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CHAPTER 3
REPRESENTATION OF FREFERENCE ORDERINGS WITH

INDEPERDENT COMPONENTS OF COHSUMPTIONé/
by
Tjaliing C. Koopmans
1. Introductory remarks.

A standard model in the theory of consumer's cholce assumes

that the consumer maximizes a utility function under given budgetary

constraints. Even in the case of the individual consumer planning
for a single period's consumption, however, the time-honored concept
of a utility function is not an entirely satisfactory primary concept.
One may wish tc look on it és a numerical representation of an under-

lying preference ordering, a more basic conecept to be more fully de-

fined below., Once this step is made, one will also want to know which
class of preference orderings permits such & representation. More~
over, one will not want to exclude & priori the consideration of pre-

ference orderings that do nqt permit such a representation.

The present Chapter 3 presents.a basic proposition stating
pufficient conditions under which a given preference ordering is re-

presentable by a continuous function. It goes on to state, and supply

i/ This Chapter reports on research carried out under & grant from
the National Sclence Foundation. It is a revision of Sections
1-4 of Koopmans [1966]. :



proof for, a second proposition concerning the implications,.for such
a representatipn, of independence of different components of consump-
tion in the given preferénce ordering. These propositions are pre-
sented for thelr own interest as well as for their aspplication in
Chapter 4. In the latter Chapter, both propositions are applied in
discussing the cholece of a eriterion for the evaluation of growth ”

raths, starting from postulates about a preference ordering.

In both Chapters, we aim for the simblest proposition of
each type, capable of proof by relatively elementary mathematical
methods, rather than for propositions and proofs of greatest general-

ity.

In some sections technical parts of the reasoning are set
off in'starred subSectionSVpearing the same number, set in smaller
fyﬁe. The ge can be passed up by readers'iﬁﬁerested in results rather
“than proofs. Equallty by definition will be denoted by =« The
numbering of sectionb, formulae and propositions is consecutive over
the two Chapters, and references to these will usually be made with-
out distinguishing the chapters. Separate lists of references to the

literature are sppended to each chapter.



2+ Preference orderings snd representations thereof.

We shall now define and déscribe the mathematical concept

of a preference ordéring on a prospect space.

The prospect space C}i is the set of all alternative pros-
pects between which choice may conceivably arise. The term "space™
is & geometrie metaphor, and the prospects will sametimes be called
"points.” In the static model of consumer’s choice, the prospects
are usually interpreted aé bundles of consumption goods imggined
used or used up in consumption in a stated period. (A bundle speci-
fies the amount of each good on the list.) Instead of attaching pre-
ference to the use of gocdg, some authors have suggested attaching
it to characteristics of goods [Lancaster, 1966a, b], or to the levels
of consuming activities each inveolving either the use or the disap-
pearance of one or more gpods [Gale, 1967a, p..6; 19670, pp; 4,19].
Everything that follows is-compatible with any of these interpreta-
tions of the coordinates of the points x of the prospect space.
Accordingly, we shall use the term vector to refer either to a bundle
of commodities, or to their characteristics, or to a statement of

the levels of specified activities.

A complete preference ordering is a relation (to be denoted

2’) between the prospects X, ¥y, ... in , compared pairwise, such



that

(transitivity) if x ,}\:y and y >z then x ? Z

(completeness) for any palr of prospects x , ¥y of F)(

either x}y or y>-x cr both.

The relation x Py is interpreted as " x is at least as good as v o,

i

or synonymously " x is preferred or equivalent to y ." Preference

( ») and equivalence ( ~ ) are again transitive relations, derived

from ?' by

"x >y " means "x >y but not y }-x ," and is also de=

noted "y <£Lx ,"

f [H] 1®

X~y means ¥ >y and also y 2rx "

A partisl preference ordering is obtained if we subgtitute

for the ccmpleteness reguirement above

(reflexivity) for all x of ;K , X x .

Completeness implies reflexivity (take x =7y ), but the converse is,

of course, not true. Hence, in a partially ordered space there may be

pairs of prospects that are not comparableug/

g/ What is called a "preference ordering" here is called a “"preordering!
by Debreu [1959, p. 7l. Arrow [1963, pp. 13, 35] uses "weak order-
ing" for our "complete preference ordering," and “quasi-ordering"
for our "partial preference ordering." In mathematical literature,
the term 'weak order," or "wesk ordering,' is used whenever (as here)
equivalence (x ~ y} does not necessarily imply eguality (x = y) .
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By & numerical representation of a completeé/ preference order-
ing P we mean & function f , defined in all points x of the pros-

pect space :ki, and whose values f(x) are real nunmbers, such that
(2.1) £(x) >£(y)  if and only if x 2y .

Using the sbove definitions of preference and of equivalence, one sees

readily that this is logieally equivalent to '

f(x) >£(y) if and only if x >y , and
(2.2) -
(%) = £f(y) if and only if x ~ y .

The usefulness of a fepresent&tion by & contimuious function,
if one exists, lies primerily in the avallability of stronger mathemati-
cal techniques in that caée, There is a temptation to look on the values,
and the differences between values, assumed by a representing "utility
function" as numerical measures of satisfaction levels, and of differences
thereof, associated with the prospects in question. Buch interpretations
may have heuristie usefulness because of the brevity of phrasing they
make possible. However, thelr observational basis is not really clear.
An observed choice_between two prospects reveals at best the fact and
the direction of preference, not its strength. A deseriptive theory of

choice thus stays somewhat closer to what is verifiable by observation

2/ If the preference ordering is not complete, a numerical representa-
tion is a function f such that f£{x) >£(y) if x>y , together
with a_gpecification of the set of pairs (x, y) of prospects x,

y in :}6 which are indeed comparable. Such representations have
been considered by Aumann [1964].



if it is bulilt on postulates about the underlying preference ordering.
A similar remark applies to normstive theory. One can better inspect
and appraise a recommendation coached in terms of actual choices in
various situations, than one derived from measures of "satisfaction"

whose operational significance is unclear.

We shall now deseribe the results of two postulational studies
in the literature, as illustrations of the points Jjust made, and for use
in what follows. In Chapters 3, 4, (except for Sectiom 13), we shall dis-

cuss only complete preference orderings, without always repeating the adjective.

3. Representation of a continuous preference ordering.

Intuitively, one would call a preference ordering continuous
if a small change in any prospect can not drastically change the posi-
tion of that prospect in the ranking of all other prospects. Starting
from a sharp definition of this concept, Debreu [1959, Section 4.6] |

has shown conditions under which a continuous preference ordering can

be represented by a continuous utility function,&/ In subsection 3%
we show that the definition used by Debreu 1s logleally equivalent to

the following one.

The notion of a "small" change in a prospect can be made pre-

cise by assuming a given distance function in the prospect space,EI

xf See also Wold [1943].

2/ The prospect space thereby hecomes a metric space.




This is a function d(x, y) , defined for all pairs (x, y) of poimts

in x with the foliowing properties usually asscociated with a distance:

- St
a{x, y) = d(y, x} >0 for all x, vy, - Ox
= =]

3

oW~
(3.1) < d{x, y) = 0 implies x =y , o

¥ Fig 1

Ld(x, Z)"g a{x, y) + afy, z) forall x, y, 2 .

We shall call the preference ordering } continuous on r)( if {see Figure 1)

~ . :
for any x, y of ?( such that =x )-y s there exists a number

8 >0 such that

(5.2)4' .
_ {8) =z >y forall z in A such that d{z, x) <%, and

g(b) x >»w for all v in r)f such that d{y, v} <& .

(Note that this is vacuously the case if all prospects in,k are equil-
W}alent.) The same continuity concept may be obtained from many, but

not from all, different choices of the disfanee function. We now have

Proposition 1 [Debreu, 1959]. A continuousé/ complete preference

ordering } defined on & connected subset >( of n-dimensional Euclidean

&/ Continuity of M and of u{x) is defined using the same distance
function,for instsnce d{x, y) = max |xi - yi| > 1f Tx

i=1, ..., n ;, are the coordinates of =x ., While this distance
function depends on the units of measgurement of the amounts Xy

i=1, veey n , The continuity concept defined by it is indepen-
dent of these wnits.-



spacel/ggxl (n finite) can be represented by a utility function wu(x)

" defined and continuous in izén

Not every concelvable preference ordering i1s continuous. If
any increage in this year's food supply, however; small, is deemed pre-
ferable to any increase in next year?ﬁ food supply, however large, we

have an example of the discontinuous lexicographic ordering.

Tf u(x)  is a continuous representation of %ﬁ, and If o

is any continuoﬁs inereasing function defined for all values assumed by

u{x) on X’ then
(3.3) uk(x) = olu(x))

is likewise a contimuous representation of é-o Conversely, if ulx)
and u*{x) are two contiﬁuous representations of %‘ > then such a
function @ exists for which (3.3) holdsnélTherefores a remark already
made in Section 2 abouf represéntations in general applies egually %o
continuous representations: Only the notion of higher or lower among
the levels of ufx) has significance, not the numerical values wu{x)

themselves or the differences thereof. In particular, even if Bw-should

~

Y Depending on the interpretation, the prospect space ‘X may be the
set of 2ll points x with all coordinates X =20 ; or any other

reprégéntation of thé range of alternative prospects suitable in a
glve roblem. ’-X is called (arcwise) connected 1if any two poin*‘s
of can be connected by a continucus &urve contained in X
Debreu credits s paper by Eilenberg [1941] as containing the mathem
matical essence of Proposition 1. For a stronger theorem esgtablish-
ing existence of a continuous representation without assuming connect-
edness or finite dimensionality see Debreu [1954! and Rader [19631.

