Yale University

EliScholar — A Digital Platform for Scholarly Publishing at Yale

Cowles Foundation Discussion Papers Cowles Foundation

11-1-1964

A Parametric Simplicial Formulation of Houthakker's Capacity
Method

C. Van de Panne

Andrew B. Whinston

Follow this and additional works at: https://elischolar.library.yale.edu/cowles-discussion-paper-series

b Part of the Economics Commons

Recommended Citation

Van de Panne, C. and Whinston, Andrew B., "A Parametric Simplicial Formulation of Houthakker's Capacity
Method" (1964). Cowles Foundation Discussion Papers. 409.
https://elischolar.library.yale.edu/cowles-discussion-paper-series/409

This Discussion Paper is brought to you for free and open access by the Cowles Foundation at EliScholar - A
Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Cowles Foundation
Discussion Papers by an authorized administrator of EliScholar — A Digital Platform for Scholarly Publishing at
Yale. For more information, please contact elischolar@yale.edu.


https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/cowles-discussion-paper-series
https://elischolar.library.yale.edu/cowles
https://elischolar.library.yale.edu/cowles-discussion-paper-series?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/cowles-discussion-paper-series/409?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS

AT YALE UNIVERSITY

Box 2125, Yale Station
New Haven, Connecticut

COWLES FOUNDATION DISCUSSION PAPER NO. 179

Note: Cowles Foundation Discussion Papers are preliminary
materials circulated to stimulste discussion and
critical comment. Reguests for single copies of a
Paper will be filled by the Cowles Foundation within
the limits of the supply. References in publications
to Discussion Papers (other than mere acknowledgment
by a writer that he has access to such unpublished
material) should be cleared with the author to protect
the tentative character of these papers.

A PARAMETRIC SIMPLICIAL FORMULATION OF HOUTHAKKER'S CAPACITY METHOD

C. van de Panne and Andrew Whinston

November 13, 196k



A PARAMETRIC SIMPLICIAL FORMULATION OF HOUTHAKKER'S CAPACITY METHOD

CONTENTS

Abstract

1.

2.

3.
b,

5.
6.

Te
8.

G

Introduction

The Quadratic Programming Problem and Quadretic Simplex
Tebleaux

The Simplex and the Dual Method for Quadratic Programming

Houthakker's Example Solved by the Capacity Method in
Simplicial Form

Rules for the Cepacity Method in Simplicial Form
The Value of the Objective Function

Comparison with Houthakker's Capacity Method
Degeneracy, Special Cases, and Generalizations

Concluding Remarks

References

32
39
Wl

L7



A PARAMETRIC SIMPLICIAL FORMULATION OF HOUTHAKKER'S CAPACITY METHOD
by

*
C. van de Panne and Andrew Whinston =

ABSTRACT

The paper reformulates Houthakker's capacity method for guadratic
programming in the fremework of thé Simplex and dual methods for quadratic prograuming,
thereby greatly redﬁcihg the conceptusl and cdnputational complexities of the
method. It is shown that the method is applicable for all convex quadratic programming
problems, including the case of a seml-definite matrix of the quadretic form and
that of constraints in equality form. The method reduces in the linear

programmlng case to & parametric vei'gion of the dual method.

1. . INTRODUCTION

After linear ;prbgraming has been developed, a profusion of methods
for solving convex quadratic programuing problems has emerged. The methods are
baged on rather different ideas, but almost all methods and certainly the most
important ones, have the property of regquiring only a finite number of iterations

to reach the optimm solution,

* The authors are, respectively, at the University of Birmingham and the
University of Virginia. Part of the research reported in this paper was
undertaken by The Cowles Commission for Research in Economles under
Contract Nonr-3055(00) with the Office of Naval Research.

(Paper to Dbe preseﬁted gt the December, 1964 Meeting 'of the Econometric Socieby
in Chicago, Illinols.)
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Little has been done to relate the various methods. This paper intends
to of;t_’er a contribution in this respect by relating Houthskker's capaci%y method.
[4] to the Simplex and dual methods for guadratic progremming (see Dantzig [2]
and van de Panne and Whinston [6] and [7]). A first advantage is that the computa-.
tions of the capacity method can be performed in the framework of quadratic
Simplex tableaux, which reduces the eomputational complexity of the method to a
great ext-:ent.l A second advantage i1s that the properties of quadratic Simplex
tebleaux can be used to prevé that the method works for all convex quadratic
programing problems, 50 that the case of a semi-definite matrix of the quadratic
form in the objective function is also covered; furthermore, it can be shown that
degeneracya creates no substantial difficulties. Ir‘ina.lli, it can easily be shown

that the capacity method is appliceble for any form of the constraints,

We shall start by formmlating the guadratic-programming problem and
explaining the tableaux used in quadratic Si.mplicial‘ methods. In Section 3 the
Simplex and the dual method for quadratic programming ere briefly stated a.ﬁd.
explained. In Section 4 a demonstration is given of an application of the
capacity method in Simplicisl form to an example used by Houthakker: a more formal
statement of the rules can be found in Section 5. In Section 6 it is shown how the
objective function can be given as a functicn of the variable parameter for each

solution. BSBection 7 contains a detailed comparison of the Simplicial formilstion

Hougha.kker already surmised that something like this could be done Cf, [4],
P. C3.

2 _
Cur use of the word degeneracy differs from that of Houthakker, see Section 8.
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of the capacity method and Houthskker's formmlation, Section 8 deals with
degeneracy, the special case of linear programming and the generalization
of the capacity method for any form of the constraints, In Section 9 some concluding

remarks are made,

2, THE QUADRATIC PROGRAMMING PROBLEM AND QUADRATIC
SIMPLEX TABLEAUX

ist us consider the convex guadratic programming problem in the following

formilation. Maximize with respect to the x-variables the function -

(2.1) p'x - Zx'Cx
subject to

(2.2) Ax<b,
(2.3) x : 0.

p and x are vectors of n elements, b is a vector of m elements; A a.nd__ (4
are mxn and n xn metrices, respectively; C is symmetric and positive semi-
definite, An equivalent formulation which is fregueéntly used, is one in which
there is an equality instead of an inequality in (2.2); the present formmlation

1s just ae general and elightly more convenient for our purposes. (2.2) and (2.3}

may be rewritten as

(2.5) X, ¥ 20,

where y is a vector of m slack variables.



-k -

Necessary and sufficient conditions for an optimal solution to this problem

are glven by the Kuhn-Tucker conditionms:

(2.6) P-Cx=Av-u,
(2.7) Ax +y =D,
(2-8)_ utx + vy =0,
(2.9) X, ¥, 0 VEO ;

uw and Vv are veéctors of n and m elements and contain the so called dual
variables., The x- and y-varisbles are called the pri_mal variables; for each
primal variable there is a comsponding dusl varieble, that is, the corresponding
dual varisble of Xy is u, and the corresponding dual varisble of ¥ 3 iz vj 3
for i=1, ..o, n and J=1, ..., m. KNote that aceording to {2,8) and (2.9)
any pair of corresponding primal and dual varisbles in an optimm solubtion should

have st least one variable with & value O.

. Quadratic Simplex tablesux are based upon (2.6) and (2.7).. The tablean
which is obtained by putting (2,6) and (2.7) into a Simplex tableau is called a

set-up tableau; it is given in Table 1; the last row will be explained below.

From the set-up tableau and its solution other tableaux end solutions may be generated.
This is done by transformations of the Simplex tableaux which amount to trensforms-
tions of the equstions (2,6) and (2,7), The transformations are performed in exactly
the same manner as in the Simplex method for linear programming, by pivoting on an
element of the tableau. The selsction of the pivot element which smounts to the
selection of a variable to enter and a variasble to leave the basis differs for the

various Simplicial metheds.
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There are two types of tableaux which can be generated from the set-up
tableau, nemely tebleaux in standsrd form and tablesux in nonstandard Fform.
Tableaux in standard form are defined as tableaux which have no pair of
corresponding primsl and dual variables in the basis., In tablesux in non-
gtandard form there are corresponding primsl and dusl veriables in the basis s but in
the methods we shall treat here there will be only one such pair 5 which is called
the bagic palr of corresponding veriebles. In this case there will also be a pair
of corresponding pr:l:mal and dual variables which are both not in the baéis , this
peir is called the nonbasic pair.

