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SOME ECONOMETRIC PROBLEMS IN THE
ANALYSIS OF INVENTORY CYCLES*

Kenneth F. Wallis

CHAPTER 1

INTRODUCTION

Durlng the postwar period, inventory chenges have made s
significant contribution to fluctuations in the level of economic activ-
ity. The change in business inventory investment accounted for 68 per
cent of the reduction in gross natiocnal product during the contractions
of 194B8-49, 1953-5L4, 1957-58, and 1960-61, while during the expansions
of 1949-53, 1954-57, and 1958-60 the ilncrease in investment in stocks
represented 13 per cent of the increase in GNP, Stanback [33] found
that the increase in inventory investment relative to the increase in
GNP tends to be largest in the eagly stage of an expansion; during
the first year of four postwar expansions the increase in business
inventory investment represented 37 per cent of the increase in
GNP. The data on which these calculations are based are presented
in Table 1. The greater part of the changes in nonfarm inventory in-
vestment is accounted fbr by movements in menufacturers' inventory
investment, and within thils latter category durable goods inventory
investment pleys the major role.

These simple comparisons do not, however, demonstrate the
whole influence of inventory behavior on cycles in aggregate economic
activity since they ignore the multiplier effect of inventory invest-
ment upon other cyelically variable expenditures. The model of Klein
and Popkin [19] was designed to study this problem, and in general to
ask how much stabilization in the aggregate economy would result from

the stabilization of inventory fluctuations by given amounts. On the

%*
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TABLE 1

Changes in gross national product and business
inventory investment between peaks and troughs
of postwar cycles in aggregate economic activity.

Billions of 1954 dollars semson-
ally adjusted quarterly data at |Change in
annual rates inventory in-
Change 1n non- |vestment as a
Change in gross farm inventory |percentage of
national product investment change in GNP
Contractions:
1648,IV -~ 1949,IV - L4.,3 - 8.4 195
- 1053,5T - 195k4,IT - 13.7 ~ 1.5 55
1957,II1 - 1958,1 - 18.0 - 6.8 38
1960,I1 - 1961,I - 7.9 - Tel 90
Total - 43.9 - 29.8 68
Gxpansions:
1949, TV - 1953,1I 80.2 9.5 12
1gsh,lz -~ 1957,111 51.5 a7 9
1958, - 1960,II 49.3 9,2 19
Total 181.0 235.4 13
First year of
expansions;
1949, TV - 1950,V 58.6 19.9 o2
1950, IT - 1955,I1 30.0 9.2 31
1558,I - 1959,1 28.7 11.0 38
1961,1 © - 1962,1 34,9 9.1 26
Total 132.2 k9.2 37
’ ¢

s S

Bources: U.S, Income and Output, 1958; Survey of Current Pusiness, July
1962, and July 196L.




basis of their simlation studies, Klein and Popkin found that a 25 per
cent reduction in the amplitude of inventory fluctuations produced
readily discernible stabllization effects throughout the economy,

while a 75 per cent reduction virtually eliminated the business cycle.
They estimated that a 50 per cent reduction in inventory fluctuations
would have a great effect on the aggregate economic cycle, and they con-
cluded that “there is real justification in calling the 1953-54 and 1957-
58 cycles ‘'inventory cycles'.® [19, p. T61.

When analyzing the behavior of inventories in the economy, it
geems natural to apply the distinction, often drawn in other areas of
economics, between macro and micro. The macro approach considers in-
ventories and inventory investment at the level of an industry or the
whole economy, while the micro, normative, approach usually discusses
the problems of inventory control for an individual firm.

The macro approach is typified by the theoretical work of
Metzler [25] and by the empirical work of, on the one hand, those using
the National Bureau of Econocmic Research methodology for the study of
business cyeles, such as Abramovitz [1] and Stanback [33], and, on the
other hand, those using regression techniques, such as Darling [6] and
Lovell [21]. The micro problem of detérmining the optimal invehtory
policy for an individusl firm under various assumptioﬁs concerning
demands and costs 1s discussed by Arrow, Kerlin, and Scarf [3];
further examples may be found in the literature of operations research
and management science., The two approaches have recently been combined
by Mills [26], who first analyzes the inventory and production decisions
of individual firms in different market situations, and then applies

his models to empirical data st the industry level.
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In this essay we study some problems surrounding the use of
regression techniques in analyzing éggregate inventory behavior. These
are, in particular, the distinctlon between production "to order" and
production “to stock" and the problem of their aggregation, the forma-
tion of sales expectations, the treatment of seasonality in the data,
and the development of an alternative estimation procedure, based upon
the techniques of spectrel anslysis of economic time series.

Chapter 2 gives a survey of published regression studies,
concentrating on the inventory-sales relationship, the role of unfilled
orders, and the use of sales forecasts. In Chapter 3 we present some
theoretical results concerning the behavior of the firm, distinguishing
between production to stock and to order, and we develop a regression
equation which we later estimate, The problems in, and advantages of
using seasonally unadjusted data are discussed in Chapter 4, and a
spectral analytic approach to regression estimation is described. 1In
Chapter 5 we present the results of this estimation of our equations,

and some concluding remarks are presented in Chapter 6.



CHAPTER 2
A SURVEY OF EARLIER CONTRIBUTIONS

This chapter gives a limited survey of the regression studies
of manufacturers! inventory behavior. The aspects emphasized are the
inventory-sales reletionship, the role of unfilled orders, the problems
of sales expectations and seascnality in the data, and the part played
by the speculative motive for holding inventories. The chapter concludes

with a brief comment on statistical methods.

2.,1. The inventory-sales relationship

Muich of the econometric analysis of inventory behavior stems
from the theoretical work of Metzler [25]. The most general model
developed by Metzler incorporated thelassumptions that filrms have
some desired inventory level which is a function of sales, and that
demand leads production, which is a function of expected sales, this
in twrn being a function of past sales. Metzler demonstrated that when
this system receives an exogenous shock, such ag an increase in non-
induced investment, the inventory mechanism generates cycles through
its interaction with production and sales.

The most basic version of this acceleration principle can be

written

thsa'i'bst

where Ht represents the level of inventories at the end of period ¢

and St represents the volume of sales during pericd t . An eguation
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with inventory investment as the dependent variable can be obtained by
teking first differences of this equation, :nd Smyth [32] estimated

the parameters of the following equation:

N{tuao-l-alAYt'!'aEt-i-et

where Y represents gross national product. Smyth used annual
national income deta for the United States and Australia; in neither
case was the trend coefficient significant.

Metzler's formulation of the acceleration principle has subse-
quently been modified to incorporate the flexible accelerator of Goodwin
[8]. This assumes thet a firm's adjustment of its inventory to the
&esired level is subject to a lag, thus only a partial adjustment is
achieved in any one period. In similar fashion, Darling [5] argued
that the Metzler formulation, which consists of a target étock—sales
ratio, a term which compares the actual inventory level with the target,
and a lagged response to this deviation, must be modified to include a
speed of adjustment parameter, which reflects the varicus technical and
organizational factors governing the changing of inventory levels,

Accordingly, Daxrling postulated the following relation:
H=a+ b{rs =~ H)_1 + e

where r 1s the desired inventory-sales ratio, b expresses the rate
at which actual inventories approach deslred inventories, and 1 is an
unspecified response lag. After experimentation with different values
of 7T , Darling estimated the followlng egquation using quarterly data

on U.5. manufacturing industries:
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Ml =@+ Q& 8 )+ H _,te -

Both these models omit certaln aspects of the Metzler formuls-
tion, for instance the role of the expected, or anticipated, sales. A
more complete exposition of the Metzler-Goodwin model is given by
Lovell [20]. Considering the case of inventories of finished goods,
Lovell first assumed that the firm's desired, or equilibrium, end-of-
period inventory level, I% , is a linear function of anticipated sales,
:?;t , these anticipations being formed before the start of time period
t . (We reserve discussion of the formation of sales expectations for

Section 2.3 below.) Therefore
d A
The lag-adjustment assumption then implies that

p = d -
I BIt + (1 S)It_l s

where I'E is the planned inventory level, and & 1s a reaction
coefficlent. This inventory plan will be accomplished only if expected

sales and actual sales are equal; more generally we have

r.3d .

Hence we see that actual inventory investment, I - T can be

t t.l ?

regarded as consisting of planned inventory investment, If - It-l 3

and unintended inventory investment, §t - St (or disinvestment, if

8, >§t) . Combining these three relations gives

I

, = 88+ (1 + ab)st + (1 - B)It_l -8

t ki

- -



and Lovell estimated this equation using guarterly data on durable
goods and nondurable goods manufacturing after meaking an assumption
about gt which is discussed below.

The breakdown of actual inventory investment into planned
and unintended inventory investrent is equivalent to the ¢ondition
that production plans are exactly achieved. For the following ildentity

holds belween production, Pt ; saleg, and finished goods inventories:

Pt+It_l=_§I_b+St,

and a similar identity holds for the planned levels of the relevant

varigbles:

- TP L &
Pf I ® I v,
and it is clear thet
_ ~ tPL.a _
Pt-Pf if and only if I, =I0+8 -8, .

Lovell attempted to relax this constraint by assuming that production
plans are partly flexible, and may be changed in response to & discrep-
ancy between actual and enticipated sales. Unintended inventory
investment is then only a fraction of this discrepancy. This mey be

writien

= 1% s .
I, =1+ x(st St) .

The two identities written above then imply that

P,=P - (1-0(5, -8,),

hence the reduction in unintended inventory investment 1is achieved by
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permitting an "unintended" deviation between planned and realized
production. If the production inflexibility coefficlent, ), is
equal to zero then production plans are completely flexible, and
It = If « However this would negete a commonly stated motive for
holding inventories, namely to prevent fluctuations in demand from
immediately causing fluctuations in production. Lovell was unable to
estimate A , since its inclusion resulted in an underidentified equation
in that the number of estimated coefficients was one less than the
number of structural parameters, so he set A =1 . In a more recent
paper [23], however, Lovell has been able to obtain estimates of this
coefficient, by using an alternative specification of the model
together with data on actual anticipations, discussed below
(Section 2.3).

Nevertheless, the rationale for the introduction of this
parameter 1s not sufficiently clear. A small value of XA implies

that I, may approach Ip more closely than would otherwise be the

t t

case, once it is realized by the firm that sales expectations are not
belng met. However, once sales expectations have been revised, If

no longer represents the appropriate inventory plan. If sales expecta-
tions may be revised during the period for which plans are drawn up,
and production plans may be revised, possibly to a lesser extent, then
it is not reasonable to suppose that inventory plans go unaltered. The
appropriate planned inventory level is now a function of the revised
sales expectations. It is reascnable to infer that the relevant produc-
tion planning period is shorter than had been supposed, and that plans

concerning all three variables are drewn up much more freguently than

had been supposed. Thus the real consideration concerns the time
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interval to which the available observations correspond. The t
subscript used in the theoretical considerations described above relates
to the firm's decislon period, yet when the derived relationship is
estimated using available datz, the % subscript assumes a new meaning,
namely the observation period of these data. The fact that Lovell [23]
obtains small values of A using quarterly data implies that the whole
planning process based on the relations given above is undertaken more
frequently than once a quarter, rather than that the guarterly produc-
tion plans are themselves flexible.

An equation in which the end-period inventory level is the
dependent variable can easily be transformed into an equation for
inventory invesiment. This can be achieved by taking first differences
of all variables in the equation, but since this procedure introduces
serial correlation into the residuals of the equation, it is preferable
to simply subtract the beginning inventory level (Ht-l or It-l)
from both sides of the equation. Equally, an equation explaining
finished goods inventories or inventory investment can be transformed
into an equation with production as the dependent variable by means of
the ildentity stated above. This ldentity is used in such = fashion by
Johnston [16] and Modigliani and Sauerlender [28].

Mills [26] derives a production eguation directly by consider-
ing a model of the profit-maximizing behavior of the firm. The profit
function depends on the levels of sales, production, and inventories of
Tinished goods, the price charged by the firm, and the costs of produc-
tlon, storage, stock-out, and production change, Expected profit is then
computed by calculating the expected levels of sales, etc. given the

distribution function for the stochastic demand curve. This expected
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profit 1s then maximized with respect to price and production in order
to derive the firm's decision rules for these two varisbles. Finally,
some linear approximations to the cost functions and the assumption of
a rectangular distribution for the stochastic element in the demand
function result in linear decision rules for price and production,
that for production containing terms in Ptul s
assumption of rational expectations (discussed in Section 2.3 below)

St and It—l . The

introduces a random error term to the equations, and these regressién

equations are then estimated using industry data.

2.2, The role of unfilled orders

The backlog of unfilled orders, or changes in unfilled orders,
have been used as explanatory variables in the inventory equations of
Darling [5], Lovell [20], and Terleckyj [34]; in all three cases the
unfilledlorders term is highly important, apparently representing a
considerable modification of the basic sales-inventory relationship.
Although the unfilled orders term was included in equations for total
inventories, it is generally agreed that the main influence of this
variable is upon inventories of purchased materisls and goods in process.
This is demonstrated by Eisner and Strotz [7] in thelr discussion of
Lovell s work., Lovell egtimated an equatidn for inventories of purchased
materials and goods in process, which contained the unfilled order back-
log, an eguation for finished goods inventories, which did not, and an
equation for'total inventories, formed by adding together the previous
two equations, ZEisner and Strotz point out that Lovell's compsrison

of the coefficlents of the unfilled orders term in the first and third
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of these equations amounts to a test of the importance of omitting
this term from the second (finished goods inventory) equation. They
then show that the estimated coefficients obtained in the first and
third regressions are congistent with a zero coefficient of the un-
filled orders term in the seccnd equation, were the order backlog to
be included in that equation. An exact test would, of course, require
a re-estimation of Lovell's second equation, this time including the
unfilied orders term.

The consideration underlying the use of unfilled orders as
an explanstory varisble can be described as follows. To the manufacturer,
unfilled orders represent a known demand to be met from future production,
and changes in the rate of production in response to changes in the order
backlog will almost immediately cause changes in the volume of goods
in process and necessitate changes in the stock of raw materials.
In addition Stanback, in his business cyele study [33], argues that
the unfilled orders series reflects the tightness of the markets in
which producers purchase raw masterials, tight supply conditions lead-
ing firms to increase stocks of raw materials as far as possible so
as to avold any disruptions of production which shortages would cause.
Clearly, the orders received by some firms are the orders placed by
other firms, but, in Stanback’s words, "the logic is apparent: high
or rising unfilled order backlogs bring assurance of a high level of
operation to the seller, but to the buyer they bring delays in delivery
and problems of procurement. As a result, both seller and buyer find
Justification for high levels of purchased-materials stocks." [33, p. 48]

Zarnowitz [b41] distinguishes between (a) firms (or industries)

which produce to stock, where fluctuations in demand are borne by the
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finished goods inventory and no backlog of unfilled orders exists,
and {b) firms which produce to order, where fluctuations in demand are
reflected in the volume of unfilled orders, and there is no inventory
of finished goods, although stocks of raw materials will usually be
present. Production to order will occur when the costs of meeting
demand from future production are less than the costs of storing the
finished product. The costs and risks attached to storage of finished
goods will be high when one or more of the following conditions apply:
(i) the manufacturer is unable to predict the specific
requirements of the customer, for example in the
machine tools industry
(i1) the finished product is physically or economically
perishable, for example unstorable chemical explo-
sives, or women's fashion-wear
(iii) the demand for the product is highly unstable or
sporadlc, for example rails, which are sold infre-
quently in widely varying quantities to a few
companies (41, p. 372].
The muitiproduct firm wili lie between the extremes of pure stock-
production and pure order-production, and may also shift from one
category to the other from time to time, although the nafture of the
costs involved will make such behavior relatively infrequent. In
general, however, Zarnowitz characterizes durable goods manufacturing
as an order-industry, and nondurable goods manufacturing as & stock-
industry.
This distinction seems implicit in Mack's comment [24],

pointing out that the total unfilled order series is dominated by the
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machinery and transportation equipment industries, which constitute
over 70 per cent of total outstanding orders and which also dominate
rates of change. Given this consideration, Mack questions whether the
order backlog i1s a meaningful explanatory variable in equetions Fitted
to data aggregated over éll manufacturing industries, or whether it is
acting a5 a surrogate for other omitted effects, two possible candi-~
dates belng market conditions in general (as discussed above) and the
effect of stock feedback on the economy. To account fully fdr the
feedback of inventory investment on the volume of sales would require a
system of simultaneous equations; in this case the standard argument is
that the least squares estimates of the coefficients of a single regres-
sion are subjeet to simultaneous eguations bias.

Dariing's original introduction of unfilled orders into his
regression resulted from the conjecture that the inventory-sales ratio,
r , presented in Bection 2.1 above, is not constant but variable. A
volume of new orders in excess of sales would lead to an increase in r ,
and Darling made r & function of the ratioc of the change in unfilled
orders to sales, lagged one period [5]. Darling subsequently concen-
trated on the production to order cénsiderations presented above, since
in durable goods manufacturing, characterized by Zarnowitz as an order-
industry, "inventory investment is more closely associated in time with
the recelpt of the order; or more accurately with changes in the unfllled
order backlog, then with the delivery (sale) of the goods to the buyers"
[6, p.30]. The introduction of unfilled orders and their rate of changé
into a regression explaining total manufacturing inventory investment

resulted in a reduction of the coefficients of the sales varlable to
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less than one half of their prior values.

