Yale University

EliScholar - A Digital Platform for Scholarly Publishing at Yale

Cowles Foundation Discussion Papers

Cowles Foundation

8-1-1962

Non-Existence of Consistent Estimator Sequences and Unbiased **Estimates: A Practical Example**

H. S. Konijn

Follow this and additional works at: https://elischolar.library.yale.edu/cowles-discussion-paper-series

Part of the Economics Commons

Recommended Citation

Konijn, H. S., "Non-Existence of Consistent Estimator Sequences and Unbiased Estimates: A Practical Example" (1962). Cowles Foundation Discussion Papers. 374.

https://elischolar.library.yale.edu/cowles-discussion-paper-series/374

This Discussion Paper is brought to you for free and open access by the Cowles Foundation at EliScholar - A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Cowles Foundation Discussion Papers by an authorized administrator of EliScholar - A Digital Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS

AT YALE UNIVERSITY

Box 2125, Yale Station New Haven, Connecticut

COWLES FOUNDATION DISCUSSION PAPER NO. 145

Note: Cowles Foundation Discussion Papers are preliminary materials circulated to stimulate discussion and critical comment.

Requests for single copies of a Paper will be filled by the Cowles Foundation within the limits of the supply. References in publications to Discussion Papers (other than mere acknowledgment by a writer that he has access to such unpublished material) should be cleared with the author to protect the tentative character of these papers.

Non-Existence of Consistent Estimator Sequences And Unbiased

Estimates: A Practical Example

Hendrik S. Konijn

August 7, 1962

Correction sheet for CFDP No. 145

Page 1. First sentence of introduction: insert "for each sample size" after identifiability.

Last sentence: "distribution" should read "distributions"

Add the sentence: "The bracket indicates the parameters used to describe the family; μ ranges over the entire real line and the range of σ^2 and ρ is given in (2) below."

- Page 3. (3) read ρ for p.
- Fage 10. To the sentence in the third line from the bottom append the footnote: "An essential role is played by the fact that $\tau^2 \quad \text{is identically zero if} \quad \rho = 0 \quad \text{but varies over the entire positive axis when} \quad \rho \neq 0 \quad .$
- Page 11. Middle of the page: refer to [6], not [2].
- Page 12. First line: "we have, writing τ_{in}^2 for $\tau^2(i) + (1 1)^n$."

 The title of section 6 is "A transformation..."
- Page 13. Second line: omit "where $x_p = (x_{p1}, ..., x_{pn})$ ".
- Page 14. In the text following the first displayed formula insert V after $(m-k)^{-1}$.

After second displayed formula insert: "Note that these estimates are precisely the ones obtained for C and C when $\rho=0$."

NON-EXISTENCE OF CONSISTENT ESTIMATOR SEQUENCES AND UNBIASED ESTIMATES: A PRACTICAL EXAMPLE

Hendrik S. Konijn

O. Introduction and Summary

It is often thought that identifiability implies existence of consistent estimator sequences. A rather artificial counter example is given in [7]. We here consider a case which often arises in experimental and survey practice. The example concerns a model with intraclass correlation ρ . For ρ negative an indefinitely large sequence of observations cannot arise from such a model and so the discussion of consistency is restricted to $\rho \geq 0$. For any non-degenerate range of ρ we show that no unbiased estimate exists for the variance of the mean of the observations.

Certain other aspects of estimation in models of this sort are considered in [4].

1. Some families of distributions

Let (y_1, \ldots, y_n) be multivariate nonsingular normal with n>1 , and with

$$\mu = \mathcal{E}_{y_j}$$
, $\sigma^2 = \mathcal{E}(y_j - \mu)^2$, $\rho = \mathcal{E}(y_j - \mu) (y_j - \mu)/\sigma^2 (j \neq j')$

unknown constants. We shall refer to the corresponding family of distribution as $\mathcal{N}_n[\mu,\,\sigma^2,\,\rho]$.

Such a family arises naturally in the study of experimental results [1] and in sample survey situations [2],[3]. It also seems natural in the study of interdependence among small clusters of individuals (such as arises in ecology, sociometry, and so forth) or of objects in a plane or space, being the simplest of a class of families in which the covariance of two elements is a function of their distance. Another extension is considered in section 6.

