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OPTIMJ/M ECONOMIC GROWIH IN AN AGGREGATIVE MODEL OF CAPITAL ACCUMULATION:
' A TURNPIKE THEOREM

by

David Cassl

I. Introduction and Summary

Recent contributions to the theory of optimum economic growth, for
example, in [1], t5], (8] or {10], 1like Ramsey's seminal article [6], have been
primarily concerned m.'bh the impliecations of maximizing the soclal welfare
genereted by the entire stream of future consumption. As an alternative formulation,
in this psper it is postulated that only the social welfare associsted with future
¢ mption over some finite period is of direct concern; genergtions beyond the
hue.don are accounted for only insofer as & lower bound on the terminal cepital
stock is prescribed. Then, within a closed, aggregative framework, the behavior

of growth paths which are optimum with respect.to this soclal weifare is investi-

goted,

Qur central result is to exhibit a general property of such optimum
growth paths., Stated loosely, this prbperty is that any economy pursuing

optinum growth over a sufficiently long period would spend all except at most an

Work on this paper was begun while I was the recipient of e Haynes Foundation
dissertation fellowship at Stanford University; it was elso supported in part
by the National Science Foundstion under grants GS-420 to the University of
Chicego and GS5-88 to the Cowles Foundation for Research in Fconomlces at Yale
University. The paper itself has benefitted greatly from lively discussions

at Stenford (in the Quantitative Analysis Workshop) and later at the University

of Chicago (in an informal summer seminar on growth theory conducted by
Professor H. Uzawa).
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initisl and final phase of the period performing nearly golden Me'balanced

growth (appropriately defined for a possibly nonzero social discount rate). Hence,

we have genera.lized. the turnpike property of essentially pure rprod.uct'ion models,

originally elaborated by Doffmah, Samuelson and Solow [2], and later explored by

many others, in an important 'dii-eetionx a similar result is shown to hold when the

intrinsic value of consumpbtion -- over and sbove its indirect contribution to the

continuation of production -- iz explieitly accounted for.

The plan of the paper is as follows: In the next sgction we introduce the =
now standsrd aggregative model of capital accumlation and a precise definition of
the social welfare enjoyed within the economy described by this model. Section IIT
chara.cterizes and then discusses the genersl behavior of optimum growth paths, while
in Section IV, the optimum growth ‘bﬁrnpike property is presented. Finally, in the
last section, the special case wl;,ere social welfare ils simply the discounted sum of '
per é:apit—a. consumption is outlined; for this special case the optimum growth

turnpike property is especially striking.

II. The Model and Definition of Soclal Welfare

We assume the closed, sggregative model of capitel accumulation first
closely enalyzed by Solow [7]. Briefly, the behavior of this simple economy

over time is described by three relstions:
(1) y = £(k) ,

an aggregate production function, relating the output per capita of a single,

homogeneous good to the capital-labor ratio;

(2) e(t) +z(t) =y(t) , e(t) >0, z(t) >0,
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the allocation of current output per capita between instantaneocus consumption

and gross investment per ca__pita23 and
(3)  k(t) = 2(t) - Ak(t) , with k(0) =k°, given A=n+p >0 , ¥¥>0,

the growth of capltal per head from the historically given initial capital-~labor
ratlo, when the labor force (and population) is expanding exogenously st the
positive rate n s and the capital stoeck is deprecisting, independently of use,

at the positive rate p .

The production function is assumed to exhibit, in addition to constent returns
to scale, positive marginal productivity of either factor as well as a diminishing

marginal rate of substitution between factors s eXpressed by the conditions
(4) £(k) >0, £'(k) >0, f£''(k) <0 for k>0.

Moreover, both the importance and limitation of roundsboutness in production sre

assumed to be further represented by the conditions

lim £(k) = 0 , 1lim £f(k) =« ,
0 koo

(>) lim £*(k) = w , 1im £'(k) = O .
k0 Jeboo

Finally, as should be clear from (1), there is no technical change in this economy.

2 It is necessary in what follows that the allocation process be mildly well-

behaved, Therefore, it is convenient at this point to simply assume the
stronger condition that c¢(t) and #(t) sare piecewise continuous. 'his
can be interpreted as an approximation of the fact that the planning and
execution of abrupt changes in any given allocation scheme require time,
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It is worthwhile mentioning that the aggregative "neoclassical"
technology outlined in the preceding paragraphs is a speclal case of the
two=sector "neoclassical™ technology of Uzawa [9]; most of the resulis to
be presented carry over directly into that more; general fo:mmla.tion, in
which the available techniques for producing capital goods differ from those
for producing consumption goods. Because it simplifies the exposition, and
also because no further insight is gaeined otherwise, we chooge to carry ocut the

analysis for the special case,
Social welfare over any finite period [0, T] is presumed to be

asdequately represented by the functional

T
(6) W=/ U[c(t)]eus'td.t ; glven ~ o <8 <w ,
o

that is, by the discounted sum over the period of some index, U(+) , of
the rate of per capite consumption. For short, we refer to this index as the

instantaneous utility function.

In the major part of the paper, the latter is assumed to increase at

a decreasing rate,
(1) Ut(c) >0, U''(e) <O for ¢ >0,

and to increase very rapldly for small but very slowly for large rates of

per capita consumption,

(8) lim U'{c) =e , lim U'(ec) =0 .
¢ CHon

(7) can be interpreted, by reference to the discrete analogue of (6), to

represent a diminishing marginal rate of substitution between rates of per



-5 -

cepite conswmption at any twe - points of time. And the limit conditions (8)
are essentially first, one possible contimuous generalization of fhe imposition

of & minimum subsistence level, and second, the condition of non-saturation,

For the last section of the paper, however, the instantaneous utility

function becomes

(7*) Ue) = ¢,

simple per capita consumption-- the latter aessumed to be explicitly con-

strained by
(81) c>c >0,
a minimm subsistence level -~ Which implies that sociel welfare is represented by

(61) W= ch(t)e'atat ,
0

the discounted sum of per capita consumption.

