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BINARY.CHOICE CONSTRAINTS AND RANDOM UTILITY INDICATORS®

Jacob Maraschak, Yale University

1., The Problem,
P N N N il
This paper contains suggestions for combining various available

types of information on economic choice, There are in the main thrae

e

types:

1) Controlled experiments on choices from small sets (usually pairs)
of alternatives;

2) Surveys of consumers’ choices from large sets of alternatives,
sach set being determined by the market prices and by sach
consumer’s monetary resources; similar surveys (mutatis
mutandis) of producers® choices are also available, especially
in the case of farmers;

3) Time series of total consumption (or production) of individual
commodities, total incomes, and market prices, over a given
geographical area,

Various researchers {in recent years notably Tobin) have worked

on combining information on Types 2) and 3), The present paper deals
with combining the materials 1) and 2), albeit only to the extent of
outlining the general problem ami giving a special example,

Suppose that, given a set of consumers® budgets at varying prices,

we want to estimate a function on the commodity space that might be
used as an utility indicator (a system of "indifference surfaces”)

describing the tastes of the sampled group of people, The desired

statistical estimation will be usually preceded by the "specification®

#*) Dedicated to Ragnar Frisch, an old and esteemed friend, on the
occagion of his 65th birthday, The paper was presented at the
Stanford Symposium on Mathsmatical Methods in Social Sciencea,
Jung 1959, having been completed during a year's visit at the
Carnegle Institute of Technology, The research was partly carried
out under 2 contract of the Office of Naval Research with the
Cowles Fourdation for Rescarch in Economics at Yale University,
Previous collaboration with 1, D, Bloeck and discussims with
Gerard Debreu, Morris DeGroot, and Duncan Luce were most useful,



of a class of eligible functions on the commodity space, The usual
assumptions of economic theory--such as the convexity of indifference
surfaces-—-permit such specification only within very broad limits,

Suppose, however, that, in addition to the consumers' survey data
laboratory data are available which imply that the choices being made
by people of a given socio~aconomic group obey certain constraints,
The knowledge of these constraints might provide help in further
restricting the set of ellgible utility indicators,

It will be realistic to assume that a man's choice from a gilven
set of alternatives is not unique but obeys some probability distribution,
This agrees with the approach usual in psychometries and psychophysics,
and may also explain a part of the statistical variations in economie
survey data_, Accordingly, our approach will be "stochastie" throughout,
2, Binary-Choice Probabilities,

gl At -tk

Unless specified to the contrary, all concepts in this paper are
associated with a single given person, the "subject" of experiments,
The only experiments considered in this paper--except for cursory

remarks on other kinds of experiments, especially in Sections &4, 5, 11,-

are binary choices: the subject is forced to choose one of the pair

(x,y) of alternatives, On the cther hand, the data of a consumer survey

are of course multipie choices since a consumer's monetary resources

permit him, given the prices of goods, to choose from among mors than a
pair of alternative budgsis,

Definitions:

™

X : the set of &lternatives, with generie elements x, y, ...
e S
n : the number of elements of X when X is finite; in this case the

elements will be identified by integers: X = (1,,.,..n),
N



AN]

p : the class of functions p on Eix.ﬁ! such that

A

(2,1) = 1'pyx >0,

Py
Hence p_ =1/2, Vhen x#y, Pry 1s called the probability of a binary
cholce, viz,, of the choice of x out of the subset (x,y) of X A
region ,?GSE.E' defines a condition (C) on all pxy and is called a
binary-choiee constraint, It will be convenient to identify such
constraints, and other conditions, by symbole in parenthesas, thus: (C),
Binary-choice constraints involving no other quantities but the
Pyy 2aTe called directiy testable: it will be assumed that they can be
aecepted or rejected (in the sonse of statistical infersnee) on the

basis of binary=-choice experiments,

LExample: Let 3£=- (1,2,3), A function p is completely described by

any six numbers obeying (2,1), The relation 1< Pio 2

+ *
Pxy Pa3 * Py =
exemplifies a binary choice constrairt (C); it is directly testable.
3. Random Utility Indiecator,
B T e I aaaiiiie e P

Definition: 0(2), a random function on X, 4s called a random
L

utili;& indicator "in the binary sense" if the probability
{(2) § (2 .