In Chapter 3 we shall adopt the distinction between production
to order and production to stock, and the problem of aggregating these
two types of production into a single relation will be discussed in
Section 3.3. Here we simply describe the difficulty presented by this
sggregation.

In general, the data which are used for estimstion purposes
are published for & small number of quite broadly defined industries.
For all industries within the durable goods sector and for certain non-
durable goods industries, data are given on both unfilled orders and
finished goods inventories. However, when an equation with finished
goods inventory as the dependent variable is estimated, the sales data
used relate not only to the stock-production sector but also to the
order-production sector, whiﬁh carries no finished goods inventories,
accepting Zarnowitz's distinction. For example, Lovell's equation
has sales, current and lagged, and lagged finished goods inventories
ag regressors, but it is not élear from the theory to what extent the
sales of production to order firms can explain the finished goods
inventories held by production to stock firms. Since sales data dis-
aggregated in this fashion are not available, in Chapter 3 we shall
use 2 "homogeneous" dependent varlable, namely production, and give

an explicit treatment of this aggregation problem.

2.5. Expectations and seasonality

The problem of cbtaining data from which to estimate the

Pparameters of an inventory-sales relationship which contains a term
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in expected sales, which is not observed, has been treated in
essentially three different ways. First, some work has been carried
out using the results of questicnnaire surveys of business anticipa-
tions. Modigliani and Sauerlender [28] used data from the quarterly
forecasts of freight carloadings puﬁlished by the Shippers! Advisory
Boards of the Assoclation of Americen Railroads, the Fortune Megazine
survey of business intentions, and the Dun and Bradstreet business
anticipations survey. In general these surveys gave incomplete
coverage and poor forecasts of sales, the shippers' survey forecasts
performing worse than a simple extrapolatlion of the recent past would
have done. Recently, however, the United States Department of
Commerce, Office of Business Economics, has made avallsble data on
anticipatedsales;énd;&anned inventory investment for both a one-
quarter and a two-quarter horizon obtained from a quarterly survey of
manufacturers. In [23], Lovell gives a preliminary report of his
researches with these data; in particular he suggests that firms are
able to forecast their salcs much more accurately than is usually
assumed by inventory cycle theorists. The avallable series are relatively
shqrt, however, and Lovell's regressions are based on only 18 observa-
tions.

An alternative to the use of anticipations data is, without
meking assumptions about the precise way in which forecasts are made,
to set up hypotheses concerning the results of the forecasting proce-
dure. TLovell [22] hypothesized that the resulting forecast is a weighted
average of the previous period's sales and actual developments,

together with a random error term:

Stﬂpst_l-}'(l-p)st'i'e Be, =0 .

t t
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This equation contains earlier assumptions as special cases, 1In
Lovell's earlier paper, [20], it was assumed that e, =0 forall t .
If, in addition to this,‘the "coefficient of expectations,” p , is
equal to one then we have the case known as naive expectations., With
e, = 0 and p =0 we are in effect making no assumptions about fore-
casts, but simply using actual sales as a proxy variable for forecast
salegs. A value of p between zero and one 1lg in accordance with
Theil's empirical studles [36], which suggest that expectations have a
systematic tendency to underestimate actuaml changes; this effect has
been called the "regressiveness" of expectations.

When the random error term, € »
it 1s possible to assume that §t s a8 written sbove, 1s the source of

is not identically zero then

the stochastic residual in a regression equation. In this case it is
also necessary to assume that et is distributed independently of St
and S, « With p =0 we have the unbiased,or “rationsl,"” expecta-

tions of Mills [26], and the above equation reduces to

Fal

St = St + ey >

the assumption of the independence of e, =snd §

t t
in-variables problem. (This last problem would exist if we were to

avolding the errors-

write the observed variable, St » 88 the sum of the unobserved

variable, § ; end the random error, e assumed independent of

t t 7
Sy o)

| As a second alternstive to the use of sales anticipations
survey date, it is ﬁossible to make a gpecific assumption concerning
the mechanism by which sales forecasts are generated. This procedure

was adopted by Johnston [16], using quarterly, seasonally unadjusted

- 17 -



data.  Johnston assumed that sales forecasts are generated by the

following formla:

S -8
P~ t-1 T
t = Sy 5

thus the forecast for a given quarter 1s based on the same quarter

of the previous year, together with the most recent estimate of the
(long-run) change over the year. Johnston expected the y-coefficient
to be less than one, in accordance with the regressive effect in
expectations noted above., This formula is a particular example of
the general approach of predicting a variable using its observed past,
and Johnston subsequently used s more general model, having ebtained
results from the use of the above formula in relations fitted to
separate guarters which were not very satisfactory. This second
apbroach was based on the method of exponentially weighted moving
averages, or adaptive expectations, and necessitated the construction
of an artificial 8§ series, since the simple recursive formuls for

t

St invelves St-l and Stml

into a regression equation. Johnston used a form of exponentially

and hence cannot be substituted directly

welghted moving average which also permits trend adjustment and seasonal
ad justment ratios to be employed.

The method of fitting a separate regression for each quarter
has also been employed by Modigliani and Sauerlender [28]. An
alternative procedure, which equally implies that the"form of the
estimated relationship varies from season to season, is to introduce
seasonel dumny varisbles into a single equation fitied to the complete

time series; this approach was also used by Johnston [16].
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With the exception of Smyth [32], who used annual data, all
the authors whose work we have described used data for time-periods
shorter than a year in estimating their regressions. ILovell {20, 21, 22,],
Darling {5, 6], and Terleckyj [34] used quarterly data which were
seasonally adjusted; Stanback's business cycle study [33] also employed
seasonally adjusted data. The general methodology which we apply to
the problem of seasonality in regressions will be discussed in Chapter
4; here we finally note the position taken by Mills [26], which contrasts
with that of Johnston and Modigliani and S&ueriender; mentioned in the
previous paragraph. Mills estimated a single equation, without dummy
variables, using seasconally unadjusted data, arguing that there is no
reason why the form of the firm's deecision rule should be changed when
seascnal movements are present and that, from a decision theory peoint
of view, it is not clear why seasonal fluctustions should be treated

differently from fluctuations resulting from other factors [26, p. 194].

2.4, Price speculation

It is usual, when discussing business motives for inventory
holding, to include price speculation as such a motive (see, for example,
Arrow [3, Chapter 1], Eisner and Strotz [7], and Modigliani [27]). The
basic feasoning is that if purchased matérials Prices, or prbduction
costs, or finished product prices are expected to rise at a rate
sufficiently high to cover storage costs, then firms have an incentive
to increase inventories of, in the first case, raw materials and, in the
other two cases, finished goods. Equally, an expected fall in these

costs or prices would lead to a reduction of inventories.
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The main problem in obtaining evidence of price speculation
is that of meassuring price expectations. Since survey data on antiedi-
pated price changes are not available, actusl price changes have been
used in some studies on the grounds that profitable speculation results
from accurate anticipation of actual changes; but these have not in
general achieved significant results. For example, Lovell, summarizing
the results of his paper [20], states that he finds “no evidence in
support of the hypothesiskthat the magnitude of manufacturing inventories
ig influenced by speculation in stocks of purchased materials in advance
of anticipated price changes.” [21, p. 123] Similarly, Stanback [33]
finds that price changes, though.significant in themselves, have _
relatively little infiuwence on inventory behavior. This result may occur,
however, because firms change the campogition of thelr inventories
rather than their total stocks, as Lovell points out. Egually, firms
may Just be unsuccessful in anticipating price changes.

Nevertheless, it seems that we should not expect to find
evidence of price speculetion in aggregate data, simply because
speculation is an individual phenomenon. Speculation is successful when
an individual mansges to oubwit the crowd, in Keynes' phrase, and profits
"from knowing better than the market what the future will bring forth"
[17, p. 170]. To expect firms in the aggregate to exhibit evidence
df speculative actlvity may simply represent an example of the fallacy
of composltion. For if all firms in an industry predict a rise in raw
materials prices in the future, and hence increase their current
purchases in advance of the expected price rise, then they will find
that the current price will rise, thus removing the anticipated profits

of advance buying. It may be that the predicted price is "accurate"
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in the senge that this fubure price would actuslly obbtain if firms
acted in ignorance of the prediction. Whether or not this 1z so, the
speculative activity of firms based on the predicted price will in
general prevent the predicted price from being realized. We could,
however, follow Grunberg and Modigliani [12] in applying Brouwer's
Fixed Point Theorem to show that if the sccurate prediction is publie
knowledge and hence is also known to the suppliers, who base thelir ac-
tions upon it, then it is conceptually posgible for a predicted price
to be realized. But this would reguire each firm to have complete
knowledge of demand and supply relations and expectations functions,
and our main point remains unchanged. This is that in generalizing from
the behavior of a firm to the behavior of an industry, assumptions
concerning the actiong of an individual firm in competition with
others in the same industry do not carry over, Thus it is not
surprising that the observed prices for an industry, which is assumed
by the aggregation process to consist of identlcally ecting firms, do

not show evidence of speculation.

2.5, Statlghtlical methods

In this section are stated the standard results concerning
the method of estimation used in almost all of the above-mentioned
studies; namely ordinary least sqQusres.

In regressions using time series data, the first conslderation
is whether the residuals are serially corralated. If they are, then
ordinary least squares estimates, while still unblased and consistent,
are no longer efficlent. Moreover, the estimastes of the variance-

covariance matrix of the estimated coefficlents, and hence the
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estimated standard errors of these coefficients, are biased. Watson
[38] comments that "it is commonly believed that presence of serial
correlation makes the variance estimates deceptively small." He then
shows that while this underestimation is indeed the stronger tendency,
it need not always apply, the determining factor being the relation-
ship between the regression vectors and the characteristic vectors
of the true variance-covariance matrix of residuals, E ee',
which we write as T' . (The use of ordinary least squares implies
the assumption that E e e' = 021 s Wwhere I 1is the identity matrix.)

The usual test for serial correlation in the residuals,
namely the Durbin-Watson statistic, tests for the presence of first
order serial correlation. If the serial correlation is first order,
then estimates which are asymptotically efficient can be obtained by
applying least squares to the transformed variables x£ = Xt - th—l
where B 1s the estimated first order serial correlation coefficient.
Lovell {22] utilizes this Procedure, in the single example which led to
the use of the phrase “almost all® in the first paragraph. The
estimated coefficients were "moderately affected by the transformation.”
The Durbin-Watson statistic does not test for serisl correlastion of
higher orders, such as the fourth order seriml correlation which might
be expected if seasonally unadjusied guarterly data are employed. In
such a case, estimation of the structure of the serial correlation is
required in order to achleve efficient estimate:r. Essentially, we need
to apply Aitken's generalized least squares, using an estimate B oof
the varlance-covariance matrix of residuals. |

Once the regression equation contains the lagged dependent

variable among the regressors, however, (as do equations estimated by

- 20 -



Lovell, Darling and Mills) these conclusions do not hold. In the
absence of serial correlation least squares estimates, although
consistent, are subject to a small-sample bias. When the residusls
are serially correlated, least squares egtimates are inconsistent,
thus not even the weakest of the desirable properties of estimators

ie achieved. Moreover, the Durbin-Watson statigtic is not appropriate
to this situation, as is discussed by Nerlove and Wallis [31]. 4An
alternative estimation procedure, which overcomes some of -these

difficulties, will be presented in Chapter k.
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CHAPTER 3

RELATIONS BETWEEN FRODUCTION, FINISHED GOODS INVEMMRIES,

NEW ORFDERS;, AND UNFILLED ORDERS

We first discuss the firmfs behavior with regard to produce
tlon and finished goods inventories, considering the case of production
to stock separately from the case of production to order. The
aggregation of the two sectors is considered in Seection 3.3. An
hypothesis about firms® expectations of the future is Formmlated in
Section 3.4, and the data used in estimation are described in

Section 3.5.

3.1. Production and finished goods inventcories in the case of

production to stock

In the case of production to stock the firm’s output is
immediately transferred to the finished goods inventory, from which
all demands are met. There is no backlog of unfilled orders, thus
the volume of new orders is egual to the volume of shipments: we rafer
to both as “sales" in what follows. We have the basic identity bhat

the end-period inventory of finished goods, I is egqual to the

t 2

beginning inventory level, I plus productiorn duving the period,

-1 °

Pt s less the volume of sales made from inventory during the period,
St « Thus we have
(1) I, =P +I -5, .

Our first assumption is the familiar Metzlier hypothesiz, a

version of the acceleration principle, that the firm has a desired, or
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equilibrium, level of inventories, I: 5 Wwhich is a linear function of
sales volume. Since the sales volume for a glven period is not known
when the fira's activities during that period are being planned, we
substitute expected, or forecast, sales §t into this relation.
Throughout the following analysis we shall suppress constant terms,

hence we may simply write
(2) I = a8, .

The formation of expectations is dlscussed in Section 3.4 below.
The implied volume of production necessary to achieve this

inventory level now follows from the identity

*

+* ~ ‘
(3) P,+I.,=8 +1I, .

t-1 t

We now assume that the firm finds it desirable to keep its
production fairly stable, i.e. that it is interested in “production
smoothing." There will be costs attached to the process of changing
the rate of production and changing the size of the work force, which
the firm will be interested in minimizing. Indeed, one reason for
holding inventories at all is to prevent fluctuations in sales from
immediately causing fluctuations in output. Thus the firm does not

*

immediately adjuet the volume of output to the "desired™ Pt , rather

its planned production Pﬁ s envisages only & partial adjustment in

any given period, as follows:

(&) P = bP: + (1-0)B, ; .

We postulste that b lies between O and 1 , a larger value of b

implying a greater flexibility in prodﬁction plans.
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Finally, we assume that the planned production is not
changed during the period, but that factors not explicitly introduced
into the above discussion will cause actual production to deviate

from planned production, hence
(5) Pt=Pf+e

where e, is & random error term. Substitution from equations (2),

(3), and (4) now gives

7(6) B.=ay P +0Q, S + a Lo * &
which is the form used for eventual estimation. We have the following

relations between the coefficilents of (6) and the parameters of our

model :

H]

(7) a, = (a+1)b

%

Equation (6) cennot be estimated since data broken down into stock vs.

n
1
o

order industries is not available; below we shall combine (6) with a
relation concerning the production-to-order case. We see from (7),
however, that if we were able to estimste the coefficlents of equation
(6), then the parameters a and b would be overidentified. It is
unlikely, for example, that the estimated coefficients would be such that
al - QB = 1 , although this restriction can be imposed by forming a
single regression variable from an appropriaste comblnation of P _

t-1

and It-l > & procedure which we adopt in Section 5.2,
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In this context, it is interesting to note that (6) is of
the same form as the estimating equation used by Mills {26], the deriva-
tion of which was describe§ in Section 2.1, (p. 10 s.bové)° However,
this derivatiqn led to greater restrictions on the coefficients of (6),

namely the requirement that

al=-C12=l»(15 .

These three coefficients are functions of six parameters of Mills!'
model (four cost parameters, the price, and the parameter of the
rectangular distribution) yet the derivation is such that the above

restriction is imposed, leaving only one degree of freedom.

3.2. Production and unfilled order backlogs in the case of production

to ordexr

The firm which produces to order carries no inventory of
finished goods, provided that we ignore cancellation of orders. Goods
are produced in response to previously received orders, and are shipped
immediately upon completion, thus the volume of shipments in & given
period is equal to the production in that period. Fluctuations in the
volume of new orders received, reflecting fluctuations in demand, cause
variations in the volume of production and/or veriations in the size
of the unfilled order backlog. Hence, we have the basic identity that

the end-period order backleg, U is equal to the beginning order

t >
backlog, Ut—l s Plus new orders received during the period; N£ 3
lese production, or shipments, during the period, Pt s as follows
(1) U, 8V, , + N - B .
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We now hypothesize that the firm's desired volume of output
during a given period is a functlon of the level of the order backlog
at the beginning of the period and the anticipated volume of new orders
to be received during the pericd. We postulate that these two effects

have different welghts, hence

(2) P} +a, i
b =% Ugoy 2 Ny
Note that if it were the case that a, = a, , then we could use (1)

and (2) to imply a relationship between a desired end-period order back-
log and productlon; however our formulation of the decision process
pleces the primasry emphasis on production planning.

Our second hypothesis is identical with that of Section 3.1,
namely that the firm finds i1t worthwhile to prevent production levels

from fluctuating too wildly from period to period. Hence we have
(3) PP = P, + (1-b)P, . .
t t t-1
Again, our final assumption 1s that sctual output deviates

from planned ocutput only by virtue of random influences, thus

(%) Pt = Pf + e s

and substitution from (2) and (3) now gives
(5) Py =By Py +Bp Ny + 85 Uy g + o o

In this case the parameters of our model are ldentified 1n the sense
that if we were able to estimate 61, 52’ and B5 then from these
eetimated coefficlents unambiguous estimates of 815 8o and b could

be derived.