The proof of this statement is implied in the last paragraph of Sub-
gection ¥ below; take x = xp and replace the pair (U{x), u(x})

of (4.4} by the pair (u*{(x), u(x)) of (3.3).
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possess a differentiable representation wu{x) , there is no intrinsic
du
i

is often expressed by the statement that u(x) is an ordinal, not a

meaning in the “marginal utility" of any single commodity. This

cardinal utility. However, even if u{x)- is only ordinal, for given

units of commodities 1 , j , the ratio

521 Tu/u

of two "marginal utilities® in the same point (x = x*) , or in two
equivalent points (x ~ x') , is invariant. That is, the ratio {3.4)
is independent of tﬁe choice of a differentiadle ¢ 1in {3.3), hence is

& quantity meaningful in terms of the given ordering } .

By suitable choice of ¢ in & .3) one can mske the range
Yx = 4 (&) of u¥{x) coincide with any interva.l of finit.e, positive
length, that includes the left and/ or right endpoint depending on whether
x contalns & worst and/or best element of /} « Thus um’) can be
unbounded from below and/or &bove only if no worst and/or best element

exlsts.

5* Equivalence of two definitions of continuity of an ordering.
The definitions to be compared are:

D If limy =y and x}yn}_z for all n, then x>y >z .
I
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D' If y > x there exists & >0 'such that
{a) aly, w) <& implies w >x , and

(v) afw, x) <3 implies ¥y > W

Assume " D' and not D ." Then there exists x, z, ¥y,

with xa-yn}z for all n but either l:‘i..myn=y>x Or Z P

0

Taking the case y ™xX , Wwe choose & in D' such that d{y, yn) <8
implies ¥, > x , and N in the definition of limit such that

aly, yN) <8 . Then ym,?'x > ¥y, o contradietion. The case z >y
is similar.

Assume next "D and not D' ," and take B = . 'Then,
2

for some x , ¥y such that y)- X, there exists either a sequence
Yy such that a(y, yn) < 6n hut = Z'yn s O a sequence X such
that d(xn, x) < B, but x >y . By D, Dboth cases imply x >y,

contradicting ¥ >—x .

Two statements such that the negaetion of either contradicts

the other are eguiwalent.
k, Separable representation in the presence of two
independent components of consumpiion.

The problemwof deriving special forms for a ubility function

from assumptions about independence among components of consumption has
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been studied by several authorg, including Leontief [19LT a, b] and
Samielson [1948, Ch. VII]. We shall follow Debreu [1960] because he
avolds assumptions of differentiability of the utility function that

seem unrelated to the essence of the problem.

To 1llustrate the independence concept in terms of the tradi-
tional eommodity space; one may wish to assume that preferences between
Tood bundles are independent of tﬁe améunts of various articles of cloth-
ing and of other commodities consumed, and similarly for preferences be-
tween clothing bundles, ete.; furthermore that preferences between food-
and~-clothing bundles are independent of the amount of other commodities

consumed, and so on.

In this section we shall derive a preliminary result for the
cagse of two Independent components of consumption. Let }; dencte =

pref'erence ordering on the space

(4.1) X-= Pxx@

of all vectors x = (ng xQ} such that xg = is in

a8 given space X p xQ in 'XQ » In mathematical terminology, I is
called the {Cartesian) product of the spaces XP , XQ ; the latter the

Tactor spaces of I s

To express the required independence assumptiori we use an arbi-

trary but fixed reference veetor in x,

(4.2) TACRENY
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to define two orderings, >.:; on IP and ?.; on’IQ 5> induced

by z s as follows,

Xp

i

;yP means (xPJ ZQ) E'- (yP’ ZQ) 3

(k.3)

XQ a; yQ means (ZPQ XQ) a 6ZPJ yq) 3

In general, the induced orderings depend on the reference vector; in

the sense that ?:; depends on ZQ , and ?:é on  Zy .  The indepen-

dence assumpbion will say that this depen;lenceainwprinciple is not a

dependence-in-fact, In Subsection 4* we show, fellowimg Debreu [1960],

Result A: lLet a preference ordering > ona product space

I = IP X IQ be representable by & utility functiom U{x) , and

let the orderings 2z E; induced by 2 (as defined above) be in-

dependent of the reference vector z . Then U{x}) has the form

(1) u(x) = Flalxy), vix)) 5

where F 1is a striectly inereasing function of both u and v .

Moreover, ifIis connected, U(x) continuous, then u(xP) 5 V(XQ)

and F(u, v) are comtinuous, and the ranges of u(xP) 5 v(xQ) are intervals.

A function of this form has been called a utility tree by

Strotz [1957, i959] , and a gseparable wtility function by Gorman [1959a, bl.

In the case of two independent components of consumption, therefore,
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instead of one function U of ny + n, variables (there are a great
many such functions!) we have a triple of functions, one (F) of two

variables, one (u) of n, , and one (v) of ny variables. In

some sense the "number” of such triples forms a much smaller iﬁi‘inity,

The utility U{x) of x depends only on the utility levels u(xP) 5

v(xQ) associated with x %q in their respective spaces, rather

,P’

than on these vectors in their full detail.

L*  Proof of Result A. We define

(4.5) U(XP) = U(xP: ZQ) 3 V(?@q) = U(ZP’ XQ) s

and consider two vectors x , y in :x such that

a(xp) =ulyy) ,  vix) = vly) -
Since U represents 2 » we then have
(XP: ZQ) ~ (YP) ZQ) 3 {zPﬁ XQ) -~ (ZP) yQ) @

Since %P and ZQ . are independent of the choice of % , we have

further
X = (xP: xQ) - (YPJ XQ) ~ (yP, yQ,) =¥

{choose the alternative reference vector z' = (yP, xQ) ). Hence

x .y, and ©U(x) = U{y) . This means that the value of U{x) for
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any vector x in X depends only on the values of u(xP) s v(xQ)

assumed for the subvectors x X of x s Trespectively, confirm-

P’ 7q

ing (L.b).
Moreover, from the independence of Zj; from z , using

the definition of 7 in terms of ?:_, we have, for all z!

qQ that

xp >%yP if and only if (xP, zé) >‘(yP, zé)

It follows that F increasseg strictly with u , and similarly with v .

Finally, by {(4.5), comtinuity of U(x) implies that of

u(xy) v(xQ) , connectedness of J_ that of IP , ZQ . Hence,
for any fixed 2z in e , the ranges of the functions U(x) , u(xP) s

v(xq) s U(XP, ZQ) , U(zP, XQ) for all x, in :I;P » X in :Z:Q

are intervals, nondegenerate unless u(xP) end/or v(xQ) is comstant.
But then F(u, v(zQ)) and F(u(zP), v) are, for any fixed z in

:x;, increasing functions defined on one interval and taking on all
the values in another. This is possible only if F(u, v) is continuocus
in uw for each v , and in v for each u . Since F{u, v) incresses
in both w, v , it follows that F(u, v) is continuous in u and

v jolntly.
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5. Additively separable representation in the case of three

independent components of consumption.

Three independent components of consumption suffice to
show: the esséntial traits of the case with n >3 such components.
i ‘ =
We shall therefore in this section consider a preference ordering

> on a p_rdduct
(5.1) “X= IPK%QX IR

of three spaces. To make sure that this is reslly three for the
purpose of our reasoning, we s];al_l need & concept of sensitivity of

Z in a factor space. We shall say that 2 ig sensgitive in ,IP

z such that

if there exist X, , ¥p s R Y

(5“2) (XP’ ZQJ ZR) >(yP: ZQ, ZB) A

This will ensure that the induced ordering >::§ will not declare all

vectors x, eguivalent.

P
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Given a reference vector z = (zP, Zq ZR) , > now induces

on various factor spaces,
P ST =2 >z »>Z &
six orderings, X , % "R’ "p,a’ “q,R’ “B,R / defined along

the following linee:
>z
xP "-'P yP means (XPJ ZQ‘J Z ) (yPJ ZQJ Z )
(5.3)

(XP-’ xQ,) %,Q ('YP’ YQ) means (XPJ KQJ ZR) ?: (YP’ yQJ ZR) 2 etc“

Proposition 2 [Debrew, 1960, 3 components only, modified]

Let E be a continuocus preference ordering of all consumption vectors

X = (xP, X\, JLR) such that Xp Xy » Xp .belong to spaces XP 5

XQ R XB s Which are connected subsets of Euelldean spaces of nP 5

nQ R nR dimensions, respectively Let ?,' be sensltive in each of

z Z ) ‘
P, @, R, andlet >P , "'Q, ’?>PQ s >’:Q R (as defined above)

be independent of z'. Then there. éxist functions u*(xP) s v*(xQ) 5

w*(x.R) > defined and continuous on XP s X ,X R’ respectively,

such that ?‘ is represented by

{5.4) U*(x) = u*(xP) + v*(xQ) + w*(xR) .

This representation is unigue up to a linear transformation

(5:5)  wilxp) =By + yuslay) . vilxg) = By + yv(xy)

"’”‘:“R)_ = B +.?’W*("R) , ¥y >0,
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A similgr proposition holds for any partitioning of x inte

four or more independently.ordered subvectors,

In prineiple, the representation (5.4) is still ordinal.
Thet is, any function U'(x) obtained from U¥(x) by (3.3) is like-
wise a conbtinuous represeﬁtation of 2: . chevér, unleés @ happens
to be linear as in (5.5), the representation U!'(x) cannot be written
simply as a sum of functions each depending on one of the vectors
Xp s Xy s Xp only, as U*(x) is written in (5.4). It is only
in this limited sense that the representatlion by U*(x) can be called

cardinal.

In the proof of Proposition 2 given in Subsection 5% we
shall follow the general ideas of Debreu's beautlful geomeﬁrical
proof, and of the work of Blaschke and Bol [1938] on which it builds
forth. We modify his reasoning in one respéct in order to avoid making

the agsumption that the sixth induced ordering, 2:2 R is also in~
2

dependent9 of Z .