As in linear programming it is also possible to give for each tableaun

the value of the objective function for the current solution. This is done

as follows. Let us write £(x) fqr twice the objective function:

(2.10) £(x) = 2p'x - x'Cx .

Subst.,ituting for Cx according to (2.6) and for Ax according to (2.7), we find
(2.11) £(x) = p'x + b'v - ulx - vy .

For any tableau in standard form, wu'x and v'y are zero since no pair of

corresponding varisbles are glmltaneously in the basis. Hence we may write

for any tableau in standard form
(2.12) f(x) - p'x - b'v =0,

This eguation may be added to the set-up tableau, see Table 1; the corresponding
Tow, which hasas its basic variable f£(x) ie then transformed as the other rows,

bt F£(x) mnever leeves the basis. The value of f£(x) which is twice the value
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of the cobjective functioﬁ appears then for standard tableaux always in the
column of basic variables, For, nonstandard tableaux a slight correction

has to be mad.e.3

TABLIE 1. EET-UP TABLEAU FOR A QUADRATIC PROGRAMMING FROBLEM

.Basic Var.| Values Bas.Var.| u v x y

u ' ~p I =A' =0 0

¥ b 0 0 A I

| £ 0 0 -b' «p' O

TABLE 2, (ENERAL REPRESENTATION OF A TABLEAU IN STANDARD FORM

" Basic Var. ‘J’aﬂ.ueﬁt .;_Bas'Vé.r; },xl e _' A %
p i 9. ql' -q_2' O. 0
ut T Q -P* I 0
<2 e P -R 0 I

Tablesux in standard form can be shown to have (see [7]) pattern of symmetry

and skew-symmetry. A general representation of & tebleau in stendard form is

glven by Table 2. In the tableau xl stands for a vector containing all basie

primal variebles, wl ror & vector containing all basic dual variables and u?

5 cr. [61.
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for a vector conbaining all nonbasle dual variables. The arrangement of veriables

is supposed to be such that the u-vectors contaiﬁ the duel veriables of the

variables in the x-vectors in the same sequence; Q and R can be shown to

be positive semi-definite matrices. Note that in the set-up ta_bleau the matrix

-R 1s a zero matrix, Note also that the symmetry and skew symmetry properties extend

t0 the values of basic varlebles and the elements in the row of the objective

funection.

Tebleaux in nonstandard form do not have these symmetry properties, bub

the methods we shall consider generate nonstandard teblesux which have similax
essential properties.

3., 'THE SIBEPIEEX AND THE DUAL METHOD FOR QUADRATIC -
PROGRAMMING -

The Simplex method for quadratic programingu has been first discovered
by Dantzig [2]; & set of complete proofs for the convergence of the algorithm
can be found in [7]. It can be séen as a stfa.ightforward generalization of the
Simplex methed for linear programming., The dual method for quadratic programming,
which is closely relsted to the Simplex method and which can be considered as a
generalization of the duwal method for linear programming has been proposed by the

authors in [6]. 8ince the Simpliciel version of Houthekker's capacity method is

4 It is difficult to find the right nomenclature in this case; Wolfe uses the

same neme for his method; Dantzig “a variant of the Wolfe-Markowitz algorithms.”
Despite the fact that the name Simplex method may lead to eonfusion, it is used
because of the close relationships of the methods treated here with Simplex and
dual methods for linear programming,.
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based on both methods, we ‘shall give a brief description of these methods.

Pirst the Simplex method for guadratic programming will be described.
The algorithm sterts with a basic feasible solution to the constraints; this
may be the solution given by the sét-up tableau given in Table 1, or it may be
another solution; in the latter case the correfsponding teblean is easily
generé.teﬂ. from the set-up tableau, see [6]. The resulting té.'blgau is in standard
form. The tablesu has then primal basic variables which are all nonnegative, but
the dual basic varisbles can have either sign. The method consists of choosing
variables to enter and to leave the basis, end transforming the tableau, using
as a pivot the element in the column of the varia:ble which ig to be introduced

into the basis and in the row of the varisble which is to leave the basis.

In case the tableau is in standerd form, the varlable which is %o be
inmtroduced into the basis is the corresponding varisble of the duel baslc variable
which }ms the largest negative value, In case the tableau iz in nonstandsrd.form,.
the dual wverisble of the nonbasic pair is introduced into the basis. The varlable
which is to leave the basis is found by choosing the one connected with the
smellest positive ratio of the elements in the columm of values of basic varisbles
and, the column of the new baslc varieble and in the rows of the primal basic
vatriables and in the oW of the largest negative dual variable in case of a
standard tableau and tﬁe row of the dusl tariable of the bagic pair in case of
a nonstandard. These rules guaran'i:ée that in any nongtanderd tableau there will
always be only one basic p;xir and one nonbasic pai.‘r of corresponding prim;al
and dusl variables. It can be shown that the’objective function never decreases

in successive solutions and that the ophbimum solution can be obtained in a finite
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number of steps. Degeneracy in the sense of basic variables having zero values

can be coped with by using the usual perturbstion technigues.

The following properties of tableaux in nonstandard form play & rather
crucigl role in the method. They involve the elements of the column of the dual
varisble of the non:oasic palr, that is the variable which is to be imtroduced .
into the basis. The glement in this colum and in the row of the primsl variable
of the basic pair 1s nompositive; if this element is zero, then all elements in
the same columm and in the rows of primal bas;!.c variables are zero. Furthermore,
the element in the same column end in the row of the dual varieble of the basic
Palr is negative. This means that there will alweys be at least one pivet in
case of a nongtandard tebleau, namely the element in the row of dual variable

of the basic pair. For details .and proofs, see [T].

In the dual method the roles of the primal end dusl varisbles sre
lnterchanged. We start with a basic sclution of the tableau which is nonnegative in the
dual variables, introduce intc the basis in case the tebleau is in standard form
the dual variable with the largest negative primal verisble and in the case of a
nonstandard tablesu the primal varlable of the nonbasic pair, etcetera. The
broperties of a ‘tableau in nonstandard form are the same sfter an interchange

of the roles of primal and dual verisbles.

If there is no basic feasible solution available in terms of either
Primel or dual variables various starting procedures can be used. In the
context of Houthakker's approach one of the starting procedures for the dusl
method proposed in [6] is interesting. It consists of adding to the problem

an "artificial congbtraint®

(3.1)  x, S,
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where A 1is taken so large that this constraint is not effective for the
optimm solution. This device is the counterpart of introducing artificial
varisbles with large negative coefficients in the objective function into

the primal problem.

Tt turns out to be exactly the seme additional constraint Howthakker
is 't:Ls»i.n.go5 The difference belween the duel method wiih starting procediurs
and Houthakker's capacity method 1s that Houthakker first obtains an opﬁimalr
golution for A = O and the traces through the changes iIn the optimal solution
for increesing X , while the dual method with sterting procedure solves the
problem by the dual method, taking a lerge value for A . In Section 9 we shall
indicate a variant of the dual method which can be shewn to bz eguivslent to the
capacity method. We shall apply Houthakker's idea using quadrstic Bimplex

tebleaux and the ldeas of the Sﬁxiplex and dual methods for quadratic prograweing.

b, HOUTHAKKER'S EXAMPLE SOLVED BY 'THE CAPACITY METHOD
IN SIMPLICZAL FORM

In the capacity method for guadratic programming the so called capacity
constraint

n
(Lko1) Zx 82
l=1

1s added to the other constraints of the problem. In Houthakker's example

this congtraint forms elready part of the problem and )\ has an upper limit

2 Hdui;ha}dcer used P insead of A .
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of 1 2/ %3 , First we shall solve Houthakker's example by the Simplicial
version of the capacity method; afterwards we shall attend to the details of

the equivalence of both versions.

The problem is to maximize the function

-

l—‘l'

' 6 1 8 of [x]
X
o ) 1 10 1 L4 |x
1 . 2
(h‘eE) E.S 16 22 2(2:‘ XB - '§ Ecl X2 J% XIJ 8 1 17 5 2%
Lxu o 4 3 1l %),
subject to
s o 10 of [f] [e N
(k-3) | o 4% o s |%25|3
1 1 1 | 1%/3
T
and
(4t} X, X, X x;ll > 0.

