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An Algorithm for & Class of Nonconvex
Programming Problems

by
Herbert Scart™

In a recent paper [l], Lemke descrited the following problem: Let

be a square matrix of size nxn and b= (bl, caey bn) a vector of size m

Urder what conditions can we say that the equations

LR + - =
R PR Bl
anj-xl + LR + =3 Xn - yn = bn

" nave a solution in ncnnegative variables x and y , with xfyi =0 for

every index 1 7

Lemke offers a variety of conditions which guarantee an affirmative
answer to this question. For example, such a sclution may ve found if the
matrix A and the vector b are both strictly positive, and in many other

cases as well. In addition to these sufficient conditions, a finite algorithm

The research described in this paper was carried out under a grant
from the Naticnel Science Foundation. I wish to thank Lloyd Shapley
who rescued me from s serious misunderstanding at one point in the
development of this work.
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vased on ordinary pivot steps, is given for calculating a solution to the

problem.

Tre formulation of the provlem seems artifieial tut its importance
derives from the cbservation that a numter of problems in zethematical
programming can be put into this form. For example, a soluticn of the

linear progrerming problem

min €.%X, *t s + C X
Il nn

dypXy oo F K 20

subject to .
d X, + ..

1 .+clmx

>e
n—

a

and xij;

may be found oy solving Lemke's problem far the matrix

O c_lll"°dl'1
ey
A = -t.ill R -dml
A-dln. «-dmn
! 1 3

and the vector b = (el, ses &

n 3 "Gy e T cn) . Quadratic programming

problems may put in a similer form by replacing the mx a submetrix of
zeros appearing in the upper left hand cormer of A by a nonzero symmetric

matrix. And finally, Nash equilibrium points for a two person Nonzero sum
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game may be found by the solution of lemke's problem with the matrlx A in the

form

lemke's wlgerithm is based on cooventional pivet steps of the sort
used in linear programming, but the procof that the algorithm terminates in a
finite number of steps with the desired solution, is thoroughly original and
differs from any previously given proof of finiteness for similar problems.
The proof may be applied to algorithms in which conventional pivot steps
are replaced by au.ernative constructions. For example, in [2,3] I introduced the
notions of an ordinal basis and an ordinal pivot step; and b:-y cambining these
‘ ideas with Ienke'!s finiteness proof, was able to develop an algorithm for
kcalculating approximately a point in the core of an n person cooperative
game. The algorithm also could be used to prove Brouwer's fixed polnt
theorem. The present note applies Lemke's finiteness proof to a third
concept of basis and pivet step. The new algorithm which results may be
applied to calculate without any approximation a vector in the core of an
exchange econany with plecewise linear indifference curves, and will

probably be more efficlent than the previcus approximate algorithm, in



that larger movements are taken on each pivot step,

The problem to which the new algorithm addresses itself 1s

the following: IlLet

al(xl, 'R Xn)

.
-
-

an(:ri, .ee xn) s

be n functions, each of which is the maximum of a finite number of
hamogeneous linear functions, and let b = (bl, res bn) be a vector of

size n . Under what conditions can we say the the equations

al(xl, cee Xn) - yl = bl

L]
.
.

an(xl, LR N J Xn) - yn

]
o

have a solution in nonnegative variables x and y with X,y = 0

for all 17

Of course, the ilmportant difference between this problem and
lemke's is that each linear function is now replaced by the maximum of
several linear functiens. If ai(x) were the minimum rather than the
meximum of linear funciions the problem could be solved by a trivial
reformlation of lemke's problem. The use of the maximum takes the
problem into the area of integer programming, and it is therefore
somewhat surprising that definite existence theorems can be obtained.
Moreover this is the correct formlation for calculating a vector in

the core of an n person game, in which case ai(x) is the support
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function for a certain polyhedral convex set Vi y 1l.e.,

ai(x) = sup {« l ox & Vi] .

Before giving a set of sufficlent conditions for the existence
of a solution to this problem, it will be useful to introduce some
notation and definitions. BEach ai(x) is the maximum of a finite
number of linear funciions, and the caombined data of the problem mey be

represented by a matrix.

— xl . o = @ Xn -
L . » . b
11 210 "1 5
. 1
A = a a b 8

-1

The first m rows of this matrix are grouped into n sets of
rows Sl’ cos Sn , with Sk the set af rows used in forming the function
ak(x) . Each of the final n rows appears in a set by itself. The
ccanstants bi should be equal for all i in the same set B8k , but

this will never be used in the subsequent paxrt of the paper.
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The following notion of a "feasible basis" for this matrix is

appropriate for our problem.

