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APPERDIX
to

"On the Concept of Optimal Economic Growth"
1. HNotations

Instantaneous discount rate p=-0

Exponential growth rate of labor Torce A

At time t
gbsolute per worker
Consumption flow X *y
Capital stock Zt Zy
Labor force L = Lé.%Lt
Production function ¥(z, | L) (z)
Utility u(x)

Derivatives with respect to time are denoted by dots, %

t

other derivatives by dashes, £1(z) = %., - ut(x) =. %‘;1

131

Formulae in the article are numbered (1), (2), ..., , in the -

denotes optimal paths and the;i.r asymptotic levels.

denctes equa.lity-_ by definition,

Appendix (1), (2), +en «

Integrated
over time
(per worker)
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2. Assumptions
(a) = (8) L, =L R where 0 <A <f'(0), forall t20,
()= (9) Wz, 1) =L 2(2) =L(z) forall L>0, 220,
(c) £(0) =0 ; £'(z) >0, £"(z) <0 for 05z,
(4) = (11a) for esch A >0 such that O <X <£'(0) there is a Z. >0

A

such that f(EL) = A EJL (the subscript A of EJ\. is omitted

in what follows) ,

(e) ut(x) >0, u*(x) <0 for 0<x<w.

3. Scme implications of feesibility

Given the initial stock z ‘of capital per worker, the atiainable
set of growth paths (xt, zt) is now given, in terms of per-worker variables,
by the requirements that, for all t 20 ,

r

(a) x, >0, z, >0,

(b) =z, is continuous,
(1)

(e) z, 5 %, &nd i:t are differentiable to the right,

(a) xt 1is continuous to the right

(.?.) x-b + .zt = f(z-b) - l'z't < g(zt) s S8y,
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(3) z, is preseribed, where 0 <z <z .

The feasible get is the union of all atteinable sets with 0 <z < .

We note that, by assumption (¢}, both the feasible set and the attainable
sets are convex, and that the function g(z) defined in (2) is strioctly concave.
Since g(z) venishes for z =0 and for 'z =z, it reaches its maximm %

in & unique point z s BO that

() x=g(z)>glz) forall z 4,2z, where 0<2<7Z,

(¥
(v) g'(z) >g*(Z) = 0 >g'(z*) whenever 0S5z < z<z*S%.
From (la}, (2) we have
(5) 'z.t <x + 'zt = g(zt)

and hence for all feasible paths, using (la), (3), and the fact that g(z) >0

only for 0<z <3z,

(6) 05z, S 7 forall t20.
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L, A basic ineguality and one application

The concavity essumption (e) of wu(x) implies that,
(D w(x) - u(x®) Sur(x*) - (x-x*) for all x, x*,

end the concavity of g(z) implied in Assumption (c) and (2) thet

(® g(z) - g(z*) S 8'(z) - (z-2%) for el z, z*.
We shall make many comperisons of utility integrals for feasible
growth paths (xt, z.t) - and (xt s z_b*) ; based on (7) and on either (k)

~or (8). To evoid repetition we state this comparison here in its most
general form, where 0 ST <T Sw , and p 1is 88 yet unspecified.
r-

Ll t
U.I.*(D) s [ &P¥ u(x ) - u(x¥ )) at = e '(x*)(x -X, )dt =
T

T* -0t . .
(%) \ = Tf e Prur(xf) (elz,)-g(z}) - z, + zf’é')d.t =

™ pt t
= { ' (x )(&(zt) - s(Z*))dt - | et () (zy-22) *
. T

@ | v [dt ( o '(x*)> (z,-2%) at S

™
S g et [u'(x;)(g'(z;) - p) + u'(x) &:}(zt-'zz)at

T

T*
| '[ G )(zt'zt;] '

- P
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If T = the velidity of (9) depends on convergence of the integrals
involved.

One application of (9) will be used repeatedly. We define a bulge
in a growth path (xt, zt) ag an interval [T, T*] such that

r‘

(2) OET'(T*<°°, ZT=ZT*=Z*J say, and
(10) <

(b) either z* S Z(p) and z, <z¥ for << *

>z*¥ for T<t<T,

*l\
. or z* 2 z(p) ax}dzt

where z(p) is defined by (27) or

(1) g’ 'f,fz\(p)) =p




- bl .