The last equation of (4.5) serves as the capacity constraint "and we replace
therefore 1 2/ 5 by the variable parameter XA . For this problem the set-ur

tableau can be given as in Table 1 for the general problem.:

The result is Tebleau O of Table 1. Since y5 , Tthe slack varisble
of the last equation of (1&_5) is dependent on A , the values of basic variables
are in genersl dependent on: A .- Hence the values of basic variables consist

of two terms, a term independent of A and a term dependent on A , =50 that we

i‘bh

can write for the value of the basic varisble in the row

(l{m5) r, + Sil a

i
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The T, ave given in the colummn’ of the independent term, the = 4 in the
column of the A-term. In the set-up tableau the i-term column has zeros

everywhere except in the row of yB .

The golution given by the set-up tablesu is nof: an optimal zolution,
since for an opbimal solubloh we mmist have a standardi tableau with nounegative
basle varisblas, whereas for any positive value of A sall u-variables az“"e
negative in Tablean O . However, an opbtimum golution for A = O can be easily achieved
by the following two lterations, which are essentlelly en application of the
Simplex method for quadratic progremming. Note that the solution of the set-up
teblean is a feasible solution because the primal variables are nonnegstive for

lmoo

According te the rules for the Simplex method, we introduce into the basis
the corresponding primal varisbies of the largest negativwa dual varisble; hence x3
iz introduced into the basgis. In order to determine the variable to be replaced

we compare the rabios

(4.6) 2., 5.5

[

Since the last ratio must be the smallest for A =0, has to leave the

3
bapis; Tablean O ig then itransformed into Tablean 1 with the underlined

element -1 as a plvot.

The tablesu is now in nonstandard form and we therefore introduce into

the basis the duwal variable of the nonbasic pair which is Vg

the varisble to leave the basls, there i1g only one ratio to be congidersd, viz.,

In determining

(ko) -22f-1 ,
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TABIE 3

SIMPIEX TABLEAUX FOR AN APPLICATION OF THE
SIMPLICIAL VERSION OF THE CAPACITY METHOD

Bas., Veluss Basle Verleblss Nonbasic Verlables
Tebl,| Var. | Inde Ge | A-term | CTe Ve & =0 T | Vp | Ts | B | % % %4
W -18 0 ~18 ) 0 -l =6 -1 =8 0
u, -16 0 16 0 | b | =1 | -1 ]| =10 |1 |k
u 22 0 22 | -0| 0 <L | -8 -1 |17 |3
© w, -20 0 20 o {5 |- | o} -k |3 |-
¥ 2 0 2 o oo f{ 5| o [0
¥, 3 0 3 o]l oo}l ol » jo |5
¥5 0 1 0 o | o) o} 1] 1 j1 |1
A=0 Vl ‘V'a ‘V'3 Xl x2 Y5 Xh’
w 18 8 18 | -5 | o || 2] 7 |8 |8
Uy, ~16 1 =16 0 - | -l 0 -9 1 -3
u 22 17 -22 0] o f<L | 9 16 17 | 14
1 v, -20 5 -20 o |-s =2 | 3| -2 (3 [-8
' 2 ~10 2 o} o] o0 |-5] <10 |-10 |-10f
¥p 3 o 3 o { o {ojof % (0 |5
x, 0 1 0 ol ool ] 1 {1 |1
a =17 MR ERES y5 %y,
w n -9, L9 2/1 5 | o |- |=1] 9 |9 |6
u, 6 -16 3/8 P | ol Jaa 9| -2 [-16 |7
vy 22 =17 1°/17 191"/7 10 0 |«1 } -9 | =16 [~17 |-1H
2 w, 2 -1k 1/7 0 10]5 {1 | =6 | -7 |~1% {-22|
5 2 -10 1/5 L/7 0 0 0 | -5 | ~10 [<10 [-10
3’2 3 ] 3 0 0 O o) L L¢] 5
>\ 0y \ ° \ 1 - /1 °©]° LOJ A }""




TABIE 3  (Continued)
© Bas. ~Values Bagie Variables - Nonbagsils Variable‘a ' .
Tebl. | Ver, Ind. t. | AMterm |[Cr. V. X | A = 3/10 vy vy Uy Xy X, V3 u,
oy | ¥m -5%/11 2/% /10 | 2/ | | S | st | ewtm fest/a 2/
u, w1 | 51 | u9/sT 22/10 11| Bee | Do |t | wn/ee | 5P | AT/ee
3 Vs 208/11 -=81/11 2°°/89 183/10 37/11 32/11 -1’/11 -52/11 =521 )-8t/ | -7
3 f x, | -/ T | Yo | Ppn e | Ve 311 YWl Tz | -Yrez
oy | Pm | ST P b oo | 2m| Zm| dm jPm | 2msTm | Sm
G | Pm| S| P P | 2m| Ve | e | et | e
% ANt s * 5 21| 2fee | -.rljgar 81 5 /02 7 b | e
| IR A 1 v, | % . x ) ¥y u,
: w o | ok -7 W b o 12 | e | e [-642 | -sYe |t L/
= w, | 5 -7 5/1 1 iz | 1 0 sz | -3 |- -1
| v |25 | 12/55 1573 | 45 | 5 0 - S I
wooox | Y5 ] 2Tlyss |- Mo | o 0 Y2 1 1 0
Covy | s | s - Fap | Mo | e | e | Y Y2 | Y5 | Yo
| Y 4 -5 4/5 1Y/7 12 0 o -2/2 ST ) 0
x, /5 0 5 Yo o 0 /e 0 0 0
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TABIE 3 (Continued)

Values Basgle Variables

Bas. Nonbasis Varlables

Table Var. | ind. te | A=term | Cre Vo A | A = 33/35 Yy Vo u§ wy X, V3 Yy,
%, | =/13 | 113 s | iz | s | s | s | s | ats | s
u, 183 | alns | aYe 3 Ly | 13/e6 | a6 | Mz | 806 | at/is | /26
v, (1796 | 3% | ¥Pees | wi/ss Wes | abjas | Tz | alas | aYas | 3% | <%
s | x| Ve | 9755 | e | Spes | s | Yz | pes | Gz | e
v, | P | e Wyss | | s | Syes | Vs | Y| Ties | Y
v, | 3 |23 | 20 | b5 | Bjes | Spes | s | 1dfe | bz | a6
x | Ple | s | P 0’ 965 | Sje6 | Lpes | Y5 | Pyes | s | Hes

A=l Iy Vo % ! *2 V3 "

x | %/ 0 R 5 | 5 | o 2 0 0 0 0

w | T/ -1 1*/35 s | 5 | 2 11 0 13 -7 1

vy | 24/5 a1 | 2255 | s | 25 | s 14 0 -7 | -

6 x, -2/5 1 3/5 /s 0 -1 0 1 1 0
v, |19/ | 25 Wiss | Mpps | cx |55 | M5 | 2215 | 25 | s

Yo 5 -5 1 0 1 0 5 0 - -5 0

~131/5 1k h/5 22/ -5 -26 -2 1n 14 1
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TABIE 3 (Continued)

Valﬁas Beaic Variablas

o Bas. _ : _ Novbagis Vearisbles

Tabl. | Var. Ind. to | A=term [Cre Vo A A= L Ty u, :4‘3 ey ¥, y:é ,

% %/5 0 2/ 5 o| =2 0 0 0 0

v, | /5 | -7 5 35| 1l 1 o lo | a3 | |a

) -12%/5 24 12%/5 -5l’/ 3 «5 1 =k 0 58 2k L

7l ox /s 1 35 /5 o| - 0 1 1 0
vy | e | Y /2s Bres| 1| P55 |uads | s | s

N 2 -3 0 1 0 5 0 =1 ‘-5 0

w |2 | -a s s | os| 29 e | sk | a1 |

ve e | v | v | om (wm | v | v |

x 2/5 o 25 /s o} 2 0 0 0 0

v, |75 58 %665 | ®5 | 1| b o | 3 | 8 |

v, |ew®/s | -e66 | P66 0 selfs | 5| 2w | o 58 | -266 | &

8 | x, | ¥/ -k 1°/20 P/133 Y51 ol 0 1| -k 0
v, otz | 52/ Bysos | a0Bjes | 1 [-e¥s |5 [-n®/s | sts | <Ys

X, | -5 5 /133 -1 0| 5 o | - 5 0

U L2475 249 1321/ 665 19°/5 5| -2 |-2 5k ohg | -h




so that u3 leaves the basis. Hence Tableau 1 is traensformed into Taebleau 2
with the underlined element -1 as a pivot. Tableau 2 is in standard form; _
furthermore all basie verigbles are nonnegative for X = 0 , so that the solution
is optimal for X = O , Note that the columm A-term and the y3-colunm are

identical, as they have to be, since they were in Tebleau 0 identiesl unit vectors.