DEFINITION: A set of n rows of the matrix A , with indices

il, 12, ces in is defined to be a'feasible basis" if the
submstrix
a - - L] a
ill iln
a, v e o A&
il in
o n ]

1. If Sk contains a row in the basis, them I a

for a1 1 in Sk .

X, <D

1373 i

2, If Sk contains no row in the basis, then I aijxj Ejbi for

at least one 1 1in Sk .

We snall frequently say that if a set Sk contains a row in the

basis, thenm S, 1is in the basis, and if 5., contains no rows in the

k k

vasis, then Sk is not in the basis. BSince a given S, may contain

k
more than cne row in the basis, there may be fewer than n sets in

the bvasis.

It should be clear that to solve the problem previously

glven, it is sufficient to find a feasible basis such that the
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variable X = 0 1if the set S, has no rows in the basis, for

k
k=1, «us n » In other words the basis should have the property that
far every pair § and S5 (with kX =1, ... n) at least cre of the
palir of sets is in the basis.
Theorem: Iet the matrix A and the partition {Sk} be given.
Assume that
n

z mx (Za,x.)<0
k=1 " leS, o d

for x 20 implies x =0 .

Then there is a feasible basis as defined above, with the
property that for every k=1, ... 2, at least one of the pair Sk s

S—k is in the basis.

The hypotheses of the theorem, which are a generalization of those

given by Lemke for the case in which each S, consists of a single row,

4
are by no means necessary for the validity of the conclusion, or for

‘the successful application of the algorithm, For example the conditions

are nnot satisfied if the problem is that of caleulating a vector in the core

of an n person game, in which case the first m rows of the matrix

are given by

0 - 1 ]
Asm_y
=D 0 -e .




0

The rows of each submatrix Ai are the normels to the supporting
hyperplanes for a convex polyhedral set, D 1is the incidence matrix
of players versus coalitions, and e a vector all of whose components

are 1. Nevertheless the algor.thm 1s successful for this problem.

The particular version of the algoritim to be discussed here
involves following lLemke by introducing an extra column and two extra rows

in A, and obtaining a new matrix

1 n n+l
I ]
au_... %ﬂ L bl
- - - L] Sl
) .. .
|
: i
* S
- . n
A = %ﬂ‘ . . %m 1 bml
i
-1 . & & & -'l O -M ‘ sn+l
1 0 . 0 8] 0 ; S_l
: .
1t
0 0 . . Q 1 0 ! S
L_ i -n-1
—
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A new variasble Xl has been introduced, and iwo new rows,

cne row constituting the set Sn+1 and another the set S-n-l » The

constant M 1s selected as a large positive pumber. Of course, =

feasible basis for this matrix consists of a set of n+l rows rather than n .

The algorithm will be applied to this matrix ratier than the original
one, and it will terminate with a feasible basis with the property that for

every k=1, ... ntl elither Sk or S K is in the basis. In other words

>0, such that for every set

we shall obtain a vectar X, ... ¥ .. 2

k=1, oo n.

n

+ -
1. ?_aijxj Xa ->bi for at least one icsk , and

2. . i % >0, then
+ < -
zl: ai,jxj xm_l < bi for ﬂ iesk
n
Moreover if X+l >0, then ?. x,j =M.

In order to show that this solution works for the original

matrix 4 , we need only show that X = 0, and this is true if

+1
n
Lx 3 <M. It is therefore sufficient to show that M may be selected
1 n
so large that if 1 and 2 hcold then necessarily I xj <M.

1

Conditions 1 and 2 imply that

n
+ <
xk i ai ij xkxn-l-l <bv ixk and therefore
n

<
x L a,.,x _bix

f a.l.l ieS andal.l k=l eoe Il o
l{l i,j:] or € P

k k
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It follows that

I
I ox omax (= 8, JX, ) < E max by \x .
k=1 ieS, 13 kel ( ieS,

But it is impossible to find such vectors which are nonzegative and with

xj = M becoming arbitrarily large, for 1f this were so we could

O.E"Pll‘le (gl, s E ) tO be 8 lj-mlt Pomt Of (_' rae _>-

il e =

g:l,andzg max (L a,.t.) <0, which

But then £ 20,
d ! k=l F deS 1%

hﬂbiu

contradicts the hypothesis of our theorem.