2/ The redundancy of that assumption, as well as the importance of
that redundancy for the analysis of utility over time, were per-
ceived and demonstrated by Gorman [1965, 196 ] for the case of
differentiable utility functions, -In a recent mimeographed paper,
Gorman [1967] has given & complete discussion of the structure
of representationswith regard to separabllity and additive separ-
ability, without differentiability assumptions. His results imply

“thdt; in Propesition 2, the premised that %%, 27, 23 are

independent of z are also implied in those made about 2;; é and
. 2
2:; R * This further strengthening, important in itself, turns
>

out to te less crucial to the particular application of Proposition
2 made in Chapter 4 than the dropping of the assumption that
Z

& p.R does not depend on z .
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5* Proof of Proposition 2. Since the Cartesian product

F): ;:x;;ijtéxj};;

is a connected subset of a Buclidean space of n = o, + Iy + np dimen-

sions, the premises of Proposition 1 are satisfied. Hence T is repre-

sented by a continuous function
(5.6) u(x) & Ulxp, %y, Xp)

defined onf;K . Since an additive constant does not affect the repre-

sentation, we shall asnchor U(x) by requiring
{5.7) Cuz) =0 .

ive i ved o > > o= > >
The five induced orderings “p ~g° “m°’ ~p,q’ ~q,R

{supersckipts =z have been dropped because these are now independent
of =z ) aré therefore represented by the continuous functions
U(XP)= U(XPS ZQ, ZR) £ V(XQ) = .,U(ZP’ XQ‘J ZR) 3 W(XR) = U(ZPB z‘Q; I'R} 5
(5:8) | | | '
W(XP: XQ) = U(XPJ XQ's ZR) 3 ﬁ(xQJ X-R) = U{_ZP‘v Xns XR) b

respectively. BSince the domains of all these funcpioﬁs are connected;
the range of each is an inkterval. For three of the ranges we introduce

the notations

9y U- u{’)(P)_,'Y= vO(Q) SW- WX -



- 18 =

Sinee ~~ is censitive ineach of P, Q , R, mnone of the flve inter-
vals collapses to a point, and, by suitable choice of z , one can en-

gure that the point
(5.20)  u(zp) = v(zq) = W(ZR) = W(zP, zp) = ﬁ(zq, ZR) = 0

is interior to all five ranges.

We now epply Result A twice to U(x) , once with the partition-

iné X = (xP, {x.a xR)) ; and once with X = ((xP, XQ), xR) . With

reference to the proof of Result A, this gives us the existence of strict-

1y increasing functions F(W, w) and G(wj U) , such that, for all x

in:I:,
(5.11)  Ulx) = FlWlxp x), wixg)) = Glulxp), Txg, x)) -

The domains of the sxrgumeats W , w of F and u, U of ¢ are
intervals over which the functions denoted by the same .symbols range,
respectively. Since these functions as well as U(x) are continuous,
F and G are continuous. To avoid repetition ofrsimilar‘reasoning,
we announce in advance that the funetions Ft , &8, £, H, h yet
to be introduced are likewise continuous and stricily inereasing on the
nondegenerate interals,'or products thereof, over which their arguments

range.

By inmserting x, =z in (5.11), wsing (5.10) and (5.8), one
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'F(W(XP: xQ)’ 0) = G(H(XP), V(XQ)) )
and, if F* is the inverse of F(W, 0) ,

(5:12)  Wlnp %) = F(olulxy), v(xg)) = alalxp), vix))
say, and symmetrically
(5.13) Tlag, x5) = 2(v(xg), wlxg))

We cen nov shed the variables x, , X, , X, - From (5.11),

(5.12) and (5.13) we have
(5‘11"') Flglu, v), w) = G(u} £(v, w)) & H(u, v, W) = H(t) s Bay,

where t 2 (u, v, w) . Here H{(t) is defined on the three-dimensional
cern I U VxS, of which the origin 0 = (0, 0, 0) is an in-

terior point. The ordering Z on XPX‘XQ X XR represented by U{(x)

induces an ordering on S , which we llikewise denote by 2‘ , and which

is represented by H(t) .

We shall study the level  curves of H(u, v, 0) and of
H(O, v, w) . 1In the plene w = O we arbitrarily select (see Figure &}
an indifference curve # not passing through ( , but ciose enough to
0 for all the intersection points sought in the following construction
to exist. If ) intersects the u- and v-axes in a = (u', 0, O)

and b= (0, v', 0} , respectively we have

On p. 2la.



(5.15) a~b, implying g(u', 0) = g(0, v')

by taking w = 0 in the first member of (5.111-). At most one intersection
point exists in each case because glu, v) is incressing in each variable,
Precisely one will exist if '}t, passes close enough to ¢ , hecause of

the continuity of g{u, v) .

It will save words to refer to two points s , t of \7 as

u~congruent if they differ only in their u-coordinste,

5 = (u(l), v, W), t= (u(g), V, W) .

Similarly we shall speak of v- and w-congruence.

We find ¢ = (u', v', 0) , v-congruent toc a , u-congruent
to b, and draw throuéh ¢ ean indifference curve A in the plane
w = 0 , which intersects the u-axis in a' 2 (u%, 0, 0) , the v-axis

in 4= (0, v, 0) . Ian particular,

[

(5.16) e ~a' implies glu', v') = g(u", 0) .

Finally we find c¢® 2 (u", v', 0) , v-congruent to &' , u-congruent

to b, and 4'= (u'; vY, 0) , u-congruent to 4 s vecongruent to a .

b

We now wish to proﬁiie that d' ~ ¢' . 8Binece Proposition 2 does
% into 10
not hold for & partitioning of/ cnly two coﬁ@dnentS,—/ we shall need to go

into the third dimension to prove this.

On the indifference curve 1 through 4 in the plane u =0,

we £ind b" = (0, v', w') , we-congruent toc b . Then

1—0/ See Section T below.
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(5.17) d~D*, implylng £(v", 0) = £(v', w')

by the second member of (5.14). Finally we fimd 0" = (0, 0, w') on

the w-axis, v-congruent to b" , and a" = (u', O, w') , u-congruent

to 0", w-congruent to a . Then by taking w = w' in the first mem-
ber of (5.14), we see that (5.15) in its turn implies a® ~ b" . (In

fact thé indifference curves jr and Jk' are point-by-point w—congment.)

Hence ¢ ~ 4 ~ b" ~ a" , and therefore
(5.18) ¢ ~a", implying £{v', 0} = £{0, w!) .

The second round of the construction is similar to the first.
Tt employs the points a'"™ = (u", 0, w') , u- and w-congruent to OV
and &', reppectively, and c¢" =Db'" = {u', v', w') , u- , v- and

w-congruent to b" , 8" eand ¢ =b' , respectively. We have

(5.17) implies d' ~ b'"
(5.°16) implies e" ~ at™ go 4A' ~e' .

(5.18) implies a''~ ¢’

Hence 47 and c¢' are on the same indifference curve p in the plane = o

oo

The rectangle acc'a' has the following charasteristics rela-

tive to the indifference curves 4 , » , p :

incidence !

-

congruence type of

ison K &k u N is u u v v
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We shall call such a rectangle inscribed in the curves FC, M, B .

~
Since the origin could have been chosen anywhere in J , wWe have found

the following result, illustrated in Figure .”,

Result B:- TIf three indifference curves k , A, M 7possess an ingcribed

rectangle acc'a' then K > » ., p possess adjoining inscribed reg-

tangles bdd'n' , b' =c¢ , and eff'e’ , T —y » provided only that

the intersection points required by their construction exist,

The remainder of the proof is based on the "textile geometry"
of Blaschke and Bol. On any three indifference curves K, Ay om
one can construct a sequence of such rectangles as indicated in Figure} ,i/
going as far in both d.irleetions as the intervals CU- andcv- permit.
If there should be an infinite sequence of such rectahgles inscribed in
k s A, H , such a sequence cannot have & point of accumilation 4!
in J , because by the continuity of H(t) such alpoint would belong
to each of (¢, A, n , which is & contradiction. Hence if U ana

2) are bounded, an infinite sequence of inseribed rectangles can only

have an accumulation point on the boundary of U .

A second sequence of rectangles can be inscribed in 2 , n ,

v 1f v contains, for instance, the point g , u-congruent to’ é'
anc';‘. v—conémgnt to £' . In this way the intersection of ﬂ with the
plane w = 0 i1s covered by rectangles inscribed in a sequer;ce of indif-
ference curves ..., EK s A, B, ¥ ,5.0, except possibly for uncovered

margins near the endpoints (if finite) of Ql , 2’ .

*
p. 24
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Furthermore, one can interpolate an indifference curve ¥
"petween" J and % , say, by choosing p on eh (Figure 3) so that
qQ~1r, &anddrawing ¢y through q and r . This construction can be
extended over the full length of K and % , repeated between A apd
i, ebe, and possibly into the uncovered margins, and repeated again

between K and ¢ , ete.

Let JA' be the set of all wu-coordinates (O, u', u", ...)
of vertices of lnscribed rectangles oceurring in this éonstruction re~-
peated indefinitely, W" that of a2ll v-coordinates. Then Q/L‘ is
dense in [, ?" in U ve assign new coordinates (u¥, v¥) to all
points of LL* x “J in the manner indicated in the margins of Figure Z.