The joint density function is easily shown to have its logarithm proportional to

(1)
$$c_{1} - n \log \sigma^{2} - m \log(1 - \rho) - \log (1 + m\rho)$$

$$- \sigma^{-2} \left[\Sigma (y_{j} - \mu)^{2} (1 - \rho)^{-1} - (\overline{y} - \mu)^{2} \frac{1}{n} \left\{ (1 - \rho)^{-1} - (1 + m\rho)^{-1} \right\} \right],$$

where c, is a known constant and

$$m = n - 1$$
.

From (1) it is seen that nonsingularity of the distribution implies

(2)
$$\sigma^2 > 0$$
, $m^{-1} < \rho < 1$;

-- an amusing interpretation of this arises when all members of a group of individuals make a conscious attempt to be nonconformists; if the model is appropriate the amount of possible nonconformity as measured by - ρ appears limited by the size of the group.

It is well known (see section 6) that

$$\overline{y}$$
 and $V = \Sigma(y_1 - \overline{y})^2$

are independently distributed and that their density functions have logarithm proportional to

(3)
$$c_2 - \log \sigma^2 - \log (1 + mp) - \sigma^{-2} (\bar{y} - \mu)^2 n(1 + mp)^{-1}$$

and

(4)
$$c_3 - m \log v^2 - m \log (1-\rho) + (m-2) \log v - \sigma^{-2} (\sum y_j^2 - \overline{y_n^2}) (1-\rho)^{-1}$$
,

so that the conditional density of (y_1, \ldots, y_n) given $(\overline{y}, \overline{v})$ has logarithm proportional to

(5)
$$c_h - (m - 2) \log V$$
,

which does not depend on μ , σ^2 or ρ

and so (\bar{y}, V) is sufficient for the family $\mathcal{N}_n[\mu, \sigma^2, \rho]$.

Since $\sqrt{n(\bar{y}-\mu)}$ has a normal distribution with zero mean and variance

(6)
$$\sigma^2 = \sigma^2(1 + m\rho)$$

and $V K^2$ has a chi-square distribution with m degrees of freedom with

(7)
$$\kappa^2 = \sigma^2(1 - \rho)$$
,

it is also convenient to consider a parametrization of $\mathcal{N}_n[\mu, \sigma^2, \rho]$ by μ , κ^2 and ω^2 with (2) replaced by the

(2')
$$k_{\star}^{2} > 0$$
, $\omega^{2} > 0$.

Frequently [1] we are really interested in estimating ω^2 and κ^2 rather than σ^2 and ρ .

In some problems it is possible to replace by

(2*)
$$\sigma^2 > 0$$
, $\rho \geq 0$;

we shall refer to that subfamily of $\mathcal{N}_n[\mu, \sigma^2, \rho]$ as $\mathcal{N}_{no}[\mu, \sigma^2, \rho]$.

2 Nonexistence of an unbiased estimate of ω²

If f is a function of the observations and $\mathcal{E}f(y_1, \ldots, y_n)$ exists (as a Letergue integral), then the conditional expectation $\mathcal{E}\left\{f(y_1, \ldots, y_n) \mid \overline{y}, V\right\} \text{ exists, and, by the sufficiency of } (\overline{y}, V)$ does not depend on the parameters; call it $g(\overline{y}, V)$. Since the distribution of V does not depend on μ ,

$$g_{o}(\overline{y} \mid \kappa^{2}) = \mathcal{E}\left\{g(\overline{y}, V) \mid \overline{y}\right\}$$

exists and is not a function of μ .

So, if $f(y_1, \ldots, y_n)$ is an unbiased estimate of ω^2 , then, for each positive number \mathcal{K}_0^2 , $\mathcal{E}_{g_0}(\overline{y} \mid \mathcal{K}_0^2)$ equals ω^2 identically in μ and ω^2 . Consequently, writing $h(\overline{y} n^{\frac{1}{2}}) = g_0(\overline{y} \mid \mathcal{K}_0^2)_2$ z for $\overline{y} n^{\frac{1}{2}}$ and ν for $\mu n^{\frac{1}{2}}$,

$$\mathcal{E}_h(z) = (2 \pi \omega^2)^{-\frac{1}{2}} \int_{z}^{z} \int_{z}^{z} \int_{z}^{z} (z - y)^2 \omega^{-2} dz$$

identically in μ^2 and ω^2 . That would mean that there would exist an unbiased estimate of the variance ω^2 of a normal distribution with unknown mean $\mathcal V$ based on a single observation. That this is not so is proved in [5].

