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Analysis of & Production Problem by Dynemic Programming

*
Martin J. Beckmann

Summary

Iet demand for a& product be a random variable, which is independently and
identically distributed in successive periods. Consider a firm producing this
commodity subject to the following costs: the direct cost of production is
proportional to output; the cost of changing the rate of production is proportional
to the size of the change with possibly a different cost coefficient applying to
upward and to downward shifts; the cost of storage 1s proportional to the size of
the stock at the beginning of the period, and the cost of (penalty for)shortage
is proportional to the size of the shortage. Iet unfilled demand be carried over
into the next period. The problem is to find the optimal rate of production con-
ditional on the rate of production in the last period and on the current level of
gtock. This paper discusses the nature of the solution, but leaves open all questions

concerning the most efficient methods of computation.

1. Introduction
2, Formulation

3. Simplification
4. Iteration

5. Characterization

% Most of thls work was carried out under sponsorship of the Cowles Foundation
vhile the author was at the University of Heidelberg on leave of absence from the
Cowles Foundation. This peper was written at Brown University. T am greatly
indebted to Messrs. Martin Shubik and Ben Bryton for stimulating discussion of an
earlier version of this model.



1. Introduction

The intreduction of risk Into the analysis of the classicel single product
firm leads to essentially new results only when the static framework is dropped.
The problem of determining optimal output which appears sc simple in static theory,
reveals then 1its true difficulty: +the output decision must be revised for each
period in the light of informetion about the prevalling gituation. Variables that
might influence this decision are for instance the forecast level of demand and
the accumilated inventory of product. In the simplest case the expected value of
demend is itself statlionary. More precisely: demand in each period is a random
varigble, independent of demand in other periods, and subject to a known, constant

probability distribution. Thls will be the situation considered in this paper.*

*  Actually the introduction of forecasts of the mean of the probability dis-
tribution of demand into the model would raise no great difficulties, provided
all other parameters (e.g., the variance) of the distribution remain unchanged.

It has been observed [Arrow, pp. 29, 30] that the costs of production that
arise in a decision problem of this kind are threefold: coste attaching to the
change of the rate of production, to the rate of production itself, and to the
accumulated rate of production, namely inventories or shortages. A dynamic
production problem involving risk and all three kinds of cost has been investigated
for the speclal case that all cost functions involved are of the second degree.
[simon] It then turns out -- not surprisingly -- that the optimal decision rule
is linear in terms of the observed variables and that therefore the form of the
probability distribution of demand is immaterial since only the expected value of
demand is relevant.

In the 1light of recent successes with linear production relationships in the

economic analysis of the firm it is interesting to consider the case in which all
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the cost functlons are linear or piecewise linear with kinks coccuring where
stock or the change in the rate of production are zero. Since the cost of
production during & given period now depends on the rate in the preceding period,
the informastion relevent to the production decision must include this past rate
as well as the inventory level. This raises the mathemstical difficulty of the
problem above that of an ordinary inventory problem -- the classical sequential
decision problem involving one state variable. As we intend to show, it is
possible to discuss the nature of the solution, although its computation in
practical applications encounters formidable difficulties, which amst be ex-
pected in a bivariate dynamic programming problem. In this paper we shall
concentrate on the qualititative aspects of the sultion which are of primery
interest to economic analysis, and reserve for & later paper all questions of

practical computation.

2. Formulation
Notation

3 optimal rate of production
X past rate of production
Yy level of imventory
t demand during the current period -~ a random variable
e proportlonal cost of productlion
h cost of storage per commodity unit per period
g shortage penalty per commedity unit per period