This argument permits us to concentrate on the matrix a , which
is considerahly easier to work with than A . There are same problems
however in which the matrix A has sufficient properties so that an

extension to A 1is not required, or in which an A different from the

above is more useful.

It is convenient to make the following nondegeneracy assumptiocn,

which can easily be brought about by a perturbation of the b's .

NONDEGFNERACY ASSUMPTION: Let x satisfy the equations

n+l

L a, .X.=0Dh, whera the indlces 1 T e gver
1 fpd iy’ o T

any (n+l) rows of A . Then for any row 1 different from one of these,

we have

b 8 %, # b .
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We shall begin the algorithm with a specific feasible basis
consisting of S-l’ S_n , &and scme set Sk* selected from among

the Pirst n setz of A . Foreach k=1, ... n calculate

min b, .
i

S
iek

Then select the set k so as to meximize this quantity. By the
nondegeneracy asswmption these will be a unique set Sk* which maximizes ,
and a unique row i* in that set which gives the minimum ratio. The
first n rows: of the unit matrix of ; plus the row i* may easily be
shown to be a feasible basis for .?& if bi* >0. I?f bi* <0, then
the solution to the problem is given by the zero vector.

OQur basis has the property that for every k other than
k= n+ 1 at least one of the pair Sk’ S-k is in the basis. The
algorithm will involve only bases of this sort. In other words at every
step we will have a basis including possibly some of the last n + 1 rows;
will be in the basis, but for every other pair

nelither S nor S
nt =1l

1 -1
Sk’ S~k at least one will be in the basis.

It should be clesr that at least n of the 2(n+l) sets must
appear in such a basis, If in fact (ntl} of the 2(n+l) sets appear in the
basls, then each of these sets must contaln precisely one of the (n+l) rows
appearing in the basis. A basis of this sort will be said to be of type l.

Tf n distinet sets appear in the basis, then one of them will contain

two Tows and the others precisely one row. A basis of this sort will

be said to be of type 2. These considerations are of sufficient importance
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for the algorithm, to be summarized in the following definition.

DEFINITION: A basis is of type L 1f n + 1 distinet sets appear
in the basis. The basis is of type 2 if n distinct sefs appear in the

basis.

Of course, there are feasible bases other than those of type 1
or 2, but the algorithm will never be at such a feasible basis if for
every k other than k=1n + 1 at least one of the pair Sk’ S-k is in
the basis.

The algorithm will take us systematically from one such feasible
basis to another. As we shall see, the appropriate concept of a "pivot step”
is to select an arbitrary row appearing in a basis and to remove it, with a
new row taking its place. If the basis 1s of the sort described above then
there will be twg natural pivot steps to take which preserve the form of the
basls. For example if the Dbesis is of type 1, then there is precisely one
index k , such that both Sk and S_k are in the basis. ZXach of these

sets contains one row in the basis. Either of these rows may be removed giving

rise to two pivot steps.

On the other hand, if the basis is of type 2, then there is precisely
one set which contains two rows in the basis, and either of these two rows may

be removed.,

The algorithm proceeds as follows. At each stage there will be
two natural pivot steps to take, One of these will have been taken in order
to reach the point where we are, so that the other pivot step should be taken.

As we shall see, both of these pivot steps may be carried cut if we are not at the
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initial basis, where only one can be implemented. Moreover, the algorithm

can not return to a basis already passed, since, as we shall see, pivot

steps are reversible. Since there are only a finite number of feasible bases,
the algorithm must terminate in a finite number of steps with a solution to the

problem,

This argumsnt depends, of course, on exhibiting the details of a pivot

step appropriate to ocur notion of a feasible basis.

1. The Details of a Pivot Step From a Type 1 Basis.

Let (il, cee in+l) be the rows of & type 1 basis. The Tow i,

is contained in the set Sk , &and these (n+l) sets are distinect.
a

° s ses xz+l) will represent the solution of the equations

20 = (x°

1

and the following properties are assumed to hold:

1. If Sk 1s in the basis, then

0 .
z aijxj < bi forall i in Sk other

than the row in Sk which is in the basis.

2, If Sk is not in the basis, then

for at least onpe i 1in S .