Then
(5.19) w o= alu) , Vo= olv),

are continucus and inereasing funetions on u' and }‘ , Yrespectively,

for which
(5.20) 2(0) = ¢(0) = 0

These functions are extended to(u P v', while retaining these properties,

by

z{u) 2 sup =(u') , p(v) = sup of(v') .
. u'< w vi<v

4u';'ul . ' v':’Zf'
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It follows from the construction that, for any two equivalent

points (w, v) , (u', v') of (u‘ X 7}\‘ one has
*

u -i‘V* = ﬂ(u) +CP('V') = 1:(11’) + CP(V‘) =u'¥ 4 ¥

By continuity of H(u, v, 0) this property extends to Ml x /7 |

Therefore, if we now;r define functions
* I % .
u(xp) = s;:(l(x?)) » vix)) =9 V(XQ)) ,

the ordering 2 , restricted to poinmts of % for which w(xR) =0,

1s represented by the continuous function

* *

(5.21) wlxp) + vH(x,)

By the independence of- E:P Q°’ the same representation applies to any
> .

set of points of Z on which w(xR) takes another constant value.

Té extend this representation to all o:E'(X , Wwe return to
Figure 3 to note that (5.18) also implies b ~ O" . It follows that,
had we carried out the preceding construction in the plane u = 0 in-
stead of in w = 0 , starting from ¢ instead of from N, we would
have arrived at the same demarcation points O, ©», 4, ... on the

v-axis, the same interpolated polnts, the same function ¢(v) , and

hence the same function v*(xQ) , 8along with a similar function w*(xR)

It follows that ?f is continuously represented, on any set of points

of (/K for which u*(xP) takes a constant value, by
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(5.22) v*(xQ) + W)

finally .
We shall/show that '~ 1is represented on(iXC by the continucus

function—y
* I % *
(5.23) UH(x) = wi(xp) + vi(x,) + wi(x,) o
Consider two vectors x = (xP, K, X.R) , X' = (xé, X!, x.é) . By (5.11}, (5.12),
(5.13}, (5.19) their order depends only on the corresponding utility vectors

(5.24) (v, v*, w*) , (u'*, v'¥*, v'*) | vhere _u* = u*(xP) , ete.

Extending the usual notation [m, m'] for the interval m susm' to

o [m, m'] if m<m'
|, me] =

[m*, m] if m' <m,
we consider the set
»J? |[u*, u'*]f X '[V*, V’*]I X l[w*, w'*]! .

This is a block {rectangular parallelepiped)} of which each vertex has
each coordinate in common with one or the other of the points {5.2k),

as shown in Figure 4--/ On the points of each edge of the ordering

?r' . L] s
“i/ There is an affinity between the following reasoning and a study by
Arrow [1952].

iE/13-29
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> 1is (strietly) monotonic as indicated by arrows, because of the

monotonicity of H in (5.14), and each such edge ordering is re-

presented by the corresponding term in (5.23).

We must show that, for all possible dimensions of the block,
the ordering = of each of the pairs (a, h) , (v, e), (e, £),
(4, g) is represented by (5.23). For (a, h) this is already im-

plied in the edge orderings a b >f S>h .

Assume first that v* % v'¥ , Then if either u* = u'¥ or
wk = w'% , the remaining comparisons are settled/(5.22) or (5.21),
respectively. Assume therefore that the block’xii is three-dimensional.

We shall make use of the equivalences.

(u*, v¥, w*) ~ (u* + p, v¥ - p, w¥) ~ (U + D, v¥ - D+ g, W¥ - g) ~ co0s,

implied in {5.21), (5.22), as long as we make sure that all points so
compared are in,,(f% This means that all points of any line segment
in / parallel to either Kk or ¢ are eguivalent, and these equi-

valences are represented by (5.23).

As an example, Fig#re 5téhows the comparison of b and e .
We intersect_)dffwith a plane_ﬁ?l)through b parallel to both K
and £ . Since & , h are on opposite sides off?cj, the intersec~
tion is & two-dimensional convex polygon an,with edges paraliel to
}{ , £ or @ . Now;?z) and hence G&:‘must intersect the broken
line h e 4 & 1in precisely one point k . Figure 6, drawn inﬁ?c%

shows a broken line in Ggl with a finite number of segments parallel

) p. 29
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to K end { , commecting b and k . This establishes the equi-
valence of b and k , and its representation by (5.23). The com-
parison of k end e then is made through the edge orderings on
heda, again represented by (5.23). In Figure 5~/ b~k>e.

It is clear from the two-dimensionality of Q/, from the condition
on the slopes of itg sides, g_md from the Archimedian property of real
numbers, that the above reasoning can be carried through regardless
of the dimensions ~.. of /J , and of the palr of opposite vertices

compared .(see Figure 6"_’_’/) .

On the other hand, if v¥ = v'¥ , we first use (5.24) with

either p#0 or g # 0O to obtain
("%, v'", w") ~ (u%, v¥, w¥) , say, with v"* £ v¥ ,

and continue from there with the above reasoning. This procedure

is unavailable with regard to both (u*, v¥, w*) and (u'¥, v'¥, ¥'¥)
only if each is either {(u, v, ¥) or (W, ¥, W) , where u, v, ¥

are finite lower endpoints of 7" = u¥ (xP) JUE W, included in
u*,w,ﬁ , respectively, and U, V, ¥ are similar upper endpoints.
But then v¥ = vi% , ¥V >v forces (u¥, v¥, w¥) = {u'*, v'¥, w'¥}) ,

equality implying equivalence, represén‘ted by (5.23).

Finz(a,lly,)to discuss the uniqueness of {(5.23)}, we note first
5.19},
from {5.10),/(5.20) that

u*(z-“P) = V*(ZQ) = w*{zﬁ) =0 .

X/ p. 29
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\

Now assume that < 1is also represented by the continucus function
U‘Sx) = u‘(xP) + v'(xQ) + w‘(xB) .
We define
Bp = u'izP) , ete., u"(xP) = u'(xP) - Bp > ete.
Then there exists h(U*) such that, for all x inrjkl,

ungxP) + V"(_:XQ) + Wﬂng) = h{u*(xP) + V*(XQ) + W*(X-R)) .

Inserting XR = ZB , and theresfter XQ = ZQ , or XP = ZP ; O
both, we have, for all values of the omitted arguments Xp xQ » Xg o

u + v" = h{ux + v¥) , u" =n{d*) , v" =h{v*) , 0 =nl0),
hence
h(u* + v¥) = h(u*) + h{v*) , 1{0) = O ,
for a1l (u*, v¥) in ‘L* X" |
| This in turn implies
Win u*} = n hiu*)

for all integer n and all u* such that u*¥ and n u¥* are in
. * : . ! )
the interval (LL_ . Among continuocus functions h{u*) , this pro-

perty 1s posseséed only by the linear functions
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h(u*) = yux ,

where y >0 because h 1is increasing. This establishes the trans-

formation (5.5). The proof of Proposition 2 is now complete,

6. Extensions to the case of more than

three independent components of comsumption

Debreu has extended Propesition 2 to the case of k >3

independent components of consumption. If we write

(6.1) X 2, x Lo X

k

for the factorization of the prospect space by independent components
(with respect to each of which ¢ is semsitive), he has assumed that
the orderings induced'by' %, on every product

(6-2) I’i x i x .*#x‘xi s l

1 2 J

HA

jgk"‘l:

of j out of the k spaces are independent of the reference-vector.

We have already seen that for k = 3 independent components
only five out of the six such assumptlions are needed., As mentioned
in footnote 9 above, Gorman [1967] has cut this down further to only
two. In the same paper he hag given minimal assumptions for the gen-
eralization of Propositier 2 to .k independent components. To avoid

duplication, we mention here
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only one straightforward extension of Proposition 2 that helps pre-

pare for Chapter.i.

Result C. Let the following orderings, induced on faclor spaces by
pS

a continuous ordering ‘- on the connected subset (6.1) of a finite-

dimensional Buclidean space be independent of the reference vector z s

%i On-xl, i=l’ 2’ oﬁo’n, 1’125,

2 on JC

~1,441

(6.2)

s 1 P=1L2 -y, k-1,

Let 27 be sensitive in each :):i . Then 2 is represented on X

by a continuous function of the form
(6.3) U(x) = ul{xl) +uy(x,) + oo v u(x),

unigque up to a linear transformation.

6% Proof of Result C. By Proposition 2, the stabement is

trme for n =3 . BSuppose it is true if pn 1is replaced by J - 1 ,

where U <Jj<n, and consider the ordering > indueced by

z
L, coey J
E’ on the space

> ;lettex xx] ,

using g reference vector z . Then Proposition 2 can be applied to

the factorization

) =l(._j"2)xxj_,lx X,
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Z

to find a representation of 2 of the form

l’ *hag

ul(xl) + U‘Q(XQ) + vee + uj—l(xj-l) + uj(xj) .

By induction, | is represented by (6.3). The proof of uniqueness

is similar to that for n =3 ,

T« Reconsideration of the case of two

independent components of consumption

To show that the case of n 53 independent components
of consumption leads tc & more special class of representationgthan
the case n = 2 , we must show that not every function of the sep-
arable form (k4.h4) can be transformed into the additively separable

form
(7.1) ) = wg) ()

One readily verifies that any ordering representable by

(7.1) must satisfy the condition that

(XP’ XQt') ~ (xf,u XQ)
(7.2) implies (xI‘), x‘s’) ~ (x;, Xé)
(XP’ Xa) ~ (X-;;; XQ)

Given any continuous representation of the separable form

(Lakt) of an ordering z on 1-# IPX I.Q , the test (7.2) can

be expressed in terms of the values
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(u: ut, u") = (u(XP), u(xl‘p): u(xg)")_’ (V: v, v} = (V(XQ): V(Xé), v(xs.)) P)

assumed by the functions u(xP) s v(xQ) in the poimts x , x', x".

The configuration of polnts and indifference curves expressing the test

is shown in Figure 7. It is more general than that of the corresponding

P |
“V”._.____l CL’ S C \ L

NN .

points &, b, 4, d*, e', a' in Figure 3, but includes the
latter as a special case. Since the latter configuiation was already
found, in the proof of Propesition 2, to he sufficient for the existence
of the representation (7.1), the cendition (77.2) is both necessary and

sufficient for such reﬁresentability.