It 1s at this point that the parametric procedure is started. We are now
looking for a value of A vwhich makes a basie Variable6 zero. If besic varisbles
have nomnegative entries in the A-term column, their values do not decrease with
inereasing A , 50 that their values cannoct become zero or negative when A is

- increased. Hence the value af % af which cone of the values of the basie

varisbles becomes zero, the criticel value of A, is determined by

I

1.
 (48) H;L.n‘ =, 8, <0 | .

Note that not beth N end s g cen be negative, beceuse the value of the

basic variable would then be negative.,  The valués ri/ -8 N for neg_a:hive By

are written in the colwmn Critical Value X » We shall call the basic variable

connected with the crifical value of A the eribleal variasble,

In Tsblesu 2 we £ind that the criticel value of A\ is 1/7 in the row of
w, . Bubstituting X\ = 1/7 into the values of baéic variebles, we find the numbers
for these values as given in the column X = 1/7 in Tebleau 2. Note that this
sodution is a degenerate -one because uh is zero. Tf A 1s slightly larger
‘ than l/ T uy, is nega’(‘:iVe. Hence, in order t.o keep {the solu‘t:ion nom&egative
(and therefore optimal) for A 2 1/7 , we introduce according to the rule of

the Simplex method for guadratic programming %) into the basis. In deciding

6 Or perhaps more variables in some cases. We discuss these cases in Section 8,



- 18 -

which varisble has to leave the baeis we evaluste the values of 'bas'ic variables

et A =1/7 . Hence we mmst compare the ratios

(4.9) =%

so that uh_ has to leave the basis.

Note that the variable which becomes -zero will always leave the basis
unless the element in the row of this varisble and in the colwmm of its
corresponding verisble is zero; this element is nonpositive (see Table 2). If
this element is nonzero, the next tabl_ea.u will be in standerd form. Hence
Tableau 2 1s transformed into Tableau 3 with the underlined element -22 as a
pivok. For A = 1/7 the solutlon of Tableau 3 1s the same as that of Tablean 2, -
but the golution of Tablesn 3 is e_.lso valid for higher values of A . Whereas the
solution of Tableau 2 was nomnegative for the 0 <X A S 1/7 , we find that tke
solution of Tableau 3 is nomnegative for the range 1/7 S A S 3/10 where 3/10 is

the critical value of A for Tsbleau 3. For X =3/10, y, becomes zero.

Here the rules of the dual method mmst be aepplied, which means that the
dnal variable of Yy 5 ¥y mst be introduced inte the basis. Since the element

in the row of ¥y and the column of v, is -4 ty.‘].l and therefore nonzero, V

1
replaces ¥y in the basis, and Tableau 3 is transformed into Tableau L with

1

-l 6/ 11 as a pivot. The critical value of A for Tableau 4 turns 6111: to be U4/7,
50 that its solution is nonnegative for 3/10 SA S W7 . At A=W/7, u

beceames zero, so that %y mst enter the basis according to the Simplex method
rule, The element in the row ‘of uy and the column of X igs nonzero, so that

it can serve as a pivot and Tableau 5, another tableau in standsrd form is

generated, which turns out to give a nonnegative solution for }-l-/ TS § 33/35 .
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For A= 33/355 x3 becomes zero, so that u3 is introduced into the basis.
The element in the row of :r3 and the column of u3 is nonzero, so that

Tableau 5 is transformed into Teblean 6 with -1/26 as a pivat.

For Tablesu 6 we £ind & criticel value of A of 1, et yhich value ¥,
becomes zerco., Hence we introduce (according to the rules of the.dusl method

for quadratic programming) vy , but we find thet the element in the row of ¥,

"and the colum of v2 ig zero. We must therefore compare the retiog of the
elements in the columms of velues of basic variables for A = 1 , and the elements in

the column of Vo in the rowe of dual basic variables.

(%.10) /5 Eﬂi .

As a result it is decided that 1, leaves the basis, so that the plvot

2
element is the underlined element -1 . Tsbleau 6 is then in nonstendard

form. Because we are in nonstandard form and are epplying the dual method,

we must introduce the primal variable of the nonbasic pair into the basis.

Thig is Xy o According to the properties of tableaux in nonstandard form,

the element in the columm of the primal varisble of the nonbasic pair and in

the row of the primal varlable of the basic pair must be negative. This is the
underlined element =1 . Since the value of the primal varieble of the basic pair

is zero for A =1 , this variable leaves the basis and we pivot on -1 .

The next tableau ig in standard form sgain. The critical value ls now
1 33'/665 and is connected 'Witl"l Vg Hence ¥ is introduced into the basis
and since the element in the row of v5 and the column of y'3 is negative, it
can perve as a pivot. In the next solution ¥ ie basie, which means that any

inerease of ) does not affect the. solution any more, This can also be concluded
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from the A-term of the values of basic varisbles; the A~term column is in this
cage Just a unit vector with\'bhe unit element in the y5 row, so that any increase
in ) only increases y5 and leaves the other basic variebles unaltered, It is
not necessary to write down the next tableeu since the solution of Tebleaun 8 for
M=l 1'/ 665 does not change because the vglue of v

3
A sl 53“/665« Since 1 ?11665 is less than 1 2/5 s ‘the upper limit of X, the

in thig tebleau was 0O for
problem is solved.

5. RULES FOR THE CAPACITY METHOD IN SIMPLICIAL FORM.

It will now be clear that the rules for the Simpliciel version of the
capacity method are verj; simple ones indeed, We shall now state these rules
explicitly, assuming that the constrainis:. of the problem have the form (2.2),
(2.3), and that the elemen{:s of b are nonnegstive. In Section 8 the capacity

method will be generalized for cases which do not satisfy these requirements.

Firgt, the set«;up tableau for the problem inéluding the capacity constraint
:!.ss‘ congtructed with the values ‘of basic variables split into two columns, which
give the independent term and .the A-term of these values; A dis initially baken as
0 . The result is given in Table L. TIts last two rows a.ré discussed in Beé¢tion 6.
The slack variable of the eapacity constraint, which is basic in the set-up
tablesu, will be denoﬁed. by Ve » and its corresponding variable by v, e
The procedure_“is then given by the following three steps, of which the first

or;e cccurs st the gtart oﬁﬂy.

STEP 0. Transform the teblesu with the element -in the row of ¥ o 2nd the

coluhm- of the corresgponding varisble of the largest negative duasl variable ag a

pivot; transform then the tableau with the element in the row of the Jargest

negative dusl verigble and the column of v, 888 pivot.
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After this step we will have a standard tablesu with a nonnegative solu-
tion for A = 0 ; hence we have an opbimal solution for A = 0. We ca.ﬁ then
staxrt the proper part of the ecspaclty method which is connected with varying A .
Iet us call the varisble which ig connected with a critical value of XA in the
gense that it becomes zero for thet eritlcal vglue » the critical varisble. The

remainder of the procedure consists then of the follewing two steps.

TABLE 4, SET-UP TABLEAU FOR THE CAPACTTY METHOD IN SIMPLICTAL FORM

! - .
N | Bt * Y e XY T
u -p o | 1 -a' -4 ¢ O O
y b 0 0o 0 0 A I O
¥, 0 1 10 o0 o LI ¢ S
£, 0 o 0 b 0 - 0 O
£y, 0 0 0 0 =1 @ 0 0

STEP 1. Debermine

Ty '
(5.1) A = Min g, <0 )3
c " wsi i

if the element in the row of the critical variable and in the colum of its

corresponding varigble is negative, transform the tableau with this element as

& pivot and repeat Step 1; if this element is zero, apply Step 2.