Figure 11 shows z, for a path with two bulges, both denoted iT, 1.
The effect on the utility integral of "straightening out" a bulge is found

from (9) by taking z¥ = 2%, xf =x* T g(2*) , end satisfies

t t .
™ T ot
(12) J &P (J.(xt) - u(x*)) at S u'(x*) { g'(2%)- p) [ e (zt-z'*)dt <0
T | T
if z*¥ £ z(p) , because in that case g'(z¥) ~p end 2z - z¥ eare

t

opposite in gign. If 2* = z(p) , end if for instemce 2z, < z¥ for T <t < T¥

t
as in the second bulge in Figure 11, Ve cen by suitable choice of &
number z*¥ < z(p) write the left hand member of (12) as the sum of two such

/n n
integrals, one comparing (x*, z*) =(x(p), Z2(p) Jon [T, %] with
G::* s z:*) defined by z':* < mex {z“*, Zt} , ‘the other comparing (x*¥, z*¥)

vhere x** = g(z**} with (X'b’ z't) on an interval [T®*, T%**) such that

T < T < R <% | gince of these ipbegrals the former is nonpositive,

the latter negative, (12) is valid slso if z¥ = Z(p). We thus have

. l: For amy p , @ path (xt, zt) optimal on any finite or infinite

time IinCerval cannot contein a bulge.

This conclusion, and the ineguality §122 on which it is baged, remain

velid for T = w and p 20 if the definition of & bulge is extended
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to read "(10b) and either (10a) or (10a')" ,

(10a') 0ST<T=w, p20, z,=2%, andif p=0 then lim z, = z¥ ,

T P

as illustrated in Figures 12 and 13.

F—L B I

5.. Inferiority of indefinitely fluctusting paths if p SO.

We define the asymptotic range of the path (xt, z_b) a8 the nonempty

cloged intervel

(13) (¢, T1, Efﬁtigmzt, T =1lim sup 3z, .
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A positive length ¢ - { of the asymptobic range implies that z, contimues

to fluctuate between any neighborhood of { and any neighborhood of T ,

infinitely often, and for srbitrarily large t .

|

2: If p30 emdif ¢ <T fortheattainable path (x5 2,.) ,

then there exists for each N >0 an attainsble path Qc:, zz) and & Ty > ©

such that

T
(k) U;(p) = J e Pt G(xt) - u(x%")) dt S-¥ forall T2 Ty -

Q

For the proof of Iemma 2 we must strengthen (12) to obtain a positive

lower bound on the gain |TU;*(9)| associated with the “straightening out”

of & bulge [T, T"] . For this purpose we choose an interval [z,, z¥] such that

(15) (&) t <z, <z*<T and either (b) z(p) < z, oOr (3) z¥ < z{p) ,

vwhich is elways possible. If for definiteness we assume (1°c), we have from

Assumption (c)

(16) - g'(z) ~p2g(z*) -p Ty >0 for 2z, Sz3z*.

Now =z, has infinitely many bulges [T, T] with the properties

(2D Ty = B = z*., 7y Sz, for some t.e [T, T*].
g —% -
- v
M ! !
%:(P l e
;r ) 7N;\L“WW - x
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Because of the continuity of z, We can for each of these choose an

interval [7, v¥] such that, if we write 2z¥ - z

*:25,

* *
*<zt<z'r*ﬂz -e for 1<t <%,

(18) T<y <t <T and z_=7z

th 14

The constructlon is illusirated in Figure 1%. Since the last inequality in (12)
holds also for all subintervels of [T, T*] , we have from (18), (16), if
X*Eg(z*) and p:o 3

T *
pUplp) = Tf e " é(xt) - u(:ic*))d.t <u'(x¥) y Tf'r (z,-z¥)at < - u'(x*) ye (v*- 1) ,

since ¢ >0 end  u'(x*) 7 >0. On the other hand, we have from (18), (5) with



x, >0, (2) and (ka) that

* *

T T ~
e= [ zd< [ gz lat < (1) x,
T T

whence T* -1 > /X >0 and
(19) Th(p) < - u'(x¥) 7 /X = - ¥ <0,

Fipally, if we define the feasible path (xz, z:)- by (2) and

z: = max_{zt, z*} ,

we have

T
U;_H.(p) = J e Pt u(xt) - u(x_:)). at S . Do o , wvhere o* >0,
o "

if nygx denotes the number of bulges in [0, T**] . But lim n, =« because

there are infinitely many bulges in [0, w] .

