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PARTTAL TRACE CORREIATION THEORY*

John W. Hooper

1. INTRODUCTION

This paper is a sequel to [4] in which & generalized correlation coef-

*K
ficient (the trace correlation) for milti-equation models was presented.

*x By multi-equation models we mean any model which contains more than
one equation, be it of the simultaneous or recursive type. In this paper
we shall discuss our problem within the context of simultaneous equation
models, although with minor changes the results are equally valid for the
recursive type models,

Here we are concerned with the development of partial trace correlation theory.
The relation between partial trace correlations and the trace correlation is
analogous to the relation between partial correlation coefficients and the

N
multiple correlation coefficient in & single-equation model. In the

KA
For a clear account of this relationship see Anderson [1, pp. 27-34].

latter the multiple correlation coefficient measures the extent to which the
regression relationship on all of the independent variables accounts for the
observed variation in the dependent variable. In addition there are partial
correlation coefficients which measure the extent to which the regression on
a particular independent variable explains the observed variation in the de-

pendent, variable, when the influence of the remaining independent varisbles

* .

I am indebted to Professors K. J. Arrow and H. Chernoff for their
constructive comments on the contents of this paper. Any errors which remain
are the sole responsibility of the author. This paper is based upon Chapter
IV in [3].
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is held constant. Similarly, in multi-equation éystems there is the trace

*
correlation which is a measure of the extent to which the regression rela-

%
The reader is referred to [L4] for the development of the trace
correlation.

tionship explains the variation in the set of jointly dependent variables.
The purpose of this paper is to develop the analogue of partial correlation
coefficients for multi~equation models, i.e., to develop a statistic which
measures the degree to which the regression relationship on a subset of the
independent variables accounts for the variation in the jointly dependent
variables, while holding the influence of the other independent variables
constant.

As in the case of the trace correlation, the basic concepts are de-
veloped through the use of canonical correlation theory. This is done in
Section 2, while in Section 3 partial trace correlations aré defined. 1In
Section 4 the asymptotic sampling variances are given and Section 5 contains

& numerical example.
2. CANONICAL CORRELATION THEORY APPLIED TQ CONDITIONAL SETS OF VARTABLES

In order to discuss partial trace correlation coefficients we must first

H
develop canonical partial correlation theory  which is concerned with the

*¥
For a short account of canonical partiasl correlation theory see [7].

The results in this section were developed before this account in [7] was
known to me. In any case it is felt that it is desirable to have & more
extended development available.
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relationships between two sets of variables. For our purpose let these two

sets of variables be ¥., seey Iy and X., ..., XA, where it is assumed

l’
that T observations on each of these variables are available, so that the

l’

aggregate set of data can be written in the form of & T x M matrix Y and

*
a Tx_ /A matrix X . We first partition the X matrix into

(2,1) X = [Xl XEJ ’

*
We also assume that Y 1s of rank M and X of rank /L , and that
all variables are measured as deviates from their means so that the sums of
the T rowe of Y and X are zero row vectors.

where X, has _jl.l columns of T elements each and X, has ~/\_.2 columns

(41.1 + J\,E =_/) . We now consider a particular pair of canonical variates,

1 and E , which are obtained by forming the linear combinations

(2.2) Yk =1 ; Xh=¢,

where & and 17 are column vectors of T observations on the two cancnical
variates and h and k are unknown coefficient vectors of _Jﬁ_l and M

elements respectively. We also consider the linear regression of ¥ on X2

and Xl on X2 which can he represented as

(2.3) Y=XB +V

where B, and 32 are unknown parameter metrices of order /L, x M and

2
A o X _le respectively, and where v, = Ve and V, = vfkl- are
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*
TxM and T x-f\l matrices of parent disturbances. We then find that the

*
It is further assumed that the random elements of these disturbance
matrices have the following usual properties:

(1) E <tl> 0 ;
(1) E(’ >= L b= E(Ve, Vo ) = 0., 5 © =t
_ tu Vi p.u and t)\.l t).l )\.Z\l

0, ttt yvEt,

]

1
o

fOI‘ t, 't‘ =l, o-n)T; p., }J.' =l, ey Mj &nd. 7\.1, )«.i"’l, "oy

means of the canonical variates are

EYk = ¥X_Bk

(2.4) En 2B

EXh=XBh.