3. Sequences of families

In discussing asymptotic properties one also has to consider infinite sequences $\mathcal{N}[\mu, \sigma^2, \rho]$ of families $\mathcal{N}_n[\mu, \sigma^2, \rho]$ for $n=2,3,\ldots$. It should be noted that in such a sequence the second part of (2) is not tenable when ρ is taken to be constant throughout the sequence, i.e., that case (2) must be replaced by (2*). Therefore in this case the study of asymptotic properties is without sense, and we have to confine ourselves to the study of fixed sample size properties.

Alternatively, we can consider

- (a) the sequence $\mathcal{N}^*[\mu, \sigma^2, \lambda]$ of families $\mathcal{N}_n[\mu, \sigma^2, a_n(\lambda)]$ for $n=2,3,\ldots$, where $a_2(\lambda)$, $a_3(\lambda)$, ... is a sequence of fully specified functions of a single unknown parameter λ .
- (b) the sequence $\mathcal{N}^{n}[\mu, \sigma^{2}, \Lambda]$ of families $\mathcal{N}_{n}[\mu, \sigma^{2}, b_{n}(\Lambda)]$ for $n = 2, 3, \ldots$, where $b_{2}(\Lambda), b_{3}(\Lambda), \ldots$ is a sequence of one-to-one functions of an ordered set Λ of at least two independent parameters, which cannot be represented as one-to-one functions of a single parameter.

Of course, $a_n(\lambda)$ and $b_n(\Lambda)$ must depend on n and must satisfy the second part of (2) for each n. The usual case of $\mathcal{N}^n[\mu, \sigma^2, \Lambda]$ is the one in which for any n, the function b_n equals a quantity $\rho(n)$

of which we only know that it lies in the range specified in the second part of (2).

Similarly we can consider $\mathcal{N}_{0}[\mu, \sigma^{2}, \lambda]$ or $\mathcal{N}_{0}[\mu, \sigma^{2}, \Lambda]$.

4. Identifiability

The logarithm of the characteristic function of (y_1, \ldots, y_n) is

(8)
$$\psi(t_1, \ldots, t_n \mid \mu, \sigma^2, \rho) = \log \epsilon \exp (i \Sigma y_j t_j)$$

$$= i \mu n \overline{t} - \frac{1}{2} \sigma^2 (\Sigma t_j^2 + \rho \Sigma \Sigma t_j t_j) \qquad (j \neq j^i).$$

Consider a collection of specified functions q, r, ... of the parameters. Necessary and sufficient for the identifiability of this collection in $\mathcal{N}_n[\mu,\sigma^2,\,\rho]$ is that for any two sets $(\mu_1,\,\sigma_1^2,\,\rho_1)$ and $(\mu_2,\,\sigma_2^2,\,\rho_2)$ of values of the parameters the identity over n space:

(9)
$$\psi(t_1, ..., t_n | \mu_1, \sigma_1^2, \rho_1) = \psi(t_1, ..., t_n | \mu_2, \sigma_2^2, \rho_n)$$

can hold if and only if all the functions q, r, ... take on the same value for $(\mu_1, \sigma_1^2, \rho_1)$ and $(\mu_2, \sigma_2^2, \rho_2)$.

Suppose, for example, that $q(\mu, \sigma^2, \rho) = \mu$, $r(\mu, \sigma^2, \rho) = \sigma^2$ and $s(\mu, \sigma^2, \rho) = \rho$. For $t_2 = \dots = t_n = 0$ and $t_1 \neq 0$, the real part of

(9) implies that $\sigma_1^2 = \sigma_2^2$, and the imaginary part that $\mu_1 = \mu_2$. This reduces (9) to the identity

$$(10) \qquad (\rho_1 - \rho_2) \quad \Sigma \ \Sigma \ t_j \ t_j, \ = 0$$

after division by the common , negative value of $-\frac{1}{2}\sigma^2$. By selecting any nonzero values for t_1 and t_2 , and (if n>2) setting $t_3=\dots=t_n=0 \ , \ \text{this yields} \ \rho_1=\rho_2 \ . \ \text{So} \ \left\{q,\,r,\,s\right\} \ \text{is identifiable}$ in $\mathcal{N}_n[\mu,\,\sigma^2,\,\rho]$.