STEP 2. Determine

(5.2) min (T3t A
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vhere %, stends for the element in the 1" row in the colum of the

corresponding verieble of the critical veriable, Transform the tableau with

the elemsnt in the row connected with {5.2) and the column gf;,-thé corresponding

varishble of the critical variable as a pivot. Transform the tableau with ithe

element in the row of the cristicel variable and the column of the corresponding

verisble of the varisble connected with (5.2). Return o Step l.

TERMINATION. The procedure terminates when no critical value A, can be found

any more. If Y, is then in the basis, the golution to the problem has been

found, if y, 1s not in the basie, the problem has an infinite solution.

Step 0 must lead to a nonnegative solublon for X = 0 . This can be
proved as follows. _ The Pirst transformation dozs not lead to any change in the
independent-term columm of values of bagic verisbles, and in the column of v, -
In tﬂe second traneformation the W%alues of the y-variables remain equal to the elements
of b, but the u-variable.s change ag follows. Let the u-variable with the largest
negebtive value be w, 3 this variazble ;':I.'g replaced in the basis by v, $ the value

of v, is then -p m/ -1 . For the other variables we have

™

(5.3) u, = -py - (-1) = = -py- (-p,)

which muet be nonnegative eince -Py < Dy e

After the optimum solution for A = 0 is cbtained, M 1is Increased
and the opbimum solubtions corresponding to increasing ranges of A are traced.
Step 1 starts by taking the i"a.tiof of the elaments of the indspendent term
and the A-term of the values of basic variasbles. The critical value of A

is then given by (5.1); for A = A,c the critical varisble becomes zero., According
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to the Simplex or the dual method for quadratic programming we should introduce
into the basis the corresponding varisble of the critlcal variable, end take

ratios for either the primal or the dual varisbles (according to whether the
eritical varieble is a primsl or a dusl one), and for the row of the critical
varieble, taking A = )\.c « Bince for A = Lc s the eriticel variable is zero,
the ratio in the eritical varisble is elways =tm smallest, provided the
denominator is negative (it is always nonpositive according to the properties

of a general tableau in standerd form). Hence the critical varia‘blg always leaves
the basls if the element in its row and in the column of its corresponding varisble
is negative, The next tablean is then again in standard form and we can repeat

Btep 1.

Tt may occur that the minimum in (5.1) is not unique. In this case two
or more basic varisbles become zero for the same critical value of A » A
éimple rule is 'theﬁ to select sny of the variables connected with the minimum
as the eritical variable, which, however, theoretically may resault in cycling.

For & rule which avoids cycling, see Section 8.

Since for A= )..c the value of the basic variable in the pivot row is
zero, the solution must be the same for that value of X% in the tableau before
the transformmtion a:mi the one after the transformation. For other values of A
these two solutions are of course different. In the old tableau the critical
variable was nonnegative for A S Lc s Whereag in the new ta‘;;leau its corres-

‘ponding varieble is nonnegetive for A 2 Lc s Dbecause its value is

H

5.

g —
8 A
¢

(5.4)

<L
a
c

where ac denctes the negative pivot.
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It cen now be shown that the next critical value of A is higher than
or equal to R‘c « For the value of basie varlables other than in row < we have

a a

i i
(545) (z, - 5 r) + (s - 5 8,0 s

where a.i denctes the element in the old tablesu in row i and in the column

of the new basic veriasble, We have thea to show thai

a
1
ri'_'s-.';rc >rc ai
(5::6) & = ':5"“ fTor Si-a-—'sc <0 .
I DO c
i a c
o]

T, and -sc are nonnegative and positive, respectively. Suppose r, = 0,

then Lc =03 T 1 mset then be nonnegative, since it gtands for the value
of a basic varlsble in an optimal solution for X = O , Hence (5.6) 1s valid

in this case. If r_ 1is positive, (5.6) can be written as

T 5
i> 1
(5.7) F 5 ¢
‘ e ¢

(548) =2 £ =

which mist hold since 1t involves the definition of the.oritical value of X .

In the case s, 2 0 and r; 20, (5.7) must dbviocusly be velid.

<0, (5,7) follows from

i

In the case s, £ 0 and r,

(5.9) T, + 8

-
i 12\.0.;0 ¢
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The situation is more complicated when the element in the row of the
cxritical varisble end the column of its corresponding varieble is zero. This
is the nonstandard cage of what Houthakker cells degeperacy, and what we shall
call the case of a nongts.nd.arc} lteration or a nonstandard case; if the element is
nonzero, we spesk of a standaricase or sbandard lteration. In order to deal with this
case, let us conslder Table 5, which gives the relevant parts of a general tableau
in standard form., The notetlon of the elements in the body of the tableaun is in
accordance with the one used in Table 2, The values of basic dual varigbles are
dencted by q's and those of basic primal variables by r's, the W-term elements
being distinguished by a bar. Dual varisbles are denoted as u-variables and
primal ones; as x-variables. We assume that the critiecal varisble ie an
x-~varigble; if it is a u—va.ria.ble., the roles of primal and dual variables are
interchanged. Since @cc is. the critical, we must, in sccordance with the
dual method, introduce u, into the basis, but now the element “Too is
found to be zero. Accbrding to the properties of a general tabléau in standard

form,

TABLE 5. TABLEAU FOR A NONSTANDARD ITERATION

B.v. val. BoV@ % | X.b .o | uc °
T I T T S
Bl % y “dgp “Pep
*e ic ° Pop ® Tee °
*g Ty * Pip Tie  ”
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the elements “Tya for 1 # c¢ should also be zero. In order to find the

variable to leave the basis, we have to compare the ratios of the values of
bagic varisbles, taken at A = ).,c ,» and ‘the corresponding elements in the
colum of u_ . Since now -r and hence all -r

c ce ic
a positive ratio, if it exists, must be found in the rows of the dual wvariables;

are assumed to be zero,

let us assume that the smallest positive ratio occurs in the row of w . w
leaves the baéia and the tablesu 1s transformed with the element “P,;, 88 & pivot.
Note that in this transformation the rows of the primal variables remain entirely
unchanged. Note further that these must alwsys be at least one positive element
“Pos since othgrwise there would only be nonpegative elements Poy in the row of
X, which contradicts the fact that xc may become negative. For details,

see [7], Section L.

According to the rules of i‘.he dual method for quedratic programming,
the corresponding variable of the varisble which just left the: basis is
introduced into the basis, Since Py is known to be negative (—pcb was
found to be positive) and X, =0 for A=X , X, 6 must leave the basis, so

that Pop is the pivot of the transformation. For x, we have then

( ) : T, T,
5 .10 T it T — ),
"o Peb Pop
. o
which is nonnegative for A 2 —— , -

so that we have found a solution for a new yange of A . It can be proved that
the critical value of A for this tablesu is larger than or equal to the
Previous initial value. Since we are in stendard form again, we can repeat

S'be,'p I
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Summarizing the precéd.ure, we see thal finding optimsl solutions Ffor
increasing values of A can result in two cases. In the standard case we
find immediately a pivot in the critical row., The next tableau ig then again
in standard form. In the nonstandard case we use first s pivot in another row
than that of the criticel varieble; the transformsbion resulte then in a tableau
in nonstandard form. In the next transformetion & pivet igs used in the row of the
critical variable, and we are back in standard form. The standard case reguires
only one transformation, the nonstanderd case requires two. Nobe that in the
standard case the value of both primal and dual variables are the same for the
two successive standard tebleaux for the critical value of A . In the
nonstandard case this 1s generally not true., If the critical varisble is a
primal veriable, the value of the primal vsrisbles in the three sucecessive
tableaux are the same for A equal to its eriticel value, but the values of the
dual variables will in general differ for the first stendard tebleau and the non-
stendard tablesu (compare Tebleaux 6 and 7 of Table 3). The values of sll basic
variables are again equel for the critical value of )\ in the nonstandard tablesu
and the second standard 'habléa.u. If the critical varliable would have been a dual
one, the dual varisbles would have remsined the seme for the critical value of A ,
but the primal varlables would differ in the first standard tableau and the non-

standard tablean.

