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THE RAMSEY PROBLEM AND THE GOLDEN RULE OF ACCUMULATTON

*
Edmmd 5. Phelps

The purpose of this paper is to describe the use to which the
Golden Rule notion can be put in solving the Ramsey problem and to
describe the relation that the Golden Rule path bears to the "optimal®
growth path in the Ramsey problems By the "Ramsey problem” T mean the
provlem of choosing & cegpital accumulation progrem over infinite time,
given a known social utility function and certain production and consump -
tion constraints. The term is especlally descriptive here for T confine
myself to & one-sector model and use an additive utility function, as
did Remsey [14] in his path-bresking investigation of the problem

nearly forty years sgo.

The first part of this paper presents a somewhat informal and
slightly simplified version of the original Remsey model in which the
population and technology are constant. In the second part I introduce
en exponentially growing population and show how the Golden Rule path
has been used to find & solution to the Ramsey problem in this case,
The third part introduces exponential labor augmentstion {technical

progress which is everywhere Harrod neutral) and again uses the Golden

»*

I gratefully acknowledge the extensive counsel end assistance of Dawvid Cass
in the preparation of this paper. He is not responsible for any errors it
contains.



Rule path in snalyzing the Ramsey problem. This section contains some new
results on the conditions for the existence of an optimum when there is no
discounting of individuel utility rates. Some remarks on two difficulties
Taced by the Ramsey epproach to the national saving decision conclude the

DEPET «

I. Stationary Population and Technology

Ramsey postulated a stationary populetion size for all time,
While leisure was one of the variebles to be optimized, simultaneously
with saving, in Ramsey's formuletion, I shall take per capita lelsure to
be constant, es most recent enalyses do, so that lebor at time 1%, L(t) ,

is proportionsl to population and therefore constant:
(1.1) L(t) = L, L, >0

The technology 1s also stationary and is summarized by an
aggregate production function which mekes aggregate output, Q(t) , =a
function of capital, XK(t) , labor, and possibly other fixed factors:
(1.2) Q(t) = PIK(t), L(t)]

or, since labor is fixed,

(1.3) Q(t) = alx(t)], K) >0 for X>0 .



It is unnecessary to postulate everywhere diminishing merginal productivities
or evern congtant returns to scale, But in the sbsence of a certain
restriction on the utility function to be introduced, it will be nec~

essary to meke a capital saturation assumption to be specified shortly.

Supposing for simplicity that there is no depreciation, we can
interpret Q(t) as net income. Net income is divided between consumption,

c(t) , eand net investment, K(t) = d K(t)/dt .

{(1.4) c(t) + f{(t) = Q(t) , c(t) >0 .

Consumption must he non-negative.

Frow (1.3) end (1.4), therefove,

(1.5) c(t) + K(t) =& [K(£)], co(t) >0 .

Also we heve the initisl condition

(1.6) K(0) = K > K, >0

Equations (1.5) and (1.6) constitute the production end consumpbion

constraints in the optimizetion problem.

Turning to the preference side of the model, Remsey positulated

a social utility function of the form



(1.7) U= fw ufc(t)] at , u'(c) >0, u"(Cc) <0,
0

where u is called the rate of (social) utility.

Such a utility function is additive. It follows from work by
Debreu [5], as Koopmens [7] hes pointed out, thet if, in addition to certain
postulates guaranteeing thet preferences can be represented by some utility
funetion, one postulates "non-complementarity between periods" in the
sense that the preferences among consumption pathe in any series of periods
are independent of what is consumed in other periods, then (and only then)

the preferences can be represented by an additive utility funetion

Further, the utility function (7) is "stationary" in the sense
that calendar time has no effects on the utility differences associated
with different consumption programs. Koopmens [7] indicates that if, in
eddition to the non-complementarity postulate, one makes the "stationarity"
postulate that preferences among consumption programs beginning next
period would be unchanged if these programs were to begin this period, we
obtain the utility funetion

-]
U= 5 czt'lu(ct) o<a<l
t=1

where « is the "discount factor™.



Beside the detall that the ghove function is & sum of discrete
utilities rather than an integral, the two functions differ only in that
Koopmensg discounted future utilities while Ramsey did not, regarding such
discounting as "ethically indefensible". Koopmens shows discounting to be
a necessary logical consequence of the postulates of his study if one
requires the utility function to give & complete preference crdering of
consumption programs over an infinite time horizon. (Incidentally, these
postulates include a weskened substitute for the non-complementarity
postulate which permits him to derive a utility function with a varisble
discount factor.) Ramsey's unwillingness to discount presented him with

a difficulty from which he sought ingeniously to escape.

Ramsey's objective was the meximization of the soecial utility
function in (1.7) subject to the constraints (1.5) and (1.6). The
difficulty that is immediately encountered is thet the postulated technology
mey permit infinite utility (U) to be achieved by more than one feasible
consumption program. If there is some sustalnable rate of consumption for
which the utility rate is positive, i.e., u[G(X°)] >0 for some K°
ettaingble in finite time, then any policy which eventually sustains that
consumption rate will ceuse the utility integral to diverge to plus

infinity. When such divergence arises the problem is not determinate.

Nevertheless Ramsey devised a trick to yield a determinate
optimization problem. He postulated thet either G(K) is bounded from

sbove or that wu{C) is bounded from above (or both):



~
G(K) <@ for all X,

or u(c) <u for all C .

The idea was that on either of these restrictions there would be a
meximum sustainsble rete of utility ~- G = u(a) = u(a) in the first case,
u in the second case, the smaller of the two if both G(K) and u(C)
are bounded. Ramsey then minimized the integrsl of the shortfall of the
sctual rate of utility, u(C) , from the maximm susteinable rate

(which he called "pliss"), arguing that there would be at least one
feasible consumption program thet would make this integral converge and
that the optimal consumption program is that progrem (among those which

meke the integral converge) which yields the smellest value of the integral.

In fact this restriction is not sufficient for the existence of
progrems that mske the integral comverge., If G(K) or u(C) approaches
its upper bound esymptotically at too eslow & rate, the integral to be
minimized will not converge. To simplify matters most contemporary anelysts,
e.g., Samuelson and Solow [16], make the overly strong postulate that
either G(K) or wu(C) can attain its upper bound at a finite K or € ,

respectively:

(1.8) MK)=6G, K>K; G (X)>0 for K<K; O0<K<o;

or uC)=u, €>C; u(C)>0,u(c)<o for ¢<C; 0<C<o .



-7 -

~ -
Thus there ig capital saturation at X or utility satiation at C , or
both. Again, the maximum sustainable rate of utility is G = u(a) or
u = u(C) or whichever is smaller if both ﬁ end C exist. In vhat
follows, I suppose that cepital saturation is binding i.e., G is the

meximm spetainable rate of utility.

Now, with Ramsey, one may minimize the integral of the shortfall

of the rate of utllity from the bliss rate, u , or, equivalently, one

may meximize, subJect to the constraints,

(1.9) V= ofﬂ° (ulc(t)] - 1:) dt

The constant u 7pleys the role of a "subtractor” in the integrand.

