Yale University

EliScholar — A Digital Platform for Scholarly Publishing at Yale

Cowles Foundation Discussion Papers Cowles Foundation

1-1-1959

Linear Programming and Sequential Decision Models

Alan S. Manne

Follow this and additional works at: https://elischolar.library.yale.edu/cowles-discussion-paper-series

b Part of the Economics Commons

Recommended Citation

Manne, Alan S., "Linear Programming and Sequential Decision Models" (1959). Cowles Foundation
Discussion Papers. 284.

https://elischolar.library.yale.edu/cowles-discussion-paper-series/284

This Discussion Paper is brought to you for free and open access by the Cowles Foundation at EliScholar - A
Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Cowles Foundation
Discussion Papers by an authorized administrator of EliScholar — A Digital Platform for Scholarly Publishing at
Yale. For more information, please contact elischolar@yale.edu.


https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/cowles-discussion-paper-series
https://elischolar.library.yale.edu/cowles
https://elischolar.library.yale.edu/cowles-discussion-paper-series?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/cowles-discussion-paper-series/284?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

COWLES FOUNDATION DISCUSSION PAPER NO. 62

Note: Cowles Foundation Discussion Papers are prelimi-
nary materisls circulated privately to stimlate
private discussion and critical comment. Refer-
ences in publications to Discussion Papers (other
than mere acknowledgment by a writer that he has
access to such unpublished material) should be
ecleared with the author to protect the tentative
character of these papers.

*
Linear Programming and Sequentisl Decision Models

Alan 5. Manne

January 19, 1958

*

Research undertaken by the Cowles Commission for Research in
Economics under Contract Nonr-358(01) with the Office of Naval
Research.
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Sumpmary

This paper is designed to'shdw how & typical sequentiel probabilistic
model way be formulated in linear programming térms. In contrast with
Dantzig [4] and Radner [10), the time horizon here is an infinite one.

For another very closely related study, the reader is referred to a paper
by R. Howard [71. '

The essential idea uvnderlying this linear progremming feormulation is
that the "state" variable i and the "decision" variable J are introduced
as subscripts to the unknowms xij « These unknowns xiJ represent the joint
probabilities with which the state verlable takes on the value of i and
the decision variable the value of J . Although the particular application
described is a rather spécialized one, there seem to be quite & number of
other cases where the ftechnlique should be an efficlent alternative to the

functional equation approach of Bellman {1].

Form:lation of the problem

This 1s a single-item inventory control problem in which the initial
stock on hand at the beginning of each "month" is, in Bellman's terminology,
the "state variable." [2, p. 81] The size of initial inventory will be

indicated by the subscript 1 . The quantity preduced within the month is

The author is indebted for suggestions made by Martin Beckmann, Gerard
Debreu, and Jacob Marschak. Their comments have made it possible to improve
considerably upon an earlier draft dated August 13, 1958.



the "decision variable," snd the amount produced will be indicated by
“the subscripd i; OQur problem is to obtain an optimal sequential decision
rule - that is, to specify a value of j for each value taken on by I.

The sum of initial inventory plus the guantity produced will be known
as the "available stock," and its size will be denoted by k.

The quantity demended during the month is a serially independent
random variable, n. The symbol P, represents the probability with which
n units will be demsnded.

The size of month-end terminal inventories will be indicated by t .
If backlogs of demand are to be ruled out, 1 = mex (0, k-n).

It will be assumed that the objective is one of minimizing average
monthly costs over en indefinitely long time horizon. These costs are
the sum of the expected value of three componeﬁts: (1) those costs related
to the initial inventory levels i , (2) those related to the production
quantities J , and (3) those related to the shortege levels (n-k). Symboli-

cally, total coste are expressed as follows:

€cl(i) + £0,(3) +605(n-k) (1)

No convexity restrictions of any sort are imposed upon any of the three

*
functions Cl(i), 02(3), and 05(n-k). Convexity is, in effect, brought

¥ It is a serious limitation of the Holt-Mcdigliani-Simon production
smoothing model that all cost functions must be of a quadratic nature.
{6] No such assumption is reguired in the case discussed here.




about by supposing that mixed strategies are available - i.e., that when-
ever the initial inventory is &t level i, it is possible to assign a
positive probability to the choice of two or more of the alternative

*
actions Jj .

* At a later point, it will be shown that even though probability
mixtures are permissible, there will always be an optimal solution con-
sisting solely of "pure" strategies.