Eg 1 25

We now impose the restriction that the sum of squared deviations from the

means are unity and we have

(2.5) (n- En)'(n - En) = (¥k - X B,k) ' (¥k - X ;B.k) = k'Ck = 1

(¢ ~BE)' (¢ - Eg) = (th - XEBéh)‘(th - xaBeh) =h'Ch =1,
where
(2.6) ¢y = (Y'Y - Y'Xa(XéXE)—lXéY]

C, = [x: XX, - %X (X'X ) lx'x ] .

The correlation, r , between a pair of canonical variates, n and ¢ , is

(2'7) r = (g - EE)t('ﬁ = EI’]) = (th - X2B2h)!(Yk = XEBlk) = h'Wk ,
where
(2.8) W= [X1Y - XiXE(XéXQ)-lXéY] .
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The expression in (2.7) should be stationary for variations in h and k
subject to the restrictions in (2.5). So we consider the unconditional sta-

tionary value of
(2.9) h'Wk - (1/2)x1(k'clk - 1) - (1/2)x2(h'02h - 1),
where the M\'s are scalar lagrange multipliers. Differentiating with respect
to the elements of h and k and setting the results equal to zero we obtain
(2.10) We - A,Coh = 0

W'h - xlClk =0 .

Premultiply the first set of /L 3 equations by h' and the second set of

M egquations by k' and we have, making use of (2.5) and (2.7), that
(2.11) Ay = A =T
Combining the first set of eguations in (2.10) with (2.11) gives
-1
(2.12) h = (:L/r)c2 Wk

and combining this result with the second set of equations in (2.10) gives

-1

(2.13) Crlioe

W - rgl)k =0 .

W'C,

This result implies that the squared canonical correlations, all of which lie

¥* - -
between zero and unity, are the lstent rocots of the matrix Cllw’cgl W.

Cf. {7] for a statement of these same results.

To determine what these results mean within the context of zimultaneous

eqguation systems we consider the following reduced-form system of equations:

(2.14) Y =X[] +V,
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where TT is the matrix of parent reduced-form coefficients and ¥ the T x M
matrix of parent reduced-form disturbances. We partition the | matrix to

conform to the partitioning of the X matrix and so we obtain
(2.15) Y = XlTTl + X0, + 7,

where TTi and TTé are HALl XM and A 5 X M matrices of reduced-form
coefficients, respectively. The estimates of these coefficients as obtained

by least squares are

Pl = 02 W
(2.16)
-1 -
— 1 t - ]
P, = (XQXE) [XQY (szl)celw] .
The estimated reduced-form equations can then be written e&s

(2.17) Y =XP +XP, +V,

1 2 2

where V isa T x M matrix of calculated residuals. It then follows after
multiplication and some simplification that the estimated moment matrix of

the jointly dependent variables can be written ag

-1 -
) _ 1 ] ] 1 1
(2.18a) Y'Y = WIC,T W+ Y Xe(XeXE) lX2Y + V'V
*
cr
(2.18b) C, = w'c;l W+ V'Y

The left-hand side of (2.18b), C, , is the estimated conditional (con-

ditioned on X, ) moment matrix of the jointly dependent varisbles which

means that it is the variation left unexplained by the regression of Y on

X, » We notice from the right-hand side of (2.18b) that this unexplained

¥
gSee (2.6) for the definition of c, -
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variation in the y's given X

W'Cél W which can be interpreted as that part of the variation of the

5, can be divided into two parts, viz.;

variables in Cl which would be explained by the regression of Cl on 02

and V'V , which is the observed moment matrix of unexplained residuals.