Supposing alwsays that Ko < % , meaning that the economy is not
initially saturated with capital, there will be many feasible gonsumption
programs which cause the integral in (1.9) to diverge thg minusg infinity.
But since, by saving, it is feesible in finite time to equate K(t) to

A

K , there must be some progrems which cause the integral to converge {to

o

finlte negative mumber); these are the programs that equate wu[C(t)] to
Q in finite time or asymptoticeally at a sufficlently fast ;gte. Further,
it can be shown that no femsible consumption program can meke the integral
diverge to plus infinity, or indeed to converge to any positive number.

The consumption program which mekes the integral converge to the algebreically



largest number is designated the "optimal" program, all others giving a

smaller V , some of them a V of minus infinity.

Ramsey and some latter-day writers have evidently regarded this

“"optimal" consumption program to be the solution to the original problem

of maximizing the social utility integral in (1.7). But the maximization

of V in (1.9) is a different problem from maximlzing U in (1.7). As
was seen earlier, U fails to discriminate among a certain class of
consumption programs that V does discriminate among; and V faills to
dlscriminate among some consumption programs that U discriminstes among .
More formally, V 1s not a monotonically increasing function of U s =ince
it is possible for U to be undefined where V 1is defined and conversely,

g0 that the two problems are not equivalent.



This does not imply that the sclution to the V maximization
problem cennot be regarded as "optimel”., But a new criterion of optimality

is required,

The modern approach to the divergence problem, which may be
found in von Weizsacker [20], Atsumi [1], and somewhat implicitly in
Koopmans [8], is the following., A consumption program (over infinite time),
Cl(t) s 18 said to be preferred or indifferent to another consumption
orogram, Cy(t) , if there exists a T such that for all T > 7°
T

T
[ ouleg(e))at > ule(#)] at
0 o

Cl(t) is strictly preferred 1f the strong inequality holds.

3*
A feasible consumption program C (t) is sald to be optimal if
*
for every other feasible consumption progrem €(t), ¢{t) £ ¢ (t) for some
t , there exists a 7° (not necessarily the same for each alternative

program) such that for all T > m°

T % T
foule()lat > [ ale(t)] at
0 o)
The optimum is unique if there exists a To such that the strong inequality

holds,

No discounting of future utility rates is necessary here (although

one could introduce utility discounting). The price paid for this luxury
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is thaet the proposed preference criterion mey fail to order meny palrs of
feasible consumption progrems., Consider & pair of consumption programs
Colt) emd C,(t) and a sequence of values Tys Ty «e+ converging to

plus infinity such that

Ti T

/ u[CO(t)] < f : u[Cl(t)] at , i=1, 2, ...
0 0

Then Co(t) is not preferred or indifferent to Cl(t) . But for the
same peir of consumption programs there may exist a different sequence of
values Ti, Té, +ve converging to plus infinity such that

t t
Ti Ti

f u[Cl(t)] at < f u[co(t)] at , 121, 2, 44,
0 0

Then Cl(t) is not preferred or indifferent to Co(t) . Since neither
program is preferred or indifferent to the other on the provosed criterion,
the criterion fails to give & preference ordering of such pairs of
consumption programs, If discounting were introduced, one could order =all

programs by comparing the limits of the integrals as T + e ,

This weskness in the preference criterion is of no imnortance
if there exists an optimal program in the above sense, However, no
optimun need exist. Case 1: No optimum exists if for every feasiblev

consumption program Cl(t) there exists a feasible consumpiion program
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C,(t) and some 7° such that for sll T > T°

fTu[cl(t)]dt < fTu[ce(t)]dt
c 0

In this case, there being no best feesible program, the optimization problem
is insoluble. Cease 2; No optimum (in the sbove sense) exists if there is

a class of consumption programs for which no preference ordering is given
{as with the pair Co(t) and Cl(t) discussed earlier) all of which are
preferred or indifferent to all programs outside this class. Then the
programs in this class are "good" -- there 1s no better path -- but there
exlsts no optimal path in the sense of the present criterion. Nevertheless,
if there are certain restrictions on the technology (or on u(C) ) such as

were made above, an optimum in this sense will exist.

This optimality criterion justifies Ramsey's identication of the
V-meximizing consumption policy as the optimal consumption policy. For if
there exists & consumption path E(t) (which is feasible for some initial
K , not necessarily the given Kb ) and hence some corresponding path of

the rate of utility wul[c(t)] such that meximizetion of

fm(u[C(t)] - u[E(t)])dt
0

E = 3 % L]
vields a solution, say C (t) , then C (t) is an optimal path C (t)

in the sense of the new optimality criterion. If the maximm is unique,
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the optimum 1s also uniqne.l In the Ramsey model, the pathk C(t) = ¢ = G(K)
is the path C(t) and u = u{C) i1is the subtractor, u[c(t)] . Thus we
have described the modern basis for Ramsey's trick of meaximizing V instead

of U.

When Remsey meximlzed {1.9) subject to the constraints (1.5)
and (1.6) (given the existence of & X ) he obtained the following

remarkably simple formula for the optimel saving policy:

(1.10) K = ‘i—;—,(“%%)-

Before discussing some features of this solution, we shall present two

methods by which it can be derived.

b .3
1. If ¢ (t) 1ie a unique maximizing path, then

FIue™) - w@)las > [ [u(c) - u(C)lat
Q 0

for all other C paths, C £ ¢" for some t . Then
o *% -~ o -
J Tu(c) - u(c)lat - [ [u(c) - u(c)ldt >0
0 0
and hence
[~ -]
JIu(e™™) - u(c)lat >0
0]

If the following integrals are continuous in T , 1t follows that, for some

™ ,

T

T 3 0
Jfu(c T )at > [ u(c)at , T>T ,
0 0

Y
so that C (t) 1s the unique optimum.
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Ramsey reported that Keynes produced an ingenious proof of this
formula using the following srgument. (See Reamsey's statement of the
argument or Meade's more detailed presentation [9].) Suppose that it is
decided to do an extra "dsy's worth" of saving. Then the whole time
schedule of progress towards "bliss" will be advanced by one day (if the
econcmy reverts to its previous consumption policy after todsy). There:
fore there wiil be a gain of one extra day st blissl, hence g gain of ; o
But the utility, w , that would have been enjoyed tomorrow wiil be forever
lost (since 1t is the utility rate that would otherwise have been enjoyed
on the following dsy thet is enjoyed tomorrow). Hence the true gain from
edvancing the schedule is ; - u . The cost of dolng so is the extra saving
multiplied by the marginal utility of consumption, so that if S 1s the
amount that wasbeing saved per day the cost is S u'{(C) . Now if the
original consumption program was optimal there will be no gain or loss
from departing (infinitesimally) from the original program, so that
S u'(c) = ; - u, which is (1.10). (Of course, these formulae for the cost
and gain are only spproximetions in the discrete-iime context of Keynes'
argument but it is possible to formuwlate a somewhat snalogous srgument in

continuous time.)

1. Actually, bllss is approached only asymptotically which indicates that Keynes'
argument requires some modification to be valid.
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There are a variety of more formal derivetions of the Ramsey
result. We choose here to use the technique of dynamic programming

developed by Bellman [2, especially pp. 249-250].