3+3. Application to industry data

In general, the industry classifications for which data
are published are neither pure production to stock industries nor
pure production to order industries, but contain firms beloﬁging to
both categorlies. Indeed, given the diversification of the activ1ties
of individual manufacturers, many firms will undertake some production
to stock and some production to order. We now combine the two rela-
tions derived above into a single relation with aggregate industry
production as the dependent varisble.

We recall that in the case of production to stock fhé volume
of shipments, or sales, is ldentical with the volume of new orders in

& given period. Hence we rewrite {3.1.7) as

(1) Pt =0 P gy PO Ny o + & Ty g te -

The subscript s denotes the stock-production sector, and is omitted
from It since this variable 1s in fact an industry aggregats,
finished goods inventories being zerc in the order-production sector.
Similarly we rewrite (3.2.5) for the order-production sector, omitting

the o-gubscript from the unfilled order backlog:

(2) Fo,t TPy Fopop ¥R Mo g TBs Uy g +egy -

Given that these equations are correctly specified, in that
variables appearing on the right-hand side of equation (1) do not
appear in (2) and vice versa, then the true specification for the
sggregate variable Pt = Ps,t + Po,t is as follows:

~

3) P =0 Fopan ¥ Py P g ¥ Ny y TR Ny G Iy ) ¥ By Up gt e
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However, aggregation amongst the predetermined variables implies that

we use the following equetion for estimation purposes:

(k) P =7y Be g ¥ By vy Ty ) vy U g+ ey

We now consider the implications of this sggregation for the
relation between the estimated y-coefficlents and the "true" a's
and PB's , following Theil [35].

Writing X for the Txb matrix [g_l, ﬁ, I, Ul where
E-l’ ﬁ, E, and U are column vectors of T. observations on the pre-

determined variebles, and 7y for the column vector of regression

coefficients, then ordinary least scuares estimates are given by
7= GERTXE -
Considering the expected value of these estimates, we have

~ l . ~ ~ 1
(5) Ey=E {(2&’2@5 X'UE _15By oMM ,T. U e By ,0,,8,,05,6,] }

= Q[QJ_’Bl’a2’ﬁ2'a§ Jﬁ5 ] '

where D 1is a 4x6 metrix [dij] whose columns are the expected values

of the estimated coefficients in regressions of, respectively,

oY

P P. X

- L 1 +
Pe,-10 Bo 10 By Eo’ I, and U on “independent” variables

PN, I, and U, thus:
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P =d., P

s,6-1 = % P * O

d_2>

o1 + d}l It-l + dhl Ut-l + residual

- "
o,b-1 = Gip Fpog F oy Np ¥ 955 Iy o v 4y, Uy ) #

H

=

No,0 0 =3 Bpog vdpg By v s Iy )+ 4 Uy g+

- . ~ - "

ot =Gy Py Ty Mty Ty v 4y, U, F
1t

syt s Y *

bt g Tyt U t

=
I

t-1 = Y5 Beog t s

>
dz

=

Upop =g By T dy
In the last two equations we must have

dlﬁ = d16 = d25 = d26 = dJ+5 = d36 =0 and d35 = d46 =1 .

In the first palr of equatlions, aggregation implies that

Gyg Fyp =1, and dy +dy, =dy) + 8, =4y, +4,,=0,

a similar result helding for the second pair of equations. Therefore,

B h §

djq 1 dyqy dl3 - dl3 0 0
dpy - dal d25 1- d23 0 0
I =
- 433 "3 %3 -mdz 1O
dy -4y, th - dh5 0 1
and - -
(A
By, = ap®  + (1-8908) + &5(0 - By)
“ < BE 7, = d23°b + (1 - a23)32 + d21(a1 - al)
6
Ey, = 55 + dul(ai - sl) + dh5(aé - 52)
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o
By 4= Gy Begt Ay N v T 44, U, ) + resiqusl
- - _ N - o 1
: )} Pyt = (1-dqq)B Aoy Mg =gy Loy - %y Vg 7
T : N
= £
17 Qg Pog * Gy Wy T+ AU

L1

+ (1—&25)ﬁ£ -

eo,t = oy By Agg Lyp = dyz Upq *

This analysis is preéented in terms of ordinary least squares estimates,
although in Chapter 4 we present an alternative estimation procedure
which takes account of the presence of the lagged dependent variable
among the regressors and of serially correlated residuals. The analysis
proceeds in ldentlical fashion for any estimation procedure, provided
that the procedure used to estimate y 1is also used to calculate the
d-coefficients, We note that if it were not for the pfesence of the
lagged dependent variable, the expectation operator on the right-hand
side of (5) could be suppressed, and D would then be a matrix of
estimated coefficients, rather than their expected values.

The followlng two special cases are now of interest.

(1) In the case where ® =8, and Q, =B, then it is

clear from (3) that aggregation presents no problem, and (6) reduces to

%

Ps

However, this would imply that (a+l) , where a 1is as given in

equation (3.1.2), is equal to = as given in equation (3.2.2),

2 L

and hence that ﬁo enters the desired production equation for the

st

order sector with a coefficient a, >1.
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(i1) In the case where the sector variables are constant
proportions of the corresponding mggregate varilables, then the

aggregation is consistent. In equations (7) we then have

dElnd_ilmdll-:{.:O

4 = = =
15 = %55 = %3
hence equations (6) reduce to

By =dy o +(2-d;9)B

E 7o = d23 a, + (1-d23)52

E 75 =0

E ;u =B, .

Thus there is zero aggregation bilas in the estimetes of 73 and 7y
The strict proportionality assumption removes the effect of the non-
corresponding coefficlients from ;l anad ;2 ; these aggregate
coefficients are now weighted averages of the corresponding sector
coefficlents. The welghts dll and d25

ratiocs of the production to stock sector to total manufacturing for

in these averages are the

the production and new orders series respectively. In the absence of
any long run accumtlatlon or decumulation of orders or inventories, we

would expect that dll = d

23 °
One might suppose that the condition of constaant proportionality
between the production to order and productlion to stock sectors would

be approximately met, since patterns of industrial organization and
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practice at this level of aggregation do not change very quickly. It
is difficult to obtain a clear picture, however, due to the lack of
sector dasta. In an attempt to study this‘questiong we calculated
annual. average ratios of unfilled orders to finlished geoods inventories
for each of our five categories over the twelve years 1953-196k (the
data are described in Section 3.5 below). DBroadly speaking, the overall
ratios should give a generel indication of the relative prevalence of
rroduction to order in each of the five categories, without necessarily
gilving a direct indication of the actual proportions in which the two
types of production occur. In all five cases, however, the ratios show
a decline over the twelve year period, in general decreasing by a
factor of two or three. Nevertheless, while casting scme doubt on the
constant proportionality sssumption, this does not amount to an
absolute rejection, due to the difficulty in moving from these calcu-
lated ratios to estimates of the actusl proporticns of production for
the two sectors. The unanswered guestiions are how big a change in the
proportionate share in production of one sector is represented by a
halving of the unfilled orders to inventory ratio, and to what extent
have changes in the practices of firms with respect to these two
variables chenged over the twelve year perlod. In the absence of
further data, the constant proportionality argument remsins incon-

clusive.
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3.4, Expectations

It wes noted in Section 2.3 that in the absence of data on
business expectations for future sales we may proceed in oﬁe of twp
ways. Either we may construct hypotheses concerningithe meéhanism
oy which sales forecasts are generated, or we may simply consider
hypotheses céncerning the outcome of the forecasting procedure and
the nature of the forecast errors. Here we adopt the former course,
and attempt to approximate a firmts sales forecasting procedure.

The specific formulation is that forecasts ﬁ% are generated

by the followlng scheme:

(1) Ny o= Np_pp *+ally ;- Ny_y5)

The forecast for a particular month consists of the actual figure for
the same month of the previous year, modifie@ by the most recent
estimate of the change over the last year. This procedure is similar to
that assumed by Johnston [16] and described in Section 2.3 gbove. We
now give some further dlscussion of this assumption.

Consider a time series {xt) which is assumed to be co-
variance stationary (i.e. its autocovariance function Extxt+£ is a fune-
tion only of the lag Z , and not of t ), and purely nondeterministiec
(1.e. 1t is not possible to predict x

t
Then, from a result of Wold [40,

with zero error by a linear

cambingtion of X, ., X > P

Theorem 7], [xt} can be represented as a moving average process,

where the et

variables with zero mesn, commonly known as “white noise."

are independent, identically distributed random
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Bauivalently, the moving esverage representation may be inverted to

give the autoregression

which is the form generally used for estimation purposes, since the €t

are not observed. Clearly, if the autoregressive structure is not of

finite order, then we use a finite approximation
(2) Zax ,=¢

We also normalize by setiing &, = 1 . Rewriting this expression

then glves
P
= - + .
g ‘E %5 T

The minimum mean square errcr predictor of Xy

is then simply obtained as

given

observations Xe_q2 xt-E’ ces

~ P
X, = = X &KX, . .
t 1 Jt-]

Thus ;t is & function of the last p cobserved values alone. In
effect, we use our knowledge of the autoregressive structure, and set
€y equal to its expected value, namely zero, to obtain the predicted
Qt . A proof of these statements is given by Whittle [39].

We now draw on some earlier work to support thé above formula-
tion for ﬁt . In [37], we reported the results of fitting an auto-
regressive scheme, as in equation (2), to eight series of monthly,
seasonally unadjusted data on retail sales. In four of these cases,
and a

the significant coefficients were 8y, & and in a fifth

12 137
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case a was, in additlon, significant. In two further cases the

23

only significant coefficient was while in the remasining case

812 °
ay and a3 were significant. Further, in the first four cases, the

coefficients were such as to suggest that the autoregression

Fg FAgXy g T K gt Byz¥y s T &y

counld be repleced by the model

(3) (1 - o) (1 - aulz)xt =<,

with 0<a@<1l, 0<B<1l, where U represents the backward
shift operator. The two cases in which ay, Was the only significant
coefficlent would then correspond to this model with O set equal to zero.

Now returning to the prediction problem, we see that if the

time series {xt} obeys the autoregressive model (3), then the
minimumm mean-gquare error predictor of X, based on Xp 10 R “eu
is

Xy = Wy F B 10 - OBy 3

Setting Q@ =¢q. and P =1 then corresponds to the forecasting
scheme (1). Inserting this forecasting scheme into the aggregated
regression model (3.3.4) gives the regression equation which we later

estimate:
() By = 9By g+ Ny ot (W g - Ny g3) oI ) U g e
32.5. The data

The published data used in this study are monthly series
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on manufacturers' shipments, new orders, unfllled orders, and finished
goods inventories published in the monthly Current Industrial Reports
series of the Bureau of the Census. Most, though not all, of these
series are also published 1in the SurVey of Current Business. A full
description of the series, together with data through July 1963, is
given in [&].

These data are available from Jamiary 1953 to the present
time in millions of current dollars for the fgllcwing five categories:

Dursble goods industries, totai
Primasry metals
Machinery (electrical and nonelectrical)
Transportation equipment

Nondurable goods industries, total.

We use observations up to March 1965, giving a total of 147
observations. Although these series are currently published for
approximately 55 detailed industry cetegories, involving a much finer
classification than that just given, it is only for these five categorles
that continuocus monthly déta on both unfilled orders and finished goods
inventories, extending back to 1953, are available,

The basic source of these data is a monthly survey of
companies engaged in manufacturing undertaken by the Industry Division
of the Bureau of the Census. This is a complete survey of manufactur-
ing companies with 1,000 or more manufacturing employees, and smaller
companies are sampled with probabilities proportional to their employ-
ment size. The Annual Survey of Manufactures is then used as a bench-

mark for the monthly series on shipments and inventories, but no such
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ennual benchmark is available for the unfilled orders serles,

In order that the shipments, new or@ers, and unfi;led orders
serieg should be consistent, only two of thc:thrée series can bhe
estimated independently. Accordingly the monthly survey does not
collect data on new orders, rather this i1s derived by adding the
change in unfilled orders between the current and previous month to

the shipments figure, i.e.,

N

p =5

e YUy - Upg -

This new orders flgure is thus net of cancellations,

For some industries where backlog records are not maintained
and where total backlogs are insignificant in relation to shipments,
the Census Bureau assumes that unfilled orders are zero and hence new
orders are equal to shipments. This would apply exactly in the case o7
pure production to stock, and most of these industries are, in fact,
in the nondurable goods area. Thg notaple exc?ption is the motor
vehicles and parts group, which ig a sﬁbsecbioﬁ of our transportation
equipment category. Here the éénsus Bureau is following the practice
of the industry, which is "not to maintain any unfilled orders file
even when there exlsts a substantial backlog of demand" (L4, p. 13].

These series are availlable both with and without seasonal
adjustment. For reasons outlined below (Section 4.1) the seasonally
unad justed data are used in this study; these are, however, adjusted
for trading-day and calendar month variation before publication.

From the published dabta, we construct our own series for
production by adding the change in finished goods inventories between

the current and previous month to the shipments figure, i.e.,
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Thus we now have the four series required for estimation of the
regression equation derived above, viz. Pt’ I\It, U,G and It .
Finelly, these four seriesg are deflated, using the Bureau of
Labor Statistics Wholesale Price Index (1957-59=100) for the five
relevant groups. This index is currently published in the Survey of
Current Business; monthly data for the period 1953-1958 on the revised
base, 1957-59=100, are avallsble from the Bureau of Iabor Statistics.
Hence the data fineglly used in the analysis are measured in millions

of constant (1957-59) dollars.



CHAPTER A4
STATTSTICAL METHODOLOGY

The spectrum of a time series is first introduced, prior
to a discussion of seasonality in economic time series and in
regression problems. We then present an estimation procedure which
employs the techniques of cross-spectral analysis, giving a general
discussion of the procedure in Section Lk.2 and details of the specific

application to our model in Section 4.3.

L.,l. Seasonality

- Consider a time series {xt] which is assumed to be covariance

stationary, that is, its autocovariance function, cxx(z) , defined by

(1) cxx(ﬂ) =B X%,

is not a functlion of % . The spectral density, or spectrum, of the
time series is defined as the Fourier transform of the autocovariasnce

function,

=]

(2) fxx(e) = -23-‘; z cxx(z) e 1

Bz
In general, the inverse Fourier transform can be written
T
129
cxx(ﬂ) = [ fm(e) e ae ,
=1
and, in particular,
n
cxx(o) = var x B-ﬁf fxx(e) ae .
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Thus, if we regard the time series as consisting of a number of
orthogonal components each assoclated with a particular frequency,
then the spectrum may be described as a dissection of the varisance
of the time series into portions assoclated with the various
frequency components., A fuller introduction to the theory and
estimation of spectra is given in Appendix I.

In practice, given & sample Xys evesercny Xp 5 WE estimate

the spectrum as L)
~ 1 mo -iﬂek
(3) .00 = 5= Z c (i)e W(£)
L= :
l A e ~
= 5= le _(0)+2 zil ¢, (£) cos e, W(2)} ,
for Gk = %f y k= ~-mkl, cvev0eces, m . Since the spectrum

is symmetric about the origin, it is usual to consider %xx(ek) only
for 06, <mx, d.e.,for k=0,1, ..., m. W(g) is the
Parzen window, and we estimate the lag autocovariance as

T-2 \

1
(%) e ll) = 5 XKy, s £=0,1, feum,

=
t=1
m being referred to as the "maximal lag" or “truncation point."
Estimated spectra of the production series for the five
categories discussed in this essay are shown in Figures 1 - 5. The
series were prewhitened by means of a linear filter, and the estimsted
spectra, with m = 36 , were subsequently recolored, A full discussion
of these estimation procedures is given in Appendix I. The estimated
spectra are plotted on a semi-logarithmic scale, the same scale being

used throughout for purposes of comparison. Differences in the overall
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Spectrum of production series, total dursble goods
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Figure 2

Spectrum of production serles, primary metals

©
A -
]

frequency

- Lh



Figure 3

Spectrum of productlon serles, machinery
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Spectrum of production series, transportation equipment
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height of the spectra simply reflect differences in the total variance
of the time series.

Apart from the existence of a maximum at the origin, which is
often interpreted as representing the existence of trend in the series,
the prominent feature of all these spectra is the sequence of peaks at

k
are those of cycles with perlods 12, 6, L4, 3, 2.4, and 2 months

frequencies 8 _ = %% for k =6, 12, 18, 24, 30, 36. These frequencies

respectively, l.e., cycles which are completed 1, 2, 3, 4, 5, and 6

times per year respectively. Since an arbitrary twelve month pattern

can be represented as a 3um of sinusoidal variations with these six

frequencies, these frequencies are referred to as seasonal frequencies,

and the peaks at these frequencies are accepted as evidence of a strong

seasonal pattern in the original series. We note that Nerlove defines

seasonality as "that characteristic of a time series that gives rise to

spectral peaks at seasomal frequencies” [29, p. 262]; the seasonality

is rélatively weak in the primary metals and transportation equipment

industries. If we were able to eliminate the seasonality from the

production series in some way, then these spectra would conform quite

closely to Granger's "typical spectral shape of an economic variable!