Finelly, as mentioned in the introduction, we assume that the growth
paths which this economy is free to follow are constrained by the sdditional

non-technological requirement

(9) K(T) >k* , given k* >0,

that the terminel capital-labor ratio be at lesst as lerge as some prescribed

minimum,
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ITT. Optimum Growth Peths Within a Finite Horizon

The problem confronting, sey, the technical steff of the centrsl

planning! board is to determine the growth path <c(t), =z(t), k(t) + o<t <7
P z ==

‘maximizing the welfare criterion (6) subject to the feasibility constraints (1)-

(3) and the terminel condition (9)., For easy reference, this problem can be

stated concisely as:
(" specify the growth path (c, z, k)
| T -5t
which maximizes social welfare [ ule)e ™ at
0
subject to e+z=f(k), ¢>0, z2>0,
y i:az-!u.k, with k(o)=k°, and k(u:)ng
(10)
and given 0<T<w, ~wu<b<w, A>0, K >0, and

.
In (10) and hereafter, varisbles such as ¢, 2z and k are understood to be

funetions of + when not explicitily so dencled.

In order that (10) be a meaningful problem, it is necessary that ¥*  and

T be chosen so that the minimm terminal capital-labor ratio is sttainable within

the existing technology and feasible within the prescribed periocd. Formally,

these restrictions can be expressed by the constraint

(x5, e A

where A, the set of attsineble and feasible terminal parsmeters, is defined by

Praar

T
Az{(kﬁ,, T): 0<K <k, gk, T) 20},



with
= ~ 0 Pl
(11) k=k, for k <k
zko, for E<k°,
where
(k)= N,
and
k‘EE
T dk © T
(12) ek, 0 =7~/ gy v for K <k
kO
oA
mex (k~, k) :
dk o . .,T
= [ SR oE - T for K >k .

kO

(11) and (12) follow directly from the structure of the technology postulated in
the last section: +the former defines the meximum attsinable capital-lsbor ratio
starting from any k° >0, while the latter merely displays the difference
between the prescribed period and the mintonm time required to go from k° to X ,
vhen k° <k* (or between the maximum time permitted in going from k° to KT

and the prescribed time, when k° >k , the lees interesting case).

Assuming thet the pair (k°, T) is in the constraint set A , we have
still left unenswered the natural q_uestic&xs of why the terminal capitsl-labor
condition k(T) > kT is sppropriate, and by what criterien actual values for kT

end T would be chosen.

As to the first question, it should be obvious that any path providing

both more social welfare and a larger terminal capibal stock would always be
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preferred. Thus, it is reasonab_:l_.e to expect that targets would be expressed

as minimum objectives in the practical plenning situstion which ocur formuilation
idealizes. Moreover; it is shown in the:sequal that, with the terminal capital-
lzbor condition expressed as a specific desired target, the optimum growth path
may exhibit a consplcuous inconsistency between maximizing social welfare and
reaching the desired terminsl structure.

With regard to the second question; presumably kT and T . could be get

in accordance with any goals ~« including some traditionally outside the pur-

view of economics,. for example, national power and influence as represented by
industriel potentisl, or rapid industrialization for its owm sake. On the other
hand, we need not reject the possibility that they could be set in accordancé with
the goals usually presupposed in welfare economles. For example, -kT and T could
be any particular values which would also maximize long run social welfare.

Whatever the basis for the choice of kT end T, a certain minimm

impingement of welfare considerations would probably be widely accepted: namely,
the requirement that the nation be no worse off at the end than at the beginning
of the planning perlod -- in_ten_ns of national wealth as measured by real capital

per head -- that is, that

As it does not especielly fTacilitate our argument, we 4o not assume the 1a.ttér,

except to the extent that it helps provide some congietency to our disgrammatics.

As & last comment before presenting the solution to (10), let us émphasize

that the (effective) social discount rate & need not be positive. Indeed, for



any finite social discount rate and eny feaslble growth psth generating con-
sumption per capita c¢ , from (2), (4)=(8), and (11) it follows that

T ) . =
J u(e)e%at < %—-(5)—] (1-~%T) <
o

’
gocial welfare is bounded from ea.'m:rw:‘.3 Thus, one obvious and permissible
interpretation of the welfare functionel (6) is purely clé.ssical: it represents
totel individual welfare over the period under consideration, On our other
assumptions -- in particular that the current labor force L(t) and the
current total population P(t) grow at the same positive rate n , so that
the former i1s a fixed proportion 7 of the latter ~- such an interpretation
can be expressed explicltly by
T T -5t
W ==6r P(t) ch(t)]d_t = £ UFc(t)]e at ,

where
Ule(t)] = %2)- v fe(t)] and 8= =n< 0 4

Now the index U{*) is simply a constant multiple of the instantaneous
ubility function of the representative individuel in our egalitarian economy
u(*) s DProviding a motivation for the reference introduced in the previous

section.