First, we define w(Kb) to be the maximum velue of V when

the initial stock of ceplitel is Kb . That is,

(1.11) w(KO) = mex fw(u[c(t)] - :z)dt
0
subject to C(t) + K(t) = &(K)
K(0) = K,

Now Bellman's "principle of optimelity" states that whatever the
initial state and initial policy, the remaining decisions mist be optimal
with regard to the state resulting from the first decision if the overall
policy is to be optimal. The spproach is to divide time into an initial
small interval of length A, over which the initial policy is to be.made,
and the remaining open-ended interval beginning at t = A, over vwhich it
is assumed that an optimal policy is followed. If the average rate of
consumption over the initisl interval is C +then the amount of ut{lity
(V) earned is approximstely [u(C) - G] A and the capital stock at
t = A will be approximately XK(A) = K +4 [G(KO) - ¢] . Hence we obtain

the following apprroximate relation

(1.12) W(KO) = mg.x {[u(c) - :1] A+ W(KO + /_\[G(Ko) - c])}
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Using an approximetion for w(Kb + A[G(Kb) - ¢]) gives

(1.13) w(K ) = max {[u(c) - ;] A+ w(K ) +w'(X ) ale(x)) - c}}
C

Subtracting the constant w(Kb) from both sides then gives
o~
(1.14) 0 = max {[u(C) -u]l A+ w'(KD) A[G(Ko) - c]}
C
Dividing by A and letting A+ 0 yields

(1.15) 0 = max qu{C) - 1:+ v'(KO) [G(KO) - c]}
¢!

where now ( representg the initial rate of consumption.

From (1.15) we see that if C is optimal, so that the expression
in braces is maximized, then we have the following equaticn in the optimal

c :
(1.16) u(c) - ;+ w'(KO) [G(KO) -¢]l =0

Further, if the maximum is an interior one, then the derivative with respect
to € of the expression in braces in (1.15) must equal zero, which yields

another equation in optimal C :
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(1.17) u'(c) - w'(Kb) =0
From (1.16) and (1.17) we obtain

2 - u(C)

(1.18) HK,) - € = —75

which is (1.10), the Ramsey-Keynes formula.

Some festures of Ramsey's solution can be brought out by the
geometric representation of the formula in Figure 1. To obtain the optimal
rate of consumption one needs to know only initial income, G(KO) , the
shape of the function u{C) and G . Hence variations of the production
funetion which leave initial income and ; unchanged have no effect upon
the optimal rate of consumption; in a sense, therefore, C* is independent
of the marginal product of capital and the functional distribution of income.
Further the optimal policy is "myopicf in that the present value of future
income or other wealth-like variables play no pert. This rather simple

dependence of optimal consumption on income alone, given u(¢) and u 5

may have suggested to Keynes the consumption function of the General Theory.

(The optimal marginal propensity to consume in Ramsey's model is positive

but it need not be less than unity as Keynes postulated.)

-~
The diagram shows that if KO <K, then (¢ < G(Kb) so that
K >0 ; thus there is saving as long as the economy is short of capital

saturation. Further, C approaches G(X) only as the latter approasches
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w(C) |
1 (C)
4 ) ‘”"/'/“_-/—.
u(C‘)
0 // c* G (K.) G(R)
Fis vre 1
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G(ﬁ) . Hence, K will asymptotically approsch E and C will asymptotically
approach G(%) . At XK= %, C = G(E) . (It is not a new result that E

will be approached since we already knew that all programs "eligible™ to

be optimal hed to make u(C) approach ; so that V would converge: it is

& new result that E will be approached only esymptotically.) WNote finally
thet X is invariant to & linear transformation of wu{¢) which is as it
should be since the underlying preferences determine the function wu(C}

only up to a linear transformation.

In closing this section we note that Samuelson and Solow [16)
have extended the Ramsey analysis to the case of many heterogenecus
capital goods. Phelps [11) hes investigated the consequences of capital
risk for the optimal rate of consumption also in an infinite time-
horizon model. But the major extensions needed are those to cope with the

facts of growing population and technical progress.

IT. Exponentially Increasing Population and Stationary Technology

Let us first develop the production side of this model. Since

lebor is increasing exponentially, the counterpart of (1.1) in the

previocus model 18
(2.1) L(t) = I A y >0

The technology 1s still supposed to be stationary so that the

production function is independent of time:
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(2.2) Q(t) = FIr(t), L(t)] .

Now, however, we posit constant return to scale, twice differentiability,
diminishing marginel productivities, and that both factors ere essential

to production, so that one may write

(2.3) Q(t) = n(t) £lk(t)]
where k(t) = K(t)/L(t) , f£Ik(t)] = Plx{t), 11,

and f£{0)=0, £ (k) >0, f(k)<0, f'=)=0,

Again supposing there is no depreciation, we have that
consumption per unit labor, e, (which is proportional to consumption
per head since we are fixing leisure per head) and investment per unit

labor sum to output per unit labor:

(2.4) o(t) + K(+)/L(t) = £[x(t)] , e(t) >0,
where c(t) = C(t)/L(t) .
XK K L
Since E %L
ﬁ = % - 7k
we therefore have
(2.5) e(t) + f:(t) = g[k(t)] , e(t) >0

vhere g[k(t)] = £Ik($)] - »%(t) .
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Finally we have the initial condition

(2.6) k(0) = L
Equations (2.5) and (2.6) constitute the constraints in the
present problem; they are analogous to (1.5) and (1.6) in the previous
problem. The equations are identical but for the fact that £2.5) and
(2.6) are in per capita terms and that, as we shall see, g(k) 1is some -
what different from G(K)} . I shall later place restrictions on f£(k)

such that g(k) reaches a meximum at some finite % , as we supposed

G(X) to do. But I first consider the preference side of the model,

In specifying our criterion of optimality I wish to be
unspecific about the form of the Ramsey-like utility integral. ILet us
therefore write u = ul[e¢(t), t] which is as general as one can be
with respect to the dependence of u on consumption, populaetion (which
is an exogenously given function of time) and time. Then we sgy that a
feasible consumption program c*(t) is optimal if and only if for every
other feasible path c(t), c(t) # c*(t) for some t , there exists a

T° such that for all T > T°

T T
fule (t), tldt > [ ule(t), tlat .
0 0
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Now to the matter of preferences. Pearce [10], Srinivasan [i7l,
Uzawe. [19], Koopmans [8], von Weizsacker [20], Inegaki [6], Atsumi [1],
Samuelson [15], Cass [3] and no doubt others have produced & variety of
utility functions for consideration in sclving the present Problem and
related problems. Probably the single most popular function, usgd
extensively (though not exclusively) by Kocopmans and von Weizsgekerg is
the one which makes the rate of soecial utility, u , an increasing,

concave and unbounded function only of per capita consumption; that is,

T
(2.7) U(T) = [ule(t)ldt , u'(e) >0, ue) <o,
0

gives the social utllity accumiated up to t =T of a path e¢(t) . The
quantity ule(t)] 1is sometimes called the rate of per capits utility; T

-shall simply designate 1t as the rate of utility.

