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Abstract 
 

Introduction: Eastern Equine Encephalitis (EEE) is an alphavirus spread by the Culiseta 

melanura mosquitoe. While extremely rare, infection can lead to severe mental sequala and 

death, making it a public health concern for affected communities. Over the past two decades 

EEE outbreaks have become more frequent in occurrence and larger in size in the Northeast 

Region of the United States.  

Objectives: The main objectives of this study are to 1) measure the association between 

mosquito abundance, infection rate, and disease incidence 2) characterize the relationship 

between seasonal climate variability in New England with Cs. melanura abundance, infection 

rates, and incidence of EEE in humans 3) Identify spatial patterns and distribution of vector 

species  

Methods: Mosquito abundance, infection rate, and incidence of mammalian infection were 

compared using both simple linear regression techniques and the non-parametric Wilcox Rank 

Sum Test to determine the impact of Cs. melanura trends on EEE risk in humans. Association 

between infection rate and number humans/horses infected was measured using the 

Spearman correlation test. Statistically significant spatial clusters of mosquito abundance, 

infection rate, and human incidence were identified using a retrospective Poisson distribution 

model in SatScan v96.  

Results: Mosquito abundance, infection rate, and incidence of mammalian infection were all 

highest in New London County, Connecticut. Abundance was higher in outbreak years 

compared to non-outbreak years but not significantly associated with human cases. Mean 
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temperature during transmission season was associated with vector abundance while rainfall 

was not. Vector index was strongly associated with mammalian infection.  

Conclusions: None of the risk factors studied contributed to EEE spillover significantly on their 

only. Likely, a combination of these factors and other environmental variables linked to climate 

change are what is causing the increased frequency of outbreaks. More mammalian data is 

needed to draw more concrete conclusions.  
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I. Introduction 
 

Eastern Equine Encephalitis Virus (EEEV) is a highly pathogenic mosquito-borne 

alphavirus that circulates in an enzootic cycle between Culiseta melanura mosquitoes and 

passerine birds in the freshwater hardwood swamps of the eastern and central United States 

(U.S.) and Canada.i Although rare, infection presents a significant health concern for both 

humans and horses, with the former having a mortality rate of 33% and the latter being 90%.ii 

Additionally, EEEV can lead to disabling and progressive mental and physical sequelae in 

humans, ranging from minimal brain dysfunction to severe intellectual impairment, personality 

disorders, seizures, paralysis, cranial nerve dysfunction, and death.iii Over the past 50 years, 

between five to ten human EEEV cases have been reported annually in the United States, 

however disease incidence has been steadily increasing over the past decade.iv Outbreaks of 

EEEV in humans and horses have historically been small in size and infrequent in occurrence, 

however this began to change at the beginning of the 2000’s.v Between 2004 and 2019, EEEV 

transmission began expanding further north into the United States and Canada, with outbreaks 

occurring more frequently.iv Over the past 15 years, there have been 79 reported cases of EEEV 

in humans according to the Centers for Disease Control (CDC).vi  In 2019, the CDC reported 36 

human cases of neuro-invasive EEEV, 14 of which were fatal, across the Northeast, raising 

concerns about the future of EEEV transmission in New England.iii Currently, there is no vaccine 

or treatment available for EEEV. Increasing incidence and the high costs associated with 

mortality and after-care make EEEV a significant public health concern for the Northeast that 

warrants further research.  It is unclear why EEEV outbreaks are occurring more frequently and 

across a larger geographic range. To better understand these new transmission patterns, I 
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assessed the impact of several risk factor for EEEV between outbreak and non-outbreak years in 

the Northeastern region of the United States.  

Eastern Equine Encephalitis Virus transmission predominantly circulates between the 

bird feeding mosquito species Culiseta melanura and passerine birds including robins, 

chickadees, and wood thrushes.i-ii Studies suggest that Cs. melanura and Cs. morsitans are 

involved in enzootic cycling of EEEV among birds, whereas other mosquito species such as 