(3.1) Pr(U_*" 2 N ) ® Pyyo
(The idea goes back to Thurstene's "law of comparative judgment": { 1),
Theorem 1,1: Prodb (U(z) - U(z)) = 0, Proof: Let Prob (U(2)- Uéz)) > 03 then
Pry * Pyy  Prob (0(2)> U(2)) + Prcb (U(z) > U(z)) = Prob (u(z) > 0(2)) +

(2) 5 y(2) (2) I ) [N (2) (2)
+ Prob (Uy):vl}x ) + 2 Prob (U;% = 0?) & L Prob (ui?> ul?)) +
+ Prob (U}Sz) > 0§?) + prop (u$*- Uz(,z))} + Prob (u$2) « u}(f) -l +

+ Prob (Ui?) - Uéz)) > 1, contradicting (2,1), [The Theorem is due

to DeGroot],



&

Examples: 1) Let X = (1,2,3); then U(2) 415 a randam utility

indic;tor if the six nmumbers Pr(U}(tz) > Ug,z)) are respectively equal to
the slx numbsrs p sy which {or some constraints on which) are obtained
from observation,

2) Let E_‘ = real m-space with generie point x = (J(laaaaoJSn)s
let T = (Tl,,,,,g‘l‘m) be 2z random vector with 0 < T4 <1, 4=1,,,,.,m
DT, =1, Let

n
e +{2 T
(3,2) 5(2) [1=ts

’

Jhe "Cobbedenuglas funciion frequently used in economics, with ’)E_-

- i e - ren (:(2) o (2D “ {2)
rommocdity space), If Prob (Jx 2 Ug } Py then U

is a random
utility indicator "in the binary senset, This example will be used
agsin in Ssction 12,

Gordition (U): The function p is such that U(2) sxists,

L p—

‘4o £ Kemayk on Muitiple-Uhoice Probabilities,
e Ry W)

The ccacepts and the condition just defined can be easily generalized

“0 multiple-choice probabilities, For every x¥ /J\(:" s 'J,{: < }." one
defines, with Dunean Luce [ ], px(x*),, obaying
o~

(2 120, £ pAX) =
(401) px(~ ! 2 B « 8’%§x\£ ) la

The number px(l;_f;*) is interpiated as the probability that the subject,
Zforced to cheoss from the subsoet ’_Xj", choose x, Clearly Puy is a
special cass, with 3(# * o (x,¥). The following conditicn exemplifies an
impertant and plausible constraint that would be directly testable if
multiple choices from oubsets of verious siza2s were observabla:

2 af xEXMe Xfox men () 22000,
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In [1], Block and Marschak dealt with multiple~choice probabilities,
and had accordingly used the following definition of the random utility
indicator, stronger than the one given in Section 3:
gggggggiggz U, a randem function on .£$ is a random utility
indicator if, for all i & X, the probability
(4,3) Pe(t, > U, all y in 53) - py&,(g:)°

Gorrespendingly, condition {U(z)) is replaced by the stronger

Condition (U): Ibp set of probabilities pe(X™), all x in X%,
e o~

2

all

-

<X, iz auch thak U, in the sense of (4.3), exists, Clearly

P

condition (U} implies {U(z)) and a2lse implles {4.2),

Some other properties of U will be used later, in Section 11,
However, because of expsrimental difficulties with large subsets of
alternatives, it seems worthwhile to devote a special and intensive
study to binayry cholce probabilities, They cover much of the existing
raterials on humen responses, and many practical situations ("pairwise
ccmpériscns“)e

Aecordingly, it is not acsumed in this paper that constraints on
ror~binary cholce probabilities-——such as 4, 2=-~can be inferred from
obzarvations,
£, Probability of Haniting,

g S S I R i

Similarly, and pos:ibly cn =till stronger grounds, no refereonse will
e made in this paper to experiments in which the subject is requested,
ot to make an actual cheolice, bui te rank three or more alternatives
cocording e his prefersnces {with two altermatives, choosing and
rarking may be regarded as identical), It will not be assumed that
responges cbtained in such ewyeriments are in any sense consistent with

cholees of singls alternatives from subsets, To be sure we shall use
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the term "probability of ranking®: but not to denote a number which is
estimated (or, more generally, whose properties are inferred) from

experiments on ranking, Rather, we give the following

ey -
o hny

Definition: If vl 35 2 random utility indicator then, for any

X 0Xgp 000Ky in Z\L, the number
\ (2) § (2 (2)
(5911 P(ﬁxzoo.ym) :‘ Pr(le > sz > 'YX > U:crn )

ig salled the probability of the ranking (permutcation) X Kpees® o

I¢ follews that Plxy) =~ Pyyo

Iheorem 5.i: If (U(‘”} is satisfied and X' M= (1,....m) is a finite
Spme—— A

subset of ig then for any 5-935;‘;{9

(5.2) = £ P(r,

p

whore Rij is the set of all rankings r on ’}L in which i precedes j

gﬁﬂé_g: by (3 ,l) s (5.1)
Theorem 5.2% (U(Z)) is satisfied if X 1s finite, X = N = (1,,..,n),
rot il e e

and thers is a non-negative function p on the set of rankings r on

e

,X\, such that equation {5.2) holds; provided Ryy 1is the set of all

renkings r on /‘AL in which i precedes j, Proof, Denote by

T o 11“ 2 ¢ ose Bp the ranking in which the i-th place is occupied by 4.

Assign the valus -1 to the random variable Uiz), Then
r

Plip 2, oo np) - Pr(uz(.i} > Ggf») > eea > Ué?-))o and by (5,2), condition
{3,1) is satisfied,

6, A Necessary Condition for The Existence of a Random Utility Indieator
MMMWW*\“MWMM

Condition (&) ("triangular"):

(6,1} P +P >P
XYy yr ™ xm

Because of {2,1), this can be rewritteon more symmetrically:

(6,1a) 3 g-pxy;@ pyz?« P <2z,



Define the quantities A and A' by

1
(6.2)  Lxpey Py * P =1 A =R v Pt D, ~1;
then by (2,1), & + &' = 1; and (6,1a) can be rewritten as:
(6.1b) 0<agl, oO0<a'ga,
Eondition (4) was probably first noticed by Guilbaud { 1,
_’.Eheorgm 6,1: (0(2)) implies (&), [And therefore, clearly, also
(U ) implies (8)], Proof: Denote by x,y,z the generic elements of the

subset {1,2,3) of f: Then, by the definition (5,1), the six P(xyz) add

up to 1, and each is > O, If (U(2)) is true then by Theorem 5,1,
Py, = P(132) « P(123) + P(312)
(6,3) Ppg = P(123) + P(213) + P(231)
Pyy = P(312) + P(231) + P(321),
Assign the values of x,y,z so as to make (6,2) into

(6.4) O® Py *Pyy ¢ Py ml-a,
In {6.3) the sum of the left sides is 1+A by (6,2); on the right side,
the three off-diagonal terms of the symmetric matrix add up to s, say,
where 0 < s <13 and all 9 terms add up to 1l¢s, Hence & = 4, and

{6,1b) is satisfied,

2
Theorem 6,2, If X~ (1,2,3) then (&) implies (U( )) .
Proof, Denote by x,y,2 the generic elements of X, e shall show that,
— N
for any six Py satisfylng (2,1) and such that
1

05A=p12+p23 +p31-=-lﬁl==A <1,
one can find six numbers P{xysz), non-negative, adding up to 1 and
satisfying (6,3), We have seen in the proof of the preceding Theorem
that (6,3) implies

(6.5) o = P(123) « P(231) + P(312),



Subtracting (6,5) from each of the equations (6.3)
Pyp = O™ P(132) - P(231)

(6,6) P,, = & = P(213) - P(312)

23

P
Fut O = P(231) or P(132) according as P, Dor< A put 0w P(312)

- & = P(321) -~ P(123),

or P(213) according as Pos 2or< A, Substituting into (6,6), (6.5),
one obtains the remaining four P(xyz), non-negative and adding up to 1,
Hence, by Theorem 5.2, (U(z)) is satisfied,

E?‘Aafi" For n > 4 no necessary and sufficient condition for (U( 2)) is
known to the author, Nor has it been proved that {A) is not sufficient
rer uf2) . Bul it is clear that (&) is not sufficient for (U) for (&)
does not put any constraints on non-binary choices while (U) does: we
have seen that (U) implies {4.2), Some sufficientoonditions for (U(z))
and (U), respectively, will be given in Sections 10 and 13,

Definition: x dis stochastically prefarresd (stochastically indifferent)
to y if p,o> 1/2 (p - 1/2), 1In what follows, the words "transitivity
of stochastic preferences" will be abbreviated to "transitivity",

Three Conditions: {t)(= weak transitivity); (tye) (=~ mfld transitivity);

(’t’.g)(»s strong transitivity)*) :

iv
Pt
By
L1

Condition ()
Gonditdan (t,)
k::: max(pwﬂpyz) : Condition (tg) ,

LT}

L13

e

It min(pwz.pw) > 1/2 then pyy > min

Equivalently, by (2,1):
< 1/2 (t,)
At max(p:{yspyz) < 1/2 then pye < m(pxy”pﬂ) (tm)
< min(pxyapyz) (ts)



#} (tw) and (ts) waere formulated by S, Valavanis=Vall [ ] and
originated in his work with C_ Coombs, (tm) was formulated by
N, Gsorgescu-Roegen [ ] and by John Chipman [ ], Experimental
tests of stochastie transitivity conditlions were undertaken by

Papandreon et a1l { ] and by Davidson and Marschak { ],



A more symetric equivalent form for (t,) is, by (2,1):

win (PyysPyy,op, ) < 1/2 < max (pyyoPy P, 0

Zheorem 7.1: (t.g) i3 eqmivalent to the following condition:
all

T - -»
If pyz/2then p_2p /3K

and also to the condition:
I X and p, 2 Py, then o, 2172,

Proof: ses [ 1], Theorem IV i,

ZIheorem 7.2: (b ) is strictly stronger than (ty), and (t ) is strictd

stronger than (1’.“’)(a Proof: cbvious,

Jheorsm 7.3: (t,;} is peither sufficient por necessary for (a), Eroof:

let n= 3, and pyg = .6, If Py = pyg = .9, (t) is satisfied but

(&) 4s not, If Pyp ™ Ppy ™ v, (&) is satisfied but (th 1s not,

Theorem 7,4, (typ) is strictly stronser than (&), Proof: 1) Sufficiemcy: <&
Consider (1,2,3) /Xc Using the notation of (6.4), :re have to prove

that (ty) implies 0<A<1, 0<% &' <1, By (2,1), we can le%

P2 P23 >1/2> 932 2> Py withoul loss of generality; then

Plz * P32 12 P32 " P21i Pyp * Pyy * Py 1 mA205p, v, # Pyl

31 2 32 13
- A" €1, HNow assume ('hm),, Then Pgy < max(szDpzl) = Py
H < + -]l = < 1z d > -
S Pyp " Py TPy, PpS 15 end p o 2minlp, 0} =Py
&' 2p._+p._ +p =l=p >0 2} No neeassity: by Theorems

32 12 32
?029 7@3{-

Theorem 7.5. (tm) is strictly stronger then the conijunction of (t’w)

s o A

and (5), Proof: 1) Sufficlency: by Theorems 7.2, 7.4, 2) No nocessity:

let 35“: (lnz:)B)s P12 = 580 p23

satisfied, But since py,>p > .5 yob p13 = 6< Pygs (tm} is

23

- 7, Poy ™ b, Then {t ) and (a) are
3 W

violated,
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Write ".3" for "implies";
"é--—? "  for "implies and is implied by"
"—>" for "implies but is not implied by
M—i!" for "does not imply nor is implied by",
Then our Theorems can be summarized in

Theorem 7.6;

(tg) = (tg) > (¢_,2)

I™\

(65 n = 3) M(U(z))"“? (@) i (t)

@)

8, |Weak Utility Funetion,

L S I P Y

Definition, w, a real valued funciion on X, is called a weak

e ———— " fal
utility function if

wy 2 Wy when and only when P, 2 1/2,

Condition (w): IThe function p is such that w exists,
It follows that w 1is unique up to an increasing monotone transformation
Theorem 8,1 W) —> (t,). Broof, 1) Sufficiemey, Let
Py = 1/2, Py, 2 1/2, 25b,c f,/)&, If (w) is true then wy > Wy > Weo

&

Pae = 1/2, 2) No necessity, Let L = praal 2-space with generie points

X o (x]_"xZ) and assume that Py > 1/2 when either N> orx =T,

x, > ¥, (lexicographical ordering), Compare Debreu [ ],

Condition (D): ,JE, is perfectly separable; ard for every a in X, the
s

=

sets (x p_, > 1/2) and (x p_. < 1/2) arewlosed, This is adapted from
xa = xa =

Debreu’s paper just cited, which also contains, mutatis mutandis, the

proof of

Theorem 8,2, If (D) is satisfied, (w) and (l;w) are equivalent,



1n
Remark, Condition (D) is trivially satisfied on ,JE.; finite, Moreover,
;very subset of a finite-dimensional real space is separable; and it is
reasonable to assume that Condition (D) 1is satisfied on a commodity
space,
We summarize some of the previous Theorems in
Theorem 8,3,

" (i 0 inite) > (& ,D) () 5 (t ) N

(t'pr) —i (tm) i (ts)

(6 n=-3) * > v(2) > (8)
9. Strong Utility Function,
Definition, % real walued function v on ’15’ is called a strong

atility function if for any X,¥.z,t in X and a menotone function f,

(9.1} Pl =vyd = b 5 #(0) = 1/2,
Theorem 7,2, If X is continuous and 4, is strictly monotone then

(1) v jis unique up to an increasing linear traneformation; (2) for
any real mmber A, | |

(9.3) Bo(n) + B (1) = 1,

Proof:  for (1) see [1], Section II; (2) is obvious,
- (9.3) implies that ﬂv is anti-symmetrical about (0,1/2); the
median and the mean (if it exists) are = O,

The strong utility vx of alternative x corresponds to the
*sensation" produced by a stimuius x, as defined by Fechner { - 1in
1857, It also corresponds to the relative position of a gens in the
chromosome when derived from the probability of a "erossover': this
generation of a real line from a set of probabilities was noticed by

#)
D, Hilbert,

#) 1In a paper [ ] pointed out to me by Hans Rademacher,
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Condition (v), IThe function p 4is such that a function v exists,

Condition {(q) (quadruple condition): For any x,y,z,¢t in X

!’

if > t
(%.4) AL b, 2P, then B 2P, .

Theorem 9,3

(v) implies (q) [Preof: by (9.1)1;

(q) implies (ts) [(Proof: in (9,4) put z = t and use Theorem 7,1],
(v) implies (w) [Proof: in (9,1) put =z = t],
Theorem 9,4: If }‘ is finite, X = (1,.,.,n), then (q) implies (v)
only for n <4, Proof: see []], Theorem 1IV,1,
For X continuous it is useful to consider the following
-

Conditlon (s,c)("stochastic continuity"), If Pxy < G < Py, then there

isa t in ,J_\CJ such that Py = In [ ] Debreu has proved
Theorem 9,5, If Condition (s,c) is satisfied then (q) implies (v),
Ir both(U(z)) and {v) are satisfied we can define a random function
Vi by
2) o

(905) U-‘S( ) vx + vx!
ard set up the following three eonditions, each stronger than the
preceding ones
There axist two functions on\ A=y =yt Condition (V)
MRS SRS  GHSITIELS R o s am— o X y -'——----ﬂ—-----=
X, 2 real-valued v and a2
T d
Iandom-valued V, and a

distribution function #, whera A = any real
numbsr: Condition (V%)
SmoearcoeTwany

such that
Py ™ By (e = vg),
Pr(Vy - Vy<h) = ﬁv("\} Pr (V. < a,,Vy < B) =
Br (I <8, Vpga);

A,a,8 = any real numbers:

Condition (V''),
Pt S e
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In Condition (V) the distribution of the diffarences Ve - Vy is defined

only for each pair of alternatives (possibly finite in mmber); in (V')
this distribution is defined for any real argument; in (V”), in
addition, the distribution of V is a symmetrical function, From (9.5)
and Theorems 9.1, 9,2 one obtains

Iheorem 9.5. (V') = (V') p—y (V) Hé,(z) ) if X is finite,

o
V") > (' )H(V)é-—-)(u("’)- ) it X 4s contimous,
In the work of Thurstone and his school a condition even stronger
than (V') is used: the distribution function of V 4s assumed to be
normal and symmetric (zero-means, equal variances, eqmal covariances),
Actually, a normal distribution of differences f#, (28 assumed by
Fechner), is consistent with certain non-symmetric normal distributions
of V itself,
For possible application to the commodity space same of our results
can be summarized in
Theorem 9,6, I1If ’]E' is continuous and the conditions (D) and (s.c) aye
satisfied then
v'") H(V')t——)@‘z’nv =3 (v) € () 3 () —> (t)
!
(u(2)) —3 (8) — &)
10, Strict Utility Function (in the "binary" sense),

Def;nition (2) a positive«valuedmnction on X is called a strict

utility function (in the "binary" senae) if

(10,1) Pry = uiz)/(uiz) . ugz) )o

Clearly, every positive multiple of a strict utility function is also &
strict utility function,



Condition 61(2)> . IThe function p is such that (u(z)) exists,
Applying (10.1) one obtains
Zheorem 10,1, (u(Z)) is true if and only if, for any subset (1,2,...m) /)&

(10.2) Py * Py3 *** Ppa,m * Pa1 = Py * Pyp ** Py med® Py «
Note that, when put in the equivalent form (10,2), condition (u(z) is

directly testable, Condition (u(z)) was formulated by Tornqvist [ ],
Bradley and Terry { ], and L, Ford Jun, [ J; it is a weaker form of a
postulate that has been propesed by Luce [ ] and involves multiple-
choice probabilities: see Section 11 below,

.'-l:heoram 10,2 (u(z)) +—> (v), Proof (due to Luce): put u§,2) = exp Vo

then by (10,1) Pey ™ ﬂv(vx - vy) vhera

(10.3) By(r) = 1/(1 - exp )2
the "logistic curve",_, Since ¢v must have thris particular form (to
transform ratios vx/vy intc differences), thé condition (u(z)) is
strictly stronger than (v),

Theorem 10,3: If X 1s finite, (u(2)) imgliea";(u(z)) » Proof, Ve
PP ——— A——— P ey el p—— : S ——

shall use an arithematical identity proved in [1] (Theorem IXI_ 6) and

[ J: Lemma, Let N~ (1,...,n) and denote by r = (1 2....n.) the
= ~

rﬂﬂﬂ
permutation on N in which the k-th place is oceupied by the element

kr;, denote by RiM the set of permutations on /I\Q) in which 1 precedes

—

all other elements of £9£ Then, for any positive ul,,“,,u o

n
u i1 n
(10,4) —i 5 F u,/ L u
hgzuuh TE’E% j‘:tl Ir ke Y

To prove Theorem 10,3 from this Lemma, let X = N, M = (4,3) so
At AL A

that by (10,1}, ths left side of (10,4) become p and the set

13°
Riy = Rys  as defined in Theorem 5.1, Since each of the products on the
Pl § Q> &
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right side 1s positive and they add up to pi 5’ we can equate each of

them to a probability of ranking so that, for any ranking r on ’I:I-,

“:{2) ugz)
- Y - | @ I
(10,5  P(r) = P(1,2 ...n.) ulr + ...+ U uzr * oee *un,
sase u(n-l)r .
u(n-l)r *? Uny,

If we now interpret each ni as ui(_z) then, by Theorem 5,2, (U(z)) is
gatisfied,

If 35./ is continuous, the reasoning just used ean be applied to any
finite subset of 2(_', Hence the following
Conjecture: Theorem 10,3 applies to any ’J‘{:
Eheoram 10,1;: (U(z)) does not imply (u'(z)) o g__rg_i_gi;z by Theorems 9.6

and 10,2,
e can summarize the resulte of this and the preceding section:

Theorem 10.5:

(u(2) > () =3 (9) > (£,) = (8,) > ()

(0(2)) —3 {2) ,

E&% on the commodity space, If Condition (D) is satisfisd on the
continuous commodity space and if the Conjlecture above is correct,
Theorem (10,5) applies also to the commodity space; if, in addition,
(s.c) is satisfied, then {v)e—>(q),
11, Seome Results on Multiple=Choice Probabilities,

In Section 4, the condition (U) was stated, Clearly (U) implies
(U(2)> . Similarly, (u(z)) can be replaced by the following stronger

Condition (u): IThere gxists a positive value function u on X

such that for any finite subsst M = (xl,.,,s,xm) < X, the multinle-
o Pt
chojce probability
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(]—101) pxi(ﬁ - ui/d gz}‘l:lj °

The function u may be called gtrict utility function in the
multiple-choice sense,

As was proved in [1], (u) implies that the probability of each
ranking, P(r) 4s precisely the expression on the right-hand side of
(10.5)f. Bolleg if ,J‘(’- (1,2,3), we have (letting u 4uy ¢uy - 1
without loss of generality),

u L, u
.

(11,2) P(xyz) T,

Applying the Lemma of the previous Section one obtains, using (11,1):
Theorem 11,1 (u) —> (U),
==
This result is discussed in more detail in [1], ILuce [ ] proposed a
condition still stronger than (u), being a conjunction of (u) and the
following
Condition (u'), Denote by p:c (X") the probability that x is the
last choice out of the subset ,}\:j"g X, There exists a real valued
L Fa g

]
function u or X, such that for any finite subset M- (%) 00000%y) SX,

it

the probability
! ' 7

P, M) = u/ £ u
u may be called strict disutility i‘}mction,
Theorem 11,2, If both (u) and (u') are true then (U) 4is in general
not trus, Proof: (for any finite ’JE_) was given in [1],

- ~s
Az an illustration let X = (1,2,3), Then {(u) implies (11,2):

and {(u') implies, by the same reasoning,
] 2

. U
P(zyx) = S
3 R
vhere L u:c = 1, Interchanging x and =z and using (11,2), one
x=]

obtains a set of equations of the form
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__“.;_......x;

up o u, Yyt
3 3

these, together with the normalizing condition £ u = u - 1,

x=l X x=l
yield

u_ = uy = 1/3, xe1,2,3,
Thus, unless all three first-choice probabilities and all three last~
choice probability are equal, the conjunction (u,u’) is incompatible
with the existence of a random utility indicator,

It has been pointed out by Luce (in private correspondence) that,
while in experiments on choices the probabilities of last choices may
or may not be accessible to observations, they definitely are in
experiments or perceptions: the subject’s decision as to which is the
loudest of three sounds is as observable as his decision as to which
sound is the softest, If one accepts {u), symmetry requires to accept
also {u'), But then a random utility (or sensation) indicator U in
the multiple-choice sense cannot exist,

Alternatively, one can 1limit oneself to the weaker condition
(ﬁ(2)) o 41t involves binary choices only; so that, when identifying
the loudest sound, the subject identifies also the softest, That is, if
the subset | ’1_(: conaists of two elements, then Conditions (11(2)) 5
{u), and (u) are identical,

A striet utility function in this limited sense m@(z)) rather
than (u)~-is compatible with the existence of 2 random utility indicator
U(z) involving binary choices only,

As a summary of this Section, we have, for X finite,
e
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(u)

(V) —> U(z)) Gl (u(2)> 'é‘—'l(u,,ug) t—> {non-U)
i\
s /\

12, Binary-Choice Constraints and the Form of the Random Utility Indicator,
e ™ e e P e e A s e T P et N Nt e g Nt s e g
Consider Example 2) of Section 3, and let m=2, 0 < '1'1 = A<],

T2 w ] - A, Then

(2) . A2,
(12.1) Ux x1 b4 3

2

the function U(z) is monotone increasing in x in the sense that if

X% 0%, 5 T=(T307,)0 %y 2 Fyo X, > ¥, then uiz) > U§2) L AT
(2)

random function depending on the random parameter A,%#) If U is a

utility indicator in the "binary" sense of (3,1) then p,_ = Pr(Uiz} 2 ‘3;2)) -
A_ 1-A J |

A_ 1-A
{
Pr{yyy, < x1x2 ). Let 7 > xi,, ¥, <X, (so that x does not

dominate y, nor conversely), Then log(ylfxl) >0, 1og(x2/y2) > 0, and

. A log(x/ya) | _
pxy Pr(m < mﬁé’qy ) F(uxy), where

My = 1o8(x,/¥,)/108(v1/%))
and F is a monotone non-decreasing function depending on the distribution
of A, - We shall now show that the form (12,1) of the random utility
indicétor is not consistent with some binary-choice constraints:
Theorem 12,1, If the random utility indicator has the form (12,1) then

the strong transitivity condition (t;) is not satisfied, Proof,
i i < Th
Consider three points x,y,% with zq > 2] > X, Z, < y2 xz, en
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#) Maximizing U£2) with respect to x subject to the constancy of
income X} * X, We see that A/(1-A) 1s the (random) proportion
spent on the l-st commodity, Hence the observed frequency distribution
of this proportion should help to estimate the distribution of A—
assuming that members of the sampled population were characterized
by the same random function U(z). {But we shall not purseu this

matter here),
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Py = Fliyg) s By = (108 X, = log y,) {log ¥) - log x,)
Pyy = Fligs) hyy = (Qog 7, - log 2,)/(log 3, - log y,)
P " Flag) By, = (log x, ~ log 2,)/(10g 2, = log x;).

uxy(log ¥y ~ log x) ¢ u-yz(log 2, ~ log y,)

Hxe
(log y, = 108 ﬁ) + (log 2, = log yl)

a convex combination of n and p_ ., Hence
Xy yz

min : < < max
(uxyn uyz) << (uxyp uw) R

and since F is non-decreasing,

min (Byyo Pyg) S Py, S max (pyyn Pyy)e
The strong transitivity condition (t's)” Section 7, contradicts the
second inequality if Pry and Py, are both > 1/2 ; (t.) contradicts
the first inequality if p

Xy
Thus (12,1) is inconsistent with the existence of strict or strong

and are both < 1/2,
Pog 1/

utility functions, since those imply strong transitivity: Theorems 9.3

and 1Q,5,
Consider now another random form of the "Cobb Douglas funetion':
(2) ] & 1-a +

where o is a constant, O<a<1l, and V 1is a random function on ’{:
If U<2) is a random utility indicator then
Py ™ Pr(U)(tz) > U§2)) - Pr(Vy -V 5 y; y]:u - x; x;mn),
Suppose we have found V such that, for any real A, Pr(Vy =V SN - #(n),
# being a distribution function independent of x,y, Then condition
(V') of Section 9 is satisfied, and

lecx

(12,3) ui'?) -V m v = X X,
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1is a strong utility function consistent with the assumed random utility
indicat.or,*)

If we could accept the still stronger condition (V), i.e,, let the
{infinite~dimensional) distribution of V be symmetrical in its
arguments (x,¥,,,.), one would have to search for such distributions,
However, the symmetry assumption is hardly reallstic: for example, in
the case of normality it implies that the deviations from the average
budget composition have not only the same variances everywhere, but also
have the same correlations for any two points of the /}\C’ -~ plane, however
close or remote in relation to each other,

Given a distribution § of differences V, - Vy {possibly
observed from experiments), a random function V may not exist, For
example, consider X finite, X = (1,2,3), and et

(12.4) Prob (v, - vy - 1) e1/2= (Y =Vy=-1), 1,§=1,2,3,

Then it is impossible to find a random vector (Vlg V., V.): for if

2* '3
Vl = V3 m o] = V2 = Vl; but Vl = V3 = ¢, a value not foreseen in (12.,4),

The examples used in this Section have merely the purpose of
illustrating the problem: find a class of random utility indicators

consistent with a given set of binary-choice constraints,
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#) One may want to use indifference lines to picture some relevant
aspect of a given randcm utility indicator, and in particular, its mean,
In the case just discussed, described by (12.2), (12.3), we may choose
V to have zero expectation; thenm Eﬂiz) -V, Accordingly, an
indifference line through x consists of all points y with vy L

pyx - ¢v(o) = 1/2 as in (9,2); 4t is the common boundary
of the two sets used in condition (D)}, Section 8, On the other hand, if

the random utility indicator is described by (12.1), equating

g(? w wof?
y

M or possibly E log U“(Iz) = F log “;(c?‘) . Eives quite a

different result,
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