It follows at once from the definition of identifiability that $\{q, r, s\}$ is also identifiable in $\mathcal{N}_{no}[\mu, \sigma^2, \rho]$ and that any collection of functions of (μ, σ^2, ρ) which depends on μ , σ^2 , and ρ only through the value of (q, r, s) is identifiable in $\mathcal{N}_{n}[\mu, \sigma^2, \rho]$ and $\mathcal{N}_{no}[\mu, \sigma^2, \rho]$. Specifically if $t(\mu, \sigma^2, \rho) = \mathcal{K}^2$, defined in (7), and $u(\mu, \sigma^2, \rho) = \omega^2$, defined in (6), t and u are functions of r and s alone, and so $\{q, t, u\}$ is identifiable in $\mathcal{N}_{n}[\mu, \sigma^2, \rho]$. We can also show this directly: The right hand side of (5) can be written as

$$i \mu n \overline{t} - \frac{1}{2} \chi^2 (\Sigma t_j^2 - n \overline{t}^2) - \frac{1}{2} \omega^2 n \overline{t}^2$$

Thus for $t_2=\ldots=t_n=0$ and $t_1\neq 0$, the identity corresponding to (9) yields $\mu_1=\mu_2$ and $\mathcal{K}_1^2=\mathcal{K}_2^2$, and on substitution of these equalities becomes

$$-\frac{1}{2}(\omega_1^2 - \omega_2^2) n \bar{t}^2 = 0$$

so that also $\omega_1^2 = \omega_2^2$.

Now consider the family $\mathcal{N}_n[\mu, \sigma^2, a_n(\lambda)]$ defined in section 3 under (a). We see at once that, if $v(\mu, \sigma^2, \lambda) = \lambda$, $\{q, r, v\}$ is identified in this family.

Let us proceed to $\mathcal{N}_n[\mu, \sigma^2, b_n(\bigwedge)]$ defined in section 3 under (b). Let $w(\mu, \sigma^2, \bigwedge)$ depend effectively on at least two components of the sequence \bigwedge and not be definable in the form $\overline{w}(\mu, \sigma^2, b_n(\bigwedge))$. Then evidently $\{w\}$ is not identifiable in the family, since (10) will lead to the identifiability of $b_n(\bigwedge) = \rho(n)$ only for that value of n which coincides with the particular size of the sample that was taken. On the other hand, it was shown in the second paragraph of this section that $\{q, r, s\}$ is identifiable in $\mathcal{N}_n[\mu, \sigma^2, b_n(\bigwedge)]$: $s(\mu, \sigma^2, b_n(\bigwedge))$ = $b_n(\bigwedge)$, $b_n = \rho(n)$.

5. Non-existence of a consistent estimator sequence for ρ in $\mathcal{N}_{0}[\mu, \sigma^{2}, \rho]$.

If σ^2 and ρ are constant then ω^2 depends on n; in particular it equals $\omega_n^2 = \mathcal{K}^2 + n \, \sigma^2 \rho$. By a consistent sequence of estimators of ω_n^2 is meant a sequence of functions f_n^* of the observations such that for all $\xi > 0$

(11)
$$\lim \Pr \left\{ |t_n^i(y_1, ..., y_n) - \omega_n^2| > \mathcal{E} \right\} = 0.$$

If such a sequence exists then there also exists a sequence of functions f_n^n with

$$\lim_{n \to \infty} \Pr \left\{ |f_n^n(y_1, ..., y_n) - \tau_n^2| > \mathcal{E} \right\} = 0,$$

where

$$\tau_n^2 = n^{-1} \omega_n^2 .$$

Moreover, writing

$$\tau^2 = \lim \tau_n^2 = \sigma^2 \rho \,,$$

we also have

(12)
$$\lim \Pr \left\{ | f_n^n(y_1, ..., y_n) - \tau^2 | > \mathcal{E} \right\} = 0.$$

We shall show that no such sequence exists. Note that not only \mathcal{H}^2 and τ_n^2 , but also \mathcal{K}^2 and τ_n^2 or \mathcal{K}^2 and ρ are independent parameters; it follows that no consistent estimator sequence exists for ρ .