k - 1 costv per unit of an upward change in the rate of production

k + 1 cost per unit of a downward change in the rate of production

a discount rate

P(t) probability distribution of demand
¥y>0
£(y)
-8y y <0



T

The problem requires that a decision about the rate of production be made
in the face of the fact that this decision will be revised one period hence.
It is the beauty of dynamic programming that it allows to formulate and solve
such decision problems where present actions whose consequences depend on as
yet unmade future decisions must be chesen in the best possible way. This is
a step forward from the traditional dynamic theory of the firm in which a
simaltaneous decision aboub all future actions had to be assumed at one time.
The basic idea 1s that of introducing explicitly the expected value of
present and discounted future cost under an optimal policy conditional on the
present state of the system. This cost 1s usually called the "loss function."
Since of all the problem date only the rate of production and the inventory of
product are subject to change these will be the stete variables. Hence the
loss function depends on the current level of commodlity stock and of the rate of
production. To obtain the expression of the loss function consider the state
of the system one pericd later. Then the current rate of production 1s the rate
we now choose, say £ and the level of stock 18 § + y - % where t 18 the
unknovn demand during the present periocd. If thls expresslon is negative it
means & backlog of unfilled orders. Now a demand t occurs with probability
dP(t) . The expected value of discounted future cost at the beginning of the

next period is therefore, in terms of our unknown loss funection, ©

Jo(ty « & - %) ar(%)

At the present tlme this cost must be discounted by a discount factor a .

In addition there are costs during the first period, namely, cost of production

cE



cost of inventory or shortage (y)
and cost of changing rate of production klx - g| + 1(x - &)

This adds up to a present value of the total disccocunted stream of cost equal to

(1) klx - g| +ct + £(y) +a [ o(e, & +y - t)dP(t)

The saim of the decision is to minimize costy this is introduced by requiring
that the expression (1) be & minimum. We then have a definition of the loss
function, & definition which contains the thing defined again on the right-hand
glde:

(2) o(x, ¥) = £(y) + Min k|x - g| + i(x - £) + ct + afo(g,e+y-t)dP(t)
3

This apparently clrcular dafinition 1s in fact a functional equation of the
dynamic programming type which determines the less function ¢ as its solution.
Once ¢ 1is known the optimal policy & = ||(x, y) results from the prescription
of choosing ¢t so as to minimize (1).

Functional equations of the dynamic programming type are those which involve

a maximum or minimum operator on the right-hand side,

o(z) = Mén F(o, z, §)

In most practical applications F 1is a linear operator; in the present case
F 15 & linear integral ope}ator. We postpone our demonstration of the existence

and uniqueness¥* of & solution until Chepter 4. Our first concern will be to

* The present Dynamlic Programming equation is of Bellmen's type 3 -- l.e.,
everything that does not fall into the simple classes 1 and 2 -~ for which general
existence and uniquenass theorems have not been given in the litersture.
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simplify the equation by sultable transformations.

3 Slmplification

Iet u, ¢ be the mean and variance of the demand distribution P(t).
How 1s the solution of the functional equation (2.2) affected, when the dis-
tribution is standerdlzed: p =0, oc=17°
Wrlte X=pn+ oX y = oY
E = + 02 t=p+ ol
Then P(t) = P(p + oT) = Q(T), say where @ is standardized.

(3.1) ‘Q(u + oX, oY) = f(&Y) + Min ko|X - 2] + 10(X - Z) + c(u + oX)
. 7 )

+afp(u + 02, u + 0Z + oY - u - oT)odQ(T)
Observe that f£{oY) = of(Y) . Now set
o(n + oX, oY) = %%; + od(X, Y) .
Substituting this in (3.1) one has after an easy calculation
(3.2) (X, Y) = £(Y) + M;n klX - 2] + 4(X - Z) + X + af®(Z,2 + Y - T)dq(T)

which is formally identical with (2.2). This proves

Lemma 1: Suppose that ©®(X, Y) is the solution of (3.2) for a standardized
distribution Q with zero mean and unit varisnce. Then the solution of (2.2)
having a distribution P of the same family with mean p and varisnce o is

given by

= == ¢ ¥
o(x, ¥) = g+ o ==, %)

