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The Error of Forecast for Multivariate Regression Models

John W. Hooper, Yale University
and
Arnold Zellner, University of Washington

*
I. Introduction

In this paper we present & generalized error of forecast for the set of
dependent variables in a multivariate regression model. Since in many practical
situations statisticians and econometriciens are concerned with forecasting
the future values of a group of dependent variables it seems desirable to be
able to construct confidence regions and test hypotheses about the forecast
of these variables.

The generalized error of forecast which we develop 1s a gquite straight-
forward extension of the standsrd error of forecast used when meking predictions
with single equation regression models. We shall review this latter concept
in Section II. In Section IIT we derive an expression for the generalized
error of forecast and show how it can be used to construct forecast regions
and test hypotheses; an application of this statistic to a two equation
model is then made in Section IV. PFinally, in Section V some further uses

and limitations of the generalized error of forecast are discussed.

* We wish to express our appreciation for the many constructive comments
vhich Professors T. (C. Koopmans, A. T. James and Mr. P. N. Srinivasan have
made concerning both the substance and form of this paper. However, the
final form and contents, including any errcors which might remain, are the
Joint responsibility of the authors.
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¥*
IT. The Single Equation Error of Forecast

¥ The error of forecast for a single equation regression model appears to

have a rather long history. It seems to have been first discussed by H. Working
and H. Hotelling in [9]. For other references to this problem the reader is
referred to {2, 181). An excellent presentation of the error of forecast in
matrix notation can be found in [7, 280-284].

The single equation regression model may be written as

K

(2.1) Yy = Z B Xy T (n=1,2, ..., N)

or in matrix notation as,

(2.2) y=pX +v

where y 1s a row vector of N observations on the dependent variable,

X a KXN matrix of nonstochastic or fixed values teken by the X independent
variables (K < N), B & row vector of K unknown regression coefficients,

and v & random row vector consisting of N independently distributed terms,
each with zero expected value and a common finlte variance ci + Upon esti-

mating £ by the method of least squares, we obtain

(2.3) y=bX+v
where
(2.4) b = yX'(XX‘)-l =8 + vx'(xx')'l

and v is the vector whose components are the N calculated residuals.
If we have a set of values available for the independent variables for
the period In which the forecast is made, say XF s (where XF is a Kx1

*
vector) we can then predict a value of y , say y? » by using the estimated
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regression relationship. We then obtain

*

(2'5) yF = b}(F .
The true value of y , say Yp 2 in this prediction period is

(2.6) Yp = BXp + vy

where Vo ig the scalar value of the random term in the forecast period.

When we subtract (2.6) from (2.5) we obtain as the error of forecast

*
(2.7) Yp © Vg = (o - B)Xg - Vo -

The expected error is {(using E as the expected value operator)
2.8) B(y, - y.) = E[(b - B) 1=0
(2. Jp T ¥l = - Bl - Vgl =

since b is an unbiased estimator of B , EvF =0 , and XF is assumed to

*
be nonstochastic.

¥ If X _  is stochastice, as would be the case if a forecast of the independent
variableg for the prediction period were used, it would be necessary to assume

that XF and b - B are distributed independently for E(y% - yF) to be equal

to zero.

We notice that the forecast error in (2.7) may be divided into two parts.
Cne source of error is due to the inaccuracies in estimating the regression

coefficients and the other is due to the presence of the random term v .

F
Thus the error of forecast is a function of two random variables, b and K
and these variables are independently distributed since by assumption Vi is

independent from vn(n =1, +.4, N} , and hence independent of b which is

but e linear function of v, If we now make the further assumption that the
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random terms, the vn's , are each normally distributed then the forecast error
is also normally distributed since it is Jjust a linear combination of these
normally distributed variables.

¥*
The variance of the forecast error is given by

(2.9) 0, = Elyy - vp)" = Bvg + X [E(b - B)' (b - B) X,
which can be written as

2 2 1 1y
(2.10) o, =0 f1 + xF(xx ) le] .

* The variance of the forecast error as given by (2.9) is valid regardless
of whether the random terms are normally distributed. The assumption of
normality is needed in order to determine the distribution of the statistic
defined in (2.13).

The positive squere root of (2.10) is the population standard error of fore-

cast. As an estimstor of UF2 we use the unblased estimator

A2 a2 \ L
(2.11) o, =9 [ 1+ XF(XX } XF]
where
(2.12) 22wyt - (XKD

v ¥ -K

We can now consider the statistic

FaY
Yo - ¥ G
(2.13) = L] /= .
< P F

This is the familiar t statistic with N -~ K degrees of freedom since,

*
under the assumption that the random terms are normally distributed, Yp = ¥p

is normally distributed with expected value zero and variance 0?2 R
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2
(N - K) ’&F‘?/oF is distributed as a )(2 variable with N - K degrees of

”~
G,

‘ % *
freedom, and T and Yg = Yp ore independently distributed. We can then

* Cf. [T, 206, 298]

meke probability statements about + in the form
(2.14) Pr. (]t ] > tq) = o

when testing hypotheses about Ip oo where tm is the value of the +t

statistic at the o level of significance, or in the form

* A * A
L] - - < = -
(2.15) Pr (yF tha Yp<¥pt+ ot =1-0

%
for the purpose of determining a confidence interval for Vg -

*¥% Gee Section V for a discussion of the interpretation of this forecast
interval.

ITII. The Generalized Error of Forecast

We now consider the following multivariate regression model:

gl

(3.1) Yip = 1y 25 seey G

T, + v, (i
k an in
* 1, 2, «ves N)

k=1 n

i

which can be written in matrix notation as

(3.2) Y= [[X+V.

Y represents & GxN matrix of the N sets of sampie values taken by the
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G Jointly dependent variables, TT a GxK wmatrix of unknown regression

*
coefficients, X a KxN nonstochastic matrix of values taken by the independent

* We also meke the usual assumption that the rank of X is K which

ensures that none of the X's can be expressed as & linear combination of
the others and that K< N .

variables, and V & GxN matrix of random terms. It is also assumed that
the N column vectors of V are independent random drawings from a G-
dimensional normal populatiorn such that each column has a zero expected value

*¥
and the columng have a common variance-covariance matrix, zvv . These

*¥ It should be noticed that this model is completely analogous to what
is referred to as the reduced form equations in econometrics. Under this
interpretation the y 's are the set of endogenous veriables, the =n ‘s the
reduced-form regression coefficients, the x 's the exogenous variables,
and the v 's the reduced-form disturbances. The reader is referred %o

(5, 113-121] for precise definitions of these terms. It should be noticed
that we are here excluding reduced form equations in which some of the

x 's are lagged endogenous variables.

conditions on V may be summarized as

(3-5) Evin':O (j.:l’ -oc,G;n=l, ssey N)
and
0 ntn'
(3.4) Ev, v, , = for all i and
‘ in jn Gij a=n'

Thus interdependence between the random terms in different equations in
the same time pericd is allowed but not between random terms of different
time periods.

By applying the method of least squares to (3.2) we obtain

(3.5) Y=PX+V
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*
where P , the matrix of estimated regression coefficients is

¥  The expression for P in (5.6) also shows that P is an unbiased
estimator of TT »_Since when taking expected values of both sides we have
that E[VX'(xX'")"1] =0 so EP = %T

(5.6) P=wx(x) =TT+ v ()t

and V is the metrix of calculated residuals.

*
If we now desire to predict simultaneously the values of the G

¥¥ We are here concerned with finding a statistic that will enable us to
make probability statements about the set of dependent variables and not
each variable considered separately. The latter has been done under the
assumption that the coefficients of the structural equations were estimated
by the method of full maximum likelihood and also for the resulting reduced
form equations. Cf. [2].

dependent variables using the estimated regression coefficients and & set

of values for the independent varigbles, XF » the forecast would be

(3.7) Yo = PX

¥*
where Y@ is a column vector of forecast values and XF is a column vector
of nonstochastic known values for the independent variables. The observed

value of Y in the prediction period, say YF s 1s given by
(5.8) Yp = 1T Xp + Vg

where VF is the column vector of values assumed by the random terms in the

forecast pericd. The error of forecast is

(3.9) -t = (e - T, - v, .



The expected error is

(3.10) -Y)

( *
B(Yp - Yp)

since P is an unbiased estimator of TT 3 EVF =0, and X

and thus lndependent of P .

error 1s given by

z

*
FF E[(YF B

Yp) (Y;
(3.11)

= E[(P - TDxxHE - TN"]

The two middle terms in (3.11) are equal to zero since

independent and EVF =

= E[(P - TT)XF -

l=0

The varliance-covariance matrix of the forecast

SARE

- E(P - TT)XFVF

v

F and P are

To evaluate the first term in (3.11) we let (P - T|) be & GxK matrix

. 1
A with a typical element [aij] end X Xi be a KxK matrix M, with

typical element [mkk,] We find that

(3.12)

E[(é - Thxgkg (2 - '] = B amA! =

where

1))

covarianée matrix of the ith and jth rows of P .

tween Pi and Pj , two rows of P, is

E(Pi

(3.13) (xx')

t

- T ey - 1)

(X'X)

K K

(l)(l) (1)(c)
by z . z z .
k=1 k= lU mkk =] k= lUk k
K K K
(G)(l) (G) (G)
z z - I Lo
k=1 k:lO mkk k'=l k= l

pu—

The covariance matrix be-

“Lx(w vivj)x'(xx')'l -
'leijINx'(xx')'1 =

oij(XX')'l

- BV XL(P - T+ EV,

is nonstochastic

1
VF-

Bt

Mk

is the element in the k'th row and kth column of the variance-
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vhere V, is the ith row of V as defined in (3.2) and v‘j

This means that the row vector of GK components, (Pl’ Poy aees PG) is nor-

the jth row.

mally distributed (since the colunms of V are normelly distributed) with

an expected value ( TTi, TTé, cees TT&), and with a variance-covariance

* K%
matrix, % __, where ,
o

¥ ¢f. [1, 182] for an alternative derivation of these results.
** ZPP is recognized as the Kronecker product of the matrices Zvv and

(xx')'l, i.e., zpp =z, ® (x )7t .

-1
1
oil(xx )

(3.14) T = : :

bp . -1 . -1
1 L
E?l(xx ) T e °GG(XX )

and ZPP is of order GK x K .

From (3.12) and (3.14), letting (XX‘)k;% be a typical element of

(XX')—l , Wwe have for a typical element [ X ogg,(XX‘)gi, mo. ] of

k,k’
E(AM?A') that ,
r-l = '-l =
(5.15) [k?k‘ Ot X Der B, 1 = 0y k?k' (0" )t Mger = Fggr @
where
' iyl
(5.16) q = Xp(X') " X,

is a scalar., So we find that
¥ .
(5-17) E(AMFA ) =aE

From (3.11) and {(3.17), we obtain for the variance-covariance matrix of
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L3
Yo - Yp o, Epn s that

F F
(3.18) =qf  + 7 _
Zpp Vv VeVp = (L+q)x
since X = 5 N
VoV v

We will not in general know Zvv 80 we estimate it by the unbiased

¥*
estimator S __ , vwhere
vV

¥  Cf. [1, 183] for a proof that this is the unbiased estimator of T *

(3.19) s, = (' - Px'Pt) /o

K L]
Thus from (3.18) and (3.19) we find that the estimated variance-covariance

matrix of the error of forecast, 8 is

FF ?
z, -
(,.20) Spp = (L+q) 8 _ .

For the purpose of making probability statements about the forecast

T2 k2.3
we cen use Hotelling's gtatistie, where

**¥ 0f. [6]. Notice that we could also use the statistic
o * -1 , %
(1L + )T = (YF - YF) 8,y (YF - Y, )

2
which has the same distribution as T  except for the multiplicative constant,
1+ g . In computing a forecast region this expression is easier to use as

it eliminates the necessity of dividing the elements of S;i by 1+ q .

2 * R .
(5.21) T = (YF - Yﬁ) SFF (YF - Yf) .



- 11 -

*
Now it has been shown that the distribution of

* ¢f, [1, 105-106] . That this theorem applies in our case may be seen by

considering the following: (i) Y; - YF is normally distributed with zero

expected value and variance-covariance metrix Sep » 80d (11) (v - K) Spp 18

*

distributed independently of YF - YF a8 the sum of N-K wvector products,
N-K

ft.e., as I BnS£ (where s is a G element random column vector), where
n=1

these vectors are independent of each other and each has a multinormal dis-

tribution with zero expected value and variance-covariance matrix, ZFF .

(N-K«~G+ l)T2
{N - K)G

(3.22)

is the F distribution with G and N - K - G + 1 degrees of freedom.
We can now with the use of [3.22) construct forecast regions or test
hypotheses about the forecast. The pfocedure is to choose a level of
significance, say o , and then find the corresponding value of F , say
Fa » in the tables of the F distribution. Then we have that the set of

points for which the lnequality

(3.23) . %NK_'K?G+ l)*ra <F

*%
holds forms the area of the forecast region. This region may be interpreted

** Tt should be noticed that this is a direct generalization of the forecast
reglon for a single equation medel with K independent variables. In this
case G=1l s0 we cbitain, substituting t2 for T2 , the £2 distribution,
which is, as is well known, the F distribution with 1 and N - K degrees
of freedom.

in the same way as the forecast interval for a single equation, viz,; if

repeated samples are taken, holding X and X, fixed, then 1 - a per cent

F
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of the time a region as in (3.23) will cover the true values of the forecasted

variables, l.e., YF .

It is interesting to determine those values of the independent variables

used for the forecast, i.e., XF s which would minlimize the value of

q = Xé(XX')_lXF . As can be seen from (3.18), minimizing q will minimize

*
the generalized variance

* The generalized variance of a multivariate distribution is defined as

the determinant of the varisnce-covariasnce matrix.

S0 we have that the

generalized variance of the error of forecast is |EFF|=[(l+q)Evv| =

= (1 + q)KIEvvl . This is & minimum vhen ¢ is & minimm since 'Zvvl >0

because Zvv 1s a positive definite matrix and the determinant of a positive

matrix is always positive.

of the error of forecast.

This is the multivariate analogue to the mini-

mlization of the variance of the error of forecast in single equation models.

To take account of the constant term in each equation, we let Xlt be

a dummy variable, i.e., Xlt = 1 for all
and (XX') as followss
o - . -
Xp = | Xop B e
. F
¥
(3.24) _ _
N z
n=1 an N
1 = -
(xx) N N
z Xk'n z Xk'n an XEl
n=1 n:l

12

22

)

t « Then we can partition XF

(k, k'z 2, sy K)o
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A B
Designating (XX') ! oas ‘i— we obtain

(3.25) (xx')7L =

where D = N(NX22 - xe_lxle)"l + Making use of (3.24) and (3.25) we find that

(3.26) a = (¥ + X0, )/p2 - (K} ™, )/ g +'}E§ %

P
Differentiating with respect to the elements of XF and setting the results

equal to zero we obtain

ns;
(3--27) '(DX;zl)/N + DX, =0.
L ~ A%
Thus we have for the minimizing wvalue of XF s 58y XF 3
(3.28 L ' *
3.28) ”Xal/ ~—-ﬁ[ zlxk (k' =2, eauy K)
. iz

¥ That the second-order conditions for a minimum are met is seen by
differentiating (3.27) with respect to the elements of ’ﬁ% « We are left
with the matrix D wvhich is positive definite.

This shows that g 1s minimized when the values of the independent wvariables
used in the forecast are equal to the mean sample values of the independent
veriables. The minimm value of ¢ , obtained by substituting (3.28) in

(3.26) 1s

(3.30) Q= F * XppDay/ i@ - (DR )42 + (RypDKpy /p2 = Iy
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The minimum value of the generalized variance of the error of forecast is

then

(3.31) | =

IV. Construction of Forecast Regions: An Example.

For the purpose of illustrating the construction of a forecast region

for a set of equations we shall use the famlliar model of Haavelmo.* This

* Cf, [4, 83-91] for a complete description of this model.

model may be written as a set of two regression or reduced form equations.

We have
¢y = W Kyyp t W Ko F Vg

(h’-l) (t = l, “s ey N)
Y = pXip o Toofoy F Vo

where the jointly dependent variables are consumers' expenditures (ct)

and disposable income (yt). The independent variables aréuixlt = 1 and
gross investment th « The random terms are vlt and Voi - The regression
coefficients as estimated by least squares are

n

285.787 = 2,105

Py Poo

and the inverse of the estimated variance-covariance matrix of the random

terms is

(4.3) S =
_ -.02570 «03125-
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The inverse of the moment matrix of the independent varisbles is

1 J7329396 -.00701333
(ko) (') 7 = | | 00701333 .00007498

For the velues of the independent variables in the forecast periocd we

*
shall choose XlF =1 and XEF = 100 . We then obtain that

* The value of XBF is close to the mean of this variable in the sample

period, l.e., X = 93.5385 .

(4.5) 1+ g = 1.08007

(N ~K -G+ 1)T2
(N - K)G

In our example N =13, K =2 and G =2 . 80 we have that

Now from (3.22) we have that has the F distribution,

FG,N-K-G+1 i
F = L,10 at the 5 per cent level of significance. The corresponding value

of (1 + q)T2 is

(4.6) 1+ Qr5, = (0200Q.0500ENE) | g7

For the forecast values of the dependent variables we have
448, 45Y
L96.287

1]
]

(4.7) .

,1;4
[}

Using this and (4.3), (4.4), and (4.6) we obtain

* o * *
(h.B) 9,7h2 = .02507(cF - cF) - .05159(cF - cF)(yF - yF) +

* 2
+ .03125(yF - yF) .
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This represents an ellipse in the parameter space of Ca and yF » Where

* *
the center of the ellipse is (cF s yF ) + The area covered by the ellipse

is the forecast region for c_ and y

F F
variables in the forecast period. This is ellipse A in Figure 1. Ellipse

» the true values of the dependent

B is the larger forecast region that results from using X_ _ =1, X = 200

1r 2r
as the values of the independent varlables in the forecast period at the same

level of significance.

V. Conclusions

Cur analysis hes yielded an expression for the error of forecast for
inﬁerdependent regression equatione and the distribution of the resulting
statistic has been given. In an illustrative calculation this result has
been employed to construct forecast regions. Calculation of such regions
is extremely important in appraising the forecasts provided by systems of
equations. Since point forecasts, unaccompanied by a forecast reglon,
may on occasion be seriously misleading, we recommend that those who fore-
cast take the additlionsl trouble needed to construcet forecast regions.

Further, our work provides what is neceasary to test hypotheses about
forecasts. Thus, for example, it ls possible to test the hypothesis that
a forecast from & reduced form system is not significantly different from
a "judgment forecast."

Finally we wish to point out several limitations associated with our
result., Probability statements made about forecast regions constructed as
we indicated above are valid providing the vector of exogenous variables
employed in making the forecast is fixed, that 1s non-stochastic. Given

this condition, one can state, as 1s usually done, that the constructed
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region will cover the true values of the endogenous variables in the forecast
period a certain proportion of the time in repeated +trials. However, in an
actual set of repeated forecasts it may be impossible to hold fixed 81l the
exogenous variables and in this situation the interpretation given above for

*
the forecast region does not apply. A similar situation prevails when some

* R. A. Fisher discusses this problem in a different context, ¢Cf., {3, 83-85].

of the exogenous variables have to be forecasted; that is, the vector XF
can no longer be regarded as non-stochastic. Further it would be highly
desirable to extend the present analysis to interdependent reduced form
equations which have lagged endogencus variables in the set of predetermined

varisbles,
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