[9]. The only case in which the maximm is not at zero is that of

primaxy metals (Figure 2); the small low-frequency peak which might other-

wise be suggestive of business-cycle effects ls, however, not significant.
The use of seasonally unadjusted data in regression problems has

two main implications. Firstly, complications qaqspd by seasonal

ad justment procedures, which operate on individual series, are avoided.

As Nerlove [29]} has argyed, some of the adjustment procedures currently

in use eliminate from the series far more than can properly be called

seasonal. Working with various unemployment series, Nerlove found that
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when he compared spectra of seasonally adjusted and unad justed series,
the spectrum of the adjusted series had lower values than the spectrim
of the unadjusted series at all but the very low frequencies. More-
over, at the seasonal frequencies, the spectra of the adjusted series
often had dips, indicating that the seasonal peaks of the original
spectra had been more tham removed.

Furthermore, the extent to which adjustment procedures operating
independently on each one of a number of series change the relationships
between the series is not known. If is known that these procedures do
not in general preserve skms. We noted earlier that the new orders
series is derived by the Zensus Bureau from the shipments and unfilled
orders series by using the identity Nt 5 St + AUt ;3 the three series
are seasonally adjusted spparately, however, and this identity does
not hold between the seaspnally adjusted series.

Secondly, the uke of seasonally unadjusted data implies
acceptance of the view thiat seasonality in the dependent variable is
something which we should attempt to explain in our model. Seasonal
variations, alogg with other types of variations, have causes which
we should endeavor to identify. Seasonality in one economic variable
is not an isoclated phenomenon, but is related to seasonal changes in
other economic variables with which it interacts. The comparative
amplitudes of seasonal fluctuations in the various series then
constitute useful informatioh about the economiec processes of which our
model is a representation, and the use of seasonally adjusted data
amounts to throwing away this information. We therefore use seasonally

unad justed data, and assume that the seasonal variation in the dependent
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variable m%y be divided intq a part explained by seasonal variation
in the independent variables, and a remainder which can be assigned
to the error term.

The usual approach to the estimation of regression equations
from seasonally wnadjusted data is to introduce "dwmy" or seasonal
interaction variables into the equaticn. The Introduction of dummy
variables, one less than the number of seasons, into the constant term
of an equation implies Yhat the regression relation makes parallel
shifts from season to sdason, and is equivalent to the introduction of
gine and cosine terms st appropriaste frequencies, With monthly data,
for example, an arbitrary but fixed seasonal pattein may be represented
either as a series of 12 comstants (11 dummy variables and the mean) or
as linear combinations of sines and coslnes with frequencies

%E? , k=1, «vo, 12 . We may also handle seasonal variation in the

parameters of the equatipn by introducing dummy variables which interact
with the dependent variable, implying that the slope of the equation
changes from season to season.

This approach to the problem is dliscussed by Klein, Ball,
Hazlewood and Vandome [18], who point out the disadvantage of being
forced into a definite parametric treatment of the problem. Seasonal
fluctuations are not perfectly regular, for example the specific
climatic pattern changes from year to year. Nexrlove [29] argues that
it ig this approximate byt noﬁ perfect regularity which makes it so
difficult to give a precilse definition of seasonality, and it is equally
difficult to give a precilse parametric treatment of seasonality in the

context of regression prdblems. A second disadvantage, especially to
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the juser of monthly data, lies in the loss of degrees of freedom; for
example, to Introduce explicit seasonal variables into the constant
term of an equation and alsc into a single regression coefficient loses
22 degrees of freedom when monthly date are employed. If, in this case,
theye 1s only one independent variable, then this procedure is
equivalent to the estimation of twelve separate regressions, one for
each month.

It is suggested that spectral technigues be used to study the

causes of seasonality in the dependent variable of a regression equation

WhicP is estimated using seasonally unadjusted data. We fit a single re-
lati%n to the data under the assumption, discussed by Mills [26, p. 194],

that%the form of the decision rule is unchanged from one month to the next.

described above, are avoided. Then, by simply comparing the
spectra of the dependent variable, the regression estimate, and the
regression residual it should be possible to assign the major seasonal
inflhence either to the independent variables or to factors not
expl#citly introduced into the equation. This amounts to a spectral
anal%gue of the partition of the variance of the dependent variable
intoia part associated with the regression estimate ("explained variance,"
or !2) eand a remeinder, which ig usually carried out following ordinary
leas# squares estimation.

% This comparison will be applicable whatever estimation
procedure has been used, but in the next section we suggest an

estimation procedure more appropriate to seasonally unadjusted

data, which itself employs spectral techniques.
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4.2| Spectral techniques of regresslon analysis

is

In Section 2.5 we noted that the use of the Durbin-Watson

statistic to test for the serial independence of regression residuals

inappropriate when the regression equation contains the lagged

dependent variable. Furthermore, with seasonally unadjusted data,

dat

tic

the

might expect serial correlation to be fourth order (quarterly
a) or twelfth order (monthly data), whereas the Durbin-Watson statis-
tests only for first order serial correlation. In such cases it might

r be more prudent to assume that the residuals are serially correlated

than to assume otherwise. This conclusion is strengthened when data for

as

short a time period as a month are being used, for reducing the

period between observations on a time series will in general increase

the

den

tak

serial correlation. In spectral analysis, lack of serial indepen-
ce is a centrml feature rather than an unfortunaste complication. By

ing any lack of serial independence into account when estimating

regression coefficients we shall essentially improve the efficiency of our

coefficient estimates.

the

(1)

In similar fashion to equations (4.l.1) ~ (L.1.4) we define
%ross—spectrum between two time serles {yi] and [xt] as
102 ~1.£8
f (B)= =— X ¢ £) e
(0 )

2x

Lo

wheré cyx(z) ig the lagged covariance between {yt] and [xt]

(2)

The

cyx(ﬂ) =E y.X, , = cxy(wﬂ) .

teal and negative imaginary parts of fyx(e) are called the
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co

(3

We

of

~spectrum and quadrature spectrum, thus

fyx(e) = ny(e) - iny(B)

1
l o]
) ny(e) - {cyx(o) + gi:l(cyx(;z) + cxy(g)) cos £0)
1 o0
)= — = (¢ L) - ¢ 2 in 26 .
Ul = Zp B (e () - o () 6
mey interpret ny(e) as the covariance of the in-phase components

{yt} and [xt] , &and ny(e) as the covariance of components

which are 90 degrees out of phase or in quadrature. Again, glven

samples X., eos Xn s and Yi» soe ¥p > We estimate the cross-

1

spectrum as

\ A 1 m -izek
(%) fyx(ek) = 5= ,e:—:m cyx(.e) e w(e)
for Gk = %% s k==-m, »mtl, ..., m , where the lagged covariance
is |estimated as

(5

-~ 1
) Cy}c(ﬂ) = '@" Z ytxt‘l'ﬂ g = O, :L, saa I

Agdin, a fuller description is given in Appendix I.

is

The development of spectral techniques of regression analysis
due to Hannan, and the following discussion is based on [15].

Consider the simple regression

(6) Yp = Bx, te

mssume that X, and e, are independent for all t and s , and
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[+ o0

th%t e, is a linear process of the form e = I Ps€p_s > z [¢j| <o,
0 o
where the €, are independent ldentically distributed random variables

wit
req
(G
obt

desg

and

(7)

Sub

est

(8)

X

t+)

h zero mean and finlte moments through the fourth order. We also
uire conditions on X, which permit generalized harmonic analysis
ensnder and Rosenblatt [11, p. 2331); these could be more than

ained by assuming that x is a linear process of the form

t

cribed above.

From (6) we may write
Vi¥eeg = PXe¥eag ¥ St¥pug
taking expectations gives

cyx(z) = chx(ﬂ) .

stituting sample covariances gives the instrumental varisble

imator
N e (2)
ﬁ=,\£_9
c ()
, being the instrumental veriable. This provides a consistent

estimate of B , the case £ = 0 corresponding to ordinary least

squares. However, taking the Fourier transform of both sides of

equdtion (7) gives

(9)

and

(10) B(k) =

r (6) =z (o),

the analogy with (7) and (8) implies that

? (6,)

I

fxx(ek)
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be used as an estimator of B , given estimates of the spectral

dengities. We now have a E(k) for each value of k , and requlre

a method of combining these into a single estimate. The variance

of.(

the

10) is proportional to fee(ek)/fxx(ek) , which is sometimes called

noise~to-signal ratioc for y . When we require a minimm-variance

welghted average of a series of independent random variables, the

optimal weights are the reciprocals of the individual variances, thus

neglecting the covariance between the ﬁ(k) gives

(11)

as t

cons
(12)

The

(13)

% B(k) [var p(k)]™%
A k

£ [var B(x) 17+
k

he best estimate of B , the presence of the denominator retaining

istency. We calculsate § as

. F_(6,) £ (e,)
B= (z ZE g JEE G
k fee(ek k fee(ek)

gsymptotie variance of 6 is

n -1 -1
(5 {: £ (8) £ (8)ae )7,

which is the same as that calculated for the best linear unbiased

estimhtor by Grenander and Rosenblatt [11], and it is estimated by

(1)

( o Ok -1,

7
=
2y

These results may be generalized to the case of multiple

regression. To estimate the coefficients of the equation
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(15)

where

B is

(16)

Here

~27

t
Ve =z Bty

!
z¢ 1s a row vector with =n components (th’ cies Znt) and

nxl, weuse the following generalization of equation (12):

=1 ~
é = [z ?zz(ek) (x5 %zz(ek) }
k fée(ek) k fee(ek)

~ th a
i v i i
£ z(Qk) g an nx 1l vector with i element #F zi(sk) , and

i) is an n x n matrix with (i,j)th element %Z . (Gk) . The
173

variance-~covariance matrix of E is estimsted as

(17)

=1
zz(sk) }

(6,)

Foy i)

P
{— =
am oy

As indicated in the dis aiussion of these techniques by

Amemiya and Fuller [2, p. 4], if f,o 15 assumed known, then B 1is

approximately Altken's generalized least squares estimste with the

covariance matrix Eee' =I' assumed known. In general fee will not

be kng

the ez

wn, and Hannan suggests that it be estimated as the spectrum of

lculated residuals [gt] in a regression using some consistent

estimgte of B , such as the least squares estimate. § is then

approximately Aitken's least squares estimate, using a consistent

estimgte of I', and hence has the genersl properties of Aitken's

estimgte, namely consistency and efficiency.

It is suggested that the spectral approach will be advantageous

in cases where the regression residuals should be agsumed to be serially

correlated, elther because the period of observation is short, or
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because the usual test for serial correlation is not appropriate. But
it 1s clear that the advantages of a non-parametric treatment of
serial correlation in the residuals can equally be claimed for
Aitken's least squares procedure, provided that a consistent estimate
of [' ig available. However, as Amemiya and Fuller [2] point out in dis-
cussing the analogy between these two approaches, in the spectral
appricach we are essentially estimating I’ using estimsted covariances
up tpo some meximal lag m weighted by W(Z) , the lag window, and
considerable discussion of the optimality of these procedures is con-
tained in the literature of spectral analysis. On the other hand, such
estimation of T' 1is not required if the underlying mechanism generating
the error terms can be exactly specified.

Secondly, as indicated by equation (11), these methods
recognize variations in signal-to-noise ratio with frequency. Hemon
and Hannan [13], in discussing this point, consider that the spectral
approach will be more useful for time series which exhibit more marked
varigtior of signal-to-noise ratio with frequenecy; our experience suggests
that this will be the case whenever seasonally unadjusted data are used.

! We are also enabled, by means of this approach; to study more

\
fully| the validity of the model employed. For example, if (6) is

valid, then B should be the same at all frequencies, hence a study
of the variation of é(k) with k will shed light on this question.
An exemple of the analysis of variation in ﬁ(k) with k 1is contained
in Hemon and Hannan [13]. Furthermore, while B(k) as calculated in
(10) is apparently a“camplex number, this should not be so (apart from

sampling errors) if the model is correctly specified. For the fact that

lagged values of y or x do not appear in the equation implies that
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|
Vi and X, —are either in phase (if B >0) or 180 degrees out of phase
(if |@ <0) &nd in such cases ny(e) will be zero. Hamon and Hannan
[13]) also discuss testing the validity of this neglect of phase

differences.

4.3, Application to our model

We now consider the application of the method; described in
the Frevious section and specified in equation {4 2.16), to the

equa#ion derived in Chapter 3, namely

(1) By = Bq r 7y g tyally oWy o) ksl ) vy, U ) ey .

Remembering that we have no estimate of fee(e) to begin with, our first

sugeested estimation procedure iz as follows:

(1) apply (4.2.16) to equation (1) above, nmder the

assumption that fee(e) =1, and obtain estimates -

'1i) enter these estimated cocefficients into (1), caleculate

residuals %t and their spectrum %ee(e

J

{1ii) reapply (4.2.16) using this estimate of fee(e) , and
obtail: final estimates i o

This procedure has two defects. Firstly, (i) is analogous to
ordinary least squaresg, for the assumption that fee(e) = 1 is identical

with the assumption that (e is white nolse with variance 2x , i.e.

"
that | Eee' = 2al . As indicated in Section 2.5; when ordinary least
squares is applisd to a model containing the lagged dependent variable

and serially correlated residuals, the resultant estimates ars not

consiptent. Thus the egtimated fee(ek) obtained in stage (ii) is not
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conFistentu Secondly, even if it were, the stage (iil) estimate i

woulld not have the property of asymptobic efficiency. It was noted

in
lea
1T,

the

Section 4.2 that stage (1ii) iz analogous to Altken's generalized

st squares using an estimate ﬁ of FEee' and, as shown in Appendix
this method does not give asymptotically efficient egtimates when
lagged dependent varlable is among the regressors.

The [irst of these difficulties can be overcome by the use

of &n instrumental variable for P in stage (i). This will

achl

Py g

eve consistency: the cogt of this achievement is measured in

terms of a loss of efficiency if the residuals actually are serially

independent.

(2)

We desgcribe the procedure by considering the simple model

Yy = Q¥ g T &KL T e

where f{e_)] 1is serially correlasted. The use of an instrumental

t

variable 2, for yt-l implies that we egtimate a&, and Q. as

t 2

folllows:

In general, the selected instrumental wvariable =z

of

?

r oz I 7% o z+y£

£ g1 £

¥

?
2>
L AW '

2z Xtyiml‘ L X Z xty£

£ should be independent

B, and strongly corrslated with Yeoq v In this case we revert to

equation (2), and note *+hat y. mey be written as a linear combinaticn

of past x's
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(3) Vg =G E X 5T U

whera

(i

o -
u, ‘Z aiet-j o
J=0

Assuming that Iail <1, which is required for stationarity, we may
approximate Vi by the first few terms of the summation in (3), and
to avolid losing too many observations, we take only the first two

terms, Then estimating the coefficients of the regression
(4) Yo = BixXy *+ Box, , + residual
will give the linear combination of x and X most highly

t t-1

correlated with Vg - We now lag this linear combination by one period

to obtain our instrumental variable. Thus, we use z, as an instrumen-

tal vgriable for Ye_1 » where

2y = ByXp g T BX o

Since Xy and e are independent for a1l t and s , zZ, is

independent of e > and Zy 1s highly correlated with yf—l , this
correlation belng measured by the R2 achieved when equation (%) is
estimated.

Applying this procedure to equation (1), we first regress P,

on the| exogenous variables, current and lagged:
(5) By = Bl yp ¥ BNy 3 - Ny g5) # BT, 3 ¥ B

+ [35}11%13 + 56(“}’5-—2 - Nt-ll;) + ﬁTIt-e + BgU, _, + residual.
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From|the estimated coefficients, we form the estimated dependent variable,
lagged cne period, §t-1 . This is then used as an instrumental
varigble in equation (1), giving ordinary least squares estimates of

7 which are now consistent. Hence the first difficulty outlined above

is removed, and a consistent estimate of fee(e) is now available for

use in stage (iii).

Nevertheless the second difficulty described above, l.e. lack
of agymptotic efficiency, still remains. 1In the absence of an alternative,
this procedure is adopted, and the resulting consistent but asymptotically
lnefficient estimates are presented in Chapter 5. We see in Appendix IT
that the only way in which Altken's generalized least squares estimates
could| achieve asymptotic efficiency in the presence of the lagged

dependent variable would be for the residual covariance matrix, Eee' =T ,

or equivalently the spectrum of residuals, fee(e) , to be known exactly.

A full exsmple of the computations, cdntaining the estimates
derived at each stage of the procedure, is given in Appendix III.
Summarizing, the procedure is as follows:

(1) regress P, on the exogenous verlsbles, current and lagged,

as inlequation (5).

(ii) from these estimated coefficients, form the regression

estim#te ﬁ '

L and lag this one period.

(ii1) wuse this %%-l as an instrumental variable for P, .

in an‘ordinary least squares estimation of equation (1).

(iv) calculate the estimsted residuals from this regression,

e, » @nd their spectrum fee(ek) .
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(v) apply (4.2.16) to equation (1) using this estimate of
fee(Q) , giving a spectral analogue of Aitken's generalized least

squares, and obtaln final estimates 2 .

