Yale University

EliScholar - A Digital Platform for Scholarly Publishing at Yale

Cowles Foundation Discussion Papers

Cowles Foundation

8-1-1962

On a Theorem of Halmos Concerning Unbiased Estimation of **Moments**

H. S. Konijn

Follow this and additional works at: https://elischolar.library.yale.edu/cowles-discussion-paper-series

Part of the Economics Commons

Recommended Citation

Konijn, H. S., "On a Theorem of Halmos Concerning Unbiased Estimation of Moments" (1962). Cowles Foundation Discussion Papers. 373.

https://elischolar.library.yale.edu/cowles-discussion-paper-series/373

This Discussion Paper is brought to you for free and open access by the Cowles Foundation at EliScholar - A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Cowles Foundation Discussion Papers by an authorized administrator of EliScholar - A Digital Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS

AT YALE UNIVERSITY

Box 2125, Yale Station New Haven, Connecticut

COWLES FOUNDATION DISCUSSION PAPER NO. 144

Note: Cowles Foundation Discussion Papers are preliminary materials circulated to stimulate discussion and critical comment.

Requests for single copies of a Paper will be filled by the Cowles Foundation within the limits of the supply. References in publications to Discussion Papers (other than mere acknowledgment by a writer that he has access to such unpublished material) should be cleared with the author to protect the tentative character of these papers.

On a Theorem of Halmos Concerning Unbiased Estimation of Moments

Hendrik S. Konijn

August 6, 1962

Correction sheet for CFDP No. 144

- Page 2. To "(a)" add: "In [3a] this seemingly uninteresting fact has been applied to a practical case."
- Page 4. Title of section: leave off s in first word and append the following footnote: "It has been remarked that it is obvious that from a sample of 1 it is not possible to obtain an unbiased estimate of two independent parameters, i.e., two functions F_1 and F_2 on a class of distributions such that there exists no function φ in the plane with $\varphi[F_1(D), F_2(D)] = 0$ for all distributions D in the class. That this is not so is easily shown by an example. Let $\alpha^2 = \nu^2 + \alpha^2$, then ν and α^2 are independent parameters of μ , but $\nu = \frac{\pi^2}{2}$.
- Page 8. Add [3a] KONIJN, H. S. (196). Nonexistence of Consistent Estimator Sequences and Unbiased Estimates: A Practical Example, (Forthcoming).

ON A THEOREM OF HALMOS CONCERNING UNBIASED ESTIMATION OF MOMENTS

Hendrik S. Konijn

1. Introduction

In [3] Halmos considers the following situation. Let $\mathcal D$ be a class of one dimensional distribution functions and F a function over $\mathcal D$. He investigates which functions F admit estimates that are unbiased over $\mathcal D$ and what are all possible such estimates of any given F. In particular he shows that on the basis of a sample of size $n(\ge 1)$ one can always obtain an estimate of the first moment which is unbiased in $\mathcal D$ and that the central moments $\overline F_m$ of order $m\ge 2$ have estimates which are unbiased in $\mathcal D$ if and only if $n\ge m$, provided $\mathcal D$ satisfies the following properties: $\overline F_m$ exists and is finite for all distributions in $\mathcal D$ and $\mathcal D$ includes all distributions which assign probability one to a finite number of points. Halmos also finds

^{*} Let $E_{a,b,p}$ be the distribution which assigns probability p to the point a and 1-p to the point b. One can easily modify Halmos' argument to show that the second condition on c can be replaced by: there exist two different points a and b and a set T of at least m+1 different numbers in the closed interval from 0 to 1 such that c contains $\{E_{a,b,p}$ $(p \in T)\}$.

that under additional conditions symmetric unbiased estimates are unique ** and have smaller variances than the unsymmetric ones.

^{**} It will be convenient to call a function on a k-dimensional Euclidean space the unique function satisfying certain property if any other function on this space satisfying the property may differ from it only on a set of k-dimensional Lebesgue measure zero.

He recognizes that his assumptions are too restrictive for most applications and mentions in particular the case where $\mathcal L$ is the class of all normal distributions. The present paper addresses itself to that case.

2. Statement of results

If \mathcal{L} is the class of all nondegenerate univariate normal distributions, then, on the basis of a sample of size $n(\geq 1)$ an estimate of the first moment which is unbiased over \mathcal{L} exists (and is unique when n=1); and a central moment of order $2r \geq 2$ has estimates which are unbiased over \mathcal{L} if and only if $n \geq 2$, and is a unique symmetric unbiased estimate when n=2 but not if $n \geq 2$.