To show that no sequence satisfying (12) exists, we first change variables from (y_1, \ldots, y_n) to (z_1, \ldots, z_n) with $z_1 = n^2$ \overline{y} and the other components z^* having a distribution $\phi_{n-1}^*(z^* \mid \mathcal{H}^2)$ independent of μ and τ_n^2 or τ^2 . That this can be done follows from (1) and (2) of section 2 and is shown more explicitly in section 6. Since the z's depend on n, we show this more explicitly; in particular denote $-\frac{1}{2}$ z_1 by \overline{y}_n and n z^* by z_{n-1}^* . Then the joint density ϕ_n of \overline{y}_n and z_{n-1}^* is

$$\begin{aligned} & \phi_{n} (\overline{y}_{n}, \underline{z}_{n-1}^{*} \mid \mu, \mathcal{K}^{2}, \tau_{n}^{2}) \\ & = (2\pi\lambda_{n}^{2})^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(\overline{y}_{n}^{-}\mu)^{2} \tau_{n}^{-2}\right\} \phi_{n-1}^{*} \left(n^{\frac{1}{2}} \underline{z}_{n-1}^{*} \mid \mathcal{K}^{2}\right) n^{\frac{1}{2}} \end{aligned}$$

Now it is shown in [2] that when τ can take two different values $\tau(1)$ and $\tau(2)$, then for a sequence of functions f_n over $(\overline{y}_n, \underline{z}_{n-1}^*)$ to be consistent estimator sequence of $\tau(1)$ and $\tau(2)$ it is necessary that, for $n + \infty$,

$$\begin{split} &\Delta^{2}(\tau^{2}(1) + \mathcal{K}^{2}n^{-1}, \, \tau^{2}(2) + \mathcal{K}^{2}n^{-1}) \\ &= \iint \left\{ \phi_{n}(\overline{y}_{n}, \, \underline{z}_{n-1}^{*} \big| \mu, \, \mathcal{K}^{2}, \tau_{1n}^{2}) \, \phi_{n}(\overline{y}_{n}, \underline{z}_{n-1}^{*} \big| \mu, \, \mathcal{K}^{2}, \tau_{2n}^{2}) \right\}^{\frac{1}{2}} \, d\overline{y}_{n} \, d\underline{z}_{n-1}^{*} \end{split}$$

converges to zero. Since the integral with respect to z_{n-1}^* gives unity,

we have, writing
$$\tau_{1n}^{2}$$
 for τ_{2n}^{2} for τ_{2

with

$$\bar{\tau}_{\rm n}^{-2} = \frac{1}{2} \left(\tau_{\rm ln}^{-2} + \tau_{\rm 2n}^{-2} \right) = \frac{1}{2} \left(\tau_{\rm ln}^2 + \tau_{\rm 2n}^2 \right) \, \tau_{\rm ln}^{-2} \, \tau_{\rm 2n}^{-2} \quad , \label{eq:tau_number_tau}$$

so that

$$\Delta^{2}(\tau_{1n}^{2}, \tau_{2n}^{2}) = 2 \tau_{1n} \tau_{2n} (\tau_{1n}^{2} + \tau_{2n}^{2})$$
.

So for $\tau(1)$ and $\tau(2)$ both positive, Δ^2 (τ_{1n}^2 , τ_{2n}^2) does not converge to zero. So there exist no consistent estimator sequences for τ when the τ can take on any two positive values and consequently none for τ when τ can be any nonnegative number or for ρ when ρ is nonnegative.

6. A transfunction and an extension.

We have used here the fact that \bar{y} and V are independently distributed according to (3) and (4). This was shown by Walsh [9], but an examination of his proof shows that his argument is valid for ρ independent of n only if $\rho \geq 0$. Another argument, valid for the range (2), was given by Stuart [8]. It may be desirable, however, to give a more direct proof, and at the same time consider a more general form of problem.