Some fairly light restrictions are imposed upon the quantities 1 ,
Js E, n, and t. First, they must be integers. OSecond, there must exist

positive integers K and N such that:

0<1<K

IA

0

A

itj =k <K

A

0<t<K
0

A

n<N

The linear programming problem described below will involve K+l
eguations, In order for the simplex computations to be carried out with
present-day electronic machine programs, it would be necessary to redefine

units se that the integer K does not exceed something of the order of 200.

Some definitions

DF: y, = probability that the initial monthly stock equals i. (= y; = 1.)
. i

DF: y; = probability that the terminel monthly stock equals t. (z YL = 1.}
I 7

Statistical equilibrium requires:

y; = (1 =t) (2)



DF: X‘j = joint probability with which the initial stock equals i and the

i

production quantity equals jJ.

. .§xij=yi (1 =0, 1, ..., K) (3)
and .Z. xij = 1 ()
1yd
oF: Zy = probability that the available stock equals k
.« Zk = iZ" Xij (k = 0, l’ ‘eey K) (5)
2
i+i=k

IF; P, = probability that n wunits are demanded within the month.

K.B. fThe probabilities p, &re independent of any choices made by the

decision«maker. The probabllities xij’ Yy y{, and Z s however

are directly under his control.

Relationships between the individual probabllities

Since the random varlable n is independent of the available stock k,

and since t = max (0, k-n):

T o
yO z . Pnzk

k,n:
k—n‘_i_ O
' (6)
yt-: Z Pnzk (t:l’ 2, sany K) -
k,n:
k-n=
By (5):
y' = = P X
i,3,n: nid
i+j-n S 0
(7)
y% = X pnxij (t =1, 2, vev; K)
1,d,m8: ‘



By (2) and (3), we finally arrive at the interdependence relation-

ships between the individual unknowns xij:

L X, = z p_X (8.0)
J 0J i,d,n: n 1
i+j-n < 0
L X .= z DX, . (8.1)
J 3 i,J,n: # 4 :
i+j""n=l .
z = h> P_X, {(8.K)
J X3 i,d,m: n i :
i+3-n=K

Equations (8.0) - (8.K) may each be interpreted as a requirement of
statistical equilibrium. Tﬁe left-hand side measures the probability with
vhich the initisl monthly inventory level will be i, and the right-hand side
the probebility with which the terminal level will equal t. Statistical
equilibrium implies that if i=t , these two probabilities must coincide.

The unknowne in the linear programming model are the joint probabilities
xij' The constraints consist of the usual non-negativity conditions, together
with equations (4) and (8.1) - (8.X). Equation (8.0) is redundant, and need

not be included explicitly within the constraint set.

Expected cosis

The cost coefficient associated with each of the xij will be known

as cij . The total cost expression to be minimized in the simplex com-
putation is as follows:

T e, X, (9)
1,9



How do we assign values to the coefficients cij 80 as to be consistent

with the minimand given previously by expression (1)? Note that:

o, (i) =% y.C (1) = 2 x,.C (i)
€c; S 20 1,9 M 7
£c.(J) = = x .0.(3)

2 i,3 ija
€¢, (n-k) = & x , & p C.(n-1-J)
5 1,3 ij, ">

The cost coefficient ¢ associated with the unknown X is there-~

ij iJ

fore constructed as follows:

Cyy = c (1) +c,(3) + i pnc3(n-i—a) (10)

A numerical example

In order to construct & numerical example, it is necessary to assign
values to the demand probability distribution, to the three cost functions,
and to the upper limit placed upon inventory accumulstion. For 1llustrative

purposes, we will work with the following:

P, = 2/3 c (i) =1 K=3
p; =0 c,(3) = 23
P, = 1/3 c5(n-i-.j)_ = max [0, G(n-i-,j)_]

In addition, it will be assumed that the production capacity is at
most one unit per month (i.e., j = either O or 'l), Note that the mean
demand level amounts to only 2/3 of this capacity limit. There is, however,
a 1/3 probability that demand will actually amount to twice the production

limit.