0.
>
z aijxj bi Xk

(The strict inequalities are used here because of the nondegeneracy assumption.)
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There is a simple geametric interpretation for a type 1 basis,

If we define, for each k ,

C,={x|Zax < b forall i in §],

K i
5 3 k
then O, 1s a polynedral convex set in (ntl) dimensienal space.
If Sk is in the basis, then x° 1ies on the boundary of Ck , and is

in only one of the defining hyperplanes

Ir Sk is not in the basls, then x° lies outside of Ck .
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A particwlar rovw i* in a particular set S will have been

k* }

selected o be removed from the basis, To do this we lock for solutions of

the equations

z &y 23 xj Dia for all ;a in the basis, other

than 1%, arnd

=D + >0,
ai*,j xJ e T e with ¢

Z
This gives rise to a one parameter family of solutions

0 .
X, =X, + egj where

Za, |

; 0 for all ia in the basis other than i* , and

£, =1.

Za,, .k,
i%*,3°3

As e increases from zero, the vector x moves in a straight line.

If 5, 1s in the basis, and not equal to k* , then x remanins in ane

k
bounding hyperplane assoclated with Ck ; and may or may not eventually

reach ancther bounding hyperplane.
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If k = k¥ , then the vector x departs from C
\-._

k-

It Sk is not in the basis, then x moves elong a straight line

vhich may or may not eventually intersect Ck .

———e = e

Every set S, which is not in the basis is examined to determine

k

the smallest nonnegative value of € for which x is in C i1f there is

k 2
sych a value of ¢ , i.e., the smallest value of ¢ £for which

Ta x° +efa g, <b, forall i eS
ij°j - 1

1373 k-’

This value of ¢ may be determined as follows, remembering that
La x-b N #£ 0 for any 1eS, , because of the nondegeneracy assumption.

1373

RULE 1. If Za.xg-bi>0 and I &

> for scme
13 >0, ieSk , then

3¢

no value of € will work and we skip this set.
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RULE 2. If Rule 1 is not invoked for this set, then we calculate
o

b ai:x! - bi
Ek = max »
o -Za, .t
- >
L aijxj bi 0 1j%d
L a, <Q
2198
and
0
LZa x, -5,
Sk = min —.—ii_‘j_._l .
o -LZa, .k,
La X,«-h <O
alj J 179
La t. >0
1373

Sk is taken to be = If there are no rows in Sk meeting the

conditions of ifs definition, If Rule 1 does not apply, then
there will be some rows used in defining ek .

RULE 3. If Bk <e skip this set, since no value of ¢ will take th

k L
vector x into the set CK . On the other hand if €y < Bk s then x
lenters the set Ck for e = € s and Sk 1s a potential set to be
brought into the basis when Sk* is remcved.

RULE 4. Let ¢ be the minimm of the ek for ell sets Sk which are

not in the basls, and which have not been excluded by the applications of

the first three rules. If all sets are excluded put ¢ equal to w .
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We have determined the smallest value of e such that x enters
a set Ck with Sk not in the bagis. If the pivot step were to take us
to another type 1 basis, then the unique row associated with ¢ would be
taker into the basis, Cn the other hand it is possible that a pivot step
will require a transition to a type 2 basis. This means that the vector x

will reach a second bounding hyperplane for scme Ck with Sk in the

L]

basis (k # k*) , for ¢ smaller than ¢ . We determine whether this i
true by examining all sets Sk in the basis, other than k = k¥ , and apply-

ing the followling rules, realizing that for such sets

o
Za,.x, -

< ..
155y bi__O for all i

RULE 5. For each S in the basis, other than k*, we calculate

k
Q
5 = min La% - \
k o 3
Za, x.-b, <0
lJJ 1 —Zaijg,j /
ZaiJ§j>O

0r « if there are no contenders.

RULE 6. Let © be the minimm of the B, for all sets S _ In
the basis other then ¥* , If § < e the pivot step will be to &
type 2 basis with the row to be brought in corresponding to that
used in defining 8§ . If € <5 (there will be no ties) then the
pivot step is to a type l.basis with the row to be brought in

corresponding to that used in defining e .
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lemma 1., If neither Sn+1 nor S-n-l are in a type 1 basis,

and for every cther pair Sk ) S-k at least one is in the basis,

then the pivot step can always be carried out, unless the basis

consists of

S

k*’s

S

12 e S and we are

attempting to resmove Sk* .

If a pivot step cannot be carried out it means that the vector x
cannot enter any of the sets Cy for which Sk is not in the basis. Assume
that a set S-i with i=1, .+« ntl is not in the basis. This means that

z aijxg >bi for this row or x: >0, In order for x not to enter C ;

i

0

il

Rule 1 must be invoked so that Z ai,jg,j > 0 or E‘i >0.