The situation is the same as in linear programming, when one of the basic
varigbles is zero; in this case there are two sets of basic variables giving the
same optimal solutions with different shadow prices. The case when a dua;l. veriable
is the critical variable in a nonstandard case is equivalent to the cage in linear

Programming when one of the nonbasic variables hags a zero element in the last row.
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of the optimal tableau, so that there are miltiple solutionz. The differsnce
is that in linear programming the dusl varisbles are usually given in the last
row, Whereas in the Simplicial formulation of quadratic programming th;ey are
considered as regular basic varisbles. In Section 8 we ghall see that in the

case of & linesr programming problem, which is essentislly a speclal case ¢f the

guadratic programming with C = 0 , only nonstandard cases occur.

The procedure terminstes when no new critical valiuve of 3 .can be found.
If Yo is then in the basis, incressing A will only result in incrqasing Y, 3
all elements in the A-column will be zero apart from & unit in the row of Vo s
as it was in the set-up tableau. v, will then be nonbasic, having a value
zercs, which indlestes that an incresase in A 5o longer increases the eb,jezctive
function. It is clear that in this case the capecity constraint g redundant,
If no eritical value for A 1is found and Y, 18 not in the basis, the capacity
‘constraint remains effective for all velue of A . Note that in this case the
elezgent in the row of Vo in the M-term columm must be zero; it cannct be
negabive because then v, would be the crifical variable, and it cannot be positive
btecause it is egual to "bhe element in the same row in the celumn of Yo which is
& diagonal element of a negative semi»;iefini’be matrix. Since in this case 'the Values
of the primal basic varisbles increase with A . the problem must have an infinite

solution,

6. THE VAIUE GF THE OBJECTIVE FUNCTION

Ve can be interpreted as the partisl derivative of the constrained

objective function with respect to A . This follows from the definition of v,
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as minus the partisl derivative with respect to Yo ,T end from the capacity
constraint in which both ¥, and A eappear. This can be demonstrated more
clearly by introducing explieltly into the tableaux the value of the objechive
function, as was indicasted in Section 2, see the last row of Table 1. The
difficulty in this case is then that, since we added the capacity constraint to
the problem, the row-vector b' depends on )\ . The remedy consists in separsting

the parts of the last row independent of A and dependent on A .

The result is then as given in the last two rows of Table 4; the basic
varigble in the first of these two rows is indicabed as fi s &and in the second
Bs fJ\. 3 the corresponding unit vectors are deleted. . Since the values of basic
variables consist already of en indeperdent term snd & AM-term, the value of f(x)

is given by h terms, which can be arranged ina 2 x 2 matrix ss follows:

(6.1) £y T4

e S

in Table 4 all these elements are zero. Since each element in the M\-term celumn

should be mmltiplied by XA and since elsg each element in the row of fl should,

be maltiplied by A , we £ind for twice the value of the objective function for a

tablegu in shandard f0m8

, 2
(6.2) £(d) = £, A + (fm + fm)k + £y

AR g3

T gee 6] or [71.

For another application of the same device, see [5].
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for a standard tablean we have f 1 = fm

From (6.2) we can derive immediately

(63) LEOLL v,

- which gives an explicilt e@ression for the derivation of the objeckive funetion

with respect to A .

(6.3) should be equal to v, , which is true for the set-up tableau since
v, is thefe nonbegic. It is also true for any other tablesu generated in the
procedure. This can be shown as follows. In the second transformation of
Step O L is taken into the basis by pivoting on the element in its column and
in the row of the largest negative u-varlable. Since the element in the last row of
the teblean and in the columﬁ of Vo is -1 , the last row becomes Lldentical
(apart from the elements in the colwm of ve) to the row in which v_ 1s
becoming a basic variable, and remsins identical aé'jlong a8 vc remaing in

the basgis,

Teble 6 gives the two rows of the objective function for th.e Tirst fTour
tableaux for Houthakker's example. Note that the symmelry properties of
tableaux in standerd form are also valid for these two rows and the two columns
of the values of baéic varia.bleso Because of this, these rows contain no
information which was not glven in i‘able 3 except for the value of T 34 3 for the

following tebleau we give therefore only the values of fi g °

Figure 1 end 2 give for the solutlons of the capacity method for
Houthakker's example the velue of the objective function and v its

derivative with respect to A , as functions of A . Figure 1 consists of a
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series of concave parabola. The objective function increases, but at a decreasing
rate untll it does not increese any more st A = 1 3 1/665 . Vg is & decreasing func-
tion of A . Note that this function is discontinuous at A = 1 , vhere the nonstandard

iteration occurred.

It can be proved that v = decreases or does not increase in successive
iterations. In standard iterations this is obvious, since in successive solutions
the value of all basic variasbles remains the same for the eritical value of A,
while it muet decrease or stay the same for increa.sin.g A in & particular solution,
since the A-term of the value of Ve is nonpositive, For a nonsbandard
iteration 't-:his is somewhat more difficult to prove. Let us look at the exomple
treated in Table 3. +

3
row of v3 and the column of 2 (which is 5) is negative. However, the element

can only increase in Tablesu 6 if the element in the
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must be positive, since according to the properties of symmetry end skew-symmetry
of a standard tableau (see Table 2) it is equal to minus the element in the row

of Yo and the célumn of y5 » Wwhich ig in its turn equal to the A.-tex;m of the
value of Yo 3 this element is clearly negative because the critical value of A

is found in the row of ¥y o

7. COMPARISON WITH HOUTHAKKER'S CAPACITY METHOD

In this section it will be shown that the Simplielal version of the

capacity method and Houthakker's. ovn presentation are equivelent.

Key concepts in Houthakker‘s presentation are the efféctive Bet of variables
and the effective set of constrainté. The effective set of varié.'ﬁles .are the
x-variables which are allowed to be nonzero; the other x-variables sre kept at a zero
level,  The effective set of constraints contains the inequality constraints which are
required to be satisfied as equalities. Houthsakker obtains then a solution in
terms of the variable parameter ) {(in his notatation B) which is optimal for
& certain range of A 3 +this solublon lg obtzined by maximization of the objective
funetion with respect to the set of effeclive variables, subject to the set of

effective constraints.

In Houthakker's presentation the solution of this classical maximization problem
is found in the usual manner.  Suppose that the set of effective variables are the
first_ n, ones and the set of effective constraints are the first m, ones, The

vectors matrices of the quadratic programming problem can then be partitioned as

1 1

x Aj] C c P b

(7-1) X = A= Ale s © ::[ll 12 s D= o s b= 2
* Aoy Bop o a2 P b
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TABIE &

ROWS OF THE SIMPLEX TABLEAU FOR THE OBJECTIVE FUNCTION

11

Tabl. Be. V. Ind, t. },-t vy Vs v}__ x x? x3 %,
0 £, 0 0 -2 -3 0 ~18 -16 -22 -20
£, 0 0 0 0 -1 0 0 0 0
vy va 1:"3 % X, y5 :4:?+
1 £ ) 22 -2 -3 0 4 6 22 2
£, 0 0 0 0 -1 0 0 0 0
' vy vy u3 % | x2 y5 %), .
o £, 0 a2 -2 -3 0 by 6 22 2
£, 22 ~17 10 0 -l =0 -16 17 -14
' V1 Yo Ug - %o I3 Uy
£ 211 | 2fm |t | </ A | Pm| wm | edfm VAt
5 : _ -
£, 20811 | -8Y/u 30/11 32/ 2 sl s | st | ATl
fablean L 5 6 8
£ -2/ 25 2124/ 325 -1+8/25 -2578/ 25
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The problem iz then to maximize with respect to xl
v 1 i
1 xl xl o ¢ Xl
_ 1 1l 12
(7.2) 2 2l "3 |2 2
C,, C X
? x * 21 “z2{ |*

subject to

1

(7+3) Lﬂu &_l,‘j :a =l

From this we form the lagrangean expression

1T t

: ) pl xl ) xl

TQh‘ C - = - °
PE x2 2 x2

Taking the partisl derivative of thisz expression with respect to the varisbles in

x> and pubting these equal to zero, we find, substituting x° =0 ,

(7+5) Bt - ot - alvh =0,

From (7.3) we have, stbstitubing x° =0 ,

(7.6) At =,
(7+5) and {7.6) can be solved for %t
9 Lt

and vl « Since the capacily constraint

1 1

is always effective, is & linear function of A and x~ and v

will
therefore also be linear functiens of A\ . They must be nonnegative for the
range of A under consideration if the solution is to be optimal. From xl

and v-l we can derive upper limits for which the golution is still optimal.
5 ‘

As a matter of definition, Houthakker does not include the capacity constraint in
the set of effective constraints, though 1t is always effective.
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Ancther requirement for an optimal solution of the quadretic programming
problem is thet the variables in :cz do not intrease the objective function
when given small positive velues. Hence we should have that the vector of
partial derivatives of {7.4) with respect to the variables in X% 1is non-.

pesitive:

2 1 1 <
(7.7) Po-Oux - ALY S 0.

