2.1) can be partitioned as follows:



{c.1) ' + X =

where ¥y is & vector of G° of the dependent variables, Vs 1is a vector
of the remsining dependent varisbles, x 1s the vector of all X endogenous
variables, and u is the G'-dimensional vector of disturbances. The
matrices 321 R 322 s and r2 are known a priori. If the matrix B is
nonsingular, then there exists some ordering of the endogenous variables for
which 322 is nonsingular. We assume ¥y and y, are chogen so that

322 igs nonsingular.

The system (C.l) is equivalent (as far as the stochastic part is

concerned) tn

: o} ml - ‘l ’ =2
(C.2) By, + Bol-By Boyyy - Bpp Ty x] # 1) x =y
or
(C.3) By, +Tx =1
whers

B=B - B B8
(Cokt)
' F=l, -B BLT
I 12v22 2 °
Tt 18 easy to verify that B is simply the inverse of Bll, the G x G'
upper left submatrix of Bt
B -1 11 12
) Bll BlE B B
(C.5) B o= = .
B B BEl B22

2l 22
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The reduced form for (C.3) is

(C.6) ¥, = Ix + v,
where
a=n] = 11 12
. o= o +
(c.7) e BT [B I, +3B PE]
and
=] 11
(c.8) V)= BTy =By .

All of the relevant

gsinece v

distribution of Vl 1

U.l .

and 0

11 tn the structural parameters

are given by

I = - [Bll T+ B
(C.9)
1 11
=B 24 B

The constraint equations relating the reduced form parameters

sbochastic information is given by the probability

B 1

1o T, and 2y

But equations ((1.9) are simply a subset of the eguations (1.3):

I gt gt
1
i = =
i IR
_.L [ S,
gcolo) - R
1 12
0 = =
21
0oy Qop B
L

Ty

PE
12 11
B le 0 B
B22 0 0 BEl

i

w
;—.‘
)

{ox]

is uniquely related to the basic error term

22
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Hence the derlvatives of (C.9) can be obtained by taking e subset of the
derivative of (C.10). But these latter derivatives have already been
calculated in Sections 4 and Appendix A. Since these calculations do

not depend on the invertibility of X , they are valid in the present

context. The only change needed is that w;a and &Y should be

1 -1
1 and le

form ﬁla and Gﬁj should be interpreted as typical elements of the

interpreted as belng typical elements of Qi - Elements of the

full G x ¢ matrice B“:L and Q .

The relevant information matrix for (Hl , Qll) is
— I
| @M o
(C.11) |
: 0 @ ap |
Equation {4.8) becomes - -
(r.12) H, = - (5> ®iw'

where W is unchanged. Equation (5.1) becomes

i

H = ..L
(B3R H),)

%,

it

[W(Bll®l)'(ﬂii®7h}(3n x IWL .

W(zy @mw' 1

Bl
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