(vi) for the purposes of the comparison discussed in Section

4.1, lcompute spectra of the final regression estimate and regression

resi@uals.
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CHAPTER 5
EMPIRICAL RESULTS

We first present estimates of the coefficlents of the produc-
tion lequation. Then, in Section 5.2, s restriction is placed upon this
equatilion in order to achieve identification of the parameters of the model.
The resulting coefficlent estimates are presented in Section 5.3. The
remaining sections are concerned with the goodness of fit of the regres-
sionj Section 5.4 with respect to the conventional variance-explained

concept, and Section 5.5 with respect to seasonality in the dependent

variable,

5.1. The production equation

In Table 2 are presented the results of the application of

the above estimation procedure to the model

Po = 71P1 T vl ap ¥ 70N g - Ny _q3) +ysUp g b T g e

The numbers in parentheses are the estimated standard errors of the

respective coefficients.
The table also gives information with respect to goodness of
fit. [If the equation had been estimated by ordinary least squares, then

~

we would have the result that I ?tet = 0, which would allow us to
t
partition exactly the variance of the dependent variable into "explained™

(var ﬁt) and "unexplained" (var gt) variance. The above identity no

longer holds, however, when Altken's generslized least squares estima-

tion ois applied, hence the table presents wvar ?% s var gt » and
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Estimates of the production e¢uation

TABLE 2

Total Primary | Machinery| Transport. Total
durebles| metals equipment nondurable
P,y 0.562 0.467 0.507 0.682 0.13L
(0.054) (0.066) (0.068) (0.066) (0.0%6)
N 1o 0.455 0.096 0.235 0.0LY 0.820
- (0.067) (0.054) (0.04k4) (0.0L5) (0.036)
NypNp_q3)]  0-254 0.150 0.117 -0.002 0.748
(0.041) (0.036) (0.039) (0.034) (o.041)
U 4 -0.030 0.057 ~0.015 |  0.005 -0.039
- (0.010) (0.017) (0.020) (0.010) (0.06L4)
L -0.068 0.266 0.108 :  0.370 0.0%0
” (0.089) (0.125) (0.107) ©  (0.356) (0.0k1) !
_ f '
constant 1965 517 987 ; T4 630
estimated g 0.56 1.56 0.50 i -0.0k 0.91
I %
var ist ,
0.89 0.54 0.56 | 0.52 0.69
var P 5 :
t ; ;;
var E;t ' .
0.21 0.37 0.2 | 0.32 0,03 j
var P ' j
t ! N
A [] o
2 cov P.e, ‘ 5 ..
¢ -0,10 0.09 0.20 0.16 0.06 !
var Pt ! :
&+ ¢ 1
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2 X covariance Ptet > 1n each case expressed as a proportion of the

varlance of Pt .

The estimated coefficients of Pt—l are all significantly
different from O and 1 . Interpreting these coefficients as 1 - b R
where b is the "production adjustment coefficient,” gives estimates
of b of 0.438, 0.533, 0.493, 0.318, and 0.866 respectively.
These values imply that the greatest flexibility in production planning

is enjoyed by manmfacturers of nondurable goods, while manufacturers of

transportation equipment operate under the greatest pressures for produc-

tion smoothing.
With regard to the terms in new orders, an estimate of q in

the r?lation

Ny =Ny qp+ ol - N, 13)

is obbained by dividing the coefficient of (Nt—l - ) by that of

N 13

i) For transportation equipment, the former coefficient can be

t-12 °
taken to be zero, whlle the latter is no larger than its standard error,
hence| the estimated g-value merits little attention. In the case of
primary metals, the estimated q 1is greater than 1 , but the coefficient

of Nﬁ is not significant. A true value of q which was greater

L-12
than |1 would cast doubt on the applicability of the model used for
obtaining predictions. For referring to equation (3.4.3), and considering
only the first-difference operator in this eguation, we éee that a value

of 1.56 for @ , or &, would imply that the series x, 1is generated

by the following explosive Markov process:

X, = 1.56 %, 1 ¥ € >
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which 1s not plausible. In the remaining three manufacturing
categories, both new orders coefficients are significant, and the values
of g lie between O and 1 , in accordance with the regressiveness of

expectations.

The major unsatisfactory feature in these results concerns the
coefficient of It-l « The hypotheses formulated in Section 3.1 imply,
firgt, that thls coefficient should be negative, and this turns out to
be the case only for total durables and this coefficient is not
significantly different from zerco. Second, these hypotheses imply that,
in the stock-production sector, the difference between the coefficient

of and that of It-l should be 1 , and in the only case

Fe-1
wherg the coefficlent of It—l is negative, this relation does not
hold. It was noted in Section 3.1, however, (see page 26) that the
equation is over-identified in the sense that the two parémcters of the

model are estimated by three regression coefficients (equation (3.1.7)).

We npw seek to overcome this difficulty.

5.2 A restricted equation

Rewriting equation (3.1.6) in terms of the parameters of the

model, and adding & subscript s to dencote the stock-production sector,

give
~

(1) Ps’t = (l—bs)PS’t_l + (a+l)bst,t -b I 0+ e g °
The restriction on the coefficients of P and I may now be

5,%-1 t-1
imposed, and identification achieved, by writing

~
= - +

(2) Cﬁ%,t bs(Ps,t-l * It-l) + (a+l)bsms,t es,t
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whére
APs g = Fsp = Pg g

For the production to order sector we have, from equation

(3.2.5),

(3) Po,t = (1_bo)Po,t—l * aEbGNo,t e Ut €o,t *

An pquetion for production change, analogous to (2) asbove, may thus be

WTinten

(14-) OHP = -b P

+ Fal
o,t oFo,t-1 ¥ #2PNo ¢ e

tab Uy s et -

Equinions (2) and (4) imply thet the true specification for the aggregate

dependent variable AP, = APS
2

e t+APo is

st

(5) 2, b (By g1 ™ Tyop) = PP gop * (atBN o+ ab N
*abUpy t e

whejeas aggregation among the regressors implies thet the following

equgtion be estimated:
(6) BBy =7y By + Ty ) + oyl + 5l ) * e -

By an argument similar to that presented in Section 3.3, the

rela[ion between the estimated y-coefficients and the coefficients of

the two sector equations (2) and (4) is given by
E7, = ay, (- ) + (1-8) (= b)) + d5l(atd)p, - ayp ]
R ;2 = d25(a+l)bs+ (1-8y5)ah,  + dy[- b+ b, ]
E 75 = albo + d5l [~ b + bo] + d53[(a+l)bs- aebo]
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where the d's ere estimated coefficients in regressions of the sector

varisbles on the aggregate variables:

Polgy ¥ Igop = dqg (B + I, ;) + dy ﬁt +d;,U ; + residual
Fo, -1 = (1)) (B ) + Ty ) - ay K - Gl * "
b ,t = Qg (B F T )+ by N, + dssUyy * "
i >t = 4y (P%-l * It_l) + (1‘d25) ﬁ£ - dSBU't‘__l + t

Agaid there is no aggregation bias if b_=1b_ = and (a+l)bS =ab .

However the assumption of strict proportionality does not necessarily

5,t th ?

+ It_l) and (P, | + It_l)

glve lconsistent sggregation, for the assumption that P

P, = (l—K)Pt does not imply that (P

o,% 5,t-1

are strictly proportional.

In estimating equation (6), the estimated coefficients will
diffepr from those presented in Section 5.1 only by virtue of the
restriction imposed, whereas the "variance explained" may be expected
to drpp further, by virtue of the change in dependent variable. This may
be illustrated by a simple example.

Consglder the equation
(7) Yt = (l—b)yt—l + B'X.t + et E
which‘may equivalently be written
(8} Awf = - byt—l + ax, + e,

It is‘clear that if both equations are estimated by the same procedure,
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say| ordinary least squares, then identical estimstes of a and b
will result. This implies that the estimated residuals, gt , will
be the same in both cases. Writing Ri and Rg for the proportion of

variance explained in the first and second equations respectively, we

hav%
Ral-oom oy %
1 var v, ? 2 var &y,
thus
2 2
(1 - Rl) var y, = (1 - RE) var &y, -
Now

var &y, = var (y, - ¥, 1) = 2(1 - p) var y,

Therefore

whe p is the first order autocorrelation coefficient for the Y~
series.

2 2
R =20 -1+ 2(1-p)R2

2 > 2 >
and Rl <.R2 according as p < 0.5 .
In economic time series measured over short periods of time, P

lies between 0.75 and 1 , hence we would expect in such a case to

2 2
have R2 < Rl .

5.3. Bstimastes of the production change equation

The coefficients of the equation

(1) apy =7 (P + Ty 1) * v Ny 1+ 7l g - Ny g3) + 73U ) *+ e

L.2

were| estimated by a procedure anslogous to that described in Sections
Lnd 4.3, The equation was first estimsted by ordinary least squares
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and the estimated residusls, gt , obtained. The spectrum of these
residuals was then calculated, and the formule of (4.2.16) p. 56, was
fina applied, to give the spectral analogue of generallzed least
squanes. An example of the calculations is given in Appendix IIT.

The estimates which were obtained are presented in Table 3.
As expected, the proportion of variance explained fell considersbly, and
the rtsidual variance rose. We shall return to this subject in Section
Selte

We now have a direct estimate of the production adjustment
coefficient by changling the sign of the estimated coefficient of
(P + I

t-1 t-l) ’
is shﬂnm by total nondurable goods manufacturing, while the greatest

Again, the greastest flexibility in production plans

lags in production changes are found in transportation equipment
manufacturing. The estimated coefficients can be compared to the co-
efficients of the lagged production term in Mills' regression eguation,

[26]. | In three regressions fitted to monthly data, his estimates were as

follows:
Southern pine lumber 0.343
Prneumatic tires 0.559
Department store shoes 0.420

These are broadly comparable with our results, the industries used by
Mills falling towards the nondurable end of the production spectrum.
Mack [24] has used the reciprocal of such coefficients as an
indication of the time taken to execute a significant change in planned
levelsl this would suggest that the transportation equipment indusiry

requires five months to plan and carry out a revision in production levels,
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TABLE 3

Bstimetes of the production change eguation

Total Primary Machinery Transport Total
durables | metals equipment |nondurable
a;t-lﬂt-l) -0.277 -0.257 -0.236 -0.197 -0.523
; (0.084) | {0.049) (¢.038) (0.051) (0.038)
N 1o 0.384 0.081 0.19% 0.0k3 Q.75k
(0.071) | (0.057) | (C.OLk) (0.0k1)} (0.059)
(W)_y~N, ) 0.19% ! 0.111 | 0.054 -0.003 0.585
_ (0.043) ! (0.037) (0.037) (0.031) (0.066)
Uy -0.028 0.0003 -0.021 0.007 -0.151
(0.011) | (0.013) (0.020) (0.008) (0.110)
regression 2220 | 861 1216 660 2007
constant i
estimated g 0.51 | 1.36 0.28 -0.07 0.78
~ |
var AE% ‘ N
%ﬁ: 0.16 i 0.15 0.13 0.12 0 43
| |
var e, ‘
75’3'3% 0.64 ? 0.81 0.75 0.93 0.32
N A I ¢
{2 cov AP e, ! i
e b 0.21 | 0.04 0.13 -0.05 0.24
var AE% } ;
{ L]
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wherefs this can be achieved in two months by the nondurable goods manu-
facturers. To some extent these effects reflect differences in the
amount of time required to manufacture the products of different
industries. For example, the transportation eguipment industry in-
cludes manufacturers of alrcraft, which take several months to construct,
while|total nondurable goods industries include & conslderable amount of
contimuous-process manufacturing, Differences in the economic batch sizes
of coptinuous-process manufacturers are also reflected in production
flexibility variations. The‘costs of production for a car assembly
plant, for example, are such that relatively long production runs

are undertaken, while a manufacturer of clothing and apparel operates
under fewer economlic pressures for long production runs, and hence finds

it eagier to amend production levels,

With respect to unfllled orders, the coefficients are not, in
generél, significant. In only one case, total durables manufacturing,
is the estimated coefficient greater than twice its gtandard error.
Morecover, in this case the coefficient has the wrong sign, the estimate
inmplying that the unfilled order backlog enters the egquation for desired
prodiuiction with a negative coefficient, l.e. the greater the backleg
the smaller the planned production should be., Clearly, this coefficient
cannot be taken at its face value. We shall comment further upon the or-
ders pEoblem below; here we simply note that in this context the remaining
estimated coefficients of unfililed orders support the conclusion observed
in Lovell's work by Eisner and Strotz (p. 11 above). They noted that

wanfilled orders does not play a significant role in the determination

of finished goods inventory investment, and a similar conclusion could
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be |drawn concerning the determination of production levels by using
the identity Pt = Ait + St to change the dependent variable of
Lovell's regression [20].

Again we oﬁtain an estimate of g by dividing the coefficient
1" I\Tt_li) by that of N, . ,
very similar to those obtained in Section 5.1. In the transportation

of (Nﬁ_ and this gives results which are
equipment category, neither coefficient is significant, hence not much
can be said about the estimated q . For primary metals, the calcula-
tion of g agein involves a nonsignificant coefficient, and again gives
e value greater than 1 . In the three remalining cases, the values of g
lie|between O and 1 . Of these three cases, the expectations of
nondurable goods manufacturers are least regressive, while the past

represents the greatest drag on future expectations for manufacturers

of machinery.

A further feature of the estimated coefficients of the new
orddrs terms, which was also present in the unrestricted equation,
Table 2, is now noted. If we examine the flrst four categories only,
then the new orders coefficients for the total durables group are
gregter than the corresponding coefficients for the three categories
which are part of the total durables group, and significantly 50,
paying attention to the estimated standard errors. We suggest that
this| is another manifestation of the aggregation problem. The esti-
meted relationship for total durables may be regarded as being an
aggregate of the relationships for the three industry subgroups

together with an "other durasbles" category. Specifically, we suggest that

it may be the case that new orders placed by a firm enter info its
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decigion function, In addiftion to new orders received. A firm
plecing orders for supplies to be received in the future is essentially
cohmitting itself to the future production which will utilize these
supplies, while the firm recelving the order will either deliver the
gopds from stock or produce the goods on, or shortly after, receipt

of| the order. Thus a given new order enters the decision‘function of
both firms. If firms dn the four subgroups of total durables
manufacturing trade between subgroups, then, for example, orders re-
celved by a firm ?n the primary metalsliqdustry will also feature in
the production rule of the firm in the transportation equipment indus-
try which placed the orders. When the aggregste total durable
equation is estimated, the new orders term in the productlon equation

will have to do the work of both these effects, and hence will have a

larger coefficient.

If we were to regard equation (1) sbove as applying to the
stlckaproduction sector alone, then an estimate of the desired

inventory coefficient, a , can be obtained as

In [the three industry subgroups this estimate is negative, which suggests
that this procedure is not really appropriate, However for total
durables this gives 0.387 , and for total nondurables O.4h2 . In

his paper using quarterly data on actual sales anticlpations,

Lovell [23] obtained estimastes of the desired inventory coefficient

of | 0.242 and 0.19% for durables and nondurables respectively. If

we ﬁultiply these estimates by 3 in order to achieve comparability
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with our estimates from monthly data, then the results, 0.726 and
0.582, are somewhat greater thsn the estimates presented above.
Nevertheless, for strict comparability we should probably correct for
the change in forecast horizon prior to muliiplying by 3: the firm
using sales forecasts cover a quarter may regquire a higher buffer stock
in order to compensate for the greater uncertainties involved in fore-
casting over a quarter rather than a month. If 1t were possible to

remoye this effect from Lovell's estimates before multiplylng by 3,

the resulting estimates would be closer to our figures of 0.387

and 0O.442,

5.4, Goodness of it

In the previous section, having estimated the coefficients

of the relation

ARy = gy (R * Ty q) H oyl + 73U, 5 Fep s

we calculated the variasnce of the regression estimate 5%% . ‘This
was presented in Table 3 as a proportion of the variance of &Pt .

We can equally regard the estimated coefficients as providing an
ectimpgte of P, , which we may call a restricted regression estimate

B: ; as follows:

Bo= B o ¥y (B g v I ) TN F U -

Thls may now be compared with ﬁt » the unrestricted regression
estimate of Section 5.1, to glve an evaluation of the restriction

impoged on the regression equation. This will permit us to abstract
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froﬁ.the effect of using e first-differenced variable as the dependent
varlable, described in Section 5.2 and observed in Section 5.3, and
concentrate on the increase in residual variance caused by the
imposition of the restriction.

In Table k4 are presented the variance of P! , the variance

of the regression residuals gt , and 2 x covariance P*g

t7t
expressed as proportions of the variance of P, - (Note that the same
variance of residuals was presented as a proportion of var AE% in

Table 3.) For comparison, the corresponding figures for the un-

restricted equation are presented; these also are expressed as

proportions of the varlance of P, , and were presented in Table 2.
In all five cases the variance of the residuals is increased

by qmposing the restriction on the equation, as one would expect,

although the increases are relatively small. The increase in

residual variance provides a measure of the severity of the restriction

in practice. If the egtimated coefficients of the original equation

almost £it the restriction, then imposing the restriction will make

littlle difference, whereas a large increage in variance means that

the restricted equation is considerably different from the original

equafion, and it is therefore doubtful that the restriction is true.