If 2 = |[(X, ¥) is the optimal policy associated with (3.2), then

§““+U'TT(E§&‘:%)
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is the optimal policy associated with (2.2).
We turn next to the elimination of ct and of i«(x - ¢) from the equation
(2.2},
Iemme 2: Equation (2.2) is equivalent to
(3.3)  w(x, ¥) = £%(y) + Min k[t - x| + af¥(t, & + ¥ - t)aP(t)
where %(y) = £f(y) + (¢ - i)

and

1 -a

Py ¥+ ‘lb‘(x, ¥)

olx, y) = (L ~e)x + (1 - c)

Proof: Define ¥(x, y) ='éég e - D)y + (e - 1)x + o(x, ¥)

Substituting for ¢ in (2.2) one has

v(x, y) = £(y) + ex + 1 ; a {(c - 1)y + ix + Min (%[g - x| - it
: 3

+afv(E, £ +y - £)aP(t) - (1~ a)(c - 1)(y + & - u)- a(c - 1)9

Without loss of generality we may set u = O according to Lemma 1.

Ordering terms we obtain

2
¥ 3) = o) + B2 (e - 1)+ makly - x| + afu(et + v - ©aR(t) e,
From now on let us denote sgain

v(x, ¥) vy oflx, y)

¢ = 1i

i

hey+ (1-a)2y h¥y ify >0
vy £(y) .

c -1
8,

(L -a)%y =grly| ify<o

]

g + ¥t
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The equation (2.2) assumes then the particularly simple form

(3.4) o(x, y) = £{y) + M:é-n klg ~ x| + afo(e, ¢ + ¥y - t)aP(t)

Tt accords well with economic intuition, that the proportional cost of
production should affect the solution only through interest charges on cost

that are incurred hefore the reslization of a sale.

k.  Tteration
Some important properties of the solution to (3.4) can be brought out only
by & study of sultable approximetion processes. A natural approach to the solution

igs that of the followlng iteration scheme:

9, = £(y) + Min k|g - x| = £(y)
‘ €

Ppyr (% ) = £(y) + Mn ke - x| + afg (6, & +y - t)ar(t)
€

a. We show if [lt|dP(t) = . exists, then the sequence of functions ¢

12 bounded

a 8,
(h.l) P S (Toa)2 g + TETET? || + i%;}lyW

Proof: (by induction) Py = fly) < T%E' ||

Suppose that (L4.1) is satisfled for o .

9 1% ¥) S 2(y) +afo (x, x +y - £)cPt)

nA

g-|y| +af 11%572 g\ + T%%ETE x| + E%E |x + y - tlap{t)

2 2
o) e[ (gl )

B P P QED
(1-a)° (1-8)°

il/\

1

£ Iyl +
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b. The sequence @n(x, y) 1ig monotone:

I].+l(x, y) > CP (K, Y)

Proof: (induction)

o (x, ¥) = £(y) + Mfgn kle - x| + afg (e, & + ¥ - t)ap(t)

2 2(y) = 9y(xs ¥)
suppose @ (x, y) 2@ . (x ¥) .

(x, y) = £(y) + Min klg - x| + afp (&, & +¥ - t)aP(t)

.a

n+l
Now

kit - x| +afg (6, & +y - )aR(t) 2 kit - x| + afo (&, £ + 5 - t)aR(t)

The inequallty 1s preserved when we take the minimmm on either side. Hence

Py (5 V) 2 2 + M;n ke - x| +afg 1 (8, & +y - £)aB(t) = @ (x, y) QD

Since the sequence @ (x, y) is monotone and bounded for every x,y
it converges to a limit functlon. By comnstruction of the sequence, this limit
function must be & solution of (3.4).

The economic meaning of monctone convergence is this:; every iteration ex-
tends the horizon of the firm by one period. The cost function naturally
increases with the number of pericds under consideration.

c. o{x, y) is a (jointly) convex function of x and y .

Proof inductioﬁ on @n(x, y» :

mo(x, y) = £f(y) 1is convex Jointly in x and vy .

Suppose Qn(x, y) is convex.
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It is easily shown that the function

'bn(x: y) = fq)n(x.! X+ y - t)dP(t)

is also convex Jointly in x snd y . Since klg - x[ is convex Jjointly in

¢ and x 1t follows that the minimand

kle - x| + ag (¢, ¥) = v (& %, ¥) (sey)

is convex jointly in x, £, and ¥y .
Consider

E.:T] , )
xo+ .Xl yo + yl
2 ? 2

. -+
5:71 i
XO + Xl yo + yl

2 ? 2 )

) by convexity of wn

= Min 2 wn(gx
4

If follows that

O (%or Vo) * g (X ) 22 O (5 =)

i.e., is’ convex.

ci)n+ZL _
By induction mn(x, y) is convex for any n . Since the limit of a sequence
of convex functions is convex, ¢(x, y)} is convex QED.
d. Since o(x, y) is convex, its right and left hand derivatives exist
and agree except for an at most denumerable number of points where both have

jumps. The value ¢f the left hand derivative is the left hand limwit, that of

the right hand derivative the right hand limit. [Fenchel, p. 71]
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e. Uniqueness theorem: Suppose that the absolute first moment of P

exists

[lx|ap(x) = » < w

and that the set X of (admissible or optimel) ¢ is bounded., Then the
solution of (3.4) is unigue.
Proof: Suppose there are two solutions'@i, ¢2. ILet gl, ge be the respec-

tive optimal policies. Then

@, (%, ¥) = ke - x| + £(3) + afo (5, & + ¥ - t)ap(t)
o (% ¥) Skle; - x| + £(y) + afo, ey, &, + ¥ - £)aP(t)

by definition of gl.

Subtrecting the first from the second statement we have
q’g(x, y) - ‘Pl(x: y) 5 E‘I q32(§l: gl +y - t) = qjl(gl, gl + ¥y - t) (t) .
In the same way one obtains with E,,

P ¥) - 9 (%, ¥) 2 afoy(k,s £y + ¥ - 8) - @ (t,, &, + v - £)AR(E).

The two inequalities imply

o (x5 ¥) - @y (x, ¥)| & Max eflo,(e, &+ v - t) -9 (6, &+ ¥ - £)] ar(t)
gt sty

Iterating this inequality k times(i.e., substituting for the integrad k
times in succession the expression on the left) we have

Iq) (x; ¥} - 9, (x, Y)i §ak Supf[cp (t,8 +y - t) - o, (&, §+Y‘t)l d-P(k)(t)
2 1 | Eex 2 1

h

where P(k)(t) is the k* convolution of the distribution function P(t).

We shall overestimate ¢, when replacing it by the bound (4.1)
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2 ey Il i bl
(l_a)Q 1-32 1l - & Y

and underestimate Ql by setting it zero.

Thus

o, (x, ) - @, (x, ¥ < e sup [ —E— @+ —E ¢
- T e (1) (1-8)

+ £ Je ey -t a®e)

Substitute the largest element in X for ¢ and evaluate the integral

k a
|9, (x5 y) - o, (%, y)l <a - [ (o) g+ EI%?;g € |
b (e 1+ Iyl )+ B Tiel @™ )

Now [|t] dP(k)(t) < kf|t| dP(t) and the right hand side exists.

Thus
19,00 ) = @y (xs 9| S 8%(ey + plta | + eslyl + c)
Since 0<a<l, for any fixed y the right hand side is smaller than any
€ >0 provided k is sufficiently large. This proves that ¢2(x,y) = ¢l(x,y) ’
QED.

5. Characterization

How is the minimum of the right hend side of (3.4) characterized? What
can be said about the optimal policy without actually computing o(x, y)?

The right hand side of (3.4) is convex and hence differentiable exéept
for at most a denumerable number of values ¢ , at which left and right hand

derivatives exist continuous from the left or to the right, respectively.
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Recall now the necessary conditions for a minimum of a function with cne-

sided derivatives: 1In order that f{z) be at a minimum it is necessafy that

ny

f+z 0

(5.1)

s
oA
o

where f+z’ f_z denote right and left derivatives, respeciively. At a point
of differentiability this implies fz =0 , At a point of non-differentiabllity
not both

f+z =0 f-z =0 .

Assume first that the convex function

o(k, ¥) = afo(e, £ +y - t) dp(t)

is differentiable for all ¢ . When applying (5.1) to the right hand side of
(3.4) three cases must be distinguished. Iet & = £ be the minimizer.
1f £ =x (case 1)

k + @g(x, ¥) >0

-k + @E(x, y) <0 ‘or
(5.2) “k < ¢§(x: ) g K .
It £>x (case 2)
(5:3) o (e, ¥) =k
If £ <x (case 3)

(5.4) ¢§(§) y) =k .
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Now ©® 1is a convex function of & . Hence the curve described by (5.4) in a
¢, v disgram lies to the right of the curve (5.3) [Figure 1]. The set of points
satisfying (5.2) must lie between the two curves és boundaries.

The optimal policy can therefore be characterized as follows: if for a
gliven stock level y the past rate of production falls between two preasslgned
limits

a{y) < x < B(y)
then the rate of production should not be changed;
If x > B(y) reduce the rate to B(y)
If x< m(yj increase the rate to a(y).

The tWo curves x = a(y) , x = p(y) delimit the set of production and
stock level comblnations for which the pfoduction process is "in control."

If it 1s "out of control" the policy calls for an adjustment of the rate just
sufficient to bring the process back into control.

What happens &t ¢ = £ where the cne~sided derivatives ¢ ,L , ©

+¢ -£

disagree?

In case 3, for example, the minimality condition is then

¢+§

(5.12)
\ o

-t k "=" not in both.

BA

There are now two different points (£, ;) and (£, y), say where, respec-
tively [fig. 2]
+
?‘"E(é\, Y) =
q;g(g) &l) =
Convexity implies

> <9
-8 +E

§
=

[
w

and
+ -
Yy>y.
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*
Since @Ey < 0 in the neighborhood and @ ¢ is continuous from the leftand

¢+§ is continucus from the right, we also heve that both ®+§ and ¢ : are
+ -
decreasing from y to y . Hence the points satisfying
not both "="
are all located on the vertical line segment ¢ = £ v <y §.§ ,

attached at both ends to continuous segments of the curve x = B(y) . There-

fore even where ¢+ end ¢ , disegree conditlon (5.%a) describes a segment

g 3
of the upper boundary of the control zone, namely & vertical segment. The
same is true in case 2 with respect to x = aly) .

In case 1 we have

(5,2a) Opp 2 7K 0, S K

and not "=" in both.
Comparison with (5.4a) and a corresponding condition (5.3a) shows that the
points satisfying (5.éa) must again lie in the interior or on the boundary
of the control zone.

The problem has thus been reduced to one of determining the two boundary
curves a(y) and B{y) . What are their general properties? How can they be
computed? | |

Tntuition suggests that they be downward sloping. This can be proved
by induction (in the menner of section 4): By demonstrating that the sign
of ¢§y is non-negative wherever the second derivatives of ¢ exist.

If the cost of changing production k = O then the two boundary curves

agree, the loss function is & function of y + ¢ only and the solution is to

¥ See below on this page.



- 16 -

set y + £ equal to an optimal value. The control line is therefore of the
Torm y + & = constant.

In order to compute the boundaries of the control zone one cannot avoid
solving equation (3.4) for the loss function ¢(x, y) . The straightforwerd
method in dynemic programming problems of this type is iteration (section 4).
Unfortunately the computations at each step are cumbersome even for elementary
distributions P(t) . In the first iteration the boundary curves form a pair
of stralght lines with slope -k5° . For large values of k +they do not exist:

the whole plane is then "in contrel." This is the case in the following example:

0<t<1

= =

M R oo
H
B~ W o

ap(t)
Figure 1 shows the control zone for the secon: iteration of the

game problem. The boundary curves are glven by

y=o(x) = -2x - £+ VI3 ¥ %

. 1.99 - 2x for 0<x<.99
¥y = B(x) = .
. 2x + 2.5+ V1.3 - x for .99<x<1

Further iteration calls for the use of an electronic computor.
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B(y)
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A

£an

Figure 2
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