Specifically, this means the following:

Let z_1, \ldots, z_n be a sample for a normal distribution with mean ν and variance $\omega^2 > 0$. Let $\overline{z} = n^{-1} \Sigma z_1$, $S^2 = \Sigma (z_1 - \overline{z})^2$. Recall that the even central moments \overline{F}_{2r} equal $\omega^{2r} \ 2^{-r} \ (2r)!/r!$ and the odd ones vanish.

- (a) If n=1, $\overline{z}=z_1$ is the unique unbiased estimate of ν , and no unbiased estimate of \overline{F}_{2r} exists for $r=1,2,\ldots$.
 - (b) If $n \geq 2$,

$$\bar{f}_{2r} = \frac{\left\{\frac{1}{2}(n-1)-1\right\}!(2r)!}{\left\{\frac{1}{2}(n-1)+r-1\right\}!r!}\left(\frac{1}{2}s\right)^{2r}$$

is an unbiased estimate of \overline{F}_{2r} (r = 1, 2, ...), and is the unique symmetric unbiased estimate if n = 2 , but not if n > 2 .

In the next two sections we prove the parts of (a) and (b) which are not immediately obvious.

It now follows from [4] that, if $n\geq 2$, \overline{z} and \overline{f}_{2r} are the unique unbiased estimates of v and \overline{F}_{2r} depending only on the sufficient statistic (\overline{z}, S^2) and have the smallest variance among all unbiased estimates. Note that \overline{z} and S^2 are symmetric functions of the observations. The usual symmetric estimate \overline{f}_{2r}' for \overline{F}_{2r} , which is unbiased for all distribution functions for which \overline{F}_{2r} exists, is defined only when $n\geq 2r$. It cannot be specified in a convenient general formula. When r=1 it coincides with \overline{f}_2 , when r=2 it equals [1,27.6]:

$$\bar{f}_{4}' = \frac{(n-4)!}{n!} \left\{ n(n^{2}-2n+3) \ \Sigma(z_{1} - \overline{z})^{4} - 3(2n-3) \ S^{4} \right\} \ (n \geq 4) \ .$$

Being symmetric, \overline{f}' is unique among symmetric estimates which are unbiased in the class of all distribution with finite \overline{F}_{2r} by Halmos' results. But in the normal case our results imply that \overline{f}_{2r} has a smaller variance than \overline{f}'_{2r} for r>1.

3. Nonexistences of an unbiased estimate of \overline{F}_{2r} in a sample of 1.

In this section we denote $z_{\underline{l}}$ by z . If h(z) is an unbiased estimate of $\overline{F}_{2\mathbf{r}}$ then

$$\int_{-\infty}^{\infty} \left\{ h(z+\nu) - z^{2r} \right\} \exp \left(-\frac{1}{2} z^{2} \omega^{-2} \right) dz$$

should vanish for all ν and all $\omega>0$. This integral can be written as an integral over the positive axis and then we can make the substitution $\frac{1}{2}$ and obtain, setting $\omega'=(2\omega^2)^{-1}$, that

$$\int_{0}^{\infty} \left\{ h(-u^{\frac{1}{2}} + \nu) + h(u^{\frac{1}{2}} + \nu) - 2u^{r} \right\} u^{-\frac{1}{2}} \exp(-u \omega^{t}) du$$

is zero for all ν and all $w^*>0$. This being a Laplace transform of u times the expression in brackets, it follows that

$$h(-z + v) + h(z + v) - 2z^{2r} = 0$$

for all ν and almost all positive z. That is, there is a set T on the positive z axis such that the Lebesgue measure ℓ of the positive points z not in T is zero and such that the above equality holds on T for all real ν .

As we shall show below, there exist two points a and $\frac{1}{2}$ a in T. Choosing v = a and 2a respectively gives for z = a

$$h(0) + h(2a) = 2a^{2r}$$
, $h(a) + h(3a) = 2a^{2r}$,

so that,

$$h(0) + h(a) + h(2a) + h(3a) = 4a^{2r}$$
.

Choosing $v = \frac{1}{2}$ a and $2\frac{1}{2}$ a respectively gives for $z = \frac{1}{2}$ a

$$h(0) + h(a) = \frac{1}{2}a^{2r}, \qquad h(2a) + h(3a) = \frac{1}{2}a^{2r},$$

so that

$$h(0) + h(a) + h(2a) + h(3a) = a^{2r}$$
.