The separable function
Ux) = QW@ tut),  uw=ulx) 30,  vavix) 20,

fails to meet this test for a choice of points x , =x', x" and func-

tiens u , v such that
(u: uf, u") = (OJ 1, 2) P) (V, vi, vi) = (og 2, 8) °

Hence it cannot be transformed to the form (T.1).
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CHAPTER &
REPRESENTATION OF PREFERENCE ORDERINGS OVER TIMEEJ
by
Tjalling C. Koopmans
8. Preference over Time.

In Section 1 of Chapter 3 we have argued the desirability
of formalizing the idea of consumers' preference in terms of & pre-

ference ordering on a prospect space, befdére discussing the possibil-

ity of represenfing such an ordering by a utility functibﬁ. The
considerations there sdduced have still greater force with regard

to problems of evaluative comparison of growth paths for an indefinite
future. JIf one lnterprets this as aﬁ infinite future, neither the
concept of a utility function depending on infinitely meny variables,
nor that of =& p;éference ordering on & space of infinitely many di-
mensions, have sn obvious intuitive understandability about them.

To start from the more basic one — the preference ordering — is
therefore even more desirable in that case, in that it helps avoid

implicit assumptions one is not aware of.

In the present chapter, the propositions of Chapter 3 are

applied o the representation of preference orderings over time.

i/ This chapter reports on research under a grant from the Rational

?cience Foundation. It revises and extends Sections 5-9 of Keopmens
19661,



..,38 -

Because of the close conneetions between the two chapters, the nota-
tions are almost identical, and the_numbering of sections, proposi-
tions and formulee is consecutiire over the two chapters. References
w11l be made without distinguishing the chapters. The lists of re-

ferences to the literature are separate for each chapter.

Before getting into details, a word is in order on the ques~
tion whose preference is being studied. This question conecerns the
interpretation and relevance of the analysis, as distinet from the
logical connections between the properties of the crdering and the
mathematical form of its representation. In regard to preference
over time, the simplest interpretation of the orderings that have
been studied most thus far is a normative one. One locks at various
possible preference 6i'd.erings that may be adopted, by whatever decl-
sion process, for the planning of an economy with a constant popula-
tion size. New problems arise if population is expected to grow in-

definitely or to keep changing in other ways.

Ancther possible interpretation is that one wishes to ;;tudy
descriptively the preference ordering of an individual with regard
to his life~time comsumption program, assuming that such an ordering
ig implicit in his decision. For this interpretation the finite life
span and the bequest motive meeéd to be considered as well. For ap-

plications of such a preference ordering, see Yaari [1964].

Finally — the ultimate goal of a theory of preference over

time for an economy with privaete wealth -~ one may wish to exsmine
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whether an aggregate preference ordering over time can be imputed,
on an "as if" basis, to a society of individual declision makers each

guided by his own preference ordering over time.

In 8ll these interpretations, normative or descriptive,

the most intriguing problems arise from the fact that the future has
a beginning but no discermible end. In contrast to this central pro-
blem, the question whether to use a discrete or a continucus time con-
cept seems In the present state of knowledge primarily a matter of re-
search tactics rather than of substance. So far the indications are
that axiomatic analysis is somewhat simpler if one chooses discrete
time. On the other hand, the maximization of & utility function of

a given form under given technological constraints is often simplex
with continuous time. We shall therefore here choose discrete time

on the basis of expedience without further excuse or explanstion.

9. Postulates Concerning a Preference Ordering over Time

We shall sdopt a set of five postulates about a preference

ordering E‘ on & space ;)( of programs, that is, of Infinite se-

guences, denoted
(9‘1) lx 2 (xl’ %) 13, cese) s
of vectors

(902) x_b f(x,tl, th, sew)y xtn)
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assoclated with successive time periods +t =1, 2, 3, «es « The pro-

gram space i:X: is the space of all such sequences, in which each

t

vector x, is a point of the same (single-period) choice space :}: .

Thus the components Xy of Xy refer to a list of commodities,

characteristics, or activities (as the case may be), which is the

same for all + .

The postulates are modeled after those used in two earlier
studies by Koopmans {1960] and by Koopmans, Diamond and Williamson
[1964]. fThe main difference 1s that the former studies presupposed
ﬁhe existence of a continuous representation. In the present study,
the postulates refer to a continuous ordering, and the proximate aim
of the study is to derive the existence of a continuous representa-
tion. Further differences will be noted in connection with the third

and fifth postulates.

The problem of logical independence of the postuletes is
not investigated. The formulation and sequence of postulates is chosen
primarily from the point of view of naturalness of interpretation.
One case of recognized dependence between postulates is noted in foot-

note bL.

It will be usefull occasionally to employ brief notations

for finite or infinite segments of the program sequence, ags follows
(9.3) X = (xl’ gx) = (Xla seey Xp 12 tx) = (lx‘b—l’ ‘bx) .

In an infinite-~dimensional space such as 1?)1 s the choice

of the distance function is crucial for the meaning of the continuity
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copcept implied in it. We shall adopt the functiong/

(9.4) p(;x, ;¥) = sup d(xy> ¥¢)

where d(xt, yt) is the distance between the t-th period install-

ments X5 Vg of the programs 1% 1Y according to the definition

(9.5) d-(xt: -Vt) = mi'x |Xti - ytil .

Pl (Postulate 1, Continuity). The program space l-}L is

the space of all programs X such that, for all t , x,  is in a

t

cholce space f)( s which 1s a connected subset of n-dimensional

Euclidean space. On the program space there exists a camplete preference

ordering 2: ; vhich is coptinuous with regard to the distance function

(9. 14).

P2 (Sensitivity). There exist a program [F in .l;%i

~
and s vector ¥y in )( such that

X = (Xl’ Xos Xz ceee) > (yl’ Xos Xz cee)

The first purpose of P2 is to exclude the trivial case where

all programs in l:Xﬁ are egquivalent, However, P2 does more than

that., It also excludes orderings in which the standing of any

E/The symbol sup dt denotes the largest of the numbers dt 3
t
t =1, 2, 3, ... , 1f there is a largest, or the smallest number
ndt exceeded by any dt if there is no largest, Such a number

exists whenever X is bounded, that is, when the range of d{x,y)
for all x, y in X is bounded. If A is unbounded we admit
the possibility that D(lx, ly) =0 .
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program X relative to other programs is independent of any vector.

31'3 ‘pertaining to any specific period t , bul dependent on the asymp-

totic behavior of as 1t tends to infinit_y.é/

Xy
Next we imtroduce two independence postulastes, P3' and

P3* , both of which will be maintained throughout Sections 9-13.

In Section 1h we comment briefly on the case where FP3" is omitted.

In these postulates we employ an arbitrary but fixed reference pro-

gram,

(9'6) ’ 1z = (le 22). = (-ZlJ ZEJ 32) 3
to define five orderings, induced by .>.' on factor spaces of :?( 3

and. denoted Ei N 2Z‘z‘, lég , .;.'z s 2‘; , as follows:

-

Y
iy

X

l yl means 7(x1! 22) ">'- (Yj.J 22')

2*
2

X o means (zl, ax) 2‘ (zl, 21.r')

(9'7) 4 (xl’ XQ) lkz (y]_’ yg) means (Xl, x2) 32') >: (Yl: YE’ 52)

5% 5Z‘Z 5 means (zl, Z s 3Jc) z (zl, Z,s 5:r;)
XEEZ ya means (zl) xz.‘ 52) ‘%-(zl: YE’ BZ)

2/ A simple example of such an ordering ?.' satisfying all postulates
except P2 "is that in which r><J:i.s one~-dimensicnal and £ is re-
presented by 1im sup Xy e This ordering looks only at the highest

Teo tF '
consumption level that is, ultimately, and again and again thereafter,
at least temporarily reached or arbitrarily closely approached.

(Wote the contrast between succinet mathematical notation= and involved
equivalent verbal statement!)
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P5' (Limited Independence). The two orderings E‘:ZL s 22'2

Z .

are independent of the reference program 1

P3" (Extended Independence). The ordering [ o is inde-

ﬁndent of 1z .

For convenlent reference, we also introduce
P5 (Complete Independence). Both P3' and P5" hold.%/

Whenever cne or both of ?5' » P3" are assumed in what follows, the
corresponding orderings willgbe dencted Zl, 22 s 12'2 » Note that

? would have been dencted E‘

150 1,2 in Chapter 3.

In the earlier studles referred to above, the implications
of P3' were pursued at length, those of ' P5 only mentioned briefly.

In this study, the emphasis is reversed.

Neither P5' nor P3" can be regarded as realistic. Taken

~ together, they will be found to preclude all complementarity between
the consumption of different periods. FP5' by itself will be seen

to permit & limited complementerity among the ﬁtility levels to be
associated with consumption in sﬁccessive periods, but still no com-
plementarity between individual commodities or activities in different
periocds. P53 or F3' should therefore be locked upon as first approxi-
matioris, made to facilitate e:'cploration of the implications of the

fourth postulate, the real objective of this study:

Y By Gorman [1967] (see footnote 9 of Chapter 3), the independence

/] pA ?.Z
of X7 end 22:. implies that of A7 .
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Pk (Stationarity). There exists a first period vector x} in

I with the property that, whenever the programs

1% = (x{, 2x) = (xi, Xpy Kgs evee)
= (xi) 23') = (X;(:, Yo YB’ eve)

are such that X > 1¥ » then the programsci/

lv = (Vl: VE: ALY °'°) = (x P 15: xlt—’ M.) = 275 ’

v = (wl’ Wos W‘5, tes) = (Y2, Y3: Yh_, °°°) = 2y s

defined by Ve S Xp 0 Wy = Vg0 t =1, 2, .4+ , are such that
v A" S
1" v

Before interpreting this postulate in less formal language,

we note that, if one partiewlar x = x; in% has this property,

1

then by ' every X in ?C has this property. Using this, P4

says that if two progrems 4¥ 5 ¥ have a common first period vec-

tor X3 =¥ then the programs .v ,

1 w obtained by deleting x

1 1

from 1% and from 1 s respectively, and advancing the timing of

2/ In the notations & oY 8s used here, there is no longer a neces-
sary connection between the presubseript of o and the timing of
the first installment Xy of that program. That péz% 2 de2 simply

means the vector that happened to represent second/consumption in
the program 1% - In the program oX = 1V e that same consumption

occurs in the first period. With this understanding, the notations
1V s ¥ will no longer be needed in what follows.
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all subsequent vectors by ome period, are ordered in the same way

a8 (X , ¥ .