For that we change the assumption $\mathcal{L}_{y_j} = \mu$ to $\mathcal{L}_{y_j} = \mu + \sum_{p=1}^k C_p x_{pj}$ where $x_p = (x_{pl}, \dots, x_{pn})$ with $p \le k$ and $0 \le k < n-1$. Here the x_p are fixed and known, linearly independent vectors; without loss of generality we assume that for each p the components of x_p add to zero. Let

Like in the case in which ρ is known to vanish, our objectives are attained by using a Helmert matrix H, viz., an orthogonal matrix with each element in the first column equal to n^2 and with the other columns having sum of elements equal to 0. For z = y H, $z_1 = n^2 y$ and the covariance matrix of z is H' u' u H = $\sigma^2 H'$ $\left\{ \rho(1...1)' (1...1) + (1-\rho) I \right\} H$ = $\sigma^2 \left\{ \frac{1 + m\rho}{0} \right\} \left\{ \frac{0}{1 + m\rho} \right\} \left\{ \frac{0}{1 + m\rho} \right\} \left\{ \frac{1 + m\rho}{1 + m\rho} \right\} \left\{ \frac{1 + m\rho}$

Since the rows of x add to 0, the first column of x H is a zero column; call the remaining columns x^* . If we denote (z_2, \ldots, z_n) by z^* , we have: z_1 and z^* are independently and normally distributed, the former with mean $\nu = n^2 \mu$ and variance $\omega^2 = \sigma^2(1 + m\rho)$, the latter with a vector mean C x^* and covariance matrix \mathcal{K}^2 I with $\mathcal{K}^2 = \sigma^2(1-\rho)$, and ν and the components of C range over the entire real line while ω^2 and \mathcal{K}^2 range over the entire positive line.

The analysis of z^* is an ordinary regression problem (through the origin); for example, the minimum variance linear unbiased estimate of C is

$$= \tilde{x}(\tilde{x} \tilde{H}), (\tilde{x} H H, \tilde{x},)_{-1} = \tilde{x} \tilde{x}, (\tilde{x} \tilde{x},)_{-1},$$

$$\tilde{C}_{0} = \tilde{x}_{x} \tilde{x}_{x}, (\tilde{x}_{x} \tilde{x}_{x},)_{-1} = [\tilde{x}^{1} \ \tilde{x}_{x}] [\tilde{\delta}, \ \tilde{x}_{x}], \{[\tilde{\delta}, \ \tilde{x}_{x}, \ \tilde{x}_{x}], \{[\tilde{\delta}, \ \tilde{x}_{x}, \ \tilde{x}_{x}], \{\tilde{\delta}, \ \tilde{x}_{x}, \ \tilde{x}$$

and the usual estimate of \mathcal{H}^2 is $(m-k)^{-1}$ with

It is now easily seen that x_1 , C^0 and V are sufficient for the family of distributions of y; families (1), (3), (4) and (5) are still valid, except that in (4) and (5) m is replaced by m-k and that in (1) and (3) μ is replaced by $\mu+\Sigma C_p x_p$, and when k>0 the logarithms of the joint density of the components of C^0 is proportional to

$$c_5 - k \log \sigma^2(1-\rho) - (c^0 - c) \times x' (c^0 - c)^2/\sigma^2(1-\rho)$$
.

REFERENCES

- [1] FISHER, R. A., (1946). Statistical Methods for Research Workers.
 Oliver & Boyd, Edinburgh, London, 10th ed., XV and 354 pp.
- [2] HANSEN, M., HURWITZ, W. N., MADOW, W. G. (1953). Sample Survey Methods and Theory. John Wiley & Sons, New York, Chapman Hall, London, 2 vols.
- [3] KONIJN, H. S. (1962). Regression Analysis in Sample Surveys.

 Journal of the American Statistical Association, 58.
- [4] KONIJN, H. S. (196.). Note on the nonexistence of a maximum likelihood estimate. (forthcoming).
- [5] KONIJN, H. S. (196.). On a Theorem of Halmos Concerning Unbiased Estimation of Moments. (forthcoming).
- [6] KRAFT, C. (1955). Some Conditions for Consistency and Uniform Consistency of Statistical Procedures. University of California Publications in Statistics 2 no. 6, 125-142.
- [7] KRAFT, C., and Le CAM, L. (1956). A remark on the roots of the maximum likelihood equations. The Annals of Mathematical Statistics, 27, 1174-7.
- [8] STUART, A. (1958). Equally Correlated Variates and the Multinormal Integral. Journal of the Royal Statistical Society, B 20, 373-8.
- [9] WAISH, J. E. (1947). Concerning the effect of intraclass correlation on certain significance tests. The Annals of Mathematical Statistics, 18, 88-96.