Table 1 contains a calculation of the cost coefficients for this
problem, and Table 2 indicates the constraint matrix in detached coef-
ficients form. In trenscribing equations (8.1)-(8.3) into
this m@trix, the right-hand side shown earlier in the teﬁt has.been sub-
tracted from the left-hand side. Fquation (8.1), for example, has been

transformed as follows:

Lx.,.=- I DX, =0
1 . i
d J i,J,n: nig
i+j-n=1

Also shown in Table 2 is the optimsl linear programming solution to
the problem. According to this solution, the initial inventory will be
at & zero level during 1/3 of the months, at a unit level 2/9 of the time,

_ *
and at & level of two during the remaining 4/9. Whenever the initial

% The average monthly cost associated with this solution equals (1/3) (&)
ok (2/9) (3) + (4/9) (2) = 27/9. It is of some interest to compare

this cost level with that of the do-nothing basic feasible solution - one

in which the unknown %00 equals unity, all other unknowns are set at zero,

and the resulting montbly costs amount to L.

inventory has dropped to & level of eifher zero or unity, one wnit of pro-
duction is ordered. At higher initial levels, no production takes place
at all. Note that no mixed strategies are indicated by the solution -

despite the fact that this option was built into the model.

Further comments:
(1) fThere are two possible lines along which to sketch out a proof

that it will always be optimal to adopt pure strategles. One would be to



Table 1. Calculation of the cost coefficients cij

Identification subseripts

(1, .9 (0,0} (0,1) (1,0) (1,1) (2,0) (2,1) (3,0)
Inventory
costs = Cl(i) = 1 0 0 1 1 2 2 3
Productlon |
costs = Ca(j) = 2] 0 2 0 2 0 2 0

Shortage costs =
T pncs(n—i-J) = I P, max[0,6(n-i-3) 4 2 2 o 0 0 0
n * n . :

Total cost coefficient
= cij L b 3 3 2 I o




Table 2.

Detached coefficients matrix

Tdentification : ‘ Constant
subscripts (i,J) (0,00  (0,1) (1,0) (1,1) (2,0) (2,1) (3,0) terms
e e e e B e e e e e e e e Bl -1 P et o et e e reeenrrms —— -

Equation (L) 1 1 1 1 1 1 1 =1
Equation (8.1) o} -2/3 1/3 1 0 -1/3 -1/3 M =0
Equation (8.2) 0. 0o o - -2/3 1/3 1 0 Jj =0
Equation (8.3) 0 0 0 0 0 -2/3 1/3 “ =0
Optimal activity levels, x. - 1/3 - 2/9 4/9 -

1d

% Activity in basis at a zero level.
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follow the reasoning by which Dvoretzky, Kiefer, and Wolfowitz dismiss

mixed strategies in & problem of this sort - one in which the demand pro-
babilities r, ere known in advence to the decision-maker, end do not have
to be estimated by him. {5, p. 191 n.] This is the same as saying that in a
two-person game in whicﬁ you have "found out" your opponent's strategy, it

*
will never hurt to restrict your own choice of strategies to pure ones.

* I am indebted to J. Marschek for having pointed cut the applicebility
of this line of reasoning to the problem at hand.

An alternative way to demonstrate this proposition would be to construct
& proof along the same lines as Samuelson's "substitution" theorem concerning
input-output models. [11] There, & mixture of activities for producing a
given product i1 is permissible, but only one activity for each product
will ever be needed in order to attain economic efficiency. Here, the cor-
responding statement is that no more than one activity associated with thé
i th initial inventory level will ever appear in & basis. |

It looks as though the absence of mixed strategles could greatly simplify
the problems of numerical analysis associated with a model of this sort.
Substituting equation (8.0) in place of (4), one observes that each basis
will be of the form (I-A),‘where A is a non-negetive square matrix with
column sums not exceeding unity. To obiain (I-A)'l, &ll the usual theorems
concerning Frobenius-ILeontief matrices may be invoked. {[i2]

(2) The cholce of an upper limit, K, upon inventory accumulation is
admittedly an arbitrary one. If, after finding an optimal solution for a

given value of K , and observing that X dsd = 0 for all j, it is entirely
- 2
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possible that a further increase in‘the value of K will lower the
minimand still further. It is a simple matter to construct pathological
cost functions that will yield this result. It seems doubtful, however,
that this will constitute a serious obstacle in analyzing empirical pro-
blems.

(3) It is not altogether legitimate to have brushed aside the guestion
of initial conditions for our Markov process., If the optimal basis in the
linear programming solution is & "decomposable” one [12, pp. 33-35], the
initial conditions will clearly govern the ultimate statistical equilibrium.
The most direct way to circumvent this paradox would be to assume that the
initial conditions lie within the control of the decision-meker - at least
to the extent that he may'choose them so as to start off within any one of
the subsystems into which the larger system splits up.