It is worth emphasizing that in this statement nothing is

sald or implied about the ordering of “then future" programs X
o that may be applied after the first period has elapsed. That

is, no guestion of consistency or inconsistency of orderings adopted
at dlfferent points in time is raisedé/ - Only the ordering > 8p-

plying "now" is under discussion. Applied repestedly, Pk implies

that the present ordering of two programs (xl, TR P tx)'g (lx'b-l’ £%)

and

some point t in time onward is independent of what that point in

1617 ty) that start to differ in a designated way only from

time is.

The f£ifth and last postulate asserts, roughly, that the
end result of an infinite sequence of improvements starting from some
glven program is itself an improvement over that progrom. If all
but 2 finite number of the improvements affect the program in only
a finite number of future periods, such an assertion is already im-
plied in Fl, F3', Ph, For simplicity we will refer only to a sequence
of improvements made to successive vectors in the program, taken one
at & time. A similar postulate has been used by Diamond [1965]. An

alternative postulate in terms of improvements affecting several

& Por e discussion of that question, see Strotz [1957].



pericds at a time is briefly considered in subsection 13% bhelow.

P5 (Monotonicity). It 1¥ » ¥ @8re programs such that,

fOI‘ all t = 1, 2’ cede o

(Xl’ Koy eees Xp 05 s Yignr g0 °°°)4 (xl’ Xos wve X 1 Xpo Tiq1? Yo coe) g

£
then 1y - lx .

It can be shown that, given all other postulates, 5 is im-
plied in the following stronger postulate, used in a previous study

[Koopmans, 196C].

P5' (Extreme Programs). There exist in ZX a best end a

worst program.

There is some interest in avoiding that stronger statement
whereever possible, with a view to problems of optimal growth under

continuing technical change.

On the basis of the postulates set out, we seek to construct

a representation of ? on the entire program space :_X_ ; ©Or on as

large a subspace of it as we can. Qur strategy will be first to find

such representations on suitably chosen subspaces of (]X .

10. Representation of ?.‘ on any

subspace of ultimately identical programs.

Since the space :_X 1s infinite~dimensional, Proposition 1
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cannot be directly applied to the ordering ?.' given on it. For this

reason, we shall in the present section study >~' on the subspace

Xz

1 of all programs of the form

(10.1) 1% = (% qua2) >

where 12 is again an erbitrary but fixed reference program. Since

programs in this subspace differ only in the segments 1% the

ordering 2‘ on restricted to the subspace :X;, induces

1

an ordering of segquences 1% of length T om the space l,X'l‘ .

We chall dencote this ordering by l’>“.‘I* . In Subsection 10* we shall

prove
Result D. For all T , the ordering IET is independent
of lz s and is represented by & function of the form

(10.2)  Uplyxp) = ulx)) + oulxy) + oo + & Tufxg) , O<a@<1,

Here u{x) is & conmtinuous function defined on >< , and both «

and u(x) are independent of T.

The proof proceeds through a succession of statements which
we label (Da), (Db), ..., recording in each case the postulates and/or

previous results used in the proof. The notations for induced order-



ings extend those of (9.7).

(pa; P3', P4) The ordering ETZ of sequences X , defined

by restricting E‘ to the set of programs tx) is in-

(12¢-20

dependent of z and of t© ,

1

(Db; P3¢, P4) }i is independent of .z and of % .

(De; P53, P4) tmléﬁ is independent of .z and of t .
(pda; ¢, Db, be) 12; is independent of .z , and is represented

by a continuous function of the form
(10.3) UT(le) = ul(xl) + uz(xe) + 4eo uT(xT) s

unigue up t0 a linear transformation similar to {5.5).
(De; Dd, P4) One can choose the di(xi) in (10.3) in such &

way that (10.2) holds with « >0 , where « is unique, and

where u(k) is unique up to a linear transformation
(10.4) w(x) =B + yux) .

(Df; De, B5) a<1.

10%¥ Proef of Resuli D. Clearly the contimunity of > en-

-~

tails the continuity of all restricted orderings induced by it.

(pa). P3' allows us to write



(10.5) >

Using the symbol <> to denote logical equivalence, these statements

are made explicit by

(1096) for all 2X* ) Xl 3 Yl 2 (xlj 22) ? (yl) 22‘)(::?(}{_1, EX ) ~ (le ex*)

(10.7) for all xi s X o s (zl, 2x) 2‘(zl, 23)<::i>(x;, LX) o (x;,

z

*

In particular, choosing for x, in (10.7) the xi occurring in P4, we

have from FL
(10.8) for all x, v, {2, & 2 (2, JH=>xT 7,
an impliceiion which can be applied once more to give

(2)5 250 %) 2 (215 250 )EH 2y %) 2 {2 FIEDX T 5y 5 ete.
These resuits are summarized in
(10.9) téz:,tb=,..=§.=2, =2, 3, cco,
keeping in mind the notational practice explained in footnote L .

(Loj. From (10.8) and (10.6), for all lx* s

Szl’ XE’ Zz) 2 (z‘l} Ya, §Z)<::>(x2, 52) ? (y2, 32';<..-....>

®(X2’ EX*) '>: (yzi BX*)@(X;, XE, BX*)%(X?{J yE’ 3X*) °

)



This reasoning and its repetition yield

(10.10) &Ezktm...=22=?l, E=1,2 3, uo .

De) We now bring in F3", written as EZ = ?‘ . fTogether
4 172 172
*

£

with (10.8) this implies, for all .

(205 %55 %55 12) T (2, ¥ 755 2K (xp %o 2) 2 (¥ps ¥ss \2)
éz?(x?a 553: ll-x*) ?an, Y-j: ;_!'x*)@(-xz;'x » 33: ll-x*) ?:(xi; YEJ Y5: )-l—x*) *
Since this can aga._in be repested, we have

(lO.ll) }Z > 2 ape T® b = t = 2, 3, soe o

=, .2 b
t-17t T 1"t 23 = 1%

(Dd) We consider lz;, , and note that Zf; , t=1, vee, T

and t = 2_’ seey T N are all independ.en‘b of lz . By P2 3

S
t-17t 7

2 permits x

1>1. ¥y, » and by (10.10) a similer statement holds for

Et s t=2,3, «o. + The premises of Result C of Section 6 are there-

Z

fore satisfied, and the representation (10.3) follows. Hence }.ET is

ind.epénd.ent of z , and we write from here on.

>~
1™
(De) By (10.8) and (10.3), 'BET is represented on E’XT

by either of the functions
uplzp) + uy(xz) + weve + uplxy)

ul(xa) + uz(xj) + aee + uT_l(xT) .
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It follows, along the lines of the unigueness proof for Proposition 2,
thatyfor 211 x in X,
w (%) =B, + o (x), t=l, ees, T-1, Q>0
Since we are free to choose each “‘t(x) s b=2, ves, T-1, so
as to have P, =0 for all t, (10.2) results, with u(x) = ul(x) .

(p£)} By P2, there exlst vectors X, X in‘(X such that

41 X s ‘and hence

B

u(g) < u(x) .

Since rx is connected, there exists, by a reasoning i1liustrated

by Figure 8 on paget6, a point x in % with the properties
{10.12a) u(x) = u(x)
(10.12) |

(10.120) for each B >0 , there exists x' in

z such that a{x, x') <% and u(x') >u(x) .
Denote by

con X ® (X, X, %X, o00)

the program in which x, =x for all t . Simee x X, X, we have

eon 27 (-IE’

con ?5_)4 (E’ con x) .
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Hence, by the continuity of ? , +There exists & >0 such that

(10.13)  D(x, x) $8  implies . x (%, con X) ¢

We choose an x' satisfying (10.12b) for that & . It follows that

) <6 for all T,

i
(lo'lh)D((conxT’ con 5)" con =

i . [}
if con T denotes le with Xg = X for t =1, seey, T . But

then we have, by (10.2), (10,13), (10.14), for all T,

T T
£ o hu(xr) <u(x) + o tulx) , -
=1 , , t=2 F

or

T !
w®) >ulx) + (ux!) -uwx) za¥t. <
_ _ tal R

Since, by (10.12b), wu(x') - u(x) >0 , this cen be true for all T

only if a<1 .

1l. Representation of ?f on the space of ultimately constant programs.

In this section we choose a favorable ground on which to face

X

the infinite horizon by first restricting- ourselves to the space com

of congtant programs

(11!1) con X = (X, Xy, X, ou’.) )



that is, of programs 1X for which X =X for &ll t .