The choice of T, such that - n%? 2 N/o* thus establishes Lemma 2

in case (15¢) holds. The proof fiom (15 b) is similar.



- L9 -
6. Proofs for p=0.

Proof of (A). In (9a) teke p =0, z_'g =2, 50 x: =.§ = g(Zz). Then,

if we write u(x).T W, uw'(x) =71,

(20)

T* .
U T Y- & 4 <3
U T L (u(x,)- u)dt =0 (gpram) S0 2,
by (4), (6), regardless of T , T" , hence also for T =0 .

Proof of {B). We distinguish three cases regarding the asymptotit
range [_Q,_E] of the given path (xt, zt) .
Case (1), < tT. In this case we have from Lemma 2 and from (20)

applied to (x:, zz) , forany N>O0,
T xy T/ ¥% -~ ~t -—
Uy = Of u(xt) - u(xt)) ,dt-'+‘oj G(Xt) - u)dt <-N+u - z

for all T =>, T,. . In this case, therefore, VU, diverges to - o a5 T+ o,

N T

Case (ii), ¢ =T # 2z . For definiteness assume T<2z and let z - -g-

Then € >0 and there exists T < «» such that

H

2 e .
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21) 2, ST+e=2-¢ Torall t2T.
A&t +
If now in (9a) we take p =0, zt:g, xgzﬁng(g) for all t £ 0, then,
il . ~ T* N < .
(22) Vg* = [ u(xt) -u)dt§u J (é(zt) -;9dt+zT- Zyoe S - a(T*-T) + B,
* . ‘
where by (l_;.)
a=3d .é- g(E-e)) >0, g=u. z.

Bence Upw = Uy +  Upx diverges to -« as ™ & o in this case, and by

gimilar reasoning in the case z <! , hence in the entire Case (ii).

——

Case (111), { =( =z . In this case clearly

lim z, =2z .
(2) Ln 2y =32

It follows from the third member of (gg) that

P g I
GT‘UT+u » ZEE

is a nonincreasing function o«f T . Hence GT either possesses a limit

for T+ o or diverges to - w, In view of (23), the same must Then be

true for U'I.' .

This completes the proof of statement (B). In addition, we have found
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Temma 5: If p =0, a necessary condition for eligibility of the path

(x,, 2,0 is that (23) is satisfied,

Proof of (C). An optimsl path (X, 2,) .15 now defined as one that
maximizes

&0
(24) ue [ (u(x,) - ﬁ)dt
o
on the attainable-and-eligible set, A beautifully simple procedure used by
Ramsey in his slightly different problem can be adapted to the present problem

as long as p =0,
From Lemmas 1 and > we conclude that, in any optimal path, 2_&

exhibits a nondecreasing, constant, or nonincreasing approach to 1lim 21: =z
T

according as z < z P Z or >z . This establishes the second and third

sentences of statement (C) with the term ' weakly monotonic” substituted for

"strictly monctonic.” Now consider an attainsble~eligible path (x., z.) for which
(25) ztnz*#g for <t ST, where T<T* |

Then, along the lines of (22),

T* * ~
e vaJ u_(xt) - ﬁ)d.t §ﬁ'(T"'—T)@(z*) - zJ'< 0
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by (4 a). It follows that the path

(xt, zt) for 0St<7T,

(x:’ z: ) =

' <
(Xgppeop » Zgoprp) Tor TSt
is likewlse attaineble, and indeed eligible and preferable to (xt, 2 1;) s
becsuse 1t achieves s utility

U*wU;_-tTU*=UT+T*U>UT+TUT*+T*U=U.

Therefore (25) cannot occur in an optimal path.
It follows that, if z_ # Zz , an optimal path shows a strictly monotonic

spproach to the value z,ru’z‘ for 0S5 t<T, where TSw. We shall call

any eligible path with that property a superior path. To complete the proof of
(C) we only need to show that for an optimal path T = . This is best obtained

as a corrolary of the proof of (D).