Tt is sometimes sald that a utility funetion 1like (2.7) involves
no "discounting" of future "utilities". But this is somewhat misleading
for as Koopmans has pointed out, while (2.7) treats "generations” aiike
(to make somewhat figurative use of the term "generation"), it does not
treat "individuels" elike (agaln somewhat figuratively). Suppose, in
calculating socisl wtility at t =T, U(T) , one integrated over the
sum of the social utility rates assigned to the living individuais at
each moment of time. Then, if vi[ci(t), t] denoted the individual

social utility rate of the 1 th individual and ci(t) his consumption
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rate at time t , one would have

T L(t)
) = f by vi[ci(t), tlat
o 1=1

where L(t) (an integer) is the size of the population at t . Now if, at
every t , consumption is equalized and the individual social utility
rate functions are identicel, so that vi[ci(t), t] = vle(t), ] , +then,
treating population size as a continuous varieble given by (2u1), one

would have (letting I,=1 )
T t
WT) = [ 7" vle(t), tldt
4]
Now if "equal treatment of individuals" demands, as Koopmans suggests,

that we do not "discount” individual social utility rates, so that

vle(t), t] is, say, wule(t)], then our socisl utility integral would
be of the form

T
o(r) = [ e”" ule(t)lat
0

which differs from the proposed (2.7). It becomes ¢lear, therefore, that

(2.7) can be interpreted as discounting individual utility rates by the

population growth rate v :
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T " T + —t T
o(T) = [ e""wle(t), tlat = [ 7" (e77" ule(t)])dt = [ ule(t)]at
0 0 0

While I shall later consider the implications of postulating
the equal-treatment-of-individuals function, let us return to (2.7)
and examine the Koopmans-von Weizsscker method of solution. (Incidentslly,
Atzuml, who worked with a discrete-time, two-sector model, spparently is
also a discoverer of thies spproach. Srinivesan, Uzawa and Cass use a

different utility function, and correspondingly, a different approach.)

If one attempts to meximize the limit of U(T) 1n (2.7) =5 T
goes to infinity, subject to the constraints (2.5) and (2.6), one may
encounter, as did Remsey in the stationary population problem, the
difficulty that more than one feasible consumption program will ecause
the integral to diverge. The problem will arise if there are susteinsble
rates of per capita consumption for which wu(e) >0 . To overcome this
difficulty Koopmens and von Weizsgcker employ a trick analogous to
Ramsey's trick in the same difficulty: they use the Golden Rule notion to
establish the existence of a aximm sustainable rate of utility, & s

which can be introduced to uake convergent the limit of the utility

integral.

Suppose that f£°(0) >y , hence g'(0) >0 . Since £'(=) =0
(labor required for production) and f"(k) < 0 (diminishing returns) the
function g(k) will then achieve & unique maximum, ¢ >0 , at some

k>0:
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(2.8) "k} =0 or £' (k) =1y, k>0

24
¢ =g(k) >0, u=nule).

-~ ~

¢ 1is the maxXimum sustainable rate of per capita consumption and w is the
meximum sustainable rate of utility. The path, k(t) = ﬁ 5 18, of course,
the Golden Rule path; it is the consumption-maximizing golden gge path. On
this path, the merginal product of capital, f'(k) , equals the popuistion
growth rate and investment equals competitive profits. Thus our

postulates imply that a Golden Rule path exists. The next step is to
assign to the Golden Rule path the same rgle played by the capital
saturation path in the stationary population model. The utility rate

corresponding to the Golden Rule path, wu, is subtracted from the

actual rate of utility, ule(t)] , to form the new integral
0 ~
(2.9} V= [ (ule(t)] - u)at
9]

analogous to (1.9).

Once agein, if there exists a feasible path which maximizes
V , this is an optimal path in the sense of the above optimelity criterion;
if the maximum is unique, so is the optimum. Koopmans shows that a
unique maximum existe. Tn particular, there is no divergence problem: v is
bounded from above for all feasible consumption paths and =11 initial

capital stocks. If the economy starts below the Golden Rile path, ko <k,
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the integral is negative for all feasible paths: but since the Golden Rule
path can be reached in finite time, there are necessarily some paths which
cause the integral to converge (to a finite negative nuﬂber). If the
economy sterts above the Golden Rule path, the integral; while vositive,
will still converge (for all paths of interest). Thus there are no paths

which are "infinitely better" than the Golden Rule path.

Since the problem of maximizing (2.9) subject to (2.5) and (2.6)
is mathematicaelly identical, in every essential respect, to the previous
problem of maximizing (1.9) subject to (1.5) and (1.6), one necessarily

obtains for the optimal rate of consumption per head the Ramsey-like formila

~

(2.10) X = EE;TE%EA

Recalling that k = K/L - yk , one can write (2.10) in the form

-~

. u - u(ce) vt
(2«10&) K= T(‘é‘)— + ‘)Pk LO e

Setting L, =1 (which we are free to do), we see that (2.10a) gives (1.10)

of the previous model if and only 1f y = O (since, if L_e’® =1, the
C of the previous model is equal to consumption per heed, c , of the

present model),
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The features of this solution are, of course, the same as in the
previous model. If k = ; ; We have ¢ = g(i)g k = 0 and the Golden
Rule path will be followed. If k< ﬁ s We have ¢ <g(k) for all t
and k{t) will approach ; asymptotically and monotonically. Likewise,
if ko > ﬁ, c > g(k) for all t and ; will be approached asymptoticaliy

end monotonically.

A question that may occur to many readers is: How, if at ali,
does the optimal rate of consumption depend upon the population growth
rate? We note first that in the long run, k > 7£ elyt >0 if ¥y >0
(setting L, = 1 ) while ﬁ +0 if y =0 and a finite % exists (which
means in the present context that ; does not go to infinity as ¥y goes
to zero), so that, in the long run, there is more saving when there is
population growth, both absolutely and as a ratio to income, Since income
per head will, of course, be smaller in the long run when there is

population growth (there being less capital per head asymptotically) 5 con-

gumption per head will also be smaller in the long run,

As for initial saving, given income per head G(KO) = f(ko) , and
labor force L0 = 1, there are two conflicting influences: On the one hend,
the greater ¥ , the smaller will be g(ko) ; the amount available to be
divided between consumption per head and the increase of capital per head,
and this decreases optimal consumption per head as manipulation of a
disgram like Figure 1 will show; on the other hand, the greater ¢ ;, the

Fal ~ ~

smaller will be Xk, ¢ &nd hence u and this incresses the optimal
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consumption per head as diagrammstics will easily show. As for global
comparisons of the sort ¥y =0 vs. 7y >0, it is pretty clear that
one can devise g and u functions that will make the forrmer or the
latter effect decisive, whichever is desired., It might be of interest,
however, to verify that the derivative dc/d7 is of indeterminate sign
without new restrictions on g(k) and u(e) . First, write (2.10) in

the following form to obtain initially optimal consumption per head,

¢
o

)

- 1 )y 4 -
(2.100) [8(k,) - e ] utle,) = ulg(k)] - u(e,)
Taking the total differential we have

de(k )

(2.11) u.(co) 5 dy + {j- u'(co) + un(co) [g(ko) - coi} de

= u'[g(ij] @5&%1 dy - u'(co) de, ,

dg(k ) 9 n
o/ _ dg(k) _
where _E')'——“ = - kO 3 d.‘)f = =k
Lence
de u'(e )k - u'lg(x)) k
(2.12) ° - A

dy u"(co)fg(ko) - co]

While the denominator is unarbiguously negative; the numerator may be of

either sign. The first term there (tsken as a ratic to the denominator)
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represents the first aforementioned influence of ¥ on ¢ through its
effect upon g(ko) (which influence 1s negstive as we indicated earlier)
while the second term represents the second influence of y on ¢

through its effect upon g(g) and hernce ﬁ (which influence is positive}.
Curiously, if k_ = ; » 8o thet initial c = g(f:) , then ch/d7 =0
(initially) but there is otherwise no presumption of such inverisnce.