5 Of course, if. B is positive, or if. & is zero and = suitaple level of satura-
tion is admitted, then our formulation of the problem (10) is also meaningful for
the limiting case Tew . However, as Koopmans {3, rp. 27-29, 58-64] has shown,
even if a modification of Ramsey‘’s bliss device is used, if & 1s negative,
then the limiting case Tsw of the corresponding problem has no solution.

This result ip relevant to our later interpretation of the optimum growth
turnpike.
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In order to characterize the optimum growth paths, we appeal to
Pontrysgin'é Maximum Principle (theorem 7, p. 69 in (4], which applies
to the problem (10) if the varisbles are redefined in such a way that the

grogs investment ratio s,

can be tremted as an explicit control parameter). By introducing the

impﬁted price of & unit of gross investment per head,

(13) q = q(t) ,

and the imputed value of gross national product per capite,
(1k) ¥ = U(e) + az ,

end then spplying the theorem to the Hamiltonian expresslon representing

the present imputed value of net national product per capita,

-5t
(V-grk)e
the following theorem is obtained:

The necessary conditions for an optimum growth path are that there

exists a continuous imputed price (13) such that

G‘” A ~(on)(a-t) dt)
(25) § = A = (802) @ - U'(e) £7(k) ,

and

(1) a(T) {k(T) - kT} =0,
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the imputed price changes as if, sasy, the central plamning board exercises

perfect foresight with respect to the marginal, imputed value product of

cepitel, while the terminal imputed price. is zero if k(T) > k' or non-

negative if k(T) = k' ;

(16) c+z=7Fk), e>0, z2>0,
and
‘S '
(17) 3—‘5 et (K)ez ™ U'(e) + ¢ <0, with strict equality for z >0,

the allocatiqn between current consumption and current gross investment per

capite is feasible and maximizes the imputed value of gross (end net) national

product et each point of time;

(18) k=z-2k, with Kk(0)=x° ,
and
(1x) K(T) > K,

the growth of the capital«lsbor ratio is feasible, while the terminal

capital-labor ratio is at least as large as the prescribed minimum.

It ghould be clear that all the sbove valnations are in terms of the

instantaneous uhility of the rate of per capita consumption.

Conditions (15)-(18), (I) end (II) are also sufficient. In demonstrating
this fact it is further easily shown that if an optimum growth path exists, then

it is unique. Hence, we can state as a second theorem:
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1l

Buppose we have found a feasible path (cl, z , kl) and an imputed

price ql which satisfy (15)~(18), (I) erd (II). Then censider any other

distinet feasible path - (2, 2, k°) satisfying (16), (18) and (II). By

YAietinet"” i1s meant

kl('r) o) ke(‘t) for some 0<T <T,

which, becange of the contimuity of k on any feasible path, implies

(19} kl('t;) # ka(‘b) for t e I(t) ,

wvhere I(t) is some open intervel around T . It follows that

(20) IT Ca U(ce)} e at >0,
Q

the first path is strietly better than the gecond..

To prove this result we perform various manipuletions on the integral
in (20). Thus,

T
[ U(cl) - U(ce)} e %% at = y
o

adding and substracting U’(cl) (cl-ca) and the zero expressions

q_l(z‘j - - k') , 3=1, 2, derived from (18), within the braces under
the integral,

f {U(C - U(c ) - U'(cl_)(c?”-c ) + Ut(e )(cl..c2

et ) - D)
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sdding and subtracting U'(cT)f'(k")(k*-k%) , substituting for 9 , 3 =1, 2,

from (16), and rearranging terms, all agein within the braces under the integral,
f u(eh) - (c?) - ut{ch) (e -c) +( - U'e )) (212
+ (_U'(cl) £1(x") - qu) (K-
£ Ut (e (206) - £(E°) - £1(x )(klka)) (k- } 4t >,

utilizing the strict concavity of f£{+) in conjunction with (19), and the

concavity of U(+) , and integrating by parte the expression

Iq(k 3By ey,

T .
I {(ql-U‘(cl)> (zt-2%) + ((-11 + U‘(cl)f‘(k y - (’6+).)q) (k ) R T

. T
[ql (kl—ka) e-ﬁ‘t s

-
1+

applying the optimaiity conditions (15) and (17) ,

' T
] [ql (o?) -0t ' >0,
s} .
substituting from the initial condition in (18) and the terminal conditidns
(I) and (II).

An analvels of the solutions to the pair of aubonomous differential
equations (15) and (18), given the relations (16) and (17), is presented in
detail in [l],'and these fesu;ts are exhibi%ed,here in Figure I. The

general behavior of the uniqqe,optimum growth path for any glven initlal
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capital-labor ratio, k° >0 , =and any prescribed minimum terminal capital~
lsbor ratio and time horizon which are attainable and feasible, (kT, T) € A ==
referred to hereafter as the unique oyt:!._mqm growth path specified by

(x°, kT, T) == can thus be derived fiom a close examination of this phase
diagram; Therefore, before we present the central results of this psper, we

detour and mention the several features depicted in Figure I.

k= O_ s 4 =0 The singuler curves for each differential equation considered
seperately. They divide the half~plane k 20 into four regions of behavior for

the system of differentlal equations, as labelled and 1llustrated.