However 02 is also & conditional moment matrix since it represents that

rart of the variation in the Xl's vhich is not accounted for by the re-

gression of Xl on Xg » Thus we see that W'C_l W represents in matrix

2
form that part of the wvariation in the Jjointly dependent variables which
is explained by the regression relationship on the exogenous varisbles
contained in the set Xl , after the influence of the exogenous variables

contained in the set X2 has been eliminated from both Y and Xl .

It now easily follows from (2.18b) that

(2.19) CITWIC,TW=I-F , say

where T 1g the unit matrix of order M and F is defined as
(2.20) F=C¢C

Thus the matrix whose latent roots are considered in (2.13) is simply the

inverse of the conditional moment matrix of the jointly dependent wvarisbles,
postmultiplied by the estimated conditional moment matrix of the systematic
part of the reduced form, i.e., [X

' - ' -1
1 - % (X Xe) lxexllca W which results

- xe(XéXE)"lXéxl]

from the regression of [Y - X, (X ) lX 'Y] on [Xl
Sc we have

(2.21) (T - F) - r°1] =

and from (2.19) and (2.20) that

(2.22) |F - (1 - r2)1| =
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The matrix Cil W'Cél W=1-TF may be regarded as a matrix generalization

of a product of the conditional variances of the single dependent variable and
an independent variable to the squared conditional covariance of these variables
in a single equation model. This ratioc is equal to re._ where rij’q is

the partial correlation coefficient between y , the dependent variable, and

the Jjth independent variable, holding the other q independent variables

*
fixed, However it follows from (2.21) that the latent roots of I - F are

*
See [1, p. 29].

rﬁ where rﬁ is a canonlcal partiasl correlation between the y's and the

xl's » 5o we find that there is not only a matrix generalization of r;j!q

in the case of simultaneous equations, i.e., the matrix I - F , but also a

vector generalization, i.e., the vector [rE] of M or 44.1 elements

M if M< .,,1_1 and A\ , if M2> .‘-'Ll) which is the vector of latent
roots of I - F . Similarly the matrix F = Ci V'V may be regarded as
the matrix generalization of 1 - rij_q in a single equation system and the

vector of latent roots of F , i,e.,, [l - rﬁ] s may be interpreted as the

vector generalization.
5. PARTTAL TRACE CORRELATIONS

We shall use the same function, i.e., the trace, to take the matrices
F and I - F into gcalars as we did for the trace correlation. So we de-

fine the partial trace correlation coefficient as the positive square root



of 52 - where
NS !
2 Mo,
(3.1) o oz, = (1/M)tr(z -F) = (/M) = r .
1'% - u=1 M
We also have that .
2 M 5
(3.2) l-r . . = (I/Mtr F = (1/M) = (1 -1°)
yxl' o n=l H

Consgidering the discussion of [ri] as given in Section 2 we may conclude

that ;ix 5 can be interpreted as a scalar measure of that part of the
172
variation in the set of conditional jointly dependent variables (YIXE) s

say, that is explained by the systematic part of the regression of (Y]XE)
on a subset of conditional independent variables (XlIXE) « Similarly
2 ‘

1- ryx x can be interpreted as a measure of that part of the variation
172

in (Y|X2) wvhich 1s left unexplained by the regression of (lee) on

(XlIXE) . The squared partial trace correlation also possesses the same

desirable properties of the trace correlation, viz., 7 + (L - ;2 ) =1,
VX, X yx, %' —
172 172
0< <1,and T is invariant to the units in which the

variables are measured.
Scme special cases of the partial trace correlation coefficient are of

interest.* When M =.41.l =1, Jb > 1 the partial trace correlation

2

%
¢f. [7] for a listing of these cases.

becomes the single equation partial correlation coefficient. When “4'2 =0
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the partial trace correlation becomes the trace correlation and then for
M= 3= 1 we have the zerc-order correlation coefficient (disregarding
sign) and for ,/\.> M =1 we have the multiple correlation coefficient. TFor

the case of M=1, ./Ll >1, ~i,>1 we have the multiple partial cor-

*
relation coefficient.

See [7]. This is the term used by these authors. There seems to be
very little discussion of this potentially useful concept in the literature.