(This last result does not mean that Golden Rule ; is invariant to y ;

in fact, dgé;‘) <0.)

In this connection I note finally that if there were "utility
satiation" at some ¢ for which ¢ < g then u = ule) would teke the
place of ﬁ in (2.10) and, since u would presumsbly be invariant to ¥s
the second of our two influences would be absent so that an increase of

y Wwould unambiguously decrease optimal consumption.

As we have seen, the optimal asccumulation policy drives the
economy toward the Golden Rule path and hence drives the marginal product
of capital or real interest rate toward the population growth rate. It
may seem puzzling to some resders thet the economy should stop at the
Golden Rule path. Should not society deepen capitel further as long as
the interest rate exceeds the rate of pure time preference {the utility
discount rate) which has been taken to be zero? There are a muniber of answers
to this question. First, an accumulation policy which permanently drove

the interest rate finitely below the population growth rate could not be
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optimal since growth paths which violate the CGolden Rule in this manner are
dynamicaelly inefficient. Second, as we saw earlier, there is in reality
implicit discounting of individual utility rates at the rate y BO it

should perhaps be expected that capitel deepening would cease as the interest
rate approached the population growth rate. However, the following

heuristic exercise mey make the "optimslity" of the Golden Rule path especially

clear,

Coneider the discrete-time analogue of our present model and
suppose that soclety contemplates a departure from the path it originally
intended to follow: Co 3 €1 5 ovr - In particuler suppose that the L0
people in period zero each save an extra unit in period zero with the
intention of consuming the extra capital plus the interest on it in period
one, thus permitting ey c3 » +-. to be unchanged. The initial loss of
utility will be u'(co) since consumption per head has fallen by one unit.
The increase in iotal consumption next period will be Lo(l + 1) where
r 1is the rate of interest or marginal product of capital. If the nurber
of people next period, Ll y» 1is equal to (1 + ¥) L0 then the increase
in consumption per head in period one will be only (1 + r){(1 + 7)"1 and
hence the gain in utility will be only (1 + r)(1 + 7)'1 u'(cl) . Now if
the original path is optimal, the net gain from such proposed alterations

will be approximately zero; hence, for every t,

(2.13) uley) = (1401 + 9) ™ urle,,)
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We see that a stationary progrem, Cu=0C =Ch= oo 3T =T, will

satisfy this necessary optimality condition only if wu'(c) = O , which
the assumption of an unbounded utility function excludes, or if r =y ,

which is the Golden Rule path. And if r = y initially, the stationary

1€y = e =y that is, obedience to the Golden Rule, will

satisfy this condition and hence be optimal.

progrem ¢

Equation (2.13) is the discrete-time version of the necessary

Euler condition for a maximum V in (2.9) subject to (2.5) and (2.6);

(2.14) [; '(c '(c) = -(r-v), r==1"(k).

This equation tells the same story as (2.13).

Cass [3] and Koopmens [8] have also studied the Ramsey problem
(with y > 0 ) when future utility rates are discounted at a positive rate

p . Then the problem is one of maximizing

o0

(2.15) U= [ ePYule(t)lat, o>0,

subject to (2.5) aend (2.6). While p is called the discount rate, we
should remember thaet p + v 1s implieitly the rate at which individual
utility rates are being discounted. Cass and XKoopmans postulate, as

usual, that u'(e) > 0, u"(¢) <0 and u{c) unbounded. Note that since
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p >0, the utility integral will necessarily converge (by virtue of the
concavity of u amd f ), so there is no need for the Golden Rule device.
(It should be mentioned that Srinivesan [17] and Uzawa [19] had esrlier
studied a similar problem, where wu(c) = ¢ , in a two-sector model. The
results in these two pepers resemble those obtained in the one-sector model
considered here. See also the multi-sector analysis by Radner [13],

especially of the "linear logerithmic” case.)

In this new problem, the analogue of (2.13) is

(2.16) wey) = (2 +7) (1+ 7)™ (1+0)™ ur(ey,,)

if one replaces e P? by (1 + p)-t . The Euler equation is now

(2.17) [}—t wuﬂ/w(c) N

Like (2.14), this states that the proportionate rate of decresse of the
marginal utility of per capita consumption, in this case (du'/dt)/u“ - P,
mist equal the excess of the rate of interest over the population growth

rate.

These two equations indicate that, since u'(c) >0 for all ¢,
the only statlionary equilibrium that can be optimal is that path on whieh

r=p+y . If initially r =p + v , a stationary path with constent
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Prer capita and constant r will satisfy the Euler equation. Such a path
is (like the Golden Rule path) a particular golden age path. Following Inagaki
[6], I shall cell this path the Golden Utility path. Clearly it coincides
with the Golden Rule path if and only if p=0; if p >0 , the Golden
Utility path gives & lower cepitel intensity, k , lower income per head

and, of course, smaller consumption per head.

Cass and Koopmens have shown that if the economy starts from a
position off the Golden Utility path, the latter will be approached
asymptotically end monotonically. When y = 0 , this coincides with Ramsey's
result that 1f there is a constant pure time preference rate, p >0 , the

rate of interest will approach that rate asymptotically.

It might be thought that if p < 0 there still exists a Golden
Utility path with r = p + y <y but this is not so. Such a stationary
path satisfies the necessary Euler condition but that path, end any path
asymptotic to it, cannot be optimel in the sense of our optimality
criterion for it is dynemically inefficient (i.e., dominated by another path).
In fact, as Koopmans hes shown, there is nc optimal consumption program

when p <0 .

First; we recall, letting o= - p > 0 , that an optimm exists
*
if and only if thereis at least one feasible path, ¢ (t} , and some °

*
such that, for every other feasible path c_(t), c (t) #c(t) for some t ,

T T
I e ulci(t)lat > [ &% ule (t)lat  for a1l T >1° .
0 0
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Hence, if an optimum exists (for the given k ), there must be a path c(t)

and some T° such that for every other feasible path e(t), e(t) £ e(t) ,

T .
W(r) = J &% (ule(t)] - ule(t)]) at <0, for all T >1° |
o S

*
In particular, eny optimal path, c¢ (t) , is such a path (i.e., will £i11

the role of c(t) .)

Now Koopmans proved thet if p <0, i.e., ¢ >0, then for
every feasible c(t) path and every number N > Q0 there exists another

feasible path c(t) and & number T° such that®

W(T) >N for a1l T >1°

Hence there exists no optimum when p <0 .

The intuitive explanation offered by Koopmans is that if we start
on the Golden Rule path, where u'(e) = u’(;) for all t , then & sacrifice
of one unit of per cgpita consumption in any short initial interval A will
permit an equal gain of per capite consumption in any subsequent interval of
equal duration; the utility initlally sacrificed will be u’(g) A and the

ot

utility geined will be e u'(ec) A which is greater than the sacrifice if

¢ >0 . But it will alweys pay to delay indefinitely the date t at which

1. The proof is overly strong since N = 0 wounld be sufficient.
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the fruit of the lnitial sacrifice is reaped, which suggests that there is
no optimum, {(The exsmple certainly shows that the Golden Rule path is not

optimel, as does the Euler equation (2.17) when p £ 0 .)