The points of cor(1><‘ are in a cne-to-one correspondence

Xé&—~>» X
sl

(11.2) co

to those o:f?(. Because, for all x , X' in,X,

, .
conx: conx ) = d-(x: x') ’

(11.3) D(

this correspondence preserves' the distance funetion, and therewith
the contimmity concept. Moreover, if x , y are vectors of (><

such that yé..,l x , then, by Db and 15,

M e

A A oKL
(11.4) con ¥ = (55 con V)2 wie s (oon ®p2 con ¥

) 4
The continuous crdering Z.'l on(Xis therefore transformed by the

corraspondence (11.2) into the ordering > restricted to co;X

In particular,

Result E. Any comtinuous representation u(x) of %l on

(X is at the same time a contlnuous representation of ..>“ restricted

to r% .
— ocon

" Note that only limited independence (P3') was used in the proof of

Result E.
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Next we consider the space X

eon of ultimately constant

progrems, that is, of programs such that, for some T >0,

L

(11.5) X = (1XT’ co x) = (xl, ves Xps Xy X, aes)

(for T =0 +the term 1% is absent). One readily verifies that

the reascning that led to Result D also applies 1n any subspace

X(T) of ?(con consisting of programs (11.5) with a fixed T .
-con

The ouly difference consists in an added term in (10.2). One now

finds for all T ;“: 2 a conbinuous representationrof %.‘ , restricted

)
to ’7<i:on y by the function

(11.6)  ulx)) + aulxy) + oo + 0¥ ulxy) + f5{u(x)) ,  O<a<1,

where :E‘T(u) is continuous and inecressing. From this representation
| (p-1)

we can derive two representations of é restricted to con * OB

(11.72) by setting x, = x and applying P4, the other (11.Tb) by ;

settling Xp =X , 88 follows,

"

(a) v

(1.7)4
(o) 6P x)

oa(x;) + eon ¥ aT"lu(xT_l) + folulx))

m

u(xl) + oees * aT"au(xT‘_l) + Q'T_lu(x) + fT(u(x))

By Result C these representations are, for all T >3 , unigue up to

a linear transformation. Comparison of the first terms shows that
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ol®)(x) = Pl x) + 5,

which implies that

fT(u) = ol + (IE'T(u) +B, fT(u) .-—--l—i‘;u + -l-% .

Dropping the constant term, we have

Result ¥. On the space (-Xcon of wltimately constant pro-

grams, >: is represented by the copnbtinucus function .

‘(11.8) U(lx) = U(le, cOn:;c) = u(x.l) + cm(xa) + Lee * aT'lu(xT) + —g—T- u(x) ,

10t

unique up to & linear transformation. Note that in this funetion T

iteelf depends on the given ultimately constaent program 1x » For

definiteness one can specify that T + 1 ip the earliest time from

which onward ,x is constant. However, the same value of U(lx)

is obtained if one allows T +°1 to be any time, earliest or mot,
i‘rom which orward lx is constant. It is for that reason that the

function (11.8) represents 2 on the space /Xc on for all ultimate-

ly constant programs, regardless of the values of their "minimal® T .



-~ 56 -

12, Representation of ?‘ on the space of

programs bounded in utility

It is now possible to indicate a large subspace of the pro-

gram space on whidh the ordering % is represented by

(12.1) qug BQ-UJ%), 0O<a<l.

b=l

We shall call a program .x bounded in utility if there exist vectors

I

X, x in,Xwi’ch 2541; such that
(12.2) x < x 4% foral ot =1, 2, ees

We can then show

1

: *
Proposition 3. 0On the space (X of all programs bounded

in utility, the ordering ? is represented by the continucus func-

tion (12.1).
It is to be noted that for wltimately constant programs, the function
(12,1) is identical with that in (11.8). Hence Proposition 3

“{hcludes Result F.

12* Proof of Proposition 3., We first note that if 1%

is bounded in utility, then,

w(x) < ﬁ(xt) < u(x) for all t ,
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and, since 0 <@ <1, the series in (12.1) is absolutely conver-

gent,_ hence its sum exists and is contimnous with respect to .x .

X

Now let 1% and 1Y be two programs bounded in wutility,

and define bounds applicable to both X and ¥ by

x if g_:_..lx _ xlfx..ly
Zs z =

y if y4 %, vy it ¥R,

u=u(z), wezuz), s0 u<d.

_Assume first that U(lx) > U(l‘y') , and write
u(,x) -u(;y) =38 >0
for the uviility difference of 1X and 1 . For comparison purposes

we consider two programs

lX(T) = (le’ 00115") ? ]_y(T) = (1yT’ COBE) ’

where T is chosen large enough o have

o '{x--u
£ )@ =d - =5 <A
=T+l

Since then

: o Mux) - wsa,  wr®)-um sa,

u(,x) - U(lx_(T)) - I
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we must have
u(=) - u(x®) 2

(1) (T)

Since 1% s ¥ are nitimately constant, this implies

x> lx-(fl‘)> ly(T) >

-
1"@ N ly( ) by Result F. But then, using B5,

ly’

which yields
(12.3) I‘-‘J(lx) > U(ly) implies 1X > 7
confirming the representation (9.1) in this case.

Assume next that, for two programs 1

X, ly bounded in

utility,
(12.4) U(lx) = (ly) but X 41y .

Then there exists to such that

(12.5) x, L7 > so ulx ) <uly ),
_ o o Yo Yo
because ¥ X }l y, for all t % would contradict ™ 1% £ 7 " by

5. 0o a curve in ,)( connecting x, with Ve s by a reasoning
o}

o]
(pf)
used in /; above, there exists a poinmt %, such that x . . x
o] o +]
while there are points x_é with *, Al xé arbitrarily close to

o] (5} o
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x, + Iet x! e chosen, using Pl and {12.3), so that
Q (o]

xl

1% Al"' = (1"1;0.-1 > Xy t0+lx) AW

Then, by (12.5),

U(lx') >H(1x) = U(ly) but .x' 4L

l lY)

a contradiction of (12.3). Hence (12.4) is false, and
U(lx) = U(ly) implies *~ 7

confirming (12.1) in this case as well, Since the third case,

U(lx) < U(iy) » 1is symmetric to the first, the proof is now complete.

13. Concluding remarkes on the

representation 'of 2.‘ .

The representations we have found show unexpectedly strong
implicetions of the postulates used. It turns out that offsetting
program changes in fufure periods can he determined on the basis of

Just two mathematical data,

(1) the function u(x) which allows the comparison of
"atility differences” within the same period, and
(i1} & constant discount factor « which extends that com-

parison to utility differences in different periods.
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The representation may be called cardinal in the sense that only in-
creasing linear transformations, applied simultaneously to u(x) and

to _U(lx) , will preserve these simple properties.

Since & < 1 the present postulates do not permit expres-
sion of the ethical principle of treating all future generations'
ubilities on a par with present utilities. A way has been found to
include that limiting case in models of optimal growth by re‘b;‘eating
to the notion of & partial ordering. Von Weizsficker [1965] has pro-

posed to call a program .X better than a program .y if there

1

exists a P __? 1 such that

T i
z u(xt).-> z

u(y,) forall ' >T.
t=1 t=l

This criterion has been called the overtaking criterion by Gale [1967].

Under appropriste conditions, it has permitted determination of an
optimal path which turns out to be comparable with, and better than,

every other feasible path [Koopmans,(1965,1967d.

Returning to the case of & complete ordering with a discount
factor @ <1, it is conceivable that the representation {12.1) can
be extendeé. onlfhe basis of the present postulates to larger sgets of
programs not/ zmmded. in utility. In Subsection 13¥% we allude to a

i'easoning from a strengthened monotonicity postulate that permits

an extension to all programs for which the sum (12.1) exists.

It will be clear that, if wu(x) is unbounded on 7( ,
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then there exist programs for which the sum (12.1) diverges. In such
cases the representation (10.2) restricted to a class of ultimately

7"

identical programs, all "divergent in utility,” may still be valuable.
It wounld permit formmleting a partial optimality criterion in which

a path is found to stand comparison with all other feasible paths
liffering from it in o finitg number of future periods only. Other
considerations would then ha;e to be brought to bear on the choice

of the class of wltimately identlical programs.

13*% One might wish to strengthen P5 to

PS" (Strong Monotonicity). It 1% > ly(i) sy 1=1,2, «.., are

programs such that

MOPINCEYS

for all i =1, 2, «s.

(1) _
Wy, T2, 0 T

i i+l

<
then 1Y~

_This postulate considers successive improvements each ex-
tending over an arbitrary number of periods, but where the set-of

periods affected by successive improvements hecomes more and more

x for which the

remote in time. It allows one, for any program 7

sum (12.1) exists, to construct an equivalent constant program con®

such that U(lx) = U(

conx) , thus extending the representation (12.1)
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to all programs for which that sum exists. Conversely, for any pro-

gram X equivalent to a constant program, the sum (12.1) does exist.

14, Limited independence, time perspective

and impatience.

If instead of complete independenée (P3) we postulate only
limited independence (P3°), Proposition 2 is not available, and we
must fall back on Result A. A study along these lines was made in
two consecutive papers by Koopmans [1960] and by Koopmans » Diamond
and Williamson [1964]. The postulates of that study were the analogues
of the present plostula.tes of contihuity (P1), senmsitivity (P2), limited
independence (P3'), stationarity (P4) and the existence of extreme

programs (P5'), applied to & given = utility function U(lx)

rather than to an orderingj/

I/ ~ Apart from this difference, PL was strengthened to make PL', say,
by adding two stetements: (a) that the continuity on of
U(lx:) is uniform on each equivalence set, (b) that X “is bounded

and convex. The latter was used in the proof that the range ||
of U( lx) is an interval. Alternatively, that result could have

been obtained by adding to P5' that among the extreme programs
there are a best and worst constant program, or by deriving that
statement in turn from F5 restricted to . .