Coquillettidia perturbans, Ochlerotatus canadensis, Aedes vexans, and Oc. sollicitans were 

responsible for mammalian infection.vi The contribution of Cs. Melanura, to the epidemic 

transmission of infection to mammals remains unclear. Culiseta melanura reproduce in aquatic 

subterranean habitats that can be found among tree roots and under patches of peat moss in 

lowland freshwater swamps.vii These habitats provide a cool (<20°C), acidic and stable 

environment that allow for larval development and overwintering.viii Studies show that 

increased air and ground water temperature can hasten larval development of Cs. melanura 

and suggest that milder winter temperatures can produce larger and older than average 

mosquito populations during the summer, when most EEEV transmission occurs.vi. Current 

evidence suggests that inter-annual climate variability has a direct influence on the 

epidemiology of EEEV however this relationship is not yet well understood.ix Additionally, 

records show a trend toward milder winters and hotter summers, as well as increased extremes 

in both precipitation and drought in the northeastern United States.vii   

Identifying the most significant factors that contributed to the 2019 EEEV epidemic, will 

assist in the future design and implementation of vector control strategies for a number of 

mosquitos spread diseases. In this study, mosquito surveillance data from the state of 
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Connecticut were analyzed using Graphpad Prism, Geographic Information Systems (GIS), and 

Spatial and Space-Time Scan (SatScan) statistics to identify risk factors for EEEV outbreaks. This 

study aims to 1) to measure the association between mosquito abundance, infection rate, and 

disease incidence 2) to characterize the relationship between seasonal climate variability in 

New England with Cs. melanura abundance, infection rates, and incidence of EEEV in humans 3) 

identify spatial patterns of vector distribution and disease transmission.  

  

 

 

 

Trapping Site
Trapping Site

Towns With EEEV Mosquito
No Positive Mosquitoes
Yes Positive Mosquito

0 9 18 27 364.5
Miles
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OBJECTIVES: 

1) Measure the association between mosquito abundance, infection rate, and disease 
incidence.  

2) Characterize the relationship between seasonal climate variability in New England with 
Cs. melanura abundance, infection rates, and incidence of EEEV in humans.  

3) Identify spatial patterns of vector distribution and disease transmission.  

 

II. METHODS 
 
ETHICS STATEMENT: 

Ethical approval was not required for this review. 

Study Site: 

The study was conducted across the state of Connecticut. Connecticut has an area of 14,353 

Km2 and has 172,584 acres of wetlands.  An estimated 9% of the total land cover in Connecticut 

is made up of wetlands, 88% of which are suitable habitats for Cs. melanura as well as many 

other mosquito species including Coquillettidia perturbans, Ochlerotatus canadensis, Aedes 

vexans, and Oc. Sollicitans.vi These freshwater wetlands also contain several species of birds 

including Green Heron, American Robin, Common Yellowthroat, and Black-capped Chickadee, 

all of which are known food sources for Cs. melanura.   

Data Collection: 

Vector Data  

All Connecticut mosquito data was provided by the Connecticut Agricultural 

Experimentation Station.x Mosquitoes were collected in 90 CDC battery operated light traps 
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dispersed across the state and were stored at the Connecticut Agricultural Experimentation 

Station for identification of species, sex, and infection status. Traps were checked for 

mosquitoes on a weekly basis between June and October. Weekly mosquito abundance was 

calculated using the mean number of mosquitoes collected per trap per night during a week. 

Virus isolates were counted by using a plaque assay of Vero cells follow by an 

immunofluorescent assay.xi The CDC’s infection rate index was used to estimate the minimum 

infection rate per species (MIR) ([number of positive pools / total specimens tested] x 1000).xii  

Host Data 

 National case counts of EEEV in humans, non-primate mammals, and passerine birds 

were provided by the Centers for Disease Control’s ArboNet surveillance program.xiii Data 

included date and location of the diagnosis at the month and state level respectively. 

 
Environmental Data 

Environmental variables were selected according to previously reported physiological 

and behavioral characteristics of Cs. melanura in New England.xiv Meteorological data for the 

state of Connecticut was provided by the PRISM Climate Group and included precipitation, 

minimum temperature, maximum temperature, mean dew point, minimum vapor pressure 

deficit, and maximum vapor pressure deficit. Data was aggregated by both weekly and monthly 

averages.xv Seasonal designations were also made for accumulated precipitation and 

temperature. Spring was defined as April and May, Winter was defined as the previous year’s 

December through current year’s February ,and Fall was defined as the previous year’s 

September through November. Wetland raster data was provided by U.S. Fish and Wildlife 

Service National Wetlands Inventory (NWI) and was categorized by type using the Cowardin et 
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al. (1979) method.  Cs. melanura habitat was defined as freshwater emergent wetlands, 

freshwater forested shrub/wetlands, and freshwater ponds.   

 
Temporal Analysis: 

Mosquito abundance, MIR, incidence of mammalian infection, and human population 

size were compared using both simple linear regression techniques and the non-parametric 

Wilcox Rank Sum Test to determine the impact of Cs. melanura trends on EEEV risk in humans. 