On the other hand if S-i is in the basls, then elther gi =1,
if S-i is being removed from the basis, or else gi = 0. Tn any event,

for a pivot step not to be carried out we must have £E>0.

Will the vector x eventuslly enter the set Cn +l? Applying

, n
Rule 1, we see that for x not to emter C ., , We must have I E',j <0,

=1
so that for a pivot step not to be csrried cut we must have

=...=f =0, and g o >0. But thenif S with k=1, ...n

£, k
is any set in the basis, and 1 the row in Sk which is in the basis,
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n
z ai 4

x 3 + Enel >0,

J

which can only occcur if we are removing this set from the basis. Therefore
there can only be one set Sk with k=1, ... n 1in the basis, and the
basis must consist of Sl’ v Sn and Sk* ; Wwith Sk* being removed,

for the pivot step to be impossible to carry out,

2. The Detalls of a Pivot Step From a T;pe 2 Basis.

A type 2 basis consists of n ratner than n + 1 sets

Skl, ves Skn . The sets Sn+l and S

for every other pair S, and §_, (k =1, ... n) precisely one is in

are not in the basis, and
-n-1
the basis and the other not. One of these sets Sk* has two rows in the

basis, and one of these two rowsis to be renmoved.

If we define the sets Ck as before, then the diagrams of the

previous sectlon are applicable except for the set Ck* , Wwhieh has the

property that x° 1lies on the intersection of two bounding faces.
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One of these two bounding faces, say the one corresponding to the
row i*¥ of Ails %o Tevemoved from the basis. We therefore look for

solutions to the equations

= f i i
z aia ) 4 xj bia or all i, in the

basis other than i* , and

Z a,

:L*’jx,j:bi*-e’ with ¢ >0.

The reason for the -e instead of +e 1s that in the pivot step from
& type 2 basis the vector moves "inside" the face determined by row i* ,

rather than "outside.”

The vector x is given by Xx, = xg + egj where

J

L a.

5 =0 for ail i_ in the basis other than i* , and
o

,Jg,j o

I
[

Za .= -
1%, 3% 5

As in the pivot step from a type 1 basils we begin by examining the sets

Sk not in the basis, to determine the smallest nonnegative value of ¢,

if there is such a value of ¢ , so that x is in Ck’ i.e.,the smallest

value of ¢ such that

Tea x;+ela £ <D

1573 LY for all 1 ¢ Sk .

i

The first four RULES for a type one pivot step may be applied
without change to determine ¢ , the smallest value of e such that x

enters one of the sets 5k with Sk not in the basis. If the transition
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is to a type 1 basis, the unique row associated with € 1is taken into
the basis. On the other hand the transition may be to a type 2 basis,
in which case x will reach a second bounding hyperplane for some Ck
witn S, in the basis (including possidly C,,) for ¢ smaller than ¢ . Rules

k

5 and 6 are therefore applied with the modification that gll sets Sk in the

basis are examined.
As we see the only differences between a type 1 and type 2 pivot

are that for the latter

z -1, and

8 =

1,95
that all sets in the basls are examined in Rules 5 and 6.
lemma 2. If neither &

nor S n are in a type 2 basis,

o+l =1
and precisely one of every other pair is in the basis, with Sk*
having two rows in the basis, then the indicated pivot step

can alvays be carried out.

The argument is similer to that given for Lemma 1. If the
pivoet step cannot be carried out then x camnct ember C_i if S~i is
not in the basis, and therefore gi_g O . On the other hand 1f S , is
in the basis, then since it has only one row it cennot be the set Sk* ’

and we must have gi =0 . If a pivot step cannot be carried out, then

g, >0 forall 1.

As before, we ask whether x will evenfually enter Cn+l ; Since

Sn+l is not in the basis. Applying Rule 1 again we see that
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n
i gj <0, sothat gl = ... = §n = 0 and §n+l >0, But £ satisfies

the equation

g+ =-1,

n
T %%, 55 T Fen

since Sk* must bhe one of the first n sets in order to have at
Yeast two rows in it. This latter eguation is impossible and this concludes

the proof of Lemma 2.

The reader should be able to convince himself, by meditation,
that the reverse of a pivot step is zlso a pivot step. The algorithm
may therefore be applied as described above, and our theorem has been

demonstrated.
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