Proof of (D). TFor all superior paths we can now make a useful change

of the variable of integration in (24) from +t to =z . Since, by (2),

z, = z for t 2T implies x, = X, n(ﬁt) =1, we have for all superior

paths, using (2):

(26) | U = J'E Mugﬁm iz ,

ZO Z‘t(Z) ZO g(z) - X(Z)
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vhere +(z) denctes the inverse of z, on [0, 7], and =x(z) = X (z) -

The unknown function is now x(z), The advantage from the change of variables
lies in the fact that only x{z) itself, and no derivative thereof, occur

in the integrand in (26). Hence (26) is maximized on the set of superior
peths if and only if x(z) is givén a value %(z) such that the integrand

is ma.:_timized for every value of z . This requires E(z) for given z to be

the solution for x of

() wt (x)(&(z) - x) =3 - u(x)

Figure 15 shows the determination of x = X(z) for the two cases
2<%z and z >z . It is easily seen from the diagrah: or analytically
that .‘2(2) is unique, comtinuous, and strictly increasing for all z , and

diffeventisble for z #Z . In particular,

Figure 15

¥z) 1f z >2

X
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(28) x(z) < x(z) = x = g(z) <x(z*) if z <3z <z*,

Jues P}

once X(z) has been determined in the manner indicated, one reintroduces the

time variable by

Z Z
) t= f 2 g g 42 = = $(2).
(& Z dz z,  g{z) - x(2) |

The function t(z) and its inverse z, &re monotonic and differentiable

t

with the proper range and domain in each case because, by (27), (28) ,

H{<he w {

Hence X, is monotonic and differentisble. In order to see that T = o

<z <73z
<z° <3z
[o]

O

g(z) - x(z) = )

vhenever =z £ 2 note that, in a neighborhood of z =2z , g(z) - g(z) is of

second oxder in (z - z) by (1 b), and of second order in x(z) - ;E)
by the construction of Figure 15. Hence 5';(2) -X and gz - 'i are of the same orcier,

and in (29) we have

if zo<'z‘ ,  lm t(z) =,
zrz-0

Therefore T = . The proofs of (C) and (D) are thereby complete.
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7. Proofs for p >0 apd for p 20 .

Proof of (E). Let (xt',"! z.) Dbe & feasible path with x, Z2x >0

for 81l t . In (9) we insert x:-:g, 'z:=_23<'£ such that g(z) = x .

Then, if u(x) Tu, u'(x) =u', we have Egu(xt) and hence, for 0 ST<T™ <w ,

o
0 §.Tf Pt é %)~ zgat = gl (P) - (w/p) G""T. - e"‘""’*) <

5.‘:’:' * IS'(E) - pl . (Z/D)(G-OT - e"pT*) +'1_.1_'Eé -pT + e"pT*),

-

hence 1lim Vox(p) = O whenever p >0,
T, T |

Proofs of (F), (G).y 'These statements express, and provide econamic

}/ Readers of this sppendix are requested to substltute two pages, numbered
25, 24, found at the end of the appendix, for the pages bearing the same
mimbers in the article,CFDP 163, of which this is the appendix.

interpretetion for, the inequelities (9) if we take T =0, T+ @ , and if

the “candidste~optimal® path (:’Et, 21—-.) is substituted for (x}, z{) .

This is seen by reference to the definitions (21), (22) of the implicit prices

Pp s 9 of the consumption good and of the use of the same good as capital

good; respectively. The middle member of (25) in (G) is fitted in by teking
the logical steps in (9) in & different sequence, The lagt term in the last
member of (9) vanishes because both (xt, z_b) and, (x:, z_"[_f) are eligible and

attainsble, This is immediate if p >0 , and follows from Lemma 3 if p =0,
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Proofs of (H), (I), (J). The sufficiency of the Euler condition (26),or

(30) Q, * by = W) (&%) - 0) ¥ (&) 3, =0 for 30,

for the optimality of the path (?:t, Qt) iIf p 20 is en immediste implication

of (F) and (G). "We shall postpone the proof of its necessity until after we

have studied the solukion of the system of differentisl equations

(éé _8_') .z"b = g('z‘t) = X‘b
(1) t20,
. u',(xt)
(31 ) % = - (8'(z,) - )

utl (xt)

obtained from (2), (30), on the entire halfaxie O S ¢ < w , subject to the
prescribed velue of z_ .
x, g{z)

%(p) —»
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Figure 16 sketches the trajectories of the point (xt, zt) starting from
arbitrary initisl values (xo, zo) . Each trajectory is defined as the

‘solution with x(zo) = x_ of the differential equation

dz _ _ uix) glz) - x
(22) a&x " uilx) " &'z)-p ?