Since $a \neq 0$, this is a contradiction.

To show that one can choose two points a and $\frac{1}{2}$ a in T, let a' be in T and let 0 < b < a'. Define the disjoint intervals I_i from ia' to i(a'+b) for i=1,2, which have $\ell(I_iT)=ib$. Denote by $p_j(I_iT)$ the set of points x in I_jT such that $i \times j^{-1}$ is in I_iT . Since given any $\eta > 0$ there is a denumerable collection of open intervals whose union contains the set $I_i - I_iT$ of points in I_i but not in I_iT and whose total length is less than η (see e.g., [5, 19.15]), there is a sequence of intervals whose union contains $I_i - p_j(I_iT)$ and whose total length is less than $j \in I_iT$ and $j \in I_iT$ and whose total length is less than $j \in I_iT$ by $j \in I_iT$ and whose total length is less than $j \in I_iT$ by $j \in I_iT$ and whose total length is less than $j \in I_iT$ by $j \in I_iT$ and $j \in I_iT$ by $j \in I_iT$ and whose total

$$T_2 = I_2 T_{2}(I_1 T), T_1 = P_1(T_2),$$

then, since the T_i are subsets of T with $\ell(T_i) = ib$, there exist a > 0 such that $\frac{1}{2}$ ia is in T_i for i = 1 and 2, so that $\frac{1}{2}$ a and a are in T.

4. Uniqueness of the unbiased symmetric estimate of \overline{F}_{2r} in a sample of 2 and nonuniqueness in a larger sample.

For $n \ge 2$ (so that S^2 is not identically zero) the sufficiency of the statistic (\overline{z}, S^2) and the completeness of its distribution imply that \overline{f}_{2r} is the unique unbiased estimate of its expectation \overline{f}_{2r} among unbiased estimates depending on (\overline{z}, S^2) only [4]. Now if n = 2, (\overline{z}, S^2) determines the set $\{z_1, z_2\}$ of observations, but not their order. Therefore \overline{f}_{2r} is also the unique unbiased estimate of \overline{f}_{2r} among unbiased estimates which are symmetric in the observations.

That this is not so for $n\geq 2r>2$ is shown by the unbiasedness of the symmetric estimates \overline{f}_{2r}' which differ from \overline{f}_{2r} for all r>1, since \overline{f}_{2r} when defined contains the factor $\Sigma(z_1-\overline{z})''$ $(n-2)''+1)^{-1}$ [3].

For 2 < n < 2r one can always combine expressions involving $\Sigma(z_1-\overline{z})^{\frac{1}{4}} \text{ and } S^{\frac{1}{4}} \text{ to get unbiased symmetric estimates of } \overline{F}_{2r} \cdot \text{ For example, if } n=3, \ 1\frac{1}{2} \mathcal{E}(z_1-\overline{z})^{\frac{1}{4}} = F_4 + \overline{F}_2^2 \text{ and, in the normal case, } S^{\frac{1}{4}} \text{ has mean } 8\,\overline{F}_2^2 \text{, so that } 1\frac{1}{2}\,\Sigma(z_1-\overline{z})^{\frac{1}{4}} - S^{\frac{1}{4}}/8 \text{ is a symmetric unbiased estimate of } \overline{F}_4 \text{ different from } 3\,S^{\frac{1}{4}}/8 \text{ .}$

5. Remarks

One could similarly discuss unbiased estimation of other functions over the class of normal distributions.

Fraser [2] adapts Halmos' argument to the case where \bigotimes contains all distribution uniform over intervals,*** such as is the case when \bigotimes is the class of absolutely continuous distributions.

The writer is much indebted to T. C. Koopmans and T. N. Srinivasan for helpful suggestions.

This requirement can be weakened; in fact, it is already a weakened version of Fraser's requirement.

REFERENCES

- [1] CRAMER, H. (1946), Mathematical Methods of Statistics, Princeton University Press, Princeton, xvi and 575 pp.
- [2] FRASER, D. A. S. (1954), Completeness of Order Statistics, Canad. J. of Math., 6, 42-5.
- [3] HALMOS, P. R. (1946), The Theory of Unbiased Estimation, Ann. Math. Statist., 17, 34-43.
- [4] LEHMANN, E. L., and SCHEFFE, H. (1950, 1955). Completeness, Similar Regions, and Unbiased Estimation. Sankhya, 10, 305-40, 15, 219-36.
- [5] McSHANE, E. J. (1947). <u>Integration</u>. Princeton University Press, Princeton, viii and 392 pp.