5 The cuxve for which z = 0 and (17) is satisfied with equality. Thus
it can best be represented._as the boundary of specislization in censumptions:

for all points on or below '(ab‘mre) S gross investment is zero (strictly
positive). Notice that our assﬁmp‘cion (8), that marginel utility approaches
Infinity as consumption per capita approaches zero, in conjunction with the
optimality conditions specifying imputation snd sllocation, imply that the
contrery specialization in investment is never optimum over a finite intervel of
tinme,

% Previcusly defined by (11), K cen be further interpreted as the

maximm long run abtaingble capital-lsbor ratio: foreny k° >0 ,

specialization in investment would result in en asymptotic approach to & .
Although the cases for which k° >k are probably not particularly interesting --
a point which would be debatable in an open model allowlng foreign ald or
virtually unlimited borroying in the international capital market -~ as they
Present no essential complication, we will only impliecitly restrict our astten-

tion to the cases for which k° < k .

k This is the golden rule capital-labor ratio, defined by

£1(k) = &,
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Thus, balanced growth at k _y:i.e_Ic‘ls the golden rule growth path, denoted by
(c, z, k),

¢ =r(k) -ak, z=2k .
It can be interpreted as the one balanced growth path which would be forever
voluntarily maintained as optimum, given the ethical judgment that there is

to be no discrimination among generations, i.e., & zero social discount rate,

either because of sgize or timing.

(k* 3 q*) The point representing the unique balanced growth path and

impute;l price defined by the singular solution of the system (15)-(18),
£ {x*) =8 + A,
2* = ax*
e* = £(x*) - 2%,
and,
q* = Ut(e*) .

For & # 0, (c¥ 2¥, ¥*) differs from the golden rule growth path. However,
it is proved in [1] that if there is social impatience, i.e., a positive socié.l
discount rate, then it is again the one balanced growth path which would be
forever voluntarily maintained as optimm, Though (c¥, z*, k¥*) is not such
a "best™ balanced growth path when the socisl discount rate is negative, we
take the liberty of referring to any balanced growth path at a capital—-labor

ratio k¥ as a (modified) golden rule growth path.
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It should be mentioned explicitly that the (modifled) golden rule growth
path 1ls attainable if and onmly if k* < i , Wwhich condition provides a lower

bound on & . That is, if k*<ﬁ, then

& + = £H{k*) >r1(k)
or
6>f'(i\i) -A=p,

where p is some finite negative number, as A = £4(k) > £Y(kK) by the
strict concavity of f£{.) .  The implication for our anslysis is that, in
any soclety in which the mterial wéll-being of the average individual of
tomorrow's generation is vaétly more important than that of todey's --
perhaps because of rapid population growth -- although the optimum growth
rath specified by (ko, kT, T). elways exists, for large T the turnpike

becomes the maximum atteinsble balanced growth path (0, z, k) ,

~ ~

z = (k) ,

and not the {modified) golden rule growth path (c¥, z¥, k*) . We neglect

this possibility and hereafter simply assume & >p .

(x*, ¢*)” ana (%, a*)F  patns The singuler point (k*, g*) is a saddle
point, with its staeble branches the (k*, g*) path, and its unstable branches
the (k*, g*)* path. It is also shown in [1] that for & >0 , some.portion

of the (k¥, g*)” path is the unigue optimum growth path specified by (x°, 0, »)} .
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Before continuing the analysis, two comments about emphasis and
notation will be helpful, First, although the system (15)-(18) along with
the terminal conditions (I) and (II) characterize any unique optimum growth
path in terms of the real variables ¢ , z , and k and the imputed price gq ,
most of the discussion in the remainder of this and the following section will
emphasize only the real stock varigble Xk and the imputed price q . This -

is possible because we can reformulate (16) and (17) as

(a7) e mmin{n (@), 200} = ol, @)
and

(167) Cz=2(k) - olk, ) =2l @) ,
where

(21) h(q) = U"™(q) >0, for q 20

= +w, for <0,

with
(22) h'(g) = —*— <0
U't[n{q))
and
(23) lim h{q) =w , m h(q) =0,
q*0 g

utilizing the postulated properties of the instantaneous utility function (7)

and (8). Hence, the system (15)-(18) can be reduced to & pair of autonomous
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differential equations in 'the variables k sand g,

(181) k = z(k, @) - Ak, with Kk(0) = k°
and

(157) q= (6+2)q - U'le(k, a)] £4(k) .

Such simplificetion is primerily a mabter of convenience; the same
relastions (16') and (17') which enable us to ignore the real flow variables
¢ and z also readlily ellow us to convert results in terms of k and g,

where relevant, into terms of ¢ or z .

Second, in a.ccbrd.ance'; with 'Ehis emphasis, we adopt the procedure _of.
referring to & particular solution to the system (15)-(18) as the (k‘j , qj)
path, where the point (k'j , q;jx) is some easily distinguished feature of the
pérticular solution. Also, the backward and forward (in time) segments of the
(kj s q‘j) path from the point (kj, qj) are e};pressly referred to as the
(k'j, qj)- and. (kj,“q'j)f" paths, respectively. And, when the need arises,
any segment of a (kj, q‘j)‘ path is explicitly denoted by {(kj(t), q‘j(t» 1 0<t< T}
with initial or terminel values é:j(o) R q'j(O)) or éj(T), q_j(T)) - though
occasionally for the last we drop superscripts if the possibility of resulting

confusion is small.

For example, a distinguishing feature of the solution discussed in the
third precéd.ing paragraph is its asymptotic properties with respect to the
point (k% a¥) . Hence, it .is referred to as the (k*, ¢*) path, and its

branches as the (k¥, g¢*)” and (X*, q*)+ paths, while later on, some segment
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of the solution will be denoted by {(k*(t), q*(t)) : 0< t5 72 } .