obtained from (31) by elimination of + . If we prescribe only z, &nd examine
the trajectorlies for various xo 3 a.l.l but one of the values of "xo lead to

violation of one of the feasibility conditions, x, >0 or z >0, sata

finite time + , because the con'binuoﬁs right hand members of {31) vanish
simmltaneously omly for (x, 2z} = G(p) R %(p)) . Now any part of any of
'Ehe trajectories can occur as sn optimal path with prescribed initial and

final cepital stocks z_, 2 for a suitable finite horizon T . (In fact,

T

this is true for p T O as well as for p >0 , the case of Figure 16).
However, only the special trajectory from the poin‘b'--'(:?o, zo) that ends in

@(p) R E(p)) ,- shown &s a heavier line, satisfies both (31) and the

feasibility conditions for all t 20 . The particular value §° of x_

that corresponds to a given Zg is read off from that special trajectory.

Time is reintroduced by solving (31 b), say, with the solution z(x) of

(32) @efined by the initial value E(;’Eo) =z inserted for z in (31 D).
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Denoting the resulting path by (;Et’ Et) s Wwe note that, if
z_ <z(p) , the optimel initisl comeumption flow X  leaves room for growth in the

capitel stock per worker, and both ib and ;Et

increase with t +to spproach
their asymptotic values :?(p), ;(p) s Trespectively, as &t + o, If

Z, >z s both ﬁt P Et decrease, and approach the same asympbots from above.

Finally, if z_ = z(p) we must have X, = x(p) , 2, = 2(p) for all t >0,

In particular, if p =0, (32) can be solved explicitly, by (_21) above,
which of course leads back to statement (D).

Since the path (?:t, Et)_ was (uniquely) derived from the sufficient
condition (30) for optimality, it is clearly optimal, The proofs of (H), (1),
and (J) can therefore be completed by showing that no other attainsble and
eligible path is optimal. To this end we note that, by Assumption (e), the

< sign applies in (T) whenever x # x* ., Now if (xt, z_t) differs from
(it, g‘b) s We must have x, # ;Et for some t , because in the conmtrary

cage (2) and Zo’:;o would imply . ztng for all t ., But then, by the

t
attainability condition (1 ¢), we have a strict inequality in (24) and, by (25),

(26), the path (xt, _zt) is not optimal,

8., Proof for p < 0.

We shall need the following lemma.
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Iemua 4, If of(x) is & positive and nonincreasing function of x defined

for all x >0 , and if X, is a positive integrable function of t on the.

interval [Tl, T,], T, <%,, such that

12
Ta
(éé) j xtdt‘;E (Te”_l)§3%§>o:
T _
1
then
o
(34) Ll AR 3 (T 1) elat)
1

Proof; We define

n(x) = -E-.-;%—i.-l-' measure of A{t|'1‘ <t ST, and xt:_fx}

Then u{0) = 0, p(=) =1, and, from (33) and the positiveness of X

TE o 2l )

(35) &2 g [ mat= [ xda(x) = f xau(x)+ [ xau(x) 2
"1 o o 2t

20+ 2t 1-n(2§)) ;

Likewise, from the nonincreasing property of o(x) ,

T

2 2 o
Jooelxdae = [ o(x) an(x) + [ olx) du(x) 2
T, o 28

—
T~ T
(36)

g gl2t)u (28) +o0.
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since, from (35), un(26) 2 %, (36) implies (3k) .

Proof of (K). We again distinguish the three cases with regard to the

asymptotic range of z

. » used in the proof of. (B).

case (1), <. In this case statement (K) is equivalent to
Lemma 2.

Case (i1), ¢ = t=t Fz. For definiteness assume { <z and

let E-géje. Since now lim 2z, = { we can cheoge T such that
£oo

(31 Z-he<z <z-2 for t2 T,

and at the same time large enough for there to exist an attainsble path

(x:, z,':) on [0, T] such that z;; =Zp+e. For £ 2T we choose (x:, zatc-)

according to
(38 zt"_"—-'zt-!',e, ';'z'zt, xt:xt+g(z:)--g(zt) for all t 2 7T.

Then, (x:, zz) is atteinable throughout, end from (8), (37), for t 2T,

(39) g - % = 8(2F) - e(z,) 2 e (z¥)(ef - 2,) 2g'(G-e)e=n>0.