Since xl and vl are both linear functions of - A , the left-hand side is a

Jinear fwnction of A . For the range of A under considerstion (7.7) should
be valid and hence we can determine upper limits for A for which (7.7) is
st111 valid.'°

Finally it is reguired that the solution cbtained satisfies the

constraints not in the set of effective consirainte, so that we must have

Since xl is & linear function of A , upper bounds for A can be found for

which (7.8) is still satisfied.

Houthakker solves for each iteration separstely the four sets of
relations (7.5) - (7.8) and derives from these the upper limits for i . The
Simplicisl versiocn of the capseity method does the same, but in & much’ more
efficient way. The solutions to (7.5) and (7.8) can be obtained by partitioning

the vedtors and metrices in the set-up tableau as indicated in (7.1)s in this case

~

10 Houthakker presenteéd this slightly different. He determined values of )
by solving each equation of (7.7) 22 an equation for X\ . In thils case upper
as well as lower limits for )\ sare obtained after which the lower limits are
discarded., In the case when lower and upper limits coincide, it is then net
possible o distinguish between lower and upper limits, whick gave Boot [1]
occasion to ¢laim that the capacity method breaks down in this casge.
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stands for minus the left-hend side in (7.7) end y2 for the vector of slack
varisbles in ('?_.8). The solutiocn for xl;, vl, w? and y2 1s then obtaiped

by having all these variables in the basis; since they are linear functioms of

A s they can be divided inte an independent term and a A-term, and the upper
bounds of A can be obtained as indicrated. in the rules. Hence each maximization

problem that Houthakker considers ls the solubtlien of a standard tableau.

We shall now compare step by step Houthskker's capacity method with the
Simplicisl formmlstion ef this method; for Houtha.kkér's method we will refer to

the steps given in the Appendix of [4].

Step I is the initisl step in which the x-varlable conmnected with the ;
largest positive element of p is taken into the sebt of effective variables. The
capacity constraint is the only effective conatraint., It is obvious that the |
‘Simplicial version is equivalent in this respect. In Step IL and partly in Step
IIT, (7.5) - (7.8) are solved., In Steps IIX a, b, ¢, & and e Houthakker computes
‘uwpper bounds for 3 for v*c » +the dnal variable of the capaecity congtraint, for
the x-veriables, for the v-varlsbles, for the u-variables, and foxr the
y-variableg, respectively. In Btep IV the smallest upper limdt for X» ;, that
is the critical velve of A , for these five ceses are determined. The

equivelent operstion in the Simplielal version is glven by (5.1).

If the critieal velue of A 1is conunseted with v, the problem is
solved in both versiong; the solubion to the gquadretic programming problew is
found by substitution ef the critical value of ) in the solution. If the
eritical value of A 1is connected with an x-variable, v-varisble, u~variable or
Y~variable, and there 1s no degensracy in Houthakker's texrminoiogy, then

Houthakker respectively. deletes the connected x-variable from the set of
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effective veriables, deletes the connected constraint from the set of effective
constreints, adds the connected varleble to the set of effective varisbles or
adds the connected consbraint to the set of effective constraints. It is
cbvious thet the same occurs in the Simplicisl version if the element in the row

of the e¢riticel varieble end the column of its corresponding variable ig nonzero.

The situation when this elenient is zero corresponds with Houbhakker's
degeneracy case, Since Houthskker desls only with the case of & sbrictly concave'ob-;
Jective function, his ma:d.mizatieﬁ préblem migh alwayé have solubions unless the
number of effective constraints (including the capacity constraint) is greater
then the number of effective varisbles. A situation of no solution can occur
when an x-varisble haes to be deleted or a constraint added, that is in the case
an x~varlsble or a y-variasble :I.é connected with the eriticel value of A\ .

- Houthakker detects the no-solution case by counting comstraints snd variables;
in the Bimplicial version the element in the critical row apd the colwmn of the

corresponding variable is found to be zero,

Houthakker then propeses the following. Teke the same effective

varlebles and constraints as in the no solubtion case, but edd onez x-variable or
delete é. congtraint. - Congider =il resuliing selutions, selecting from these all
which are nomnegative for A larger than the critlesl value and choosing among

those the solution which has the highest valus of v, , the dual varisble of the
capacity congtraeint for X\ equgl to its eritical vaius., We shall show that the
Simpliclal version leads to the same result; except in one particuler case which

Houthakker partly overlooked.

Let us consider Houthakker's example and lock at Tableau 6 of Teble 3,

where Yo is the critical veriable; the element in the rew of Yo and the
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column of vy is found to be zero; in Houthakkeris terms we have a case of

degeneracy. The solutions we have t0 conslder according to Houthakker have

now two basic varlsbles different from those in Tablesu 6 Yo migt bhe
replaced in the basis by another =z~ or y-variasble and Vo mgh coms inbo

the basis replacing the corresponding veriasbie of the x- or y-varisble. This

can be done by first introduecing : v, into the basls in the bow of the dual varisble

2
of the new primal varisble and after this inbtroducing the primsl variable into the
basie replacing Yp o This last iteration wili not change the valuss of basie
variables for A eguel to its critical value, since Yo is then zero. Hence

the first iteration, when v, i introduced into the basis, determines the values

2
of the baglic varisbles and hence of v3 + HNow according to Houthskker we must
select a dual variable to leave the basie in such a way that v, iz decreased

>3

least. 8ince the element in the Tow of v, and the colum of v

3 2
positive, this is accomplished by selecting the dual varisble (except v5)- which

has to be

has the minimm positiv_e ratio of 1ts value for A =1 and the corresponding
element In Vo o This is enbirely the same as in the Simpileial versien

except for the faet that the Simplieisl version alse allows v§

basis. Houthakker did not treat this case, except when no positive ratles can be
' 2

5
s 13
& . This would be so for p, >-13 /25 .

to leave the

found, This case could oceur eesily If the ratio in the row of v, , £

wasg. smaller than in the row of Uy

We have seen that Houthakker's capacity method and the Simpllecial formmlation
of this method are equivalent apart from some very minor pointz. The éimpiicial
formmlation has clearly the advanbages of a much simpler orga.r;iza‘bian and s far
greater computational efficiency. Elrbhemore s the Simplicial version cAan easily

deal with the case when the matrix of the quadratic form is semi—d,efiﬂit@.n

2 The same extension could be made for Houthakker's preseptation, but this would

increase the complexity of an already rather complex method.
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8. DEGENERACY, SPECTAL CASES AND GENERALIZATTONS

The word degeneracy can in the capacity method refer to various situstions.
ch:&;]naklce‘rj uses degeneracy for the situa.tio;z which we denote as a nonstandard case,
It can also refer to the faet that one of the basic varisbles is zere for » equal
to the critical value; the situation is very similsr to that in linear Programming,
but it i1s quite typleal for a parametrﬁ{c programuing mzthod and it raises no
difficulties. |

A potentially more dangerous situstion occurs when the same eritical
value for A is fémd in more than one row. If we then choose any of the rows
as the critical row, we may in the next itera‘tim.iind. the game critical velue :
of A . Hence the range of A for which the solution iz valid hes not increased;
it is then in prinsiple p@ssibla‘ that after a n’émber of iterations with the same

eritiecal valuz of A +the same soiuti@n reappears.

This 1s a case which 1s very similar to cycling in linear programming,
and 1t can be treabed in the same way. We can either choose perturbabien
methods, or concept of lexicographic erdﬁring.la Both devices amount to replacing
for first rows the elemembts in the independent term column by elements of other

colume urtil & unigue minimum ratlo is found, We ghall not go into details hers.