Now, in order both to prepare the way for the next séction as well as
to gain further insight into the present formuiatio:n and. s_élution of the
optimum growth problem, it is worthwhile u‘t".ilizing the information implicit
in Figure I to scrutinize more closely some partifzular optimum growth paths,
Specifically, for this discussion we assume that ko_ and kT are given such
that 0 < K° < kT <k*, but ellow T to take on all values pemitteg. within A,
One possible ‘intex;pretati__on is that we are restricting sttention to @ rels.tivelj un-
derdeveloped economy with moderate grcwtﬁ ambitions (provided T is sufficiently
large and & 1is close to zero or nega:bive_). Similar observations can be maide
concerning the analogous set of optinmmgrwth paths given any configuration
of initial and minimm terminal capital;labor ratios.

Within the set of particular optimum growth paths specified by
(% %7, T), given 0 <k® <k® <k* with (T, T)e A , we can distinguich
two types., On the first type of path, k increases steadily from
k(0) = k° to K(T) = KT s, while q decreases steadily to ¢(T) = q_T an s

where qa is defined by

(24) k=0 .
K = KT

Iet us dencote these as (kT, qT) paths. On ﬁhe second type of path, k first

increases from k(0) = x° to k'Ir’e e(kT, k¥*) , and then decreases to
k(T) > kT s while again ¢ decreases steadily to: 0 < q(T) = qT < qa . Let

*

us denote these as R qT*) pathe, where g is defined by

o



(25) k=0 .
k= k.T*
Observe that each type of path, exemplified in Figure II, is lsbelled according
to the point et which k approaches closest to k-~ .
By the foregoing definitions, k>0 on any (kT, qT) or (kT*, qT*)-
. *
path, wvhile k<0 on any (kT*, qT )+ path. On the other hand, with
respecf to the behavior over time of per capite consumption, as q <0 on

either type of path, from {17') and (22)

(26) ¢ =n'(a)g >0

when the economy is not specializing in consumption, but
(27)‘ & =21 (K)k = A (K)k < O

when the economy is specializing in consumption. Thus, as a glance at
Figure II will verify, ¢ >0 on any (kT, qT) or (kT*, qT*)' path, while

& >0 initially but possibly ¢ <O finally on any (kT*, qT*)+ path,

Such behavior can, of course, be related to the length of the ﬂperiod
of dir.ect concern [0, T], for short, the plenning period. More preclsely, a
falling capital;labor ratio would be observed if and only if our relatively
underdeveloped economy pursues optimum growth for a planning period of

length T >~ and decreasing per capita consumption for a planning

l 2
pericd of length T >12 >'rl .
The generel method by which T and T p B8re determined also underlies

our later results. Hence, it is useful to detail it here.
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Given the set of optimum growth paths from k(0) = k° to k(T) _>_kT s

suppose we want to compare the lengths of the planning periods associated
with portions (including the wrhole) of any two. Then, if one path iraverses
the interval [k, kV) E)r [qi, 't ]) vhile the other traverses at least the
same'interval, both monotonically, by comparing lthe ré.tes of change of

k (or q) » the relative lengths of the planning periods associated with the
common interval can be easily ascertained. Note that such an unequivocal
comperison 1s only possible here by virtue of the facts a) that the solution
to the pair (15') and (18') through any point (k, q) for which k >0 is

umic_lue,l+ and b) that from (15!)-(18') and (22)

(28) —%—n-h'(q) >0, for (k, q) above 8
= 0 s for (k, q) below S,

and

(29) -

~ftt(k)g >0 , for (k, q) above 5.

-—U"[f(k)]f'(k)E + U'[f(x)] f'_;(k) >0 , for (k, q) below S .

Thus, for example, by comparing k over [x°, kT]‘ on each (kT, qT)

path and q over [q_a, qﬁ.] on each (kT*, g_T*) path with the seme guantities

oo 1s straightforward to show that the RHS of (15') and (18') satisfies
the Lipschitz condition.on any closed, bounded and convex region of the half
plane k >0 . Hence, this pair satisfies the conditions of the basic existence
and uniqueness theorem for systems of differential equaftions. See, for example,
PP, 20-22 and 159-167 in [5], which contains an especially clear statement and
proof of this theorem, assuming that the RHS of the system has continuous
partial derivatives (though actually requiring only that the RHS satisfies
the Lipschitz condition).
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on the particular (kT, qT) path for which ¢q(T) = & (see Figure II), we
demongtrate that Ty is defined by the plamning period assoclated with this
particular (kT, qT) path. Similarly, a comparison of each (kT*, qT*) path
with the particular (k , qT*) path for which q(T) = U‘[i‘(kT)] (or z(T) just
becomes zero) yields the planning period a.ssocié.ted with tl:le latter to define

12 >Tl .

Such conlpaa.riscms5 algo enable us to assert the uniform approach of first,
the (kT, g_T) path to the minimum time feasible path ~~- which would appear in our

disgram as the horizontal line at ¢ =« from x° to kT -~ a5 T decreases from

1, » end second, the (kT*, qT*) path to the portions of the (x¥, g*) path

sketched in Figure II as T increases from Ty e As a preface to the next
section, we stress that the last impiies that the optimum growth path spends a
relatively and absolutely longer middle length of the planning periocd close to the

(modified) golden rule growth path.