Had these eguations been estimated by ordinary leagt squares, it

would have been possible to test this lncrease in residual varlance,

a statistically insignificant increase implying that the restricted

equation and the original equation both represent the same situation,

and in that sense the restriction is correct., However, when estimation

procedures analogous to generalized least squares are used, such tests

-6 =



- ) -

“TABIE &

Variances and covarisnces of estimates and residuals for restricted and unrestricted equations

(as a proportion of var Pt)

Total Primary Machinery Transportation Total
durables metals eguipment nondurables
' |
Restrict|{Unrestr.|Restrict|Unrestr. !Restrictlinrestr. {Restrict UnrestraiRestrict Unrestr.
equation|equation|equation|equation | equationfequation equationteemation: equation]equation
var %t 0.86 0.85 | 0.69 | 0.54 0.61 0.56 0.61 | 0.52 | 0.82 | 0.89
(var Pﬁ) ' r
var 'ét 0.24 0.21 0.4 | 0.37 0.28 0.23 0.33 0.32 0.06 0.03
2 cov Be -0,11 -0.10 | «0,15 | 0,09 0,10 ! 0.20 0.07 0.16 0.12 ' 0.08
‘ i
H H i H
; : !




no longer apply, and we have to be content with a simple examination of
the results.

As already noted, imposing the restriction increases the
residual variances. These result: are confounded, however, by the changes
in the covariance term in moving from one situation to the other. In
three| cases the covariance term is reduced by such an amount that the
"explained variance" is also increased by imposing the restriction.

From the results concerning the proportion of variance explained, the

overall fit of the regression equation based on 132 observations

appears to be good.

In the conventional generalized least squares approach, while
it is|true that the covariance %t’é,u term is still present, the testing
problem is overcome by working with transformed variables, as follows.

If we|wish to estimate the equation
vy=Xa+ e

by generalized least squares, using the matrix Eee' =T , then an

equivalent approach is to trans{orm the original equation by using the

z

inverge square root of I' , T ¢ thus:
i - - %
ré =71 Za+r %
-3
= T %{a'+ e and Ee,e; =1 .

Ordin least squares mey now be applied to the transformed equation;
this will be identical with a direct application of generalized least

squares to the original equation, and will give efficient coefficient
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estimates. The usual tests can now be performed on the transformed

variables and their ordinary least squares estimates; in particular
1

the covariance of I 2 § and gl will be zero.

However, by working in the frequency domain, the possibility
of pérforming the usual tests on transformed variables is not available
to us. The matrix which would be equivalent to I' were we to transfer
back into the time domain at an intermediate stage is not readily
available, hence we must awasit further theoretical developments before
being able to test our "expleined variance" terms.

‘ Parenthetically, we might comment that the only publicly avail-
able computer program for generalized least squares which is known to us in
fact operates on the principle just described. The stepwise procedure
begins with an ordinary least squares estimation of the eguation, then

calculates Sl s the first order serial correlation coefficient of

the residuals and transforms the regression variables:

(1)
Xp T %y T P1%g

y(lJ . oA
t g T PV 0

The second step applies ordinary least squares to the transformed
variables, estimates the residual first order serial correlation co-

efficlent 32 and transforms the variables again:

y1EE) (1) _ 5 (1) x1(32) i xng) - 5x(L)

t Po¥t_1 2 241 °

=

And so on., This is equivalent to filling in the parsllel disgonals of
the I' - matrix one at a time. The procedure stops when no significant
change is made between cone step and its predecessor. This feature can

be removed; when using monthly data we might expect significant changes
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when we reach the twelfth step but not at the eighth step, say, yet
we wish to ensure that the routine actually continues to the twelfth
step. Ancther difficulty exists in the necessity of beginning with
an ordinary least squares estimaste, which will not be appropriate if

the lagged dependent wvariable 1s among the regressors.

5.5« BSpectrs of regression estimates and reslduals

In Figures 6~10 we present the estimated spectra of the
restricted regression estimate P , calculated as described in the
previous section, and the regression residual gt . Again, the spectra
were estimated using the methods discussed in Appendix I.

We find the spectra of the regression estimates exhibiting
behavior similar to that of the spectra of the original production
series (Figures 1-5). In general, the spectra of Pﬁ have high values
at low freguencies, low values at high frequencies, and peaks at the
seasonal frequencies ek = -%5 , k=1, oco, 6 . These characteris-

tics were algo found in the spectra of the P, series. The general

t
close agreement underlines the conclusion of the previous section that
the regression equation fits the data quite well; not only is the
variance explained high, but the distribution of variance over the
frequency range also corresponds quite closely to that of the original
depcndent variable. In comparing the spectra in detall, the regression
egtimates tend to have lese pronounced seasonasl peaks than the original
production series, particularly at high frequencies.

By contrast, the spectra of e the regression residuals,

t 2

show considerable peaks at all six seasonal frequencies superimposed
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Flgure 6

Spectra of regression estimastes (solid line) and
residuele (broken line), total durable goods
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Figure 7

Spectra of regression estimates (solid line) and
residuals (broken line), primary metals
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Figure &

Spectra of regression estimates (solid line) and
residuals (broken line), machinery
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Figure 9

Spectra of regression estimates (solid line) and
residuals (broken line), transportation equipment
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Figure 10

Spectra of regression estimates (solid line) and
total nondurable goods

residuals (broken line),

e
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upon otherwise relatively flat spectra. The general height of these
spectra reflects the total residusl variance, As discussed in

Section 4.1, we suggest that these spectra may be interpreted as

follgws: the regression variasbles account for the trend and other
low-frequency components of the dependent variable, and a part of the
seasonal; strong seasonzlity remains in the regression. residuals.

This considerable residual seasonality emphasizes the inapplicability

of ordinary least squares procedures, for the residuals are by no means
serially uncorrelated. It could probably be reduced by introducing dummy
variables into the regression equation, and this would, moreover, increase
the variance explained. Glven that seasonal variations are not fixed

but slowly changing, however, dummy variables cannot fully explain
seasonallty, and we prefer to¢ leave it in the residuals. The

residual seasonality could also be reduced by introducing a term in
Pt—12 into the regression equation. Our objective, however, was not

to mehsure the seasonal pattern in the production series by itself, but
to study the extent to which it could be regarded as being induced by

seagonality in the regression variables, and the spectra indicate that

this is the case to a considerable extent.
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CHAPTER 6
CONCLUSIONS

In this study we consider a number of problems which arise in
the analysis of inventory behavior. These problems are, on the one
hand, methodological problems of wide applicability in econometrics
and, on the other hand, questions surrounding the derivation and testing
of hypotheses concerning the behavior of menufacturers' inventories of
finisghed goods.

The methodological problems are, in the first place, those
which arise from the use of seasonally unadjusted dats in regression
enalysig. BSuch data are used in order {0 avold the known inadequacies
of seasonal adjustment procedures and their unknown effects on the
relationships between time series. Seasonality in an economic time
éeries is not an independent phenomenon, but influences, and is in-
fluenced by, seasonality in relsbed series. Hence a model should asttempt
to explain seasonal veriation in the dependent wvariables in much the same
way that other types of variation are explained. Spectral analytic
technigues have been used for the study of seasonal adjustment proce-
dures, and it is proposed that one should use the spectra of the depen-
dent variable, the regression estimate, and the regression residual in
order to assess the extent to which the regression variables succeed in
explaining the dependent variables at various freguencies, including
seasanal frequencies. This is essentially a generalization of a well-
knowtl concept; one should study not only the amount of the variance of

the dependent variable which is explained by the regression, but also
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the way in which the explained wariance is distributgd over frequency
components. In particular, the extent to which the regression variables
succeed in explaining seasonality in the dependent varisble can be
ascertained by comparing the spectrum of the dependent variable with
that of its regression estimate,

The. second group of methodological problems concern serial
correlation in regression estimation. BSuch correlation is increased
as dats for shorter time periods are employed, and ignoring its
presence leads to inefficient estimates of the ccefficients. The
usual procedure for testing for the presence of serial correlation‘
in regression residuals tests only for first order serlal correlstion,
whereas the use of geasonally unsd justed dabta implies that serial
correlation of higher orders may +ell be present and more important.
Furthermore the usual test is inapplicable when the lagged dependent
variable is among the regressors. As an altern&ﬁive to the burbin-Watson

test, an examination of the spectrum of the residuals , can give general

/
information on the nature of the stochastic process generating the
regression residuals; such information should be incorporated into

the estimation procedure in order to achieve efficient estimation.

We awalt, hoi;reverj the development of statistical distribution theory
which would permit, for example, a significance test of whether or

not the regression residuals possess serial correlation of any order.
When the regression variables contain the lagged dependent variable, the
congequences of ignoring serial correlation which is present are serious,
hence in these circumstances we assume that the regression residuals

areﬁserially correlated,and proceed accordingly. We develop and

gpply an estimetion procedure based on a spectral analytic analogue
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of Altken's generalized least squares, peying sttention to the problem
raised by the presence of the lagged dependent variable., For all
practical purposes, this spectral procedure is free of assumptions
about the time-structure of the regression residuals, and hence is able
to handle more complex,patterns than the simple first order Markov
Process.

Turning now to the hypotheses which are developed about the
behavior of firms, we first draw a distinction between firms that
produce in anticipation of demand ("production to stock™) and those that
produce in response to established demand (“production to order"). In
these two "pure" cases, firms which produce to order carry no inventory
of finished goods, while firms which produce to stock have no backlog
of unfilled orders. These two sectors are considered separately, and
an explicit treatment is given of the aggregation problem which arises
when a single equation doing duty for both sectors is estimated using
aggregated data. The estimation of an eggregate relation requires that
a variable common to both sectors be used as the dependent variable,
hence the discussion of the firm's behavior is oriented towsrds its
production decision.

The model contains assumptions of production smoothing, in that
firms find it costly to change production levels rapidly. The inventory
and production decisions involve the firm's forecast of new orders to
be recelved, and an explicit structure for the forecasting procedure
is hypothesized. This bases forecests on the recent observed past of the
new orders series, The deviation of actual production from the planned

level is assumed to be random, and a restriction is imposed upon the
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equation in order to achieve identification of the structural parameters
from the estimated coefficienté. The resulting equation is estimated
using monthly, seasonally unadjusted, deflated data, 1953-196k, for
five industry groups. |

The coefficient estimates give considerable support to the
production smoothing hypothesis, with the greatest lags in production
changes being found in transportation eguipment manufacturing, and total
nondurable goods manufactgring showing the grestest flexibllity in
production planning. Despite our specific deseription of th; way in which
terms in unfilled orders enter the mcdel, their estimated coefficilents
are not, in general, significent. However, when the coefficients of
the new orders terms obtained for the two aggregates, total durables and
total nondurables manufacturing, are compared with those for three
industry subgroups, it is clear that there are significant aggregation
effects in this directlon elso. This suggests that in the estimation
-af inventory and production relations both at the industry level and fof
higher aggregates, a detalled account of trading by firms between
industries should be gilven, and a distinction drawn hetween orders
Placed by firms end orders received by firms. Thus one direction in
which our study could be extended would lead to the construction of a
similtaneous-equations model, in which specific attention could be
given to the economices of ordering and the timing of procurement.

Firms' expectations are again found to have & regressive
tendéency, in that while the direction of changes is correctly
anticipated, the magnitude of changes is underestimated. After making

a siﬁplifying assumption (that the order-production sector can be
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ignored), desired inventory coefficients are observed for two aggregated
induStré groups, total durables and total nondurables manufacturing,
which conform to those observed by other lnvestigators. The desired
inventory coefficients obtained for the three industry subgroups are
not reasonable, however, which suggests that the assumption is grossly
oversimplifying and hence that little meaning can be attached to the
desired inventory coefficlents which do appear to be reasonable.
Overall, the equation fits the data relatively well, judging
both on the conventional variance-explained grounds and also on the
basis of an examination of the spectra of the production series and
the regression estimates and residuals. This spectral comparison
shows that seasonality in the dependent variable is to a considerable
extent the consequence of the seasonal influence of the regression
variables, although strong seasonalifty remains in the regression
residuals. We conclude that the comparison of spectra of the dependent
variable, its regresgion estimate, and the regression residual is a use-
ful technique for studying the causes of seasonal fluctuations in the

dependent variable in a regression model.,

-9l -



APFENDIX I

AN INTRODUCTORY NOTE ON SPECTRAL DENSITY FUNCTIONS

AND THEIR ESTIMATION

The first few pages of this appendix present the basic ideas
mach In the order thst they were developed. As in many other branches
of statistics, the historical development of harmonic anslysis of time
series began with sample statistiecs, and only later move to theoretical
conglderation of populetion parameters.

Glven T = 2n points of a time series [xt] , we may exactly
represent these observations as a sum of sine and cosine terms, as
follows

n
= I (a

cos Gjt + b, sin ejt)

J

whefe ej = 2%1 . We have bo = bn =0 , and the T nonzero

coefficients are given by

T 1 T
a, = — I X cosé,t, b.= = X x s8inét , j=1, 8, «oo, 1=l
J 8 t=1 ¢ J J a t=l t v
(2) -
T
1l 1
a = = I X , a = = ¥ x cos tx
o] T £l t n T £l i

Imposing the requirement that X,

In essepnce, these coefficients are calculated by forming normal equations

hag a zero mean then implies a, = c .

with the sine and cosine variables, and using the folicwing

orthogonslily conditions:

.02



T 0 J#k
Z s8in €.t sin 8.t =={ .
J n

tl k j=k

-

& s8in 6.% cos ek; = 0

t=l -

T 0 J#k

I cos 6.t cos 6,% =-{ n Jm=k#O or n

t=1, J T J=k=0 or n
where ejn?%i—,ekne’;—k, J,k =0, 1, eaen s

The representation (1) can be interpreted as a decomposition of the

time series [xt] into orthogonal frequency components. This
orthogonality implles that the sum of squares of the ohbserved series may
.be pertitioned into contributions from each frequency component, cross-

product terms being zero. Hence

T 2 T n o
I x,= 23 X (a,. cos ejt + bJ sin 6.%)
t=1 t=l j=0 Y J

il

n T - w
b {%% = cosde.t + b% b N sin2 6.?}
3=0 taml J d el J

n
n T (a? + b?) > Dby orthogonality conditions.
J=0

The term n(a? + b?) may be interpreted as the contribution of the
' component of frequency ej to the total sum of squares. From (2},

this contribution may he written

T T
2 2 R 2
(3) I(QJ) = & ]:(til 4 €08 Gjt) + (til x, sin Qj“b) ] s

which i1e known as the Schusfter periodogram. When this is plotted as a

funcbion of 6 , a relative peak at a particular frequency Gi has

the interpretation that the component with this frequency has a strong
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influence in the observed series. ©Such & component has freguency %
cycles/unit time, and hence represents a cycle with period % . Note
that cycles of frequency greater than 0.5 cycles/unit time, i.e. periods
less than twice the interval hetween observations, cannot be directly
discerned in the data. The first frequency point, 9l = %ﬂ s
corﬁesponds to 8 cycle with pericd T , i.e. a cyele which is
completed once durlng the period over which we have data.
We have geen that the T observations on the time series

can be described in the frequency domain via their Fourier series
representation. Regarding these observations as a realization of
some’ underlying stochastlic process, we next ask whether any stochastic
process can be equally well descridbed in the freguency and time domains.
The answer i1s in the affirmative for stochastic processes which are co-
varlance stationary, i.e. for which the covarlance function cxxLE)

E:tht+g is independent of time, t . For a discrete covariance
stationary stochastic process [xt] we have the Cramer representation

%

=™ f eite dZ(e)
-3

%4

e () = 1 &% arie) .
x% -5

dz(6) is & complex random function with the properties

= £
E az(6,) &(,) =0, 6, # 0,

B ]az(9)|2 = dF{e) ,

and F(e) is the spectral distribution functicn. F(8)} can be decomposed

into :Fl(e) , &an sbsolutely continuocus function, Fg(e) s, & step
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function which corresponds to perfectly periodic components of the
time series, and F3(8) , a singular function which may be neglacted
in economic applications. The component Fl(e) is the most interest-

ing from an economic point of view, and our discussion now proceeds in

terns of its derivative, fxx(e) ;  the spectral density function, or
spectrum. For a fuller discussion of spectral theory see Hannan |1h4].