One situation in which the partial trace correlation might prove useful
is as an aid in the selection of exogenous variables to be used in the model.
This is the situation in which either /L > 7T » in which case (X'X)} is
singular so that neither the reduced-form or the structural parameters can
be estimated, or of the case when T - A is positive but small so ﬁhat there

*%
is but a small number of degrees of freedom for estimating the parameters.

*%x
An excellent discussion of this problem is given in [6].

In these situations the usual procedure is to perform the estimation using
only some subset of the original set of exogenous variables. So the problem
becomes that of selecting which exogenous variableg are to be used, Although
there are several ways to select these variables, all to socme extent arbitrary,
it would seem that one way which possesses some merit is to use the partial
trace correlations in conjunction with the trace correlation in order to de-
termine those exogenous variables which contribute the most to the explanation

of the observed variation in the jointly dependent variables. Then in de-



- 11 -

scending order of importance enough exogenous variables caen be selected so as
to make the estimation of the parameters possible (when_ /. > T ) or more
effective (when T - /L >0 but small).

There are also other situations in which one nmust neglect some of the

*
exogenous variables and in these situations the partiel trace correlations

*
See [2, pp. 203-204].

and the full trace correlation can be used to determine which variables can

be omitted so as to make the unexplained variation (V'V) as 'small' as

*¥
possible,

X%
¢f. [2, p. 104] for a discussion of the 'size' of (V'V) .

L, ASYMPTOTIC SAMPLING VARIANCES

In order to obtain some idea of the signiflcance of a particular partial
trace correlation computed from a sample, it is desirable to have, at least,
the asymptotic sampling variance. In this section we shall derive this var-
iance to the order of T-l under the assumption that each of the T-rows of
[y Xl X2] are independent random drawings from a [M + _/\ ]-dimensiocnal

normal parent distribution with zero means. We shall also assume that there

are no multiple roots in the population (except possibly zero multiple roots

caused by the fact that /- 1 <M, vhich are allowed).



M
(b.1) M -z o0

Taking differentials we obtain

M

(k.2) Mr o ar x = & rar .
X "o THES o MM

Squaring and taking expected values we [ind for large samples that

-2 —
(4.3) M?p var r = Zpp ,cov(r,r ).
yx,*X, R u’ T

where 'Eix o = (1/M)tr(I - ) being the square of the parent partial trace
12

correlation. Now the problem is solved if we can find var T, and cov(’rHj ru,)a
These can be derived to the order of T_l but we can eliminate this tedious
derivation by noticing that the two sets of variables Vl = Y - xg(xéxg)'lxéy

= - 1 ) . .
and Va = Xl XE(XEXE) lX2Xl » between which we have determined the canonical
correlations have the same properties as unconditioned sets of variables,

This means that the large sample variances and covariances of the canonical

correlations between Vl and V2 are the same as those between unconditioned

*
sets of variables and so we have the well-known result +hat

P
(L. k) var T = (1/7)(1 - pH)2 ; cov (rp, ru,) =0 for udp',

* See [ 5, p. 340 1.
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* -
to the order of T 1 « S0 we cobtain

M
(&.5) var ro. o = L z pﬁ (1 - pj)2
: 172 TM?EQ p=l

T*y o

to our degree of approximation. Furthermore, since var 52

1%,
= hﬁe . Ver T 2 alsc obtain
TEL D ¥ ¥
M
(4.6) var 2 . 5 o2 (1 - p9)2 .
VA, X 1 i
172 TM? =1 :

The fact that the large sample variance of canonical partial cor-
relations is the same as that of canonical correlations should cause no
surprise since the same result holds as between the finite sample distribu-
tions of canonical partial and canonical correlations. More precisely, the
distributions of canonical partial correlations in random samples of size
T+ 1 froma (M +,Jl.l + “/12)—variate normel population are of the same

form as those of canonical correlations in random samples of size T + 1 -.L

See [8] for this result. So one might expect that the divisor in (L.L4)

should be T - _W_a . However as (L.4) is only true to T"! the divisor

in (Lk.%) causes no error.