*
As a final comment, comsider the fact that for eny (kT*, qT ) Dpath

which terminates beyond the minimum terminal target, that is, with

qT*(T) =0 and kT*(‘J.‘) > KL , its continuation which returns to gq (t)} <O
and k (1) = K (see Figure II) also nominally satisfies the optimality

conditions for some T >T . But our earlier exposition of (I) ruled out

this continued (kT*, qT*) path as a possible optimum growth path -~ the

2 In conjunction with the theorem concerning the uniform continuity -with respect
to initial conditions of the solutions to systems of differential equations
whose RHS satisfy the Lipschitz condition. Again see (51 » Pp. 192-19G.
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resson being that it is easily shown that the (kT*, q_T*) path with a
comparable planning period [0, 1] but which terminates beyond the minimum
terminal tergel is strictly l;etter, The interpretation of this result is
gstraightforwerd and, in addition, helps to clarify the relation between
prescribing an arbitrary terminal target while simuitaneously attempting to
maximize an interim welfare erlterion: Supjpose that, instead of the terminal
condition k(T) > K> , we had postulated the exact terminal target Kk(T) = K,
Then, any continued (kT*, qT*) path would be optimum for scme T . However, the
resultant negative imputed prices on the final portion of such a path mean that
to use the existing eapital stock to provide positive gross investment would be
definitely detrimental, in particular; in reaching the desired target. That is,
if negetive gross investment were permitted within the technology avallable, say,
in the extreme case by some finite maximum rate of deliberate destruction, then

it would be optimum over the finsl stage of thet growth path. On the othex

hand, noting that U'(c) , the margiral velue of per capite consumption, is
slways positive, it wculd. algo be true that over that same finel stage the use

of the existing capital stock to provide positive consumption is alweys definitely -
beneficial., Hence, there would be some inconsistency between both reaching the
arbitrary terminal terget and meximizing welfare while doing so. The upshot

of this discussion ie therefore that by introducing the relaxed terminal
condition, we preclude this particular sort of inconsistency, and thereby end

up with possibly both more welfare and more capital -- though it should be
mentioned that there remsins in-our fdrmula.tion a more fundsmental. inconslstency

arising from the somewha.t' arbitrery imposition of any terminal constraints, that

is, the implicit discrimination agsinst generstions beyond the herizon.
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IV. The Optimum Growth Turnpike Property

We are now in a position to present our central result, stated

precisely in the following theorem:

Given any positive number e >0 , define the closed, rectangular e-

neighborhood N{e) of the (modified) golden rule growth path by

(50) we) = {0 @: 1] s, laat <)

| . :
Then, for the unique optimum growth path {(k(t), q(t)): 0<t < T} specified

by the initial and terminal parameters (k°, k?, T) , there exist two finite

times OST1<00 and 05T2<m,

(31) T =1 (e, K°) , T, =Ty(e, ¥),

such that (F(t) , q(t)) e N(e) whenever T, <t <T-T, .
Thus, defining the "sufficiently long period" mentioned in the
introduction by
R

(32) ST AT,

the theorem asserts a strong turnpike property for optimum growth over any.
Planning periocd [0, Eﬁ , in the sense that it states that such growth occurs
within an arbitrarily small neighborhood of the "best" balanced growth path
except possibly over some initial or terminal phase. We also emphasize tha?
this theorem is stated in terms of both the real stock variable k and the

imputed price variable g -~ the reason being that the concept of optimum

growth advanced in this paper is intimately related to the flow variable c ,
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and the turnpike property thereby encompasses it, along with the remaining

flow variable of the model z , by virtue of the relations (16') and (17%).

Thet the theorem 1s true has alresdy been suggested by the delineation
of the limiting (T, o¥) and (&, ¥ ) paths; further heuristic proof is
developed by reference to the constructions presented in Figures III and IV..
Without loss of genérality we cen assume thet |k -k*| > e and |kT 5
We also only consider the case for which k° < k¥ » a8 the alternative case is

essentially eimilar, end, for the first part of the discussion, the subcase analyzed

in the last section for which 0 < x° < k' < k* ,

Thue, for given k° and K> , 0<x’< K < g s Wwe Initially examine

a set of (kT, qT) end (kT*, qT*) paths., In order to meke relevant

comparisons in this set; we distinguish the lengths of planning period

associated with first, the particular (kT*, q_T*)" and. (ka., qT*)+

paths on which kT* = k¥ - ¢ ,,6 and second, the portions of the (k*, ¢*)” and
(x*, a*)" paths which just intersect the 1ines k = kx° and q = ¥ + € or the
lines q = q¥ = ¢ and the prior of k = kT or 9@ =0 , respectively. Denote

the former by Ti{ and, Tg s &nd the latier by Tq and 'I’q as in Figure IIT.

1 27
Employing the method outlined earlier, it is easily established through

direct comparison that Ti + Tg is longer than the rlanning period assoclated

6 It is impliclily assumed in the ensuing argument that the curve k = 0 going

away from the point (k*, ¢¥) intersects the line k = k¥ « ¢ before it
intersects eitlﬁr of the lines q = q¥ + e (see Figure III). Then this
particular (k+ , gT*) opath is the optimm path which just enters N(e) 3

for kT*> k¥ - ¢ (kT*< k¥ - ¢) the (k,T*, g_T*) path enters (does not enter)
N{e) . An argument anslogous to that in the text can be presented to cover each
of the other possibilities, but for our purpose it would entail needless added
complication,
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FIGURE IV

The Optimum Growth Property: kO < k¥ < kT
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with any (kT*, qT*) path vhich does not enter N(e) , and therefore is also

longer than the planning period essocilated with any (‘kT, qT) path, Of equal

consequence, it is likewise easily demonstrated that elther TI{ or T% (either

Tlg or Tg) 1s longer than the length of plamning period associated with the
i ™ ¥
k™,

entrance of any ( qT*) path into N(e) (the departure of any (k* , q~ )

path out of N(e)) .