The spectrum and covarlance function are a Fourier transform

pair:
T
146
cxx(ﬁ) = -i e fxx(e) 46
(J'_[_) 1 o0 s
£ (8)= 5 I c_(8)e i

e (0

4

14
In particular cxx(o) -i fxx((—)) ae ,

and so we have an interpretation 6f the .spectrum analogous to that of
the perio&ogram given above: fxx(e) represents the portion of the
variance of {xt} which 1g contribﬁted by the component of frequency
6 . 'thing that cxx(ﬂ) and cos £8 are even functions of £ ,
whereas sin £06 1s odd, we have

0) = = 0)+2 %
(5) fxx( ) o cxx( )+ I cxx(g) cos ,ee}

Retwrning to the pericdogram, we may write

I(8) = % L XX (cos 6t cos s + sin 6t sin 6s)
t,s
2 [ I >
= 5 z X + 2 I xx {cos 6t cos 0s + sin 6t sin 6s)
L=l 1<s
o T > T-1 T2
= =< & X_+2 I I xx [cos 6t cos 8({t+2)
Tlear ¥ gel g © 0

+ sin 6t sin 6(t+2)i}
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“ 71
(6) . I(8) =2 {?xx(o) +2 Z Exx(ﬂ) cos Eé}

£=1
~ 1 I-2 .
where cxx(i) =5 til X X1 is an estimate of the autocovariance
funetion cxx(g) = E x,x_ , + Hence from equations (5) and (6),

I(6) » hnfxx(e) in expectation a5 T + @ , and we might consider
usi@g the perlodogram to estimate the spectrum. However, as is
shown by Hemnan [14], the variance of the periodogram does not converge
to zeroas T » é s thus the perlodogram does not provide a consistent
estimate of the spectrum. Furthermore, whereas one's intuition is
that the spectrum should be fairly smooth, calculated periodograms are
often very erratic and difficult to interpret (for some theoretical rea-
sons for this, see Hamnnan [1h4;, Ch. 3]). But if we consider the spectral
distribution function instéad of the spectral density function, and
equivalently consider the summed periodogram, then
% %2
[ 1I(9)as converges to hz f fxx(e)de s
l9ZL el

and the integrated periodogram does provide a consistent estimate of

the integral of fxx(e) . We may write

%

[ I(6)d8 = fﬁs(e) I(e)ds

e =3

1

where S(6) =1 for 6, <6 <6, am 0 elsewhers. This suggests
considering spectral estimates of the form

(1) 2@ = 1 8(e0) Hahao

-
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i.e. at a particular freguency, € , we take & welghted average centered

on thal frequency. S(w-6) 1is called a spectral window.

For reasons of computational convenience 1t has become customary
to estimate the spectrum by first computing an estimated autocovariance
function and then prﬁceeding as in equation (5), rather than by
campﬁting the periodogram as in eguation {3). In this case it becomes
necessary to truncate the eétimaﬁed sutocovariance function at some
point m , since as £ approaches T , the function

T-4

-~ 1
c (ﬂ) = = I XX o
xx T sl 7t 2

is based on fewer time series observations and its coéfficient of
variation becomes large. Thus, rather than estimate the spectrum by
taking a weighted average of the periodogram as in (7), we take &
weighted average of the autocovariance function, using a lag window
W(2) , which is the inverse Fourier transform of the spectral window.
W(ﬂ) is defined as an even function, with W(0) = 1 and W(Z} = 0O

for £ >m , and the estimation formula is as follows:

m
A 1 ~ ~100
fxx(e) = 5 .ejm w(e) cxx(z) e

1 |a

the spectral window heing related to the lag window by

(8)

m
% w(s) o (8) cos ee} ,
£=1. e

(9) W(e) = J‘at s()e ¥4 ,
-5

To show the equivalence of the two approaches, we rewrite (6) as
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T-1

1(6) = 2 {m gﬂ e (#) e"”e}

and substitute in (7):

. , = -1 )
£.(0) = &= [8(we) = o_(s) g
| - =Tl
-1 o
= '£§ ) cxx(ﬂ) e140 I 8(w-0) e-iﬂ(uke)dw
STl -t :
m
1 ~ ~10
= 5 I w(g) 9H(Je) e .
Lme=m

Since f (6) 4is an even function, we only consider the interval
xx
(0, ) . The spectrum is estimated at m discrete points on this

interval, hence (8) may be written as

~ 1 ~ o ~
(10) fxx(ek) = 5= cm(o) +2 I w(g) cxx(z) cos zek} y k=0, 1, soo, m
| ﬁ 2=1 o L
o

We could compute the estimated spectrum at additional points, but this
would add no information, and would amount %o a procedure of interpola-
tion between the points ek sy k=0, 1, cos; m by means of a
trigonometric polynomial.

Ideally, we should like to choose a spectral window that would
be rectangular -- weight all frequencies:in the range Gk + % Fa's)
equally, and. give zero welght to all othér frequencies. Unfortunately,
it is impossiblé to find a finite lag window corresponding to this

spectral window; the approximstions which can be derived have
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oscillations in the neighborhood ¢f the discontinuities. A congiderable
part of the 1iferature of spectral analysis is devoted to the problem of

the design of windows (see Hannan {14, Ch. 3]). We use the Parzen window

given by
g £2 . m
1«61 3) 025 3
m
w(z)u< 2(1- £)° S2<yg<nm
m 2-="=
L_ 0 2>m

or, equivalently,

) it
3 sia m{w-0)/k
stoe) - 25 | zlegy

This spectral window, centered an 6 = 0 , 1s plotted In Figure 11,
using a value of m = 36 , which was used in the estimation of the
spectra described in Chapter 4. Since the spectral window is nowhere
negative and since exx(ﬂ) is a positive definite function of £ , the
estimated spectrum is always positive. (With other estimetion
procedures thls is not always so; negative spectral estimates are,
however, difficult to interpret, given that the spectrum represents a
decomposition of the varlance of the time seriss. Those who use such
procedures argue, however, that such a negative estimate would provide
useful evidence of a severe "leakage" problem in & particular case.
See Granger and Hatanska {10, p. 60 and p. 221]).

The covariance estimate which we use,‘namely gxx(zj" has
a small-sample bias, although it is a miﬁimum mean-square error

estinmate. For our purposes, its important property is positive
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Figure 11

Parzen spectral window

L
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Given & time series [xt} we obtain the filtered series

{gt} as follows

P
g = B S o
120

The relationshlp between the covariance functions of the two series is

given by

ng“) = B §t§t+£

= E‘{ Z ax }-J“Z a_Xx :}
p T ter] g B bti-s

=L Lasa c_ {(ftrs),
T 5 XX
r s

thus the spectrsl density function iz given Ty

1 -1 46
r, (6 = I {2) e
@ = 3 e,
{p. wi -
= LZaga e:i7 s)6 i% z cxx(ﬂ+r~s) e 1(pr-6)0

g *F g

(11) = 5Laa eI s (4
T s xx

r e
\ =irs .
Writing L{6) = I 8 e as the fregquency response function of

r

the filter, we have
£,,(0) = [1(6)] % £,_(0) .
13- %X

Thus the estimated prewhitened spectrum §§§(9k) iz flrst calculated,

then an estimate of fxx(e) is obtained as follows:

% (e ) = _EiéffEl_

xx\k IL(sk)le'
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where the transfer function is calculated as

[L(ek)l = L a +2 L I a8 cos (r-s)ek
r=0 r=0 g=rdl
nk
for QkHE- » kmO,l,...,m.

The cross-spectrum

The lagged cross-covariance between two time series {yt}

and [xt} ig defined as cyx(z) , where

B = E VX, s

and

cyx(ﬂ) cxy(-ﬂ).

Writing the cross-covariance function ss the sum of an even part

Ecyx(ﬂ) and an odd part ocyx(z) then gives

ol
il
vH o

Ecyx(.e) = [cyx(.e) + cyx(--z)] [cyx(z} + cxy(ﬂ)]

i
o] | o

1
o) = B lep () - e (1)) = Fle (9) - e ()]

In similar fashion to egustlion (4), we define the cross-spectrum
between series {y£] and [xt] , fyx(e) , as the Fourier transform

of the cross-covariance function:

1 2 Y
(12) fyx(e) = == I cyx(,z) e

Jm—oo

This is a complex function, which we write as the sum of a real part,

the co~spectrum ny(e) , and a negative imaginary part, the
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quadrature spectrum ny(e) thus:
g} = -1
£ . (8) =c (e)-1q (6)

The co-spectrum and gquadrature spectrum are respectively the cosine
and sine transformations of the even and odd parts of the cross-

covariance function:

o

c._(8) — I ¢ (&) cos 16
yx- - 21:.6=-°° Jx

1

= %;-{éyx(o? + zil[cyx(z} + cxy(z) 1 cos ﬁé}

[+3]
z ¢ £) sin £6
o yx()

"
I

(13) a6

w0
= =— 5] 2} - c_{2)] sin 48
£===l‘yx(_ '

Hence the co-spectrum is an even function of 6 , while the quadrature

spectrum is odd. Also

Co®) = 0 (0), @ (0) = - q (6) .

An interpretation of the cross-spectrum In the regression
context is presented in Sectlon 4. 2; an alternative interpretation is

given by writing the cross-spectrum in polar form:

£,.(8) = A(e) 19(6)

where the amplitude, A(6) , 1is equal to

Ao = [2,(0)] = /&2 () + &2 (6)
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and the phase, o(8) , 1s equal to

o(0) = arctan i EX§£EE

cﬁ(e)

If the square of the amplitude is normalized by dividing by the spectra
of the two seriles {yf) and [Xt] at the given frequency € , then we
obtain a spectral analogue of the squared correlation coefficient, known

as the coherence, Re(e) .

Ifw(e)l2

fw(e) fﬂ(e)

R2

The coherence lies between O and 1, and is essentially a measure
of the association between the components of frequency 6 of the two
series. @(8) measures the phase relationship between these two

components, 1.e. the extent of the phase lag between the component of

{yt] of frequency © and the component of ({x,} of frequency 6 .

t
The estimation procedure 1s the same as that used to estimate
the spectrum. We first estimate the cross-covariance functions up to

some maximal lag m @

-~ 1 T-4 ~ 1 T-4
) = 2 Ve cy() = 7 I TV 2

and then substitute these estimates, weighted by the Parzen window

W(£) , into equations (13):

ny(ek) = 5 cyx(o) + [cyx(,e} 4 ciw(z)] W(2) cos zek}

=1

~ 1 o ~ A
e = — 3 |{cC £) - ¢ £)J Wiy sin £6
ny( k) 2n Ean yx( ) xy( J1w() k
bl '
9k= o’ k=0, L, cve, m.,
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For prewhitening and recoloring co-spectra and quadrature
spectra by means of linear filters, the basic approach is the same as
that for spectrs described above. A theoretical development of the
prevhitening and recoloring of cross-spectra 1s given by Nerlove [30].

Given series {yt] , (xt} , we apply linear filters to obtaln series

), (g3 ¢

B Fo
=L ey . o E,= I bx
G r=o r™i-1 t S=0 5 t=8

For ease of exposition, let p = mex (pl, pg) and let either a, =0
for r= Pyt l, ..., p or bs =0 for s = P, + l, ..., p, which

enables us to write

p P
N, = & &8y, £, = & bXx .
t p=o T ter € g=g © t-8
Then cng(z) = En, &,
= E(Za

v, .} (E1bx )
r rt-r o g t+i-s

LLabe (gr-s),
rg *°¥

and, as in (11) above

i(r-s)
fng(s) = i § a b e fyx(e) .

Writing

ire ~-igd

,(6) = Za; e

» Ly(8)= Z b e
r 8

recoloring is accomplished as follows:
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£ .(e) L. () T.(8)
() =—0E " _: (o). L " .
vx L(8) I,(0) ™ [z, (8)] 7 |1(6)]

If we consider real end lmsginary parts,

£ () =0C_(6) - 1 e
x(8) = 0, (0) - 1 (0)
£ (6 c .(B) -1 6
qe(0) = Cre(0) - 19, ( )
Ll(e) L2(95 = u(@) + iv(e)
Then estimates of the recolored co-spectrum and guadrature spectrum
are obtained from the prevhitened estimstes as follows:

(e,) u(e,) + Q (9 ) v(e )
u (6 ) + v (9 )

e (6,) = —ﬂi

Qng(G ) ua(6,) - (ek) v(e,)
(e ) +v(0,)

ny(ek) =

where u(ek) and v(ek) are calculated as follows:
u(@k) = ZZab cos (s-r)e
rs
v(B )= XL E a b sin (s-r)ek

s

For further discussion of the estimation and interpretation of spectra

and cross-spectra of economic time series see Granger and Habansks [10].
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APPENDIX II
ON THE ASYMPTOTIC EFFICIENCY OF GENERALIZED LEAST SQUARES ESTIMATES

In this appendix we give a proof of the statement made in
Section 4.3 that when Aitken's generalized least squares is applied
using an estimated variance-covariance matrix of residuals, the
resulting estimates are not asymptotically efficient if the lagged
dependent variable is among the regressors. In part, this proof
follows Amemiys and Fuller [2, part V].

Consider the model
Vg = MYy R Ty
S
Yo TR T &
under the ususl assumptions of well-behaved moments, where ¢ " is

a white nolse series, and || , |p|] <1 . Writing X for the Tx2

&
matrix of regression variables, [l_l, x], and a= Lal-t
> |

we may write y=Xa+ u .

2 T
r 1 PP casej 1
o2 o * p__|
Euwmt =T = 5 : > '
l-p ;m'l \\
[ | J
r'— —m—
1l «~p
hY
2
"l l -p\l+p \\ O
and = —5 \ \\ )
o -
€ 14
Q .- -
[ -° 1 _




Firet, 1f p and hence I' is known, then
& = (xrx)t Yy

is a consistent and asymptotically efficient estimate of @ . (An
estimator is sald to be asymptotically efficient if it is asymptotically
normal and it attains the Cramer-Rao lower bound agymptotically.)

The asymptotic varience-covariance matrix of the estimated coeffi-

clents ik VA B

where V, = A.E. (T (&-0)(8-a)') = plim 2(xTX)7!

~

Now, suppose p iz not known, and we use I' based on some
estimate 8 in the generalized least squares calculation.

i.e.
Q = (X'f—lx)”l X'f_ly .

~1
A~ A_ﬂl
~ H ?
(1) T (G =<§_.r:j.35,> ity
' T JT
and we now consider the second term on the R.H.S., of thiz expression.

Expanding fﬁl in a Taylor series glves

-1
A=l -1 oar ~ PRY:
= + : - + Of{p=-

r r S Fp p) (p-p)

e ar-L|
() o AW XTw, e "----w‘[gf Ju vo X
| JE JT T Jr

since O(a—p)2 = O (%) if p is an asymptotically normal estimaste of

p . — —
' 0 -1 u
,fart L | Yorrt Y 1 2p 2
X TR u o= -3 ~ ~ - .
o X oosos X .0 R .
€ 1 T . \Qp -1 Ug
-1 0
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The second element of this 2x) matrix 1s zero in expectation since
x and u are independent and Eu = 0 .

Considering the first element, we have

- ¥ ¥y (- u, + 2pu, uB]

+ ye[- u2 + 2pu3 - uu]

typp brup ot 2oug g - Upl - gty

™1 -2 P2
= - § yu - XN yu + 20 X y.u s
1 tt o t 2 1 t T+l
Kow
t-1 j
yﬂa ZQ:JLX_. +§alu_t_3 +a1y0 .
t-1 £
' B Yl = E uy g aiu - + B Giyout
mi_‘.(xjp‘}c +Ealy
2
o
>t a5 bt e,
l—alp
2 22
pcu p Uu
Similarly E Yileyg I~————— y By s> ——
- op L-ap

Thus, considering the expectation in the limit of the first element

of . i BP-l ives
) T 3-'"' g
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lim

{_gT-l) L o(m-1)ef, ep(m-e)g}
'l-alp 'l—aip l—fl’Lp'

Hl -
a Q
n n#ﬁ n

‘¢ ("l'*‘Pz) - - - 1

Lo oo

m s

2 2 2
since o_ = cu(l-p ) .

X'[ar”l}u
(3) ;- plim B - D
T 1l - Qip
0

(plim = lim E in this case since a law of large numbers applies)

a=1
1]
Thus, returning to egquation (2), we see that —%55;—15—
T
has the sgame limiting distribution as
X'I‘_l'll I -1 A
+ |~ /T(p - p)
JT 1-ap .
0
x i

we see that

Applying the Taylor series expansion as above in
T

-1 )
'A— '-

Plimxrlx) mplimC‘PJx) = v, .
i T

Hence, substituting in equation (1) we have that JT(G-&) is

asymptotically distributed as

1 -1 -1 -
(&) \7-&[— VAT Tu+ VY, —l-:-ai-g \ﬁ' (p-p)
0
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Thus, while the first term in this expression will result in a temrm VA

in the expression for A.E. {T(G-a)(Q-@)'} , the second term will
result in some additional terms in the asymptotic covariance ﬁatrix,
implying that @& is not asymptoticelly efficienmt. The actual magnitude
of these terms will depend on the asymptotic distribution of T(p-p) .

It is clear from the derivation prior to equation (3) that this
effect 18 a consequence of the joint occurrence of two factors, namely
the presence of the lagged dependent variable and the use of an
estimate T . If I' were known, then only the first term of expression
(%) would be present; if the matrix X contained only exogenous variables,
then the right-hand side of (3) would be zero.