Another kind of degeneracy can be found wheu tiss occur in a nonstandard
iteration in (5.2). This kind of degemersey ig harmless, however, since the

increasing ranges of A are determined by the cholee of the eritical variable.

Bince the capacity method works for a positive definite matrix ¢ as well

12 See e.g. [5]0
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as Tor a positive semi—definite one, it is interesting to see how the algorifthm
works when € = 0 , that ig in the linear programming case. A first observation
which can be made is that the element in the row of the critical varisble and

in the column of its corresponding variable will slways be zero, as will all
¢lements in rows of dual variasbles ard in colums of -primal varlables and in

rowe of primal varisbles and in columns of dual varia‘bleég see for example the
get-up tablean in Teble l. From this 4% follows that the slgorithm will only

heve nonstendard iterstions, Furthermore it is not necessary to use the whole
guadratic Bimp%ex teblean; only the part containing elements: in rows of primsl basic
variables and .in columns of primsl nombasgic varisbles are necesgary. In this case

only one treamsformation is neceasary for each nenstandard iteration,

The algorithm turns then out to be very similar to the dual method for
linear programming. The variable to leave the basis is dstermined by the
eritical varlsble, and the varisble to enter into the basis is determined in the
manner of the dual methed for linear programming, thaet is by comparing ratios of
elements in the lset row of the tableau and those in the row of the leaving
_ basic varieble. For reasons of space we shall not go inbo details, but glve a
smell exsmple of an applicatlon instead.

Let us consider the following problem. Maximize

(8.1) 5%, * lbxg
subject to

(8.2) -:-xl tax, £ 2,
(8,3) X, = X, <1,

(80)4-) Xl,xa E; O .
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We add to this the capaclty congtraint
(8'5) xl + xa g A .

The initisl tablean is gilven by i’ableau O of Table 7. Yy ¥p and y5 are

the slack variables of (8.2); (8.3) and (8.5); £ stands for the value of the
objective function., ‘Fhe elgorithm is started by making the varlable having the
largest negative entry in the last;row basicy in thie case this 1s "'xa . T3
leaves the basis and the underlined element «1- is the pivot of the iteratlion.

In the resulting teblean all elements in the last row in colums of basie variables
have 'B_o be nonnegative. Now the proper part of the procedure can stert. For the
criticel value of A we find 1 and ¥, i2 the eriticsl varisble which has to
leave the basis., The variable to leave the basis is determined by comparing.

ratios

L b
- H '_2 8

=5
of whieh the smallest 1s the first so that %y enters the basis and -3 is

the pivot of the trensformstion. In Tsblegu 2 we £ind for the critical value of X
- é&— &= '{’
/3
go that Yo leaves the basis. There is now only one verisble which can

enter the basis, which 1s yy , 50 that the problem is solved.

It is interesting to observe that the capacity method appllied to the
linear programming problem can be regarded s a specisl cese of a procedure

described by Dantzlg, which he called ®a self dual parametric slgorithm, * 3

B or. pentzig (2], p. 25, seq.
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TABLE T

APPLICATION OF THE CAPACITY METHOD TO A LINEAR PROGRAMMING PROBLEM

Tableau | Bas. V. Ind.t. A-t. X X, Tableau |Bas. V.| Ind.t. { A-t. Yy }’3
¥, 2‘ 0 -1 2 X 213 | 25 | /3l 23
Y, 1 0 1|1 v 275 (3 | 27313
° s 0 1 1|1y ® x, 2i5 | Y5 1 Y3 /3
£ 0 0 5| - £ 273 13t3 | /333
1l 73 1 {72
¥y 2 -2 =3 -2 X 4 o |1 2
¥, 1 1 2 1 Y -7 1 ]2 B3
1 x, 0 1 L R x, 3 o [1 {2
£ 0 i 1 I £ 2k o |7 Y10




T

It is a special case of this algorithm because Dantzig also allows the elements in the
last row of the linear progranunip.g tableau to d.epénd. on a variable parameter. This
throws sn interesting light on the capacity method for quedratic programming.

This method can be regerded as a kind of generalization of Dantzig's self-dual

parametric algorithm for quadratic programming.

The ceapacity method as stated by Houthakker required a special form of the

problem, namely thet the constraints have the form

(8.6) ax S b,

with b i 0, sothat x =0 is a feasible solution. However, the method can

be generslized for any form of the constraints, provided that a basic feasible solu-

tion to the constraint is known.

Iet the constraints have the general form
(8.7) Ax = b

and let the first m x-variables be basic in the feasible solution. The vectors
and matrices of the problem can then be partitioned eccordingly

. l - ]
x* P %1 G2
a’PSPR"A“‘HAa’c” .
i

L X L c21 G22

(8.8) X =

For (8.7) we have then
(8.9) A,lxl + A2x2 =D,
from which we obtain

(8.10) xt = AT - ATMAT = b¥ g
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the last equality involves definition of b* . This equation may be used
- 4o substitute for xl in the objective function, which becomes, apart from

constant 'terﬁs‘,

*1 % x1 % x
(8.11) P x - 32—"-:: Cx 3

the constraints can be written according to (8.10) as

(8.12) A% < ¥

(8:23) x 20,

where of course X =% 3 ‘the other starred vectors and matrices can

be obtai:iea in a gtraightforward menner. Now the problem (8.11) - (8.13) is
equivalent 40 the original probieﬁ, go that if we solve it we have lmmediately
the solution to the original problem. This reformulation of the problem can

be done in the framework of the quadratic Simplex tableaux, For detalls, see

9. CONCIUDING REMARKS

In the previous sections the tapaciby method was formilsted as a parametric
veriatioﬁ of optimal tableaux. Another equivalent formilation of the capaciby
method can be made which is very similar to t.he. dusl me'l;h_Od with starting procedure.
The set-up tableau is as before, but in the first tebleau we introduce v, into the
b,a_sis, replacing the largest negative dual variable., The solution obbained will
have nonnegetive values for both primal and dual varisbles, but it occurs in a

nongtandard tebleau. The rules to be applied in the successive iterstions are
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then as follows. Introduce into the basis the corresponding varisble of the
varisble which left the basls in the last iteratien; delete from the basis that
varisble (primel or dusl) which corresponds to the minimum of the positive ratios
of velues of basic verlebles and the corresponding elements in the coluzm of the
_ne;w baglc varisbles. In this forsmlation, apart from the initiel and the final

tebleaux, only nonstandard tablesux will oceur. °

It 1s obvious that this formmlatlon combines the Simplex and the dusl
nethod for quadratic programming. The successive solutions will be the same as
in the cepacity method, and the critical values of X can be obtained from
equating the minimum ratie to that in the row of Yo 3 T, will depend linearly
upon A . The procedure terminates when v e OF Y, leavegs the basisy in the
first cage the solution of the problem has been found and in the second case the
problem has an infinlte solution. JIn soms casss it 18 not poszible to find a
ratic in the row of y_  because the denominstor is zero; this corrasponds to a
nonstandard iterstion. The successive tableaux obtalined by the two formmliations
differ because they have one different basic varisble, but they can eszily be

derived from each othexr.

If the capacity methed in Simplicial formulation is compared with any of
the other methods for guadratic. programming, there is neo reason why it showld be
found to be less effective. Comparing it with, for exsmple, the Simplex method for
quadratic progremming, we £ind thst the orgenization of the methods is very similar.
A slight disdevantage is that the capacity method reeds one mope row and one more col-
umn. On the other hand, it may well be that for problems of a certain strusture

the mumber of iterations in the capacity method will be smaller. Furbhermore, ln cases
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when the capacity constraint forms part of the problem, the successive solutions
generated by the capacity method may be of interest because they show the role

played by the capacity constraint for the various values of A .

Though the organization of the capaclty method in its original fofnm.‘l.ation
seemed very complex lndeed, it turns out to be very simple and stralghtforward
in its Simplicial formulation. As to the generality of the method, we have shown
that it cen be used for convex quadratic programming problem, provided that s
feasible golution to the constraints exiets. Hence the capaclity method should be

considered among the more practiceble algorithms for quadrstic programming.
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