A theorem by Diamond [1965, p. 173) now ‘allows us to obtain

all the results of the previous study from the present postulates PL!
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(see footnote 7 ), P2, P5', P4, P5' as applied to an ordering ‘Z

on 1 . 'The resulting representation U(lx) of £ is found

to satisfy & recursive relation

(lll"'l) U(lX) = V(H(Xl), U(Qx)) )

where V(u, U) is a continuous function defined on the product of
two nondegenerate interval@; which is increasing in each of its var-

tables. This aggregator function indicates how the single-period

wtdlity 'u(xl) of the first imstallment x, of .x and the utility

U(Ex) of the sequel ,x (were that sequel to start immediately) are

¥ . In particular,

comhined to form the utility of the entire program 1

if P5 holds, V(u, U) =u + ¥ ,
The representation (1i.1) is ordinal in the sense that any

pair of contimuous inereasing functions ¢ , ¢ with the appropriate

domains will define an alternative representation

(14.2) T*(jx) = o(B(;x)) = o(V(u(x)), U(xx)) = V¥(u*(x;), U¥(x)) ,
say, where

(14.3) v¥(x) = g(u(x)) , V¥, ) = o(¥(eT (d¥), 8TH(U))

This being so, the guestion arises what takes the place of the dis-
count factor @ , +the existence of which was derived in Section 10
from P53, In particular, what corresponds to the inequality @ <1

crucial to convergence of the representation (12.1)2
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It is readily seen from (1Lk.2) and (14.3) [Koopmans, 1960,
Section 14%) that, in the case of a differventisble function V(u, U) ,
the discount factor associated with a constant program

x = (x, %, X, =0e) ,

con

(d)  ofx) |k O) | elo,1] ,

, , u=ux) , U= U(conx) .
differentiable _

is invariant under / ° - - increasing scale changes for uw and

U . Moreover, as dlstinct from the representation (12.1), afx) in
{14.4) can véry with x . The limited independence postulate P3'
therefore allows éécpe for the idea already'expressed by Irving Fisher
[1930, ¢h. IV, §3, §6] with regard to individual preferences: that
the discount factor may depend on the level of present éﬁﬁ prospec;

tive income.

As an illustration, letri><ﬁbe the closed unit interval

\Jga [0, 1] , let u(x) =x , and consider the aggregator function
(1h.5) V(x, U) =8 + {x - U)(a - bx + cb) ,

where we require that

tlh;G) b, c,a-2b,a-b-¢,1l-a-2c>0.

Then, if we assign to U the same re.nge‘t..‘9 , V(x, U) is strietly

inereasing 'in both variables, and °

(14.7) v(0, 0) =0, v{l, 1) =1 .
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Finally, since U(conx) =x 1s the only root U of U = V(x, U)

in the range ijg s
(14.8) x) =L -a+ (b-c)x.

Hence the direction of change of «x) with increasing income x

is given by the sign of (b - ¢} . Following Fisher {1930, Ch. IV,
§61, most economists I have consulted regard sn increasing ofx) as
the normal case. This implies that the ratio of the marginal utility
of future consumption to that of present consumption increases as the

level of the constant consumption flow x is raised. Examples
where the sign of dofx)/dx depends on x can also be constructed.

While ofx) is defined only for constant programs, there

8/

is & generalizatiom™ of the convergence condition @ <1 in (12.1)

§/ This generalization has been derived from statement (a) in foot-

note 7, here used for the first time. The proof uses the theory of
Haar measure. :

to the present case that applies in the entire range of V(u, u) .
It is found that there exists a transformation function ¢ (here
@ does not play a role) such that the function v¥{u , u¥) in (1k.3)

satisfies (dropping asterisks)

(14.9) V(u, U') - V(u, U) SU' - U  vhenever T' >U.
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This inequality has been called the (weak) time perspective property

of the utility scale resulting from the transformation @ . It says
that the utility difference between two programs, measured in a sult-
eble scale, does not increase (and generally diminishes) if both pro-
grams are postponed by one or more periods, while the same consump-
tion or the same sequence of consumptiqnéﬁ@ inserted in the gaps so
created. This inequality between utility differences (though not the
ratio of the differences themselves) is satisfied by a class of scales
linked-by transformations that include nonlinear as well as all

linear transformations. For this reason, e represemtation U{ x)

has the property (14.9)
satisfying (lh 1) where V(u, U) /has been called guasi»cardlnal.

There are indications that the weak inequality sign (§)
in (14.%) can be strengthened to strict inequality (<) , refefred
to as strong time perspective, without strengthening'the postulates.

If so, it follows that the function U(lg) can be reconstructed from

u(x) ,

& pairsof-functigne of. V(u, U) implied in it. The example (1k.5),
(14.6) has the strong time perspective property as it stands, with-

out requiring a prior secale change.

Precisely because it compares utility differences beﬁwéen
paeirs of programs, the time perspective inequality, strong or weak,
does not by itself predict the choice within any one pair of programs.
‘However, by elementary steps of reasoning, (lh.9) implies a second

family of ordinal inequalities, of which the simplest representative

is
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if w=u(x) <u =u(x'), U x)sUS U(_ %) s
(1%.10) :
: then V(u‘, V(u, u)) (>) V(u, v{u', 1)) .

This inequality, weak or s_trong depending on whether the ineguality
(14.9) is weak or strong, has been called an impstience inequality.
It indicates that if the single-period utility of a veetor x' ex-

ceeds that of a vector x , then any program (x', x,~_3x) , in.which
Bx is selected from a wide class of “continuatbions," is preferred
(or-equivalent) to the corresponding program (x, x', 3x) in which
éhe better item is moved from first to second ﬁlace:. The class of

3

if started immediately, would be ranked between

continuations ,x permitted in (1%.10) comsists of all those whilch,

X and x' ,
con con

This condition should be read in conjunection with Result E of Section 11,

which holds also under the present assumptions.

The impatience inequality holds for s wider range of U-values
then that indicated in (14.10), and can be generalized to the inter-

change of two segments x of a program, that need not be

X 2 g
of équa.l length or contiguous in time.
15. HNonstationary orderings and eventual impatience.

Diamond has studied the implicatlons of postulates similar

to those of this chapter,with the main difference that no explicit



stationarity postulate corresponding to our P4 is present. However,

a certaln comparabiiity over time is intreoduced by assuming, in one
in‘c.erpretation, that there is only a single consumption good (fX is
the closed unit intervald ), more of which is always better;‘ in
ancther interpretation leading to the same methematical analysls, there
is a given single~peried utility function wu(x) mapping X onto

d , which is the same for a1l t . For simplieity, we shall adopt
the notation of an ordering b of all programs lx on the denumerable
product space QJJ:\-.D X uese = :1_\:0 , say, that correspends to the first
interpretation. The nonstationarity then applies to the way in which

the sequences. ,X of scalars X enter into k .

Dismond's postulates then can be shcmz—g/ to be equivalent
to specializations, ©o the case x=\.ﬂ , of our Pl, P3, supplemented

by & postulate P6 implying similar specializations of Pz, P3, B,

P6 (General Monotonicity) If X, 2y, forall t, x >y,
for some t© , t‘hen ¥ }ly .

From these assumpbtions he derives the following property of eventual
impatience.-l—oj For any given program 1% and any number ¢ >0 ,

there exists a T such that

(15.2) 1 >-(x_t, Heoq Fpo t+lx) for sll t >T with x, >x_ +¢.

In words, the interchange with Xy of any Xy which oecours sufficlently
far into the future, and whiech falls short of Xy by at least € ,
diminishes the utility of the program 1% . This subtle result, which

appears to miss its aim by a halr's breadth, is bothVindicated and complemented

‘—O-/ Diamond [1965], ». 175.

g} Using the results of Gorman [1967] referred to in footnote 9 of
Chapter 3.
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11 '
by another theoremy—atiributed to Yaari, which hits the hair on the
P6 and
head. It states that/the present specialization of Pl

taken together are incompatible with the statement

for all t and &ll .x in ;)(., ¥~ (xt, Xio1r X1 t+13) ,

that expresses "equal treatment of all generations.”

Similar but somewhat stronger conclusions ere cbiained by

Diamond by changing the distance functlon underlying P1 to

| +* ® 1 ¢
D (135: 1'3') = ti]_ ] d(xt.a y‘b) P)

presumably because this modification explieitly reduces the weight
attached, in the definition of continuity, to given consumption dif-

ferences in & more distant future.

16. Concluding remarks.

The main resulte of the studies reported in this chapter

appear to be twofold.

In the first place the studies show & sequence of instances
of increasing generality; in which a complete and continucus preference
ordering of consumption programs for an infinite future necessarily
gives a decreasing, or eventuslly decreasing, weight to consumption

in a more distant future. Somewhat fancifully, one may say that the

EE/ Diamond [1965], p. 176.
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real numbers appear to be a_sﬁfficiently rich set of labels to acceom-
modate in a continuous manner ali infinite sequences of consumption
vectors only if one gradually or eventually decreases the weight given
to the more distant vectors in the preference ordering to be repre-

sented.

Secondly, the studies containing the stationarity postulate
P# have produced interesting special forms for the utility function

U(lx) in terms of simpler functions u(x) , and possibly V(u, U) ,

that facilitate the use of U(lx) in models of optimal economic growth,
end may perhaps suggest further parametrization or other specializa-

tion for econometric studies of individﬁal congsumpbion plans over time.

The use of substantive terms such as "consumption,” "preference,"
"time" in what is essentially-a formal mathematical analysis may hinder
the pergeption of other possible applications in which one or more
of these terms sre inappropriate, The stationarity postulate, how-
ever, strongly suggests temporal or other consecutiveness in the vectors

X t =1, 2, ss. , &8 & condition for meaningful application.

.
Tn Dismond's study [1965] where stationarity in the aggregation of
single-period wiilities is dropped, consecutiveness is immaterial

in spite of appearances to the contrary in the formulation of some

of the postulates. What is Interpreted as eventual impatience if

t stands for time is therefore also open to the wider interpretation

that in any permutation of the vectors in the infinite sequence X

t=1, 2, ... , the weight given to vectors further up in the segquence

must eventually decrease.
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