In order to evaluste a particular case, we consider the
situation where p 18 estimated by the following procedure:

(i) estimate o by instrumental variables, using lagged xt

as an instrumental variable for Vi 1

(11) Using the resulting estimates & , calculate the

residuals 1 = ¥y - X

(i11) estimate p as the first order serial correlation

coefficient of these residusls.
Writing X = [5;1, x] as the instrumental variable matrix,
a=@x)txy .

Uey - Xq =X+ u - x()‘c'x)”l X' [Xa + u]

L]
e
'

X(}T'X)“Ji{”'u
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(u!y - u')"{(xui)‘]xll}{ u - x('i'x)'lf'u}/ J'T_

W T = —— i
(u_l - u'X(X x) _l}{ u_y ~;x_l(x X) u}/m
Let plim 2= = § .
T

The denominator of JT o converges in probability to 0121 , since

u'X - uiu
plim -—~— = 0 , and in the numerator

T

2
converges to ﬁ po, -

—_ =1
! '
U.lX X'X

o = 3 { S
u

Xt X [xx |-t X:lu}

O \/E“”ﬂ'.[‘ T

-1 -1 1
= [y,r 2= [E U1Vga1r ® “t-lxt:l
T T
u_'lX 0'2
SL.plim —— = L S , 0| using results obtained above
T 1-ap |
X! u N
and, similarly, plim —— = —_— | .
T 1l - Q’.lp
0

.-_ﬁ(a-p) is asymptotically distributed as

— - 2 7]
{ ST (N I N A - }
1-ap T T 1-ap
Q

These are scalar quantities, so we may transpose the second term, glving

o -

_ L+p , 0 H-l X'a
1-ap JT

Substituting this into equation (&), we have that JT(Q-a) is
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asymptotically distributed as

t "~ 2 g
v, Xl"u ol ires o lylEm
B A &P J?E
X‘P_lu X'u
= Vy AQH P
T JT
writing 5
1+
0
(1 - ap) i
0 0
Now A.E. {7 (a-c)(aa)'}
l ]
=AE. (FV, XT uul”‘l}CV TVAXI‘ T TE QVA
1 e, - 1 Sz, o= el
A QH ;X ur ‘T ;XVA + T VA QH‘lX'uu XH QVA]
where V., = gt plim X 41" 45 the asymptotic covariance
T

matrix of the Instrumental varlable estimate & .

Thus we see, in this one particular example, the extent to which the
use of an estimate of p and the presence of the legged dependent
variable cause the covariance matrlx of the estimated coefficients

to deviate from 'VA .
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APFENDIX III
AN EXAMPLE OF THE COMPUTATIONS IN DETAIL

In this appendix we illustrate the estimation procedure
described in Section 4.3 and summarized on pages €1-62 by presenting
the intermediste results obtained st emch stage of the procedure for
one category, namely total durable goods manufacturing. The basic

equation to be estimated 1s

(1) By= 7By g 7l g - N gz) Fygl g F oty ey -

(i) Regressing Pt on the exogencus variables, current and lagged,

using ordinsry least sguares, gives the followlng estimstes:

P, = 0.542 0N + 0.538(N - N ) - 049U
v (0.067) T2 (0.00u) TY 3T (0.107) V7T
+ 1.595 I + 0.059 N +  0.106(N - N )
(0.5k7) TF (0.085) v (o.067) U EM
+ Q.42 U - 1,105 I + 1038
(0.104) -2 (0.403) -2 (1181)
n = 132 R = 0.83

(ii) These estimated coefficients are then used to construct the

lagged regression estimate, P which is used &5 an

t-1 ¢

instrumental varisble for Pt—l

estimation of the basic equetion.

in an ordinary least squares

(iii) This gives the following results:
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step.

(2)

P, = 0.123 P + 0.537T K + 0.456(N - N )
® (0.100) ¥t (0.068) **®  (0.0h8) 71 t-13
+ 0.017 Ut Lt 0.420 L.y 1108
(0.018) *~ (0.186) *~ (1209)
n = 132 RS = 0.80

(iv) The regression residuals from this equation and their

estimated spectrum are then calculated, and the method of

equation (4.2.16) is then applied.

(v) This gives the following results, as reported in Table Z2:

P = 0.562 P + 0.455 N + 0.254(N - N )
o (0.05u) Bt (0.067) T2 (o.ohy) L S
- 0.030 U - 0.068 I + 1965
(0.010) ¥ (0.08g) *t
var % var e 2 cov P e
0.8, = 0.21 , tt 0.0
var Pt var Pt var Pt

We now glve some computational details concerning this last

Equation (4.2.16), namely

. L8 £ ()
- {2 s e 2ey)

> =)

may be abbreviated to

7=¢"H

In our application, the row vector of regression variables, E% , is

[Pt-l ’ Nt-le ’ (Nf-l - Nf-la) > Up g0 It-l] ’

and the elements of the 5x5 matrix G consist of the croess-spectrs
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between these five variables divided by the spectrum of residuals and
summed over k . For example, the element G(2,4) is based on the cross-
spectrum between Nt-iE and Ut-l . Similarly? the five elements of the
column vector H are based on the croes-spectra between Pt and the
regression varlables.

Considering the summation process, we need to determine the

range of k such that 6 _ ranges over the interval (-x,n) ; in

k
effect, we are summing the cross-spectrum arcound the unit circle. Writ-

ing the cross-spectrum as
yx( ) yx( ) 5x( )

we recall that the co-specﬁrum, ny(e) ; 1s an even function of #©
while the gquadrature spectrum, ny(e).’ is odd. Thus, ny(e) will
sum to zero over the interval (-n,%) , and in summing ny(e)- we need
only consider the half-range (0,x) . Hence we sum ny(ek) over
k=0, 1, voo, m, mltiplying the values for k =1, 2, ..., m-l
by a fector of 2. These congiderations remsin unaltered after division
by Eee(ek) , for this also is an even function. The fact that we need
only consider the co-spectrum means thaet the matrix G 1s symmetric,
for ny(e) = ny(e) .

With respect to the computation of the cross-spectra
required for G and H , we compute the six cross-spectra for the
four series Pt’ Nﬁ, U£ and It taken pair-by-palr, and then use the
following results. Given time series {yf} and {xt} , consider the
series formed. by legglng the orlginal series r and s periods
respectively. The covariance function is given by
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c (2) = cyx(£+r-s) » &nd the cross-spectrum between the lagged
-8 :

Yy

series 1s derived as follows:

[+4]

1 -146
£ (8) = = = ¢ (2)e
y-rx-s 2 f=meo Y _x*_g

loo
= = I c gr-5)e
20

-i{g+r-5)6 i(r-s)e
) e i
Pzt ’

_ fyx(e) i(r-8)6

|

(cyx(e) - iny(e)]Fcos (r-s?e + i sin (r-s?e]
Thus the co-spectrum between the two lagged series is given by

Cy-rx_s(e) = cy%(e) cos (r-s)o + ny(s) sin (r-s)6 .

Secondly, consider the series {zt] formed from two series

[Xl,tJ and {xE,t] by addition,

i.e. zt = xl,t + xg’t

The cross-spectrum between Vs and z_ is given by

t

fyz(e) = fyxl(e?_+ fyxe(e)

vhile the spectrum of z_ 1is obtained as follows:

= + + .
¢zt E(x) ¢ xe,t)(xl,t+£ X,

=c o (2) + c (2) + Cy x (2) + Y x (2)

1*1 %2 1% gl

thus

f (8) =< (6) + ¢ (6) + 2¢ (8)
22 ki) *Xo %1 %o
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These relations enable us to compute the co;spectra needed. to
églculate the elements of G ; given the cross-spectra between

P, N%, U, end I . For example, G(1,3) = G(3,1) requires computa-
tion of the co-spectrum between P, , and (Nt-l - Nt~13) , which is

given by
Tp () = ¢ (e) - (8)
(W, _15) PN, P-1NL1;
-1120
= fPN(B) - fPN(G) e .
- CP_l(N-l'N ) (6) = CPN(G)[l - cos 120) + QPN(Q) sin 126
. m-1 1 S
- 3(1,3) =2 & ———<C_(6 )1 - cos 126, ]
k=l £ (p ) LFN K k
ee' Kk
+ QPN(Q ) sin 129k:}
since P (N 13)(8) is zero for 6 =0 and 6 = x .

As a second example, H(4) is besed on the co-gpectrum between Pt

and Uf—l :

= : - f
cPU"l(e) cPU(e) cos 9 QIU\B) sin e

c_{0) ml A
ooE(Y) = AI‘U +2Z :fmg;__.{?PU(ek) cos 6,
fee(O) k=1 fee(ek)

QPU\B ) sin e%} =
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Turning now to the restricted equation introduced in Section

5.2, namely

(3) o =y (P T ) F oy Ny oty B - R gl) Tyl ) e

the first stage consists of an ordinary least squares estimation of this
equation. For the total dursble goods category, this gives the

following estimates:

AP, = - 0.480(P, . + I, .} + 0.615X + 0.333(N, ., - X )
v (0.050) T LT (0l067) B (o.0bs) UTE ERLD
- o.osh'U£ L+ B0z '
(0.012) *7 (2063)
2

n=132 R = 0.4
The estimsted residuals from this equation, and their spectrum, are
then ealculated, and the method of equation (%.2,16) (equation (2) ebove)

applied, giving the following results, as reported in Teble 3.

AP, = - 0.277(P,t_l + It-l) + 0.384

+ O.l9h(N£
(0.0k4)  (0.072)

- N )
(0.0h3) =1 15

Nf-lE

- 0.028 U + 2220 .
(0.011) oL

Fal

~ ~
var AP var € 2 cov éE% &

= 0,16 , ;E;fE% = 0.64 ,
t

L = 0.21

var AE% var AI%

In applying (2) above, the Lxh matrix G 1s now based on co-spectra

between the series (Pt;l +TI N N ), and

be1) 0 Mpoap s (e g = M 5

U,_, » 8od the vector H is based on co-spectra between (Pt - Pt-l)
and the four regression variebles. These are calculated from the
spectra and cross-spectra of the P%, Nf, Ut and It series using

the relations derived above.

- 120 -



{1]

[2]
[31
(4]

[51

(8]

(5]

[10]
[11]
[12]
[13]

[1k]

REFERENCES

Abramovitz, Moses, Inventories and Business Cycles, Studies in
Business Cycles FNo. 4, National Bureau of Economic Research, 1950,

Amemiya, Takeshi, and Wayne A. Fuller, "A Comparative Study of
Alternative Estimators in a Digtributed-Lag Model,”" Technical
Report No. 12 under NSF Grant GS-142, Institute for Methematical
Studies in the Social Sciences, Stanford University, 1965.

Arrow, K. J., S. Karlin and H. Scarf, Studies in the Mathematical
Theory of Inventory and Production, Stanford: Stanford University
Press, 1958.

Bureau of the Census, Manufacturers' Shipments, Inventories, snd
Orders: 1947-1963 (Revised), U.S. Government Printing Office,
Washington, D. C., 1963.

Darling, Paul G., "Manufacturers' Inventory Investment, 1947-58,"
American Economic Review, 49, (December 1959).

, "Inventory Fluctuations and Economle Instability,”
Inventory Fluctuations and Beonomic Stabilization, III, Joint
Economlic Camuittee, O7th Congress lst Sesslon, (December 1961).

Eisner, Robert, and Robert H. Strotz, "Determinants of Business
Investment,” in Impacts of Monetary Policy, A Series of Research
Studies Prepared for the Comnission on Money and Credit, Englewood
Cliffs, N, J.: Prentice-Hall, 1963.

Goodwin, Richard M., "Secular and Cyclical Aspects of the Multiplier
and Accelerator," in Income, Employment and Public Policy, New York:
Norton, 1948.

Granger, C. W. J., "The Typical Spectral Shape of an Economic
Variable,” Econometrica, 3L, (January 1966).

, and M. Hatanaka, Spectral Analysis of Economic Time
Series, Princeton, N. J.: Princeton University Press, 196k,

Grenander, U., and M. Rosenblatt, Statistical Analysis of
Stationary Time Series, New York: Wiley, 1957.

Grunberg, Emile, and Franco Modigliani, "The Predictability of
Social Events," Journal of Political Economy, 62, (December 1954).

Hemon, B. V., and E. J. Hannan, "Estimating Relatlions Between Time
Series," Journal of Geophysical Research, 68, (November 1963).

Hannan, E. J., Time Series Analysis, Londen: Methuen, 1960.

- 121 -



(15]
[16]
[17]
[18]

(19]

[20]

[21]

[22]

[25]

[24]

[25]
[26]

[27]

(28]

[29]

Hannan, E. J., "Regression for Time Series," in M. Rosenblatt (ed.)
Time Series Analysis, New York: Wiley, 1963.

Johnston, J., "An Econometric Study of the Production Decisicn,"
Quarterly Journal of Economics, 75, (May 1961).

Keynes, John Maynard, The General Theory of Employment, Interest, and
Money, New York: Harcourt, Brace, 19%6.

Klein, L. R., R. J. Ball, A. Hazlewood, and P. Vandome, An
Econometric Model of the United Kingdom, Oxford: Blackwell, 1961.

Klein, Lewrence R., and Joel Popkin, "An Econcmetric Analysis of the
Postwar Relationship between Inventory Fluctuations and Changes in
Aggregate Economlc Activity," Inventory Fluctustions and Economic
Stabilization, IIT, Joint Economic Committee, 87th Congress 1st
Session, (December 1961).

Lovell, Michael C., "Manufacturers' Inventories, Sales Expectations,
and the Acceleration Principle,"” Econometrica, 29, (July 1961).

» "Factors Determining Menufacturing Inventory Investment,"
Inventory Fluctustions and Economic Stabilization, II, Joint
Economic Committee, OTth Congress lst Session, (December 1961).

> '"Determinants of Inventory Investment,” in Models of
Income Determination, Studies in Income and Wealth, Vol. 28,
National Bureau of Economic Research, 196k,

, "Bales Anticipstions, Planned Inventory Investment,
and Realizations,"” paper presented to the National Bureau of
Econamic Research Conference on Investment Behavior, Madison,
Wisconsin, June 1965.

Mack, Ruth P., “Comment," {on {22] above), in Models of Income
Determination, Studies in Income and Wealth, Vol. 28, National
Bureau of Economic Research, 196kL.

Metzler, Lloyd A., "The Nature and Stability of Inventory Cycles,"
Review of Economics and Statistics, 23, (August 19h1).

Mills, Edwin S., Price, Output, and Inventory Policy, New York:
Wiley, 1962.

Modigliani, Franco, "Business Reasons for Holding Inventories and
their Mecro-Economic Implications,” in Problems of Capital Forma-
tion, Studies in Income and Wealth, Vol. 19, National Bureau of
Hconomic Resesrch, 1957.

» and Owen H. Sauerlender, "Economic Expectations and Plans
of Firms in Relation to Short-Term Forecasting," in Short-Term
Economic Forecasting, Studlies in Income and Wealth, Vol. 17,
National Buresu of Economic Research, 19%5.

Nerlove, Marc, "Spectral Analysis of Seasonal Adjustment Procedures,"”
Econometrica, 32, (July 1964).

- l22 -

t



{301 Werlove, Mare, "A Comparison of a Modified 'Hannan' and the BLS

 Seasonal Adjustment Filters," Journal of the American Statistical
-Associstion, 60, (June 1965). '

[31] , and Kenneth F. Wallis, "Use of the Durbin-Watson

: Stat%stic in Inappropriste Situstions,” Econometrica, 3k, (January
1966).

[32] Smyth, D. J., "The Inventory ani Fixed Capltal Accelerstors,”
: Economlc Record, 36, (August 1960).

[33] Stanback, Thomas M., Postwar Cycles in Menufacturers' Inventories,
: Studies in Business Cycles No. 11, National Bureau of Economic
Research, 1962.

[34] fTerleckyj, Nestor E., Measures of Inventory Condilions, Technical
Paper No. 8, National Tndustrial Conference Board, 1960.

[35] Theil, H., "Specificatlion Errorr =nd the Estimation of Economic
. Relationships," Review of the Internstional Statistical Institute,

25, (1957).

(361 , Bconomic Forecasts and Policy, 2nd ed., Amsterdam:
: North-Holland, 1961. '

[37] Wallis, Kenneth F., "Distributed Lag Relatlonships between Retail

. Sales and Inventories,” Technlical Report No. 14 under RSF Grant GS-
142, Institute for Mathemstical Studies in the Social Sclences,
Stanford University, 1965.

[38] Watson, G. S., “Serisl Correlation in Regression Analysis, I,"
Biometrika, 42, (December 1955).

[39] Whittle, P., Prediction and Regulation by Linear Lesast-Square
: Methods, London: English Universities Press, 1963 .

[40] Wold, Hermen, A Study in the Analysis of Stationary Time Series, 2nd.
: ed., Stockholm: Almgvist and Wiksell, 1953.

[41] Zarnowitz, Vietor, "Unfilled Orders, Price Changes, and Business
Fluctuations," Review of Economics and Statistics, Uk, (November
1962). -

- 123 -



	Some Econometric Problems in the Analysis of Inventory Cycles
	Recommended Citation

	tmp.1624197617.pdf.42Gef