(4) It is possible to attach a useful economic interpretation to
the impiicit prices (dwal varisbles) associated with the linear programming
golution. They represent the amounf by which total costs would be altered

*
if the initial inventory were at the i th level rather than at zero.

*#  TFor the numerical solution shown in Table 2, the implielt prices
associsted with equations (8.1)-(8.3) are, respectively -5/3, -8/3,
and -h/}. These velues serve to measure the comparative advantage of
heving an initial inventory level i of 1, 2, or 3 units.

Collectively, they are equivalent to the solution of Bellman's functional
equation for the inventory problem. [2, pp. 159-164] This being so, it
should be & comparatively simple matter to use them in order to link to-
gether a non-stationary finite-horizon model with a stationary one having

sn infinite horizon.
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Generalizaetions

Among the applications that suggest themselves, the following stochastic
models would seem to he of the most interest:

(1) Changes in the rate of production. A nwiber of studies have been

concernéd with systems in which the costs depend not only upon the rate

of production {as iﬁ the example above), but also upon the rate of change

of that level. (E.g., [6].) This kind of problem could be attacked through
the same methods outlined hére by defining the "state variable" i as a pair
of numbers: one representing the initial inventory level and the other the
rate of production during the immediately preceding period. With this one
change in interpretation, things would proceed in essentially the same way
that has been suggested here. The only serious difficulty might arise from
the computational costs invelved in an increase in the number of equations
within the linear programning model. Instead of Just one equation for each
of the (K+l1) levels of inventory, there would now be r equations - one for
each of the r discrete rates of production that were considered. Altogether,
the programming matrix would comtain re(K+l) rows.

(2) Seasonal storage of inventories. Several recent papers have been

focussed upon the problem of cptimization under conditions of seasonally
fluctuating demands (e.g., the demand for heating oil {3]) or of supplies
(e.g., the supply of water for hydroelectric installationé [91). 1In order
for a linear programming model to reflect such seasonal fluctuations in
the probability distribution of demands or of supplies, the state variable
i would again have to represent a pair of numbers - the first indicating

the season of the year and the second the inventory level at the beginning
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of the particular season. The conditions of statistical equilibriwm would
then imply equality between probabllities for the terminal inventories of
one season and the initisl inventories of the one fbllowing. With s
gseasons and (K+1l) inventory levels in each, a total of s(K+l) equations
would be involved. Even with time subdivided into 12 individﬁal months
end with 10 levels of inventory considered during each month, the compu-
tational requirements would still remsin medest - a 120-equation system.

(3) Multi~location inventory problems. In the event that inventories

are séattered among several geogrephical locations, it may no longer be
appropriate to describe the system in terms of a single state variable -
the aggregate quantity beld in stock. Instead, a separate quantity must

. %
be specified for each location. If, then, there are stocks held at

¥ Essentially the same problem arieses 1f, instead of one commedity in
several locations, we are concerned with plamning for several different
commodities at a single location.

¢ different locations, the state variable i will have t0 be regarded as
an g-tuplet of numbers. With (K+1) alternative inventory levels at each
individual location; the linear programming model would contain no less
than (K+l)£ distinct equations. As far as any realistic problems are
concerned; it must be conceded that this number of equations could become
hopelessly lerge., Even with just four locations and five inventory levels
at each, the system would contein 625 equations!

(4) Delivery lags. Each of the cases described thus far has been

based upon the assumption that delivery lags are short - that any pro-

duction ordered at the bheginning of a period will be availlable to satisfy
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whatever demand takes place within the period. With long delivery lags,
these models hardly seem to be appropriate.

A number of suthors [1, 8] have shown, however, thaet there is a
simple way to analyze a problem in which there are long but fixed
delivery lags - that is, no randommess in the time required for delivery.,
(In addition to non-rendom delivery lags, these authors also assume that
e shortage in supply is reflected in a temporary backlog rather than in
a permanent loss of demand. This formulation guarantees that all cur-
rently outstanding orders will have been received prior to the arrival
of any order placed currently.)

With these assumptions, the appropriate state variable required in
order to describe the system is no longer the actwal inventory on hand,
but rather the sum of that inventory plus all outstanding orders. To
adapt this suggestion to the linear programming models discussed here,
all that needs to be doné is to reinterpret the state variable i as "stock
on hand plus orders outstending." The probability P would be regarded
as the probablility that n units were demanded during whatever time
interval is required for the delivery of an order. Note that this Inter-
pretation is equally well adapted to the case in which time is regarded

a5 a discrete or as a continuous parameter.
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