D+ FURTHER COMMENTS ON PARTIAL TRACE CORRELATIONS

The concept of the partial trace correlation is but a logical extension

2

of the trace correlation. Thus the same problem of non-uniqueness in the case

of the presence of definitional equations and of using more efficient methods

of estimation than unrestricted least-squares, as discussed in Section 6 of

[3] occur. As for the latter problem it can be shown that the partical trace

.
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correlation can be extended to take account of a method of estimation such as

*
limited-informetion or two-state least-squares.

*
See Section 5, Chapter IT of [3] for this extension. This remark
applies only to the estimation of partial trace correlations and not to
their ¢éistributions.

6. AN EXAMPLE

In this section we shall apply the results obtained in the previous
sections to an econometric model. For this purpose we shall use the same

*%
model as used in Section 7 of [4].

This model is Tintner's model of the American meat market which con-
sists of the following two equations:

I

s s 1
(ll) yl B yg + a‘exe + 0’,5)(3 + “'2 3

where (i) is the demand equation and (ii) is the supply equation, y, 1is
per capita consumption of meat in pounds, ya the retail price of meat,
X is real per capita disposable income in dollars, x2 the cost of proc-

1

essing meat, and x_, the cost of producing agricultural products. There

3
are 25 annual observations from 1919-1941, Cf. Tintner [9, pp. 169-172]
for a complete description of the model.

There are, of course, many partial trace correlation coefficients {six
in this case) which can be computed. We shall compute one in some detail

and give the results for the others. For the example in detail we shall
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put the variable Xy in the matrix Xl and the variables X, and x5 in

the matrix X_. . In this case ?2 = ;2— -_— will be a measure of

2 S N R
the amount of variation in the jointly dependent variables as explained by

_— * —_—
X1 after the influence of X, and Xz has been eliminated in a linear

*
To distinguish between matrices and variables in this section we
shall place & bar over the variables.

manner. We then obtein that

' _ ve~ L 1 ' =1, t
Y'y = wc,Sw + Y xe(x2x2) XY + V'Y
(6.1) . . L - _ _ _ _
1,369.54  -352.55 25.67 -78.15 649.75 286.79 694.12 -560.19
——- 1,581.49| T | «= 24646 Y| c-- o147 T | ---
S50 we have
719.79  -639.34 1 .00383841  .00275730
(6.2) ¢, = . 890.02| 2d €y = ——- 00310426

which leads to

= 119705 275751

I R B _
(6.3) Cpp WGy W= | a7hoe  suessyt =1 F
and
N 1.119705  -.375751
(6.4) c;(v'y) = F o

174022 L53166
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We obtain finally that the squared partial trace correlation is

-2
(6.5) T E XE " (1/M)tr(I - F) = .21356L5
17273
and
—2
(6.6) 1 - rygi‘;é§5 = (1/M)tr P = 7864355 .

One interpretation of the result in (6.5) is that approximately 21 per cent of
the variation which remains in the jointly dependent variables after the in-

fluence of the variables 52 and X, has been held constant, is explained by

3

the variable §i » after the influence of Eé and 55 are eliminated from it.

For the other partial trace correlations we shall give the matrices Cl

and I - F . We have

- - I 1
- 970.83 -T727.48 35kl - 26332h
(6.7) rygé.gi”B = 15699k ; G = | 7h68| 3 T T F = 00750 -.121L59
o 1,004.60 -577.35 605459 -.033459
(6.8) ryEE'EiEé = 288478 5 ¢ =1 6ih.51]° T 7 F =] 51577 -.028503 |
o 1,001.06 -815.37 .294069 .105680f
(6.9) T %%, %, = 3683855 5 ¢ = | | so0aglP T F Tho183951 L hbeToz)
. 1,256.00 -172.58 LOTSHG 384832 ]
(0100w s, 72005 = g agsan|t T T =) 5656 554754
— — — —
- 1,207.9% -720.2L 701923  -.121310
(6.12) r % E T 360343 ;€ = - o1t T F 7l 463819 018765




(4]

(5]

(6]

(7]
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