Association between MIR and humans/horses infected was measured using the Spearman 

Correlation test. The test was repeated several times with the date of infection kept stationary 

and MIR calculated for each week preceding a new case. The same method was used to 

measure the association between mosquito abundance and human infection. Mosquito indices 

and weather variability were compared between years with reported mammalian EEEV cases 

and those without using the Wilcoxon Rank Sum Test. Statistical significance between groups 

was determined with two-tailed t tests, and values of P < 0.05 were considered significant. A 

Poisson model was used to identify temporal clusters of mosquito abundance, MIR, and human 

infection. Temporal cluster analysis was done in SatScan and all other temporal anylases was 

done in GraphPad Prism.   

 
Spatial Analysis: 

Statistically significant spatial clusters of mosquito abundance, MIR, and human incidence 

were identified using a retrospective Poisson distribution model in SatScan v96. The Monte 

Carlo method was used to assess statistical significance of findings. The wetland raster file from 

U.S. Fish and Wildlife Service National Wetlands Inventory (NWI) was uploaded into GIS and 
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trimmed to the state boundary of Connecticut. Only freshwater emergent wetlands, freshwater 

forested shrub/wetlands, and freshwater ponds were included in this analysis. The data was 

rasterized. The density of wetlands was measured by assigning all wetland pixels a value of one 

and all non-wetland pixels a value of zero. The number of wetland pixels was divided by the 

area of the town that each pixel fell in in order to calculate wetland density per town. This 

process was repeated to create several density maps including kernel density maps of 

mosquito, human, and horse incidence as well as high abundance traps (defined as traps that 

had a larger mosquito count per night then the statewide average). All maps were layered 

together using the raster calculator to create a risk index for EEEV infection. 

 

 

 

 

 

 

 

III. RESULTS 
 

Over the past two decades, the frequency, intensity, and geographic range of Eastern 

Equine Encephalitis virus has dramatically increased. The CDC reported the largest outbreak of 

neuro-invasive EEEV in recorded history between June and October of 2019 with 36 human 

cases.vi In this study I used case data, vector distribution, and climate records to identify spatial 

and temporal risk factors for EEEV in New England.  
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Culiseta melanura  
 

I tested how Cs. melanura population and dispersion changed before during and after 

the EEEV transmission season. Mosquitoes were collected annually between June and October 

across the 90 light traps dispersed 

within Connecticut. Characteristics 

of captured Cs. melanura including 

mosquito per trap night, infection 

rate, and vector index are 

described in Table 1. During the 

study period, a total of 3,213,824 

mosquitoes were collected. Other 

species that have highly been 

implicated in the epizootic 

transmission off EEEV, including, Coquillettidia perturbans (590,885), Ochlerotatus canadensis 

(482,593), and Aedes vexans (326,759), were the most abundant species collected. In order to 

better understand the distribution of Cs. melanura across the state, I used a Poisson spatial 

cluster analysis and found 11 significant spatial clusters (figure 2). These clusters of high 

abundance encapsulated regions that have observed mammalian transmission of EEEV.  On 

average abundance peaked in July (19.47 caught per trap night) and was lowest in October 

(5.84 caught per rap night) . In order to test the hypothesis that higher Cs. melanura abundance 

during transmission season would lead to a larger number of both insect and mammalian cases, 

I compared Cs. melanura abundance during years without EEEV outbreaks in Connecticut to 
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those that did (2003,2009, 2013, and 2019) using the Wilcox Rank Sum Test. The mean number 

of Cs. melanura per trap night was significantly higher for outbreak years than it was for non-

outbreak years (P=0.0310, t=3.262).  

 
Mosquito Infection Rate  
 
Minimum Infection Rate (MIR), 

which is an estimate of the 

prevalence of a given arbovirus in a 

population of vectors, is common 

surveillance indicator, and is used 

for a variety of mosquito and tick- 

spread infections. A Spearman 

correlation test revealed a weak and 

non-significant association between 

MIR and abundance (r = -0.01775, P = 0.8652). The same analysis was repeated to compare MIR 

during years with and without EEEV outbreaks using a Wilcox Rank Sum Test. The annual 

average MIR has significantly higher during outbreak years compared to non-outbreak years 

(P=0.0002, t=7.380). In order to test the hypothesis that higher MIR’s lead to more human cases 

of EEEV, I compared monthly mean MIR for months with human cases in counties with reported 

human to the MIR in all other counties during the same period. In 2019 there were four human 

cases of EