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REMARKS ON THEE TCONOMITS OF INRORMATION

. Hnpraghak #

The words Yamount of infemation®, "value of informatient; "cost of
infarsation®, Yplece—wage to the infermiat” have been wmuch in use reoendly
Tk the selabicns bebtwsen Lhese guantities ape nob always made clesr. FPerhaps

-
&3

i)

stiemst at clacification is in order. Though for scme ilsteners it will

i

elakorats th: vbwious the sttemnt ssems Lo be Justified by the exdsting state

222

of discrasion,

# pppgonted at the dedlcation of the Weestern Data Procoseing Center,
Univereity of Californmis at los Angeles, Jeauary 1959. The paper,

completsd during the suther’s year on & rotating vielSing reszarsh
professnrebiip at Carnegle Institute of Technology, wes started under

s gomirast of the Office of Kaval Ressarch with the Cowles Feundation

for Res-arsh in Econmomice, Acknowlsdgemsnts are dus to my cclieagues at

the Cowles Foumdabicn, M. Bueclwwnn, G. Debren, $, B. Meluire, J. Farsanyl,
apd H. 2advar, and to & ooy ~regpondence with C. B, Tompking., See alzo

the awinor's earlier paper [165L) and, of course, L. J. Savage's bosk [1954]
.

seodally

Chapters 57

L5

# hepointed out to me by Ueorpd 4, Killer of Harvard to wiom L owe

zany of the referenses to the Ilteriture uged hers.



red as sn address to & group of

tnsvaticiars, gathered to inavgurete & selisntlilic

rege thras professlons.  In decliding

asnpy el o g gt PP I S A o} ~vy wee
vhrumerhe, proessess 19 is natural for sn

crie, poads thal sre independent

¢f the meods of the byean uwesr. The zacnomladls eriteria are poobed fn hunman

1isies, and this makee hin & nuissnce, 7o

gompatle Lhe wmisr of cclorles produced and gongswed by a gocleiy i€ o nest

+

Jobs the maximizablion of the energy cutont ie a goal that cen be stated clsarly

snough. The economist megses it ald up Dy reminding the techaoerat theht song

single indiwidunls ave heppier with & fatleas dist. For the scciety as
wiaole the sconondst computes a compiloated eriterion such as "national incoms
in dafletod dollara’; but oven this ho doss only helf-heariedly, troubled
by hie koowledge that the markets in which doller prices are mads are Imperfest
g0 that many mman waots remain waconparabla,

The engincer deslsgning a privately owned power stetlon strives (o achleve
g ndeh cuptliewd of bilownbl-hours per ton of ccal. The economipgt rvemlnds him

that the ghookhelders are more interazted in prefits and these are ispalrsd
| Y

by Lhe bBlgh inberest charge oo the investmend In a physieelly efficiant

vator, Charles Hiteh [1958], head of RAND's eeumenle division,

gave dlog odher sxemple: & hapdy criterion ccoczelorally suggesied o dirscoh

siolong I

-submaring warfere lg the

s

ailo of ensny U=-boata destroysd

4

Wi owrvid zhvdtle dostroyers acrogs the cooan
gy 4 % i L. = yy e o w ~ 54 v .
A fall ho Yransoont men and supplics Loowin tho




This Strelt dor Fakultacten is, as nsual, a conflict of nomenclatures,

definiticons. The ihlrd profession pressmt bere today, the mathematialans,
spaaioling In peaclise and consistent definitions, and may thus help the other

T opied

trey wrovidad the fompal ginmilarity of wethamatleal 2xpressions does not

Fy =

provent us O=w dietinguishing bovwssn thelr various poseible physinal, or

interyretatlions.
n

A sbetlztieal dl =

)

tribubtion persmeler callsd entropy, i'ing Py

J."‘l

aro provabllities definad on & za3t of n states) meIUres, in

3

aman genes, Hhe fdogros of uneerteiniy . 1L also has mathematlieal wropetics

thav enabisd Sranpon | 7 to use it a2 a measuwre of the amcunt of Information

miasion rate) ef a "chasnel of commmnication.” This parameter clearly does
ot dapenrdl on the pardtlievlar uses to which the informatien soures or channsl)
widl te pat. If, on the other hand, ithe user aasks "How much is the soures,
err the chammel, worth to mo?9, "How much awm I willing to pay for it?", 4% s

naturgl that the answer aboul this guantity {for whiech the term "value of

[ria

nformetion’ muggests ibself) will vary from user 4o user. This cercainly
: it '
complicatos matters, and att.&mp‘%;ﬁ nave Loan pads o show that/ the value, or

worth, of information 4o 1is recelver is defiped in some 2poropriate way it
sy yob be mads independent of the user) more Lhan that, 1t will bs meszursd

wregiscly by the spbtropy formia,
Tn Leying to clardily the terms we have mst problems that are not merely

linguiahic, bubt asiwnlly rovoal seperate slasses of impordart end merasurahls

S

Jt Samed oub that writere whe fvried to define a veluz of infowmi-
tlen dxdgosndert of the usar have uned the word to dencte zuah
mamnbitics az the cost to the seller of information {almilcy to the cosb of




2. Demand 2nd Supply Price of Information, It i3 agreed that for
Pt SR S VALY S M S LD,

teskaical porposes the word "information® never denotes 2 alngle meassage bubt

seges associated with a given instrument {aoures

Ths man who buys a novepaper dees not know
bofovehand whot wiil bs in the rewa, He acguires ascess to potentiosl reszapes
talensing to a seh called news.

wation is domsnded and sup lied, and we can speak of a demand prics
srd 2 supply price of information &z we do in the case of commodities,

Ths dewand prics of informatioen is ihe highesat pries that a glven peracn
is willing %o pay for 3t, This prics clearly depends on how useful or importe
axb swrs, for that parbiewlar person, the meossages that he will oblain from the
Fdven information instrument. The horse-race fan will pay much for the newe=
papor with the latest rocing resulie; weather services are of grester valus
Lo farmers, alrlinzes and the tourist trads than to the steel industry; and
soms people dontt care even for the highesi-fidelity radle sets.

7o an egonopist, it seems natural to call value of information the averzge
mouat earnsd with the help of that infermation., Moreover, if 1 already
heve foossn Lo a certaln kind of information which sarms for me, on the
averag?, ithe ampunt Vo ; end if the accoss to soms cther kind of information

o

will hely me to 2 grester averase earminzg, ¥y @ then demand prica for
2 & 3] 1

that infermubtion ?flm o ©
The owply prles of information, < the other hand, is the lowest pries
its supnliier is willing 9o chayge. 1t zanmci, Ln the lomg rum, f2ll belew

Lthe sozt oo the supplier or be will lose the wollve to supply it

T e v &y =y = e 2 "y ATy,

In oo omarkad of sompereble dnfermstlon inctrumentis {e.g., nevepanersl,
A Al magreareseager sl lease ) c P e gagm o 3
with ruserous and freely compeiing buyers and sellers, 2 wesrked priss would

o iy NN . . Y, - s — -y 5
sagrge. b wlld be sotually pald by 11 buyers and ascepted by 8.l swilors



sxoepting those (and only those) buysrs whose demand price is lower, and

thoze (and only thoze) sellers vhose supply price is higher, than the market
oriss, These {Tatbmerginal®) buyers and sellers will abstain from transaction,
In the wore uneval and interesiting cass when & large end fres merkel for
comparable infermetion instruwents does not axdst {Lhls "classlecal® ecgononmie
model dess nol 2pply end the analysls bocomes mors difficult, But the concepls
of demand price {related Yo the valus of information) and the supply price
{r2lated Lo Lhe cost of information) remzin fundamental.

Yihat 43 thz relation of information value and information cost to the
goneept of 4nformebion amcunt, which has bsen developed for the usss of the
industry of commnieation deviess and hae been frudtfully transferred to various
sgienees? The amcunt of information doss not depend on the needs of any partl-
gulay bryer of information. Henes it is not identieal with the value of
information just shown Co determing the demand prics, But it is g?eéumablg
related %o the cost, and hence the supply price, of information as we ghall

presantly o2,

35 Simg%s Ggqg;w Louiproboble Msssages, If the set whoge information

emoent is being measured consists of n  potential mgssagss that have ?qnal

probabiliting, py = L/n , the information awoumt ==§£,;3 log py =

=n = {1/a)leg (1/n)] = log n ic simply defined sc as to increaseedi&”ths'nﬁmbsr
of distinct potaniial masgages. It 1s also usual to say that the larger this
nimber Lhe more rregise is the information instriment: this ie a definltion.

Ard She mors preelse the instrument, the enstlier is the Instrament and iz
operations  this is, or is asseried toc bo, 2n empirlcal fect, The incyoese

of sost vwith increasing precision is 2gpoulated with the fact that iarger

precision neans (by the defipition just glven) & lsrger number of gynbola



neaded at a minlmm to distinguish ihe messagees as, for exampls, when
each messege consists of & numerical variable given to/t;uggzrest tenth, or
pusdrodth, or thousemdth of a wnit, It takes more time to Lransmit more
ﬁymbslso% had presumably it tekes more labor and cther resources to
produts en instrument eapeile of tranamitiing more symbols per vnit of time,
Tre minimon nmber of symbols neoded - €.g., the number of dipglts In the crample
jost given - increases in proporbion to the logarithm of the nuwmber of
pobential messages; so that (roughly?) an equel cost increment is added with
overy additional syrbol. Meresver, 1f every potentlal meseags rsports, nod
on & zingle variable, but on two independen? variables (e.g., Lemperature
and humidity), the total mumber of potential messages is the produet of ths
pasbers of potentlal messages assceiated with each vardable; but the total
nuaber of synbols needed is the sum of the number of symbols needsd for each
vasiable, And this again corresponds (roughly) to the behavlor of the cost:
the cost of introducing @ second vurisble is simply added to the cost of

piving meassages about the single cone,

4a é§ﬂ§llustrat;g%g ) nile still confining curselves to ths simple cass

of equiprobable msssagss we ehall illustrate in more detail the fact that

infermation valus end information amount dé not necsasarily go together,
Suppoes the price of a stock can chaﬁgé from thls to ths nsxbt wesk, by

any smount betwssn 46 and =6 peints wish equal probablllty. Suppose you can

use the services of elther of two informents, cach a faultlesas predicior of

¥} Sz, for susmple, OGiiberd [1958].
b-J & &

®5}  Teksa frem Parschak and Radnepr [1958]1, Chapber 3.



iatock prices, Informant A sends only twe kinds of meseages: (1) stock will
i?ieeg and (2), stoek will fall., Informant B is morse precise in that bhis

| measages can bs of three kinds: (1) stoek will rise by 2 points of more,

{2) stock will fall by % poindts or more, {3) stock will move by lems than

. 2 podnts in sither direskbion, If, as we shall agsume for a while, shere are

£o transaution costs {brokerage chsrges, etc.) & good rule for your action on
ths basie of informstion from A is: "ouy stock when A predicis riss, sell
.othﬁr%isa“; arnd, on the basis of information form B: "buy stock when B predicis
:;isﬁ of 2 points or more, sell when he prediets fall of 2 points or mors, do
mothing othervise.¥ Thus informant A ensbles you to take advantage of every
prise changs while B is umeloss whencver priece changs is moderate. You will
prefer 4. Yot A is the lsss przeiza of the two: A uses only two squiprobabls
potential messages while B uszs threal The amounts of information are in ths
ratio leg 2 1 lsg 3 = 1 : 1,6 approximately, But the values of information

are in the ratio 9 1 & = 1 : 0, 9 erproximately. For, applying to the informe=
tion from A your good rule of aetion, you will gaim an average of {(6+0)/2 points
per shope on purchases of rising stock, and obtain the mame average gain en
sales of falling stock; and since Loth cases have egual prebabilities your

expached zain will be
Ly (Hed 1y 520y _ .
SR OREONCOES
pointe per share. On the other hand, B will help you to oniy

Iy 0602y oAy (o)) 652y « 5 2
& &G o & =22



Vo ecan 2lso coneelvs of a third informant BR, who exerts himself to give
gvon more precise meesages than B: he bresks up the whole range of yossible
price~changes Inte a very largs odi pumber of intervals of whieh the middle
one is oawmbered avound zero, The amount of information in his set of messages
will sxoged ¥y fer that of A's and Bis messages, making B* a very expsnsire
informetlon instrupent indeed. But the value of his information to you,
¥alls oxgesding the value of B's informution, will still fall short of the
valus of A'3 information (although it will approach it): because B¥ faile
end A dees vot £ail to meke the useful distinction between rises and dsclines
of stoek when they are within the middle interval. As so often, the brand

isasl costly to make d4s the best for the buyer,

5. Ihe Payaff Functlon. In our exampls, you have used A's or Efs informution

e e -

on stoek prices in ordsr to lh@' or s82ll, Ynur actual gain {or loss) {rom each
aghbion wag deiermined by both the action and the setual priecs changs, according
to the following "payoff functicn®: if the price changes by +x peints, and
you buy {éell) s you gain (lose) x points per share; if the price ch.a.ngeg by
=X points, yowr gains from buying or sslling are, respeciively, =x and +x points,
If ws dencte the threa-valued aetion variable by & , with a = %) (buying),
& = =1 {eadling}, and & = O {d> nothing) then the gain u is equal %o =,
We shall use Gresk O as & syzbol for & payoff function, snd the corresponding
Letin letter w , for the valuz ¢f this function, In owr cass
(1) w= ox,8) = xm ,

_Iﬁ; iz Jmporiant to me.ake explicly an assumption taclitly made so far:

the deelsion-maker waximizes the sxpected payoff. In cur sxamply, the payof?

was measured in monsy. LU i3 more gonsral to define as the paysff that fussiion

y

of the schion and iho stabe of iths world, that is being moxinmizsd by the dacigion-

walur, That suck a function (defired o 2l) posweible outcomes of actiong,



whethor these outcomes be money :mqunt# or not, exisis is an assumption
about, the decision-makerts behavior. It was shown by Von Neumann and
¥orgenstern [1948] that it followa from cortain simple maxims of consistent
behavicy which it ls rsesonsble t¢ advise a2 person to use, Tha “payoff function®
and tho “eriterion function" are the same thing, * (Footmote on p. 92)

Under conditions of our example the payoff function (1) resulted in
your prafsrring informant A to informant B. But. w8 can change the payorf
functlon sc 3s to raverse your preferences. Instead of agsuming transaction
couts neglible let us asmume you have to pay (in brokerage fees, taxes, etc.)
2 points per share on each vurchase or sale. With this new payoff function, /0%

v e O #(x,e) -nhz, “fo
0 ,a=0,

it becomes advantageous for you to abatain from transaction vhenever the
price is predicted to change by less than 2 points. B enables youto apply such
~aryuls. But A does mot. As & result, A will help you to an expected profit
of 3 = 2 = 1 polnt per share. But B will help you to more, vis., to

S &drdos HéB-n -l

poinis per share. The value of information from B has now become larger than
that from 4.

6, Information Structure. What is the explanation for this switching of

= -y

the comparative values of the two infermetion instruments? Let X denote

the whole gat of possible price~changes, i.e,, the vwhole interval beiwsen, and

ihcluding, =56 and % 6, Time X = [=6,+4]. Consider its following subseis:
Xy v b, =2) 5 Xy = [=2, 0) 3 X, = [0,%2) ; X, = [42, 6],

Infermant A, In fact, partitlons X into two subsete, ore messags corres-

L

ponding to eagh subset: one subset consists of Xl and X2 , and ths othep



o

# Here is an example of non-monetsry payoffss To compare the information
valuea of a glow and & flaat%mcation system Thorton Page [1957] 2ssumad
that the lack of information -~ dug to communication delay = on each of
the pelevant external variables “degrades the descleion" in a given way,

In our terminology, the best decision posaible on the basis of delayed
information results in a diminished payoff. The information values
computed by Page are, in effect, the expected payoffs undsr each of the
compared commmnication systems,



np o
e 5 e

‘subset consisis of X3 and X, o Informant B partitions X into thres cubsste:
%3 % ; and "%, and .'(3"., Yihen the payoff function is 0 of equation (1) (the
case of zore iranszction coats), the cliantis cholce of action is influenced
by whether the predicted price chunge bslongs to "Xy and Xz” or to "XB and th H
but it is not important for him to distinguich betwesn xl and X,, as both will
dictate the same appropriate action ("sell"); similarly, the distinction he-
tween .X3 and Xh is unlmportant. Hence the greater valus of A when payoff
function is ¢J. DBub when it is the fumction () of equation (2) (i.s.,
transaction costs = 2), the distinction between X, end X, and also betwsen

13 and X.g*, bscomes important enough to make B a more valusble information
instrument than A,

Thus each information instrument is characterized by the way it partitions
the set (%) of all poseible states of the enviromment, We call each way of
pertitioning (or, triefly, each partition) of X an Minformation structure."

We have seen that, whether a particular information structure yields a greater
¢xpecied payoff than ancther partition dspends in general on the payoff
function, as our example has sﬁcm. Thus, in general, the ranking cof informa-
tion structurss {and instruments) according to their value is a "subjective#
ratter inasmuch as it depsnde on the usefulnese of information for a glven user,

The question arises naturally vhether there are palrs of partitions such
that the ranking of their values is not influenced by the puyeff funetion. It

is easily seen that such ("objective") rarking is possible if and cnly if onms

partition is a gub-partition of the other in the sense that each of the
#ubsets in the former pariition is contained in some submset of the latier,
For example, suprose informant € uses four messages, corresponding to ihe

partition of X into the 4 subsets X4, Xz, }13, KL} given above, This partition



1l
Tt
5

is a sub=partition of the two-sei partition used by A asr woll as of the
thresw-get partition used by B. And it is clear that any c¢lient of C has
all the knowledge that & elient of A or B has. Hence, for any client,
vhatever his payoff functicn, the information value of A or B can nover exceed
that of ¢ (with the particular payoff function & used above, information
value of C is strictly larger than that of B and equals that of A; undepr ¥,
the positicns of A and B are interchanged). Thus if one information siructure
is a subpartition of another; their valueg are ranked independently of the
payoff function., The converse is also true. For (as pointed out by Roy Radner),
if neither partition is a sub-partition of the other then there will be three
states Xys Xop g such that, under one partition, x, belongs into the same
subset with % but not with %33 widle under the other partition, it» be-
longs into the same subset with X3 but not with xp. The first or the second
partition will have greater information value depsnding on whether it is more
important to distinguish x, from X3 or from xl o Thus let, in our example,
* = =3 Xp ==l , Xy ™ +1 . A's information structure is not a sub-partition
of Bts, nor conversely; and this shows up In the fact thatA A permits to dig~
t.ingui.éh x, from X4 but not from X 3 while B permits to distinguish
Xy from x but not from Xy ¥Whén the payoff function is w (t.lx'ansaetion
cost nil) it is the former distribution that matters; when the payoff function
is %, it is the latter,

we can 8leo regard sach partitlon, or information structurs, as 2 funciion
(operator) /7 s that tranglates each state of environment - 1.8., esch elament

x of X = into a mesgage y = 7 {x) (v is the value of the function 4 Yo
F particul tat ‘XayesofOr which - ] =
or a particular y , all those states Xy, Xo,e.cfor vhic 7(11) /j;v(xzz

= ¥ , form a particular one of the subsels generated by the informatioen

LN R+
structure 7 e
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Ist P be the probability distribution on X . (When X io finite we
can write p, for the probability that a particular state x obtains.) It
is elear that the distribution P , togeiher with the information structure o9,
will determing the probability distribution over the set of memsages ¥y o
And sines the amount of Anformatilon is a property of thes probeblliity distribution
of msgsages, it is a propsrdy of the pair (P, 7 Yo In our exampls, the
{uniform) diatribution {P) of price—changes, ond the information structures -
say, n/A 3 73,(,”“ characterizing the informénte A, Byoco = ware such as to

generate the distzibution of messages: (%” %) in the case A 3 (%'s-}“p%") in

3
the case Bp.oo Even more: P and /7 taken together determine completaly

the joint distribution of the measages and of t,hg states of the world; and,
hence, also the conditional probability that the world is in a given state if
ths message received is a given ons. Thiz remark will become somevwhat leas
trivial later when we drop ou;\s.ssumption that the informants wers faultlesa,

Ve can now summarize our concspts formally: Virite X = got of states of
the'world; x = & particular state; P = probability distribution on X [when
I 4s finite, ' P bis the probability of a given x_]; & = action
(= decimion); u = payoff, ¢ = payoff function, /7 = information struecture,
y = message, <X = rule of actlon, i.¢,, a function assoclating a message ¥
with an action a ,

Then y = 47(::) s as= o{{y); and u = (x.8). Hence u= &O(x, Ay)) =
0 {x, £ (,7 (x)))}: the payoff depends on the state of the world and will
vary with the thres funetions &), ¢4, znd /,7° The expected paycff is
V=E u=E_ 0 (x, %(7 {x)})) [in the case of finite X , U=
%px 63 (x, ¢t.(/7(x)))], Thus the axpe:étsé payeff depends on the functions

W) e Ay /7, and P . VWe can write U= U(ﬁﬁ,7; &, P), saparsting by a



somicolon the functionms the decision-maker can choose ( <X and /7 ) from
thosé he cannot:  the payeff funetion and the distribution function of the
states of the world,

If the rule of action is & good ome, o4 = oA¥* , zay, U is maximized
over the set of &ll posszible action rules. That is, U (&%, 73 s ¥ ) -
Mi.x U (a\“«?; D,P Y= ¥ (/73&); P ), say, iz the maxirum expseted pay-
off achisvable with the information structure /7 s glven & and P ., Ve
cald V (7; 4, P ) the information valus of and want to emphasize that,
in gensral, it dopends on &J). On the other hand, the probability distribution
of messa;es, or (mere comprehensively) the joint probability distribution of
megcages and states of the world, depends con -'7 » P but is independent of <,

If I am in possession of an information instrument characterized by

structure 7“ of information, I shall be willing to offer the demand price

v( /71; &, P ) -V /70; ¢J, P ) for the instrument with information structure
/71 if the difference is positive. In particular 47° may mean "mo informaticnt:
a degenerate partition of X into & single subset (itself),

7. MNom-Equiprobahle Ressaces, In our exsmples mo far, s fenltless informaat

e oo L]

sent equiprobable memsages. But our concepis apply to mere general casea:

it remaine true that the value of a given informatlion structure, and the
ranking of the values for dlfferent informstion structures, depend on the psy-
off function.

On the other hand, the swount of information is lndependent of the payofl
function. In particular, the information is bighest, regardlesa of the payoifs,
when the measages are equiprobsble, and hence remove the “highest degreze of
uncertainty.” Consider the following type of payoff functions, J, and the

following prebatvilities Py of two slternative states of naturs:
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State of

nature x= 1 2
Avtion
a=]l ry 0
2 0 Fy
Probability py = Fy Pa »

vhere Py ¥ ;=1 and the rewards ry are positive. How much will you pay
to the informant who tells you without fault the actual state of nzture? <Call
this informztion structure, ,?1 » Vith its help you will always chooss the
appropriate action, & » x , and earn, on the average, Vy = (/.71; (S, P )=
P teryo If you act without the knowledge of the actual state (we shall
then say you possess information structure 7"), your expected reward is

p, ¥y OF pp v, depending on the action you chocse once for all (or between
thege tu%m;?gu randomize your actions), In this case, the highest expected
revard is Vo = max (p; ry , Py rp) » Hence, assuming (without louss of
gsnerality) Pty 2 Py Py , the demand price ror,7l is

oYy smr)-nrn=p,r,-
This quaentity reaches its maximum, not when "the degree of unceritainty" is
highest (py = py = 1/2) but when p, T,ePfhs " rz/(rl *+ rp); this 1s
# 1/2 unleas ryETy o
Similarly, while, for a three-message set, the information amount is
higheet when p, = 1/3 (4 =1, 2, 3), in the following example the demand price

is highest at different probability distributions of messages. Consider twe
pawaf functions, w‘ and ()" ; and assume a probability distribution P

(vith py = 1/3) :
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w' | Q"
x= 1 2 3 x= 1 2 3
am=1 rl 0 0 am} rl 5] 0
2 0 ¥, T, 2 0 0 ¥y
P ™ pp 13 p, Pr: P 13 p,

Thus, if the payoff function 1s ' 1t is unimportant to distinguish between
the states 2 and 3 ; the demand price is the same as In the two~states
example just used. Accordingly, it reaches its maximm when p, = r, / (»y *12)s
Similarly, whon the payoff function is (D" , maximum demand price is reached
when py = T, / (ry + rp). And in the particular case when ry = ry , the
probabllity distribution resuiting in the higheat demand price is, in the case
of each of the two payoff fanqpiona: (1/2, 1/3, 1/6) ana (1/6, 1/3, 1/2),
respectively, not {1/3, 1/3, l)?)'! The "highest degree of uncertainty" does
not correspond to the highest demand price for information dispelling it.

There are of course many parameters of the probability distribution P
on the (finite) set X = (ﬁ;o-. ,xn) of states of nature, that have the
property of resaching the msadimum when PP " Py ™ ceo " P o Of such parameters,
Claude Shannon‘s entropy mesasure, -fpl log Py » has the further property
that it increases with the minimur number of symbols needed to distinguish
messages about long sequencss of states of nature, To see ihis, compute the
nurber of distinct sequences of length T . Each sequence in which xl,on,xn
oseur %, j00e5%, times respectivoly (iti = T) has the probability.
pltl p2t2 P pntn s and since, with T large, it 1is practically certain that
ty = Tp, , each such sequence has the probability (blpl pzpz coo p:n)?
Its reciprocal, (plpl p2p2 es0 pnp“) ™" is therefors the number of distinct

sequences; and its logarithm, -T & P, log P, is proportional to the number of
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{fiigits needed to distingulsh between messages about such sequences. As in
‘pur earlisy exposition (of the specis) case when the states of nature are
squiprobebls and T = 1, and therefore the messages are syjuiprobadble), the
number of dlgits can be takisn to be roughly proportional to the cost of
¢ransmitting information ahout T successive states, Henee the average cost
‘psr tranamitied occurrence is proportional %o H ﬁ"épi log py , the entropy.
This quantity has its maxdimum when ell p; are equal ( = 1/n}.

Changing our terminology wa can also regard the sst X = (xl,o.o,xn) as a

vocabulary, and each state of nature as a segquence of words dsscribing it.
Fér sach word, the probability of its occurrence will, in general, depend on
ite predesessors in the sequence; but we omit this compl_ication for the present
discussion, for our main conclusion remains velid: the cost of information is
inereasing roughly with the aumber of symbols needed and this is measured by
the smount of information defined as the entropy, a statistical parameter
charzeterizing the set of potential messages and independent of the payoff
funetion, But the value of information, and its demand priee, do depend on
the payoff function,

8, Spocial Classes of Payoff Functions. Ths binary relation ® 7“ is a
aub-;artiticn of /,7" " induces a partial ordering on all partitions of the

set X , Ve have seon thnt

(z) ¥{ ,79; L, P ) 2 v(/7"; &, P ) for all P,u> 3f and only
irf ” * 48 a sub-partition of ., If wo information structures
are not related by sub-partitioning, it is possible to rasverss the comparativa
rarking of thelr information valuss by changing the payeff function. However,
we may consider restricting the payoff function to some special class () such
that, for all payoff functions, the ranking of informationm values depends on

,7 and P only. For exarple, we may define some mmserical function K{ 7, ¥)
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such that

(h) V(.a;?’ ;a),P)gV(,;?";w,P)forall ¢3in (L if and
only if  K( ,x,;;;' s P ) > K( ,«‘?" s P)o In particular, since the probability
distribution of mewsages is determined by .7 and P , the number K(7, P )
way be chessen to he & parameter of that d/ist.ribution = for exampls, the

entropy charscterizing it, Is there such a clags L 12

Lot

=
iz defined by the conceptof faulty information, or a "nolsy channel.” In this

9. Faulty Information. A particularly important class £ L of payeff functions
= .

case, we regard the variable, stats of nature x z8 a pair (x®, x*) where 2
denotes the gxternal or gnvironmental state,and K, the internsl state
(i.e., the state of the i{nformation énstr!mnt)n Internal state iz a variable
with the following property: .it influsness the message but not the payoff. %
The message 1o ¥ = -4f (R, ) = ,7(::) as before; but the payoff function

depends now only on x® and the action variable a . That is, there‘exiat.a
& function () such that the payoff

(5) u= cixe) > @@, ) a) = @ 0P, a).

A elrple quast.ibn which, on the face of 1i, seems to put ocur previous
results in doubt, will &1lustrate these concepts. Suppos® an expart offers
to predict which of twe things will happon {e.g., whether a stock will rise

or fall), Won't yoube willing to pay him more (certainly, not lessi) if yeu

¥ From another point of view, the faulty information ls the gsneral case and

the non-faulty the special one, with xi constant.,
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know him to be right 90% of the time than if you know him to be right only
£0% of the %ime? If so, the information value is larger (or at least not
smallisp) in the forwer than in the latter case, regardless of how imporiant
the avent predicted is for you, i.8., regerdless of how it (fogether with
zoy givem astion of yours) affesels lis profit. . Mo change
in ths payelf functicn will aliter the ranking of information valuvss. HNote
moresver that i the probabllity of the expertis being right is, ssy, 40F,
he is as good as 1f hs were right 60% of the time sines you can always replace
hig msesage by its opposite., Thus the informaticn valus is smallest when
the proboebility of ervor is = 50b, %.¢., when the "degres of uncertainty"
apd the antrepy ig maximel: an ominous ecoincidencs?
< To chegk the intuiticn let = = gtate of the instrwmnt =
+1 or ~L according to whether the informent is right or wrongj and . dasnots
the two valuss of %%, the external variable in question, by #1 and <1. With
this notation the message y i the product x®xd
(6) v =35 B;jy(x?, x-)
The information structure thus defined is the partition of the get
of I of pairs (&, x!') into two subseits, with Pyt = +1 and =1, respecbively,
By the conditions of the problem, there are twd possible seticne;, a = ) and
-1 {say) such that a = +L iz the appropriate (i.e., the most profitable) setian
when the external state x® = +1; and & = -1 is appropriate vhen 32 = -1,
That is, if v® dencte the four posaible payoffs u = & (3%,3) by
(7)) & (1,.00) = w5 5 (=, =2) =2 3 60 (L, °1) = 8y, 03 (315 1) = &p,
then
(6} min (ry, pp) 2 max (g, 5,) ;

LeBoy By . T, 270 {relative} geire, and 5,, 9, 2re (relative) losgss, Tohis

B

2
A
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property of s , a speciel case of ths independence of < on xi, definss
the class Q of admitted payeff functions. We shall confirm that, if the
inforration siructure (? is defined as in (6), then the ranking of the
information valuss V(.23 &, P )} for varying P is the same for all
payeff functicons in Q o Lot Pr (s v #l) = p¥ = 1 ~ q® ; 1let
Py (f = 4l) = pé‘ ® 31 = qﬁ' = "orobabllity of the informant's being right.”
The verdeble % was, in effeet, assumod to be independent of x® so that the
four joint probabilities of (x€, xb) are : p°p , p°¢* , ¢pt , &g
If pi g% we can verify - that a geod rule is to obey the informant :
at = o #y) =y 3 Af pr< %agcod rale i.é ¥ y) = -y o Assume piZ%'g
witheut loss of generality. Then by (8), w= o (®, ¥) = & (°, ),
Thareiore, for the two payoffs 1Ty that are maximal in the sense of (8),
thé probabilities are: ‘

Pr(u = ) = Pr(x® = +1, Fx* = +1) = Pp(x® = +1, = 41) = opt

Pe{u = w,) = Pr(x® = -1, i - <1) = Pr(a® = =1, od = 51) = ®pt ,
adding up pi., Henca the larger p’“ the larger ths expected payoff., Thus
for any fixad payeff funciion in ﬂ if exports A and B are charasterized
by P 4 > g 2 /2 (or, more generally, if { pi 1;’2{ : !p% - 1;2_! )
expert A has greater informatlien valus,

For a twe—signal channel whose probability of not comveying a falsshood
15 p* , the capacity (maximm rate of Lrapsmlseion) is, under corditions of

{2} C.= pi log pi + g+ log qi + log 2 .

This guantity veachss lts waxinum atb !p 1/2‘a It increases 'wi&hﬁ‘p = 1/ ig
just 23 doms tha information value, However the (monotons) function that
peloses informetion valus (and also the demand prices) 0 € is not 2 simple

one, and thiz funcilon does depend on the paramebers Iy, Tus Sye &, thay
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digtingeish one element of the class Q from another., The information valua
{zesuning pi > 1/2) is

. ; § : 8

Wy o= ongg® ¢ r®) ¢ o et ¢ .0°) 3

without uslpng information the expected poveff would have been:

k1) Tz T nw»-( @ 3 3 & e i ?%3‘
7y © MEP Y 8T 6.0 S o

Asmomivygz, without less of gemeraliiy, thal the second term in parenthesas is

- T

5,

paximsi, we obizin ag ths demand price

v, =V, = p‘pe(rl - 8,) = Tro® (1'2 - 8) o
Sines gt = L -t >3/2 amd by (8), beth P, and Vy — V. are linear
& i 1 o Y

inersseing 4n pr o If the case p+ < 1/7 is edded (and accorcingly, pj' and ot

o

interchsnged) ous sees that the value of i:'ommation as well as the demand rrice
ingrsazeslirsarly ?&'ithl pi = l/?i {and hsni: are monotons inersueing functiom

of the ¢hanpel ¢apeolty € ) 5 with coeffici ats depending on the particulay

In a "fair bet® with s Fixed sizlte 8 we wonld have, in particular:
3 3 i
& % 8y ¥ B j ™e = ®/° ; rols = ®/d V=203V = 25!13 = 1:5323
Thiz last result will b2 comparad with the one of e next Seciion.

10, A Usse when Information Velus colncides with ( (tm“ﬁ Cenagity. This irtere

Eﬁ".. = = e

asting case was constructed by J. R. Felly, Jr. s..956 ] of E.11 Telephone

Labsraterisa, In presenting it, we ghall fiad 1t lngieally instrus<ilve ¢o
contimme Lho use of our formal retatlon even thowgl At is made to look i «eon-
gruous by the intuitive gimplicity of the problem, The problem re’éains all
the choractoristies of our very last exewple (falr ist) execept that the est
of actions and the payoff funchticns zre defined ¢if“:pently, The aitaks 8
varies frem bet Lo bed, the garkler having declded i1 edwanes that be will het

a fixed proportion ¢ of the capitel svailable afte dwprevicus bet, Thus



tha actlon 2 38 now desoribed by & psir of variablea:

ae(s, €y sk=4,-1:0< < 1.
For simplicity, assum p° = 3/2 (however, Kelly obtains his resuld also for
an arnitrsry ). Demoting by ¢ the capltal before the bet, ths monsy logsos
snd peins Lbooomey

slmazﬁcxaﬁgrlﬁ*?gﬁe(g
Yowsver, bthe payoff u , i.8., the vandom vardable whose expected value is
meximized, Lo sssumed to bs, not the money gain or loss, bub the expensutisl
rate of prowih of sapital, i.e., the logorithm of the ratio hetween the capitel

after the balore the pai:

{1 log(l + € ) if gambler wins
u = log (1 -€) if gambler leses.

With pt > 1/2 (no loss of gemerality), 2 good rule requires again that the
informant's sdvice be followed, "This mzles the expected payeff# equal to

Busgt log (L+4£) + o tog (=€,

¥ Relle ;*'m,ai;fi.fies the result in s diffsrent way, ®ying to avoid the concept

of & eriterion {payoff) function whose sxpegtation ls belng maximized. He

unss Lhe btims-gequsnce involved in his problem: the sequence of capital

:

mmounts, o, after the %-th bet, He computes the probability 1imit of the average

7
L
5 ;:f_?’j” lﬁg{c%’/ e%m.,}
Lo}
’ wt 7\ :
where e = @ ey Y+ €)%, eng ¥, = nuaber of wing, L = aucher of

Aozsees in ths fipst ©  bebs, and Tk‘é{;, + L, = %, This doss, in sffzct, agount
-

to assuming the criterion fumeticn (10); elthceugh the prodf seems forrally to

cupiicate the reasoning estleblishing the sntrupy formula fop the transmiszslon

©? & long serawense of meseages aboubt Verying stetes of nasture, Section 7



which has waxdwum when £ . 2p5' =1 ., Heace the information value
i
(11) v, =max Eu=p*log st + g log gt + log 2

is by (9) equal %o C , the channel®s capacity, This is also equal to the

demand price since the magirum expecied piyeff obiained without information is

g rggq £, M 1’-1
Vo = ax { 3 log a.;.v-@)-&zmg{lm{’})-ﬁa

At the risk of being pedantie, it will be helpful to relate the results to
our soneept. We have as in the preceding section
ze (8, @) sy ) =x .
Morsover: &= A(g) = (&, €) =1} (), € 1, eay; 7
ve O(ne) = 3 (5,0) « 502, % €)= log @+ x€) ;
"31 = max E u = Eéx? E, log L+ R (y)x) = mg.x E, log (1 yE€x8)

e,
5: };_ﬂ (s, ) 10g (1 + (EPLE ;

sinee (3®)% = 1, wa nave, denoting by p{z) & p* or ¢} the (marginel) probebility
Iy : .

of x*
no % p(d) Tog (1 + €a) o [p* dog (1 +&) + ¢* 1og (1 =€) = .

To use ¥elly's summary (p. $26} “If : gambler bets on the in-ut symbol
to 2 communicstion channel and bets his miney in ths same proportion aseh tims
a particular eymbol is recelved his caplitel will grow {or shrini) expo:sntially.
If the odds are consisient with the probetliiltiss ér occurrence of the
tranaitted gymbols (i.e,, equal to their mci_.pm@als*), the paximm valus
of this exporential rote of growth will b equal to the reie of transmlission

of information,®

% Yhis is the case of fair odda, with ¥ arblirery; but Hslly trertod also

tho azse whan odds ares not falir.
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In construeting his example, FKelly was motivated (p. 917-918) by the
;\osire to attach "a value measure to a commnication system" without using
a function "defined on pairs of gymbols which tells how bad it is to
receive a certain symbol vhen a8 specified symbol letransmitted.® FKelly ealls
this function "a cost function®: in our notation, it is the function ¢
in the definition of the payoffs u = .3 (x®, o« *(y)) where (O is the payeff
function (independent of the state x’- of the information instrument), and
where o *(y) 1s the astion appropriate to the received symbol; that is, she
action rule A* maximizes the expectation Eu:

max E5 (0, R(¥)) = Ew (£, x*(x)) «

This interpretation of Kelly's term "cost function” * is confirmed by his
:further reference to the "uulity theory of Von Neumann" and to the property
-of the "eost funotion" that "1;\"‘mst. be such that,..a eystem must be praféra‘.ble
to another if its average cost is less.” Kelly believes that the "cost function
approach® "is too gensral to shed any light on the specific problems of
commmnication theory., The distinguishing feature of & commmication system
1a that the ultimate receiver (thought of here as a person) is in a position
to profit from any MIsdge of the input gymbols or even from a betier
estimate of thelr probabilities., A cost function, if it is supposed to apply

to a commmication system, must somehow reflect this feature,

%)} The word "eost™ stgnde presumably for the pegative difference betweesw two
payoffs of which the smaller one is due to poorer information., This ould

not be confused with our use of the word cost, ae the cost to the wller of
information. '
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In this weak form, Kelly’s requirement is, in fact, satisfied by any
payoff function. For, by the definition of maximum, if &% maximizes
¢ (x,8) and b* maximizes () (y,b) then & (x,a) > (o (x,b%) 2 the profit
is improved if the action is chosen In full knowledge of the tm§ state x ,
And similarly with & replaced by its expectation, x by its distridbution P,
y by some estimate of P , and the action variable a byc{, the rule of action.
It geams howsver that Kelly has in mind one or both of the following two
stronger requirements. One of them is: given any payoff function, the maximm
oxpected payoffs associated with differemt channels should be ordered according
to the capacities of these channels. A still stronger requirement would be,
that the maximum expected payoff be equal or proportional to, or an inereasing
linear function (or some other fixed increasing function) of the chamnel capacity
independent of the payoff function; eo that channel capacity 1s a measure
(up to a fixed increasing transformation) of the expscted payoff. ‘e may
call these two requiremsnts the ordering and the measuring requirements, respectively.
We have seen in Section 9 on faulty information, that the grdeping
requirement. is satisfied by any payoff function, for the case when the channel
transmits two alternative symbols (messages) only., The case of any number of
alternative mossages has heen studied by Beckmenn [ 3 and.HeG'l:ire i e
They tell me that the following results mere previously obtained by Blackwell,
Sherman and Stein [ J: in gensral the orderiné requirement is satisfied if
and only if the conditional pmbé;bilities of .external states x given the
megsages y' transmitted by one of the two compared channels are fixed linear
functions of the conditional probabilities of the 22 given the messagss y*
transmitted by the sscond channel. (Beckmann also ghowed that in the case of

2-memsage channels this condition is alwaye satisfied.)
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It follows 3 fortlori that the stronger,cr measursment, requirement is
not, in general, satisfied; we have aeen in Sectlon 9 that it ls not satisfied
;van for 2-megeage channels,

Supposs, for example, the gambler would have to pay & progressive income
tax on his gains. The exponential rate of growth of capital would then be,
not log (1 ¢ €x*) but log £(1 + £x1), with £ a concave function. And the
result (1)) would not obtain,
. This agrees with Kelly's own result, Although he declared the intention
:(p. 918) "to toke some real-life situation which seems to possess the easential
features of a communication problem, and to analyze it without the introduction
of an arbitrary cost function®, he concludes that the partlcular c#itericn
followed by his gambler - &nd resulting in the information value being equal
to channel capacity - is related t.othe particular aspumptions made: the
results would be diffarent, writes Kelly if we “for exampla, suppose the
gambler's wife allowed him to bet one dollar each woek but not to reinvest
his winnings,®

The re-investment feature of Kelly's example has attracted the attention
of R, Bellman and R, Kalaba [1957 a and b] who regarded it as a cass in dynamie
programming, a good program being characterised by an optimal conestant #%,
These writers are quite clear that the coincidence in this case, of information
value and channel eapacity, ia due to the logarithmic natére of the payoff
function chosen, |
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11. Incentive Fes to Foregaster. In an article "Meagures of the Value of
Information®, John MeCarthy [1956] attachea to this term still a different

meaning., Genaralizing a concept due to I. J. Good {1952, p. 113) he defines

what we might call an efficient incentive fee function. Good spesks of 2

nfair fee" and McrCarthy, — more appropriately, we think - speaks of "a payoff
rule to keep ths forecester honest.” The payoff in question is not the value
of informaticu in our sense, It 1s not the worth of information to its uzer,

The quastion raised by both Good and McCarthy in extremsly interesting
and, in fact, opens up a new field of problems in the economlcs of information.
Yet ar incentive fee to the expert is not the same thing as the value of his
sey7ice to the client, If I am in a hurry and am aware thet exaetly 25 cents
added to the taxi driver's tip will suffice to make him skillfully avoid the
traffic lights, I shall mnditionall;‘*promise hin exactly an éxtra guarter;
though by arriving in tims £6r my appointment I shall gain 31,000, 'If on this
basis, the expected values of his gain and of my gain are computed, two quite
different numbers will resuit, The same applies to the services of a forecaster,

Ggod's problem presented by him rather casually in a single paragreph
probabilities of alternative events k = l,...,n. The clj_.e‘nt. does not know p
but has an a priori expsctation Ep = (Epl,“o,Epn} = (ﬁl,o.o,in)a The axpert
will tell the client an estimate y of p , ¥ = (¥ys0.0,¥,)s and receive a fes
r(yk) if the event k happens, Ye shall call the function £ an efficient
incentive function if £ has the following properties:

b; the expecied fas -F = F(y) *Zpk f(yk) is largest when y = p
(i.e., wheii the expert’s estimates are perfect):

(12) F(y) « Z.p £(3) € 2.7, f(p,) = Max F(y) = F¥ , say.
4
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b) the expected fes is nil if the expert does not know more than
the client:

(13) ZhH B0,
iood states that both vequirements sre satisfied by

(1) £ln) = A dog e *BA>0; k=1,c.0,n

To see that (12} is satisfied whon f has thie form*, we osn maximize

.1 10 ¥, with respect to the ¥, mubjoct to Zy, = 1; and then check thet
Ehe maximiging vector 7 is non-negative. A little more insight is gained
itwe romepmber that logyk is & concave function of Yy 3 ir 'k>° for all k
and Zsk » g then

10g( 2 p, © m/s) 2 5 p, Jog(s,/a),

WeIng, 2 Zn losw s et no Ry s

0> ipklogyk- Zpkiogpk ; hence if A >0 then
ZPk(A log p, * B) 2 Zpk(h log ¥, * B) forany B,

* McCarthy refers to an unpublished proof by Gleason, of the uniquencss of the
logarithmic solution (14). Beckmenn constructed the follewing counterexample,
with n= 2;
: | e
u®)  2(z) = Blle=2/21)at , k=1,2
t

1/2

sitive-valued
where g is an arbitrary function., The expression

PI(y) ¢+ Q-pltQ-y,)
is maximized when e B e
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‘Henoe, tie logarithmic incentive function satiofies (12). It yivlds . the
“paxinn expactod fes -

| (15) F**m?(y) AEp, + (hgpk#n)

& Jinearly mmaeing function of the entropy parameter that churactdrises the
true probability distribution of the externsl ovents. Ry the very nsturs of
thc problem, the comparative importance of the events and the client's actions
i’or the client's welfare, snd hence the payoff function to the cliest, does
ot ender the funation. L.,.007 the nadmm exppaked foo Ff | This datter
tity is ok, as MaCarthy seems to assert," & good measure of what itis
sorth to be given these probabilitdes.® It doss messurs, nob mmteua
tlient, but the (expected) gost to ths client if, to stimdate the sxpert's
#forts to give a good forecdst, the client has sgreed to pay hinm scoording
o an efficiemt incentive fes of a certain form.

On the other hand, as Good remarks, his result is sffected by the money
Bt411ty funetion of the expert (not the cliept): if the export maxinises,
ot the expectation of his money fee but, way, of its logmmn, the officient
fee schedule coases to be relsted to entropy 2s in (15). Thus, the payoff
metion to the expert (the function whose value the expert tries to maximixe)
Hoes effect the expected cost (not the loxpect-ed payoff) to the client.

' fThe résult is also infltenced by the €lient's "buliefe®-(not by his-uses

%r tastes, as expreesed in his payoff function): for it is oasily sesn that
An order for the incentive function (14) to satisfy the second efficiency
%ﬁperby, (13), the nurber B must be

| B» - g iog i;k o

A8 to the paromoter A : It is an item for bargaining between the client
nd the expert, as McCarthy has correctly remaried in a wmore general context.




w2Ger

In the particular case when, a priori, all events are equally:probable,
sll B, * 1/n, B = log n, £(y) = A log (nyk). And 4f n =2, f(y) * A log (mrk),
F*-Afpllogpl*palogpz * log 2).

Thus Kelly's result in (31) ie formally & speclal case oOf Good's result.
But the content is quite different. Kelly's maximand is the expested payoff to
che client; the variable with respect to which it is maximized is the decision
of the client, Yig., the cholse of the optimal frastion < to be re-invested;
and p; , p, &re characteristios of the expert (the "channel®), yig., the
pmbabmties of his béing right or wong; py, P, ore known to thg cli.ont.._
Good's maximand, on the other hand, i¢ the expected payoff to the expert; it
is maximizéd with respect to the expert's decision, ¥ig., the effori to make
a better estimate of the p's; and the p's are charasteristios (unknown to the
client) of the exbenml'anvirb:ﬁgnt {the "source"), not of thé expert. Kelly's
gquantity is related to the demand price, Good's to the supply price, of infomaf;tnno
| PeCarthy has generalized Good's problem as follows: instead of looking '
~ for » single efficient incentive function £ , the same for al 7. , and depending
on one variable only, he looks for n functions rl,...,:n , each dapending
on the vebtor y = (yl,...,yn) of the expert's estimates, If the event k
happens, the expert receives ‘x(y)' The set (’1'“'"::’ of functions is an
efficient incentive function (or, in HeCarthy's words, 3 payoff rule thet keeps
the forecaster honest) if, regardless of the valus of p = (pl..,.,pn)_ the
expected fee épktk(y) is maximived if and only if ymp , i.04 i Y = P
for each k . MoCarthy then states, without prodf, that the set (_tl,....,fn) is

efficient if and ondy if £, (y) = (9/97) ¢ (3), wiere § s & convex
function homogensous of the first degree. ¥) (Footnote on p. 29a) |



¢ However, Cood's case seems to provide a counter-exaaple showing that tie
homogensity property does not seem to bhe necessary. Ve know that 1f, for
overy b, f,(y)= Alogy, +Bthen F is an efficient incentive
function. Find ¢(y) such that, for every h,
£,(7) = P4/ Iy, =rlogy, + B

then
325/3.7,, Byaﬂo, and hence ¢(y) is & sum:

) =5 (2, oy, = AEy, (oew -1 +B £y, +C= ey * K
where K=B+C=-A,
It is easily seen that ¢(y) 1is indeed convex. But it is not homogeneous
of first degree: for #(1’3’)\\"7 ré(y) = K(d=r) + Ar log r ;
this cannot vanlsh for all r and fixed K,A.



=30-

Granting at least the sufficisncy part of this theorem of MeCarthy it
'__uld follow that the logarithmic incentive function is not the only efficient

?-q*

n . Beckmamn's function (14#*) in a previous footnote seems to conflrm this

‘;or Good's special cass. Consequontly, the maximum expected fee doos not have

be related to the entropy formula,
© e may question moreover whether the client is really interested in the
:' jocient incentive function defined as the ons that "keeps the expsrt honestM,
o¥ey OMCOUrages him to bring every ¥, &8 closs Yo p, as poésibleo Foy
forent values of k , the (signed) error ':rk - Py pay be of different
dmportance to the client. This brings us baek to the discussion in Section 9,
E@i.'c.h each slgnal y interpreted now rore generally, as an estimate of the
pmbabmty distributions p = (p]\.u.,pn) of the externsl state of the wirld, x°
i'.ln Section 9, each p, was 1 or 0) McCarthy does undertake this analysis,
?sing his words (but our motation):s "Suppeose that on the basis of the forecaster{s
fﬁrediction the client choomses the action & out of the actions open to him and
E:’!;;hatt. his payoff. if the event k ocours ie a)(fk s 8)o His expesctation will
Bo glp) = max % Py w (® , 8) if a ia chosen optimally.® To this wo
hav- to ramrk thet for a2 to be chosen optimally on the baais of the client's
prediction y , the valuwe a = X*(y) (say) has to satisfy

%yk Wy 5 AK(y)) = max F g 0x0y, 8) = g(3)
This valus of & will, in general, not maximize
- ék pka}(xek,k).
‘The expectation of client's payoff is therefore

(16) % p @, x*3)) S max £ py 0, ) = gl

to be sure, the inequelity sign drops if ¥ = p, a situation that is approached
but, in gemeral, not achieved by the use of the efficient incentive function

which was deseribed. Depending on the payoff function (it ia possible that
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the difference between the two averages in (16) is diminished more eaolly
by encouraging the expert to make very preclss estimates of some plc while
treating others with loss care,

Some tantalizingly short remarks of McCarthy give the promise of a
fruitful analysls of the non~zéro sum game between the expert and the client,
and of the expert?s effort, In this approach, the entropy formula loses its

pignificance; and the payeff functions of the expert and the client must gain
in significance,
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