Henee, for P<T* <o and -ps0og >0,
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(40)  g¥pe (-0) = [ e G(xg) - u(xt)at 2o [ wGg) . (- xat 2
T T

¥
21 e’T ! u',(x:) at
T

On the other hand, by (2), (& &), (37) ,

* ¥ N
O aat = [ oe(s)at v op - ap S (% 1) X+ 20 5 (T 1)
provided T- T 21 end § =x + 2¢ . It follows from (41) end Assumption (e)

that xf and u'(x*) when substituted for x_ and @(x) in Lemma 4 satisfy

t €

the premises of thet lemms on the intexval [T, ¥*]. Hence, fram (40), (34)
Mu(-0) 2 Sn- w(2R + be) . (7% 1) T

from which (K) follows directly. The proof for z < { is similar.

Cese (iii), ¢ = T=2. Forany € >0, subject still to later

'choice, there now exists an integer T such 'éha'l;

(k2) z2-~c¢Sz S2+e for t2 T.
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It will be useful to write TWT*(-O) as the difference of two integrals
T ot ~) L. ~
(53) TWT*(-U) = Tf e’ @(x:) - u) at - TI e G(xt)- u) at = TU;,*(—O)-TUT;(-U) .

Teking first the second term we have, from(7) with x* =X, (2) snd (43),

ar T PP YR .
Pp(-e) T 8 f 6% (s(zt) N )at $-8 0 girla, - Dav
T*
(44) = -1 eqT*(zT*- z) - eqT(ZT- Z) - a.Tj eot(zt - z)at g

Ea'e GUT*+ T 4 (eﬁ* - eGT)) = 28'¢ eOT*

For the first term in (43) we choose an attainsble path (xI, z:)_

which for t 2. T is given by

o=

(l58) TSEt<T -1, = =o,.x§==g(’z‘+q)_.

(45) ﬂ {5 1) ™ -1 §t <t*, zg=(TNt)(Bm)e BQ = Z=B=t) 5 Xp= B(2F)~Zyut

+{6-T% L)zgx , ' +z 47,
(lbe) TSt * z* = xF = x;
Lis -7 Zg = Py 2 Zp = By o Xg =X,

vhere 3 o 3¢ end the mmber T* >T + 1 are still subject to later choice.

In addition, T should be sufficiently large that, bvesides (}_@) s there exists

an attainable path (x: > z:) on [0, T] such that z; =z 4N
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To obtain & lower bound on the first term in (43) we note that,
in view of Assumption (c¢) and (46), there exist numbers N, >0 and 7 >0

such that, whenever 0 <y 3 g 3
(46) |2.- 2| S implies 0 S g(2) - g(z) Sy q°.

Hence, if 0< q_ﬁ.qé and, ﬁé = u'_@(g + no)), we have from (45 a) and (4 b) ,

| E
(D Phealo) 9] 1 & (atom)- D) a0 2 - w7 12 7HE )

>-uly 2 ot T

.

For P~ 13¢t<7T, x} veries and must be boxed in, If 0<eSe ,

0<q s Uy » We have frem (_1‘_'2 E): (..l!:):
x* 2 min 8(2 - "-0) ) S(E"“Io)} - &, < X*-Sﬁ* €, * T s x*

where eo ) qo are chosen small enough to Iﬁake 2:_* >0 . ‘Then, because

u'{x) decreases with x ,

-1

w = me.x«{ u'(g:_*).,,u(‘) }2 u'(x}s") Z2ut(x*) =u' >0 for TF. 1S4 <T )
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We therefore have from (45 b), (46}

* .
) 257w (sted) - o0 - ¥ )as 2
1

(8)

o'T* o(T*-1.)

g-u'y n2 e’" + ut(y=e) e

Pulling together these inequalities we have, for any T* 2 7%,

trom (45 ¢), (43), (_lt"_k): (¥7); (48), since ur zué >~3",

Tw‘l‘"‘*(,— g) 2 [— G'G 1]2(1-1-0”1) + 2&) + ‘_'a.m"'(q-e)e"fI ec‘I’* = A eaT* , Bay .

It is now possible, within the restrictions already imposed, to choose first

n and then e small enough to make A >0 , next to choose T to¢ correspond
to ¢ according to (42), and finally, given N >0 , to choose T large
enough to meke

oT*

WT-x—x-(—G') = HT(-a)ﬁ.-!- ,IHT*(-U) > WT(-O') + Ae >N¥ for all T** >T%,
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