Hence, we have justified the use of the lengths of planning period ‘.Ek or.

1
E{‘% and Tg or. Tg to define the times whose existence is asserted T, and T, by
d dy
(28) lemax(Tki,Tl) a.ndrtfenmx(Tz,Te),

in the case of any (kT, q_T) path or any (k?“*, qT*) path which does not enmter N(e) ,

because the segment of plenning period ETl, T-EL‘E] is empty, while in the cage of
any (kT*, qT*) path vhich does enter N(e) , because the path enters or departs

N(e) in at most a length of time T, or T, , respectively,

The arguments establishing the times T

1 and T2 for the other subcsses

are also quite straightforward:

For kT <x° < x* sy we can distinguish (ko, qo) paths, on which both
'k and ¢ decrease steadily from k(0) = k° and a{0) = ¢° < qa » Where qa
is defined by

(al') k=0 o *
k=Xk

o¥ o¥ ' o
from (k7 , ¢° ) paths, on which k first increases from k(0) = kK~ to

0*
k" e (k°, k*) , and then decreases to k(%) > KT s vhile q decreases steadily,



- 3l =

where q,o* is defined by

(22¢) k=0 .
K=k

Therefore, this subcase is essentially the same as that discussed in the preceding
paragraphs, but with the superseript T replaced by the superscript o .

For k° < ¥* < kT s on all optimum growth paths k increases steadlily from

x(0) = x° to k(T) = KT , while g first decreases to qw* c(g¥; ») , and then

)

* *
increases, Denote these paths, in analogy with our other notation, es: (kw 5 q_°°

*
paths, where K is defined by

. . %3

(29) =0 o o K =X
q=4q

Then, the lengths of the planning period assoclated with first, the particular
( oo¥ m*)-

*
s @ and (k.w*, q”*)* paths on which g =g¥+e s and second, the

- +
portions of the (k*, a*)” and (¥*, ¢*) paths which Just intersect the lines
k=k" epd k=k*-e or the lines k=k* + ¢ and k = X' , respectively,

cen be:utilized to define T, and T, as in (28). This subcase is illustrated

in Figure IV.

It only remains to show that T:'L depends primarily on the parsmeters

(o]

kW and e , and T2 primayily on kT snd ¢ . (Of course, these times elso

depend on the parameters and functlons defining the underlying model. ) ‘Thils is

most directly accomplished thusly: For notational convenlence we again con-

centrate on the subcase for which 0 < x° < kT< x* . Then, on either the

barticular (kT*;. qT*)" and (kT*, qT*)J“ paths on which K = k¥ - ¢ (note
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that the choice of these particular psths depends on €) or the
(%, ¢¥)" and (¥*, ¢*)" paths, both k snd g are monotonic functions of
time. It follows that on any of these paths k is a unique function of q ,

and conversely. Hence, by separating variebles and integrating, (15') and (18')

yield
ko
_ o |
Ti{ oo dk = ff.']i (k.o » E) ’
2k, g7 (k7)) -akT
k¥-e .
a*(x%)
Tq =" - ‘ d.q_* - = Tq'(ko: )
?’". (8+a)g* - Ut (clk*(q*), a*1) £'1K¥(a¥)] 1s €
q*+e ' '
mex (kT*(o)‘, kT)
T
T}; = ' e : = Tke (RT, E) >
z{kT*, <;{"1‘*(1:T*)]-=-M:Tle
k¥*-e -
and ‘
max (Os q*(kT))
Tq' = dq'* "'Tq' kT, ) 3
2 (B+a)a*- vt (eli*(g*), a*]) £10K¥(q¥)] 25 ¢
q*ee ' . -
or from (28),
(30) 7, = {08, o , 16, ob =100, o
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and

(31) T, = max {Tg(k“’, é) ’ Tg(kT, e)} = Te(kT, é) ;

V. The Optimum Growth Turnpike Property: A Speclal Case

In this section we dlscuss optimum growth over the planning period [0, T]
where the criterion of social welfare is given by (6') while per capita consumption
is constrained by (8'); To simplify the discussion, seversl relatively uninterest.—-
ing possibilities are exclud.ed; In particular, we assume that the minimm sub-

sistence level is low enough so “that
(32) k<k®,

provision of subsistence consumption would not entall steady deterioration of

the capital-labor ratio, and
(33) < K* <E s
the (modified) golden rule growth path provides more than subsistence consumption,
where k < k are thus assumed to be the two solutions to

f(k) =k +c,
the equation defining balanced growth s»ich just provides subsistence con-

sumption, Obviously, (33) is equivalent to imposing upper and lowér bounds

on the permissible range of the social discount rate,

(k) = A <& <£¥k) =~ L.
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Furthermore, conslstency in setting the minimum terminal capital-labor ratio now
requires the asswﬁption that

(3k) £(xT) > ¢,

subsistence consumption be possible at that cepital~labor ratio, (34) =nd (8')

imply that the set of attainable and feasible terminal parameters is now of the form

A= {(.kT, T kK <k, ek, T)EO},

with
t e o .3
(11*) : k=k, for k <k
=x°, for E<k°<w,
and _ kT'
1

(12) g(xk", 1) = TJ & -y for K% < kT

o F(k)=rk - ¢

k

max (k , k)
] —k - T, for k°->kT.
£(k)erk = ¢
1©

The foregoing assumptions are depicted satisfied in Figure V. (Note

that we would also avoid the complications assumed away by (32)-(34) if the necessity

of seme minimum subsistence level were simply ignored, )
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For this special case, the lmputed value of gross national product per

capita becomes

(1k1?) v = c+ gz + (p-1){c=¢c) = pc + qz ~ (p-1)c ,

where now p as well as ¢ 1s an imputed price, the marginal value or lmputed
price of a unit of consumption per capita. Then, by applying an extensicn of
Pontryagin's Maximum Prineiple (presented in Chapter 6 of [L4]) to the Hamiltonien

representing the present impuled value of net national product per capita,
: -0t
(y-qrx)e™ ",

and pursuing an argument like thal on pp, 11-13, it follows that the necessary and
sufficient conditions for an optimum growth path have exactly the same interpreta-

tion as before, but that (15), (16) and (17) become

(1514) g = (8+A)g ~ pf(k) ,

(16t1) c+z.==f(1;;), c>¢c, 220,
and

(17tr) p >1, with strict equality for ¢ >¢

qQ <P, with strict equality for 2z >0,

vhile (18), (I) and (II) remain unchanged, Iikewise, the same argument which

establishes sufficiency also establishes uniqueness,
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A straightforward reformulation of the system (15");(1f") and (18)
enables us to distinguish three possible phases of optimwn growth:
[ gq=p2>1
c=c, z=1(k)-c
3= (o) o

k = £(k)-Mk-c ,

Phase I

N

—

specialization in investment above prwision of subsistence consumption;

~
*

q¥ = p" = 1

c=c¥* z =3z

Phase II ﬁ .
| q¥ = BiA-L'(K*) = 0

k* = £(K*) - Ak*~c* = 0 ,

-
non-specialization on the (modified) golden rule growth path; and
/“

qg<p=1

c=Pf(k), z=0
Phase III <

g = (B+A)g=£1(k)

];a:.,M{,
\_

speclalization in consumption, These three phases, along with the behavior of some -
Particular optimum growbth paths ; are lllustrated in Figu?re VI (assumed to be self

explanatory in the context of the rest of the paper).
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The phases which are actually achieved on the unique optimm growth
path specified by (ko, kT, T) depend on these latter parameters. However,
because the economy is either specializing or performing balanced growth, it is

possible to strengthen the turnpike property for this special case to:

For the unigue optimum growth path {G:(t), z(t), k(t), q(t), p(t»x 0<t< T}

specified by the initial and terminal paremeters (ko, kT, T) there exist two

finite times 05_Ti<co, &g_c_l_ 05T2-<no‘,

| T
(35) o= (%), om0,

such that if T > 1T, + T, , then (c(t), z(t), k(t), a(t), p(t)) is in Phase I

(k® < k¥*) or Phase TIT (x° > k*) when 0<t < T, » switches into Phase IT

when T, <t <T-T,, and returns to Phase I (k >k¥) or Phase ITI (K* < k¥)

when T-T, <t <T,

Thus, for any sufficlently long plamning period, the course of optimum
growth is first, specialization to achieve ‘Ehe (modified) golden rule growth
path, second, balanced growth actually on the (modified) golden rule growth

7

path,' and third, again specialization, but to achieve a terminal state in

which the trensversality conditions (I) and (II) are satisfied.

T This result is specific to the aggregative model of capital accumulation.’
With differing technology in the consumption goods and caplital goods
industries, in generel the non-specilalized phase entails only an asymptotic
approach to balenced growth, For a detailed treatment of two-sector optimum
growiEh 1inder the criterion (6') (with T=w , & >0) and constraint (81)
see (101,
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For proof we merely exhibit T. and T, derived directly from the

1 2
capital-labor ratio growth equation for Phase I or III:

k*
(36} Tl(ko) = f ﬂij%kﬁ:a s for k° < k*
o <
k
k*
Y

| o
= _ for k >k*,
J ¥ M

and ;o

37 Ta(kT) = min —%— st ], for kK <k*

..k_*

kT
dk T *
- s for kK >K ,
Lfikﬁkkg

where 1 1is defined implicitly by solving for a1} =0 in Phase III, given
(s0), a(@) = &%, 1),

T

-

1 = f'[k*e‘m]e'(a'”‘)sas

Hence, because the initisl values of p and g can always be adjusted to
correspond to Phase I (k° < ¥*) or Phase II (x° >Xx*) and yet yield

p(Tl) = q(Tl) =1 , while allocation can always be adjusted to switth into
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Phase I (k* >k*) or Phase IIT (kT < k*) at time T-1,,

in q(7T) k(T)-kT} = 0 , 1t follows that the growth path deseribed in the
)

and thereby result

theorem must be the unique optimtim growth path for T > Tl + T2 .

As a concluding remark to this section we observe that with Harrod
neutral or labor efficiency sugmenting technical progress at the constant
rate © , the preceding analysis also applies, prorvid.ed. a) the real
variables ¢, z and k are reinterpreted as being measured in terms of
efficient labor unite, b) the (effective) social discount rate 5 and
gz;owth parameter A are understood to include a contribution from € ,

6 =6'~-6 and A=n+p+6

and c¢) further assumptions are made concerning the specification of x* and
e For example, ¢ could be prescribed in either efficient labor or per
capita units, or some combinetion in between, In the face of foreseeable
progress; Por the former the analysis remaing unchanged in the sense that
sgain the simplifying essumptions (32) and (33) are appropriste., On the

other hand, for either of the latter, with sufficiently long planning periods
the constraint (8') would eventuelly become rela‘bivel;v unimportant, and a
complete analysis would be modifled accordingly., We forego detailed discussion
of the remifications stemming from different, ﬁossible specifications of

KT and ¢ .
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