To close this part of the paper, we briefly mention another
result which is really somewhet out of the present context. Suppose that
211 the equations on the production side (2.1) to (2.6), continue to apply
but that the world is expected with certalnty to come to an end at some
t =T, or at least that only the period, 0 <t <T , is of interest. A

terminal capital constraint of the form k(T) > k, >0 1is stipulated,

Semuelson [15) and Cass [4] then investigated the optimal
accumuletion program in the intervel [0, T]. Samuelson, working with a

utility function like (2.7),

T
(2.18) u(r) = [ ule(t)lat ,
0

showed that the optimal k(t) path would “arch" (in catenary fashion)
toward the Golden Rule path, ; » &and that, as T Dbecomes sufficiently
large, the optimal path k{(t) will spend an arbitrerily large portion of
the time arbitrarily near the Golden Rule path. Thus, the Golden Rule path
is & kind of "turnpike" quite similar to the von Neumenn ray in models of s

different character. (See the references in [15] for the literature on the

Turnpike Theorem.) Most of the time the rate of interest, r , will be
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close to y , its Golden Rule value,

Caess, working with the more general utility function

T
(2.9)  um) = [ e ule(e)lat,  p>-9,
0

showed that the path on which r =p + y > 0 possesses the identical

turnpike property.

III. Technical Progress and Exponential Population Growth

I first develop the production side of a dynamle economy in
which population grows exponentially or is constant, technical progress is
labor sugmenting and the rate of labor augmentation is constant for all

time.

The rate of growth of population and labor, ¥y , is non-negative

and constant:

(3.1) VORS A AE L

The production function differs from (2.2) only in that there

is a constant rate of labor augmentation, X :

(3.2) Q(t) = FIK(t), e 1(t))
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whence, if we continue to denote by k(t) the capital-labor ratio {not

the cepital-augmented labor ratio as it is so frequently convenient to do),

(3.3) Qe) = M 1(t) 2lx(£)/e**] = & 1(t) £l K(t)]
where k(t) = K(t)/1(%), f[k(t)/ext] = F['-‘i.(t',)/e}'t , 1]
and £7{(0) = 0, £' (k) > 0, £"(k) < 0, £' () = O

Since consumption plus investment egqual output, we have

(3.1) o(t) + K(£)/L(t) = e £[e™ K(t)]

vhere c(t) = C(t)/L(t) .

Since k = K/L - vk , we therefore have

(3.5) o(t) + k(t) = e £[e™ K(t)] - (%), c(t) > 0

In any golden age, c{t), k(t) and hence é(t) grow like M .
Noting this, it can essily be shown, using (3.5), that on the (interior)
Golden Rule path (if it exists), k(t) = ﬂkt) = £(0) e >0 vhere
pile™™ ;(t)] =X+ vy, that is, the merginal product of capital (interest
rate), £1[e™M k(t)] , equals the golden age growth rate, A + y . We

assume hereafter that a Golden Rule path exists.
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In addition to the constreint (3.5), we have the initial condition

(3.6) k(0) = k k, >0

Equations (3.5) and (3.6) are constraints in the problem of optimal saving.

Under what conditions on preferences, given the sbove model of
production, will it be optimal, when k = 1:(0) , to follow the Gelden
Rule of Accumulation or, when k # 12(0) ; to approach the Golden Rule
path asymptotically? Peerce [10], in response to my Golden Rule essay,
agsked the related question: if the economy heppened initially to be on the
Golden Rule path, l.e., ko = ];(O) s &nd bound itself to end on the Golden
Rule path at some T >0, i.e., X(T) = 1;(’.[‘) » thus possibly fulfilling
some obligation te future generations, would society find it optimal to
maintain the economy on the Golden Rule path throughout the intervening
time, i.e., equate k(t) to 1';(1:) for ell t , 0 <t <T ? Pearce then
produced a utility function such that society, to meximize utility in the
interval, would have to depart from the Golden Rule path -- such that
obedience to the Golden Rule would not be optimal, despite the favorable
end-point conditions. BSpecifically he showed that if the social utility

function were

T
(3.7) u(T) = of e(t) at ,

implying constant marginal utility of per capita consumption, then society
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would want (until T ) to deepen capital in excess of the Golden Rule path,
driving the interest rate down to y (below the Golden Rule level A + v )
as quickly as possible and remaining on that (different) golden age path
untll T at which point the capital in excess of the Golden Rule level,

L{T) kX(T) , i1s instantasneously consumed.t

{Note that as T 1is increased
sufficiently, the economy will spend an arbitrarily large fraction of the

time on this peth, so that it constitutes_the "turnpike”, given (3.7)).

Hence, if the utllity function is that in (3.7), it cannot
be optimal to follow the Golden Rule for infinite time since 1t cannot be
optimal to follow that path for any finite interval of time. (In fact
I believe it can be shown that, in the untruncated problem where we let
T + « , there exists no optimum policy at all, when (3.7) is the basis

for choosing among consumption progrems.)

Pearce's analysis suggests the question, under what condition on
the utility-rate function will it be optimal to follow the Golden Rule for
8 finite interval, given that the economy begins and ends on the Golden Rule

path? Conslder the following class of utility functions:
T ot
(3.8) UWr) = [ e P ule(t)lat, u'le) >0, u'(c) <0 .
0 :

Under what conditions on p eand u will meximlzation of (3.8) subject to

(3.5) end (3.6) make k(t) = f:(t), 0<t<T, when k = 1:(0), k(T) = ﬁ(fr) ?

1. VWhy not drive r down to zero? When r = y , the sacrifice of a unit of
per cepita consumption initlally can permit just & one-unit increase of per capita
consumption later so that it does not pesy to meke the sacrifice, thus driving

r below 7y . (Recall also that the impiicit discount rate on individual

utility rates implied by & function like (3.7) is equal to y .
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The Euler condition (which is sufficient as well &s necessary for
a meximm since U is a strictly concave function of the varisbles k(t)

end k(t)) is

(3.9) l:-% u'(cz}/u'(c) =-(z, =7 -0)

where r, = £'[e™M k(t)] .

t

Differentiating u'(e) with respect to time, we find that this equation

mey bhe written

(3.10) E(c) g-ﬂ - (z, -7 -p)

11
where B(c) = % = elasticity of marginel utility <0 .

Now on the Golder Rule path

(3.11) T,=T=\*+y
and
(3.12) S=Z=2

[+

Putting (3.10), (3.11) end (3.12) together we obtain

(3.13) E(e) - a =X +p



Since X\ > 0 here, it follows that E(c¢) must be a constent, say E .
Hence for the optimality of the Golden Rule path in the present end-point

problem it is required that wu(e) and p satisfy

(3.1%) p=ML+E) or E= -1+

*lo

(Were X = O one would require p = O and no restrictions on E(c)} , as

we learned in the previous section.)

It has been shown that, should the economy start on the Golden
Rule and be consirained to and on it, it would be optimel to follow the
Golden Rule throughout the interval [0, T] if and only (3.1k) is satisfied.
Let us now consider the stendard Ramsey problem of finding an optimum when
there is an infinite time horizon and when the economy stearts from an

arbitrary initiel capital stock.

I shall first study this stenderd problem for the class of
u{c) functions such that the elasticity of marginal utility is constant:

E(c) = E = constant < 0 . Then
(3.15) u'(c) = ¢ oF , E<Q,a>0.

The following propositions will be developed:

A. If p>M1+E) (or equivalently E < - 1 + p/A) an optimm
exists. Hence, if we should wish to "treat individusls equally”,
meaning p = - y , an optimum exists if E< -1 - y/a . It
appears that no optimm exists if p <A (1 + E) .
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B. If p=x(1+E), i.e., (3.14) is satisfied, the optimel path
will approach {or coincide with) the golden age path on which
r=:x+1y, 1l.e., the Golden Rule path.

C. If p>xr(1+E), the optimal path will approach (or coincide
with) the golden age path on which r =1+ y+p - A (1L +E),
which is the Golden Utility path.

First we shall cast our constreint equations (3.5) and (3.6) in
terms of consumption and capital per unit augmented labor (elﬁ L(t)) . Let

c(t) and k(t) denote these respective variables. Then
(3.16) Tt) = o(t) e, () = k(t) e
The Golden Rule relations in these variables are

"l't ]

(3.17) f'[ﬁl = f'igit) e =l+7,

Ao -\t fal A
(3.18) c=c(t) e = £{k] - £'[k] k .
From (3.5) one easily derives the new constraint relation

£lE(£)) - (A + 7) K%) ,
c(t) >0,

(3.19) o(t) + K(t) = gl¥(t)]



and from (3.6)

M.

(3.20) k0) = Eo =k e .

Concerning owr utility function, there are two cases to be
considered: E = -l end -1 #E <0 . Suppose first that BE = ~ 1 .,

Then, given (3.15), wu(c) is logarithmic:
(3.21) wc) =lnc,

and our utility funetion is

T
(3.22) UT) = [ eP%1n e(t) at .
0.

Now 1f p <0, maximization of the Limit of (3.22) a5 T + =
will reise the femilier divergence problem. Let us instesd form the integral
V , to be meximized, in which the rate of utility corresponding to the
Golden Rule path, e Pt 1n (;(t)) is subtracted from the actual rate of
utility, e 1n (c(t)) . Noting that c(t) = &(t) e’* by (3.16) we have

o

(3.23) V= [ [e™Pt 1n e(t) - e Pt 14 g(t)] at
0

= fm {1:1 (3(t) e**1 - 1n ['§ em}} e Pt gt
0
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[--3 ~
I {m e(t) - 1nc + At - m} e Pt at
0

[ [1n 3t) - 1n o] eP® at

1

0

First, if p = 0 (in which case (3.14) is satisfied for E = - 1)
then the problem of maximizing V in (3.23) subject to (3.19) and (3.20) is
identical in form to meximizing V in (2.9) subject to (2.5) amd (2.6):
¢(t) repleces c(t) of the previous section, 1n c(t) replaces u[e(t)]
and 1n 2' replaces ; = u(g) . The integral converges and an optimum
exists. By analogy to that problem, the optimal path, when p = 0 and
E = - 1, approaches the Golden Rule path, k(t) = & , if EO # % , and
follows it continuously if ES = % .l Since E = - 1 here, one sees that

this result is consistent with proposition B above.

Before twrning to the possibilities p >0 and p <0 let us
consider further the merits of the time-Independent logarithmic function
T
(3.24) W(T) = J 1ne(t) at
0
which we have just shown ceuses the Golden Rule path to be approached. Can
it be defended as a reessonable social utility function? This function is

implied by the social indifference curve map proposed by Tobin to be

1. That the logarithmic function with p = 0 would give this resulit was
suggested by Robert Solow in a lecture at Yele University in 1963.



"intertemporally impertial”, given a technology like the one under

dlscussion [18; see especially his Figure 2, p. 8, and pp. 15-16].

Tobin proposed that a representative social indifference curve
between per cepite consumption at t = 0, ¢(0) , and per capits consumpticn
at any future date t , c(t) , should have the property that the merginal
rate of substitution (MRS) should equal the ratio of c(t) to <{0) .

Thus, on the 45° line from the origin, where ¢{0) = c(t) , the MRS equals
one or the marginal rate of time preference (MRS minus one) equals zero;

where c(t) = et c(0) , the MRS equals e » meaning that the sacrifice
of a unit of per capite consumption at t = O requires an increase of c{t)

equal to M

to keep social utility constent. Since the "noncomplementarity"
and "stationarity" axioms ere implicit in Tobin's proposed indifference map,

vwe have sn additlve Ramsey-like utility integrel like (3.8); since MRS = 1
when c(t)} = c(0), we have p =0 ; and since MRS = u'[<(0)]/u'lc(t)]

= ¢(t)/c(0) , we bave the logerithmic function {3.24),

Despite the appeal of the logarithmic function, we should remember
that p = 0 is a controversial postulate for it implies that individusl
future utility rates are being discounted at the rate 7y , the population

growth rate, Let us proceed then to the possibilities p >0 and p <O .

If p>0, then the V integral sgsin converges and there is
an optimum. By analogy to standard results obtained for the case A =0,

we can infer that the optimal path approaches a golden age path on which
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r=i+y+p. Since E=-1, p=p « A(1L+E), and we see that this
result is conslstent with proposition € : The Golden Utility path, on
which r =X+ 9y + p - M1 +E), is approasched asymptotically (or

followed contimuously if the economy should start on it).

These results for p =0 and p >0 confirm (for the case £ = - 1)
the proposition A , namely that en optimum exists if p > )\ (L+8) . If
e <MLl +E), i.e., p<0 in this case, we encounter the divergence of
integral V . This strongly suggests that no optimum exists when p < A(1l + E)

although I have not demonstrated this.

Consider now the other case, - 1 #E <0 . Integrating (3.15) in
this case we obtain
Q 1+E
(3.25) we) =g ¢ +8B
w(0) 1f L+E>0(E>-1),

where B={_
u if L+E<QO(E<-1).

In other words, if E > - 1 , the utility rate function is bounded from
below by B and is unbounded from above; if E < = 1 , the function is
unbounded from below and bounded from ebove, U being the upper bound,,

approached asymptotically es ¢ + @ .

Wow we perform egain the femiliar trick of subtracting from the
actual rate of utility, e Pt ule(t)] , the (discounted) rate of utility

corresponding to the Golden Rule path, thus forming the integral V which
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is to be maximized subject to (3.19) and (3.20):

(3.26) V= j'm{e‘pt ufe(t)] - e P* u[g(t)]}' at
0

o0 ~
B a 1+E a 148 -pt
=/ {1..-3 et "+ 8- g o) 'ﬁ}e at

2]
- o - AtL14E Q@ = At 14E -pt
—Of {1+E [e(t) ™17 - 75 (e ™1 }e at

L+
_ I°° @ _ B _@ 27 gle - M14E) ]t
o 1+E 1+F dt .

If p= A1+ E), so that we are doing no "effective" discounting
of the utiiity of consumption per augmented lebor, and (3.14) is satisfied
(the condition for the optimelity of the Golden Rule path in the two-point
problem) then we have agein the standard problem of the previous section.

The integrel converges and an optimum exists. The Golden Rule path is
approached asymptotically if Eg # i and is followed continuously if Eﬁ =% .

This confirms proposition B .

If p>A(1+E) or equivalently E < -1+ p/y , the integral
clearly converges and there i1s again an optimum. By analogy to the
standard result for the corresponding problem without technical progress,
the optimsl path is either coincident with or asymptotic to a golden age

path on which r = A+ y + p = M1 +E) , where o - A1+ E) (>0) is
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the effective rate of discount of utility of consumption per augmented labor.
This 1s the Golden Utility path. It entalls a higher interest rate and
smaller capital intensity than does the Golden Rule path, when p > A(1 + E) .

When p = A1 + E) , the two paths coincide. Proposition C is confirmed.

Finally, as we have Just seen, an optimum exists when p >AM1 +E),

i.e., E< -1+ p/), which confirms proposition A,

Propogition A is quite interesting for it indicates that an

optimum will exist even if there is "equal ireatment of individuals”,

provided that E is algebraically sufficiently smmll. As was indicated in

the previous section, non-discounting of individual utility rates when the
population grows at rate y implies discounting per capita utility, ule(t)] ,
at the rate -y, i.e., p= -7y . As proposition A& indicates, an

optimum will exist, even i1f y >0, provided E <=~ 1 - y/n , for then
p=y>ML+E). Further, if E=-1 -9/, then p=y=r1+E)

and the Golden Rule path will be approached ssymptoticelly. If E < - 1 - y/% ,
then p =9 >M1+E), end the Golden Utility path will be approached. In
any case, it is not true that "equal treatment of individuals" (p = - y)
necessarily precludes the existence of an optimal accumulation policy when

A >0 . Koopmens' theorem on this subject postulated thet A = O . Note

thet the requirement E < - 1 - /A implies that the required E + - «

as A+ 0 when ¥ >0 ; +this supports Koopmans' theorem.

Attention has been confined thusfar to the class of utility rate

functions, e~Pt ufe(t)] , for which the merginel utility elasticity, E(c) ,



1s a constant (E). I shell now describe the results of some work by
1
von Weizsacker [20] and Inageli [6] and draw from this some rather general

conclusions.

Proposition A indicates that when o = 0, B <1 is sufficient for
the existence of an optimm. Von Weizs;cker has proved that, when p = 0
and E(c) is allowed to vary with ¢ , E(c) <1 for all c is a
sufficient condition for the existence of an optimum, given the present
production model. Since proposition A states, more generally, that
E<-1+ p/) is sufficient for the existence of an optimum, it is a
reasonsble conjecture, by anslogy to von Weizsacker's theorem, that, when
E(c) 1s varisble, E{c) < -1+ p/n for all ¢ 1s a sufficient condition
for the existence of an optimum. But it is to be doubted that this is a

necessary condition.

Presumebly, what metters for the existence and asymptotic properties
of an optimal accumlation program is the limiting behavior of E(c) as
¢+« , Inagaki studied the present model (specializing unnecessarily to
the Cobb-Douglas function), employing two utility functions: one of them
having the property that the limit E(») = O and the other the property
that E(eo) = -y, 0<vy <1, with dB(c)/de > 0 1in both cases., He
purported to show that p > M1 + E(w)) is necessary and sufficient for the
existence of an optimum; but the analysis in the present paper strongly
suggests that p = M1 + E(w)) would also admit an optimum, given that
E(») is approached from below, for it was shown here that p = A(1l + E)

is sufficient for an optimmm when E is constant. (This is & reiteration
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of our conjecture in the previous paragraph, given that dE(c)/de >0 .)
If, however, dE(c)fdec < 0 then it would be reasonsble to expect that

p > M1 + E(w)) 1s necessary and sufficient when E(=) exists.

Concerning ssymptotic properties of the optimal path, Inagelki
showed, glven either of his utility functions, that the golden age path
onwhich r =2+ y+ p « A1+ E(w)) will be approached asymptotically.
This-is the Golden Utility path again with this difference: since E{c)
is not a constant in Inagski's model, the economy, once placed on the
Golden Utility path would depart from it, returning to it asymptotically.
This result by Inagekl; together with the previous snalysis, suggests the
following, finel conjecture; If Ef(w) exists and if an optimm exists,
the o;qtimal path will be asymptotic to the Golden Rule path if and only if

p=M1+E(w)) .

IV. Concluding Remarks

There are tvo difficulties associsted with the Ramsey approach
to optimal economic growth on which I shall comment. One is the possible
non-existence of an optimum, The second is the problem of how the social
utility function is to be cbtained. (Another difficulty -- that the utility
functions and production models thusfar considered are unrealistic -- needs

no discussion.)

As was shown; an optimmm mey feil to exist in e variety of models,

even in the model with statlonary population and technology. The possibility
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that no ophbimum will exist is heightened if soeciety wishes to accord
"equal treatment to individuals" when the population grows without bound.
Suppose there exlgte no optimum when individual utility rates are not

discounted. What then?

Koopmans belleves that one might reasonably abandon such a
utility function in view of that consequence. " ... the problem of optimal
economic growth is too complicated, or at leastrtoo unfamilisr, for one to
feel comfortable in making an entirely a priori choice of an optimality
criterion before one knows the implications of aslternative choices. One
may wish to choose between principles on the basis of the results 6f thelr
application.” [8, p.2] An issue which this view raises is: should
social prefereﬁces be invarisnt to the demographic and technological
environment? Koopmsns apparently believes that the environment should be

allowed to influence preferences. But there will surely be many who disagree.

If one insists upon "equal treatment," despite the nonexistence
of an optimum, what program of growth should be adopted? With some
reservation, I suggest the following. The V-integral formed by subtracting
the Golden Rule utility rete from the actual rate of utility will sort
consumption programs into three classes when no optimum exists: those
paths which cause the integral to diverge to minus infinity, those
paths which cause the integral to converge, and those paths which cause the integral

to diverge to plus infinity. The latter class of paths is "infinitely better™ than
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the Golden Rule path and paths in the other classes, My suggestion is 1o
choose srbitrerily a path from this class. My reservation is that if some
path other than the Golden Rule path had been used as a reference path

in forming & V-integrel, the class of "infinitely better"” paths would be

changed.

The other problem that deserves some discussion is the matter of
the social utiiity function. I feel that, in a democratic society, this
function must represent the preferences of those in the body politic, hence
only those living at the present time. If this is correct, then there is
first the problem of obteining a sccial utility function from the (living)
individuals' utility functions. Samuelson's social indifference curves
require centralized information ebout individuel utility functions;
it must be assumed that the government has such information. Second, con=-
cerning those individual utility functions, the present generation must
¥now the preferences of future people if it gives weight to thelr welfare
or if it cares sbout thelr declsions; even its own consumption path will be
affected by fulure governments representing itself and new generations. Hence
this problem is gquite & complex one in itself. And the information requirements

make such snalysis of little value to policy makers.

Is there for policy purposes, an alternative to the Ramsey
approach? That is, must an optimal consumption progrem be computed?
Recently, I considered [12] an elternative in which the government follows

certain rules of taxation, rules which do not require centralized utility
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information, leaving totel saving ultimately in the hands of the consumer

in the market. Would growth then be Pareto optimsl for the present

generation? Unfortunately, there are still considerable information
requirements and, in the presence of merket imperfections, externalities
and overlap of generations, the fiscal principle stﬁ.died cannot be
defended execept as & very crude approximstion to a Pareto-optimal policy
toward growth. So we are still very far from a solution of the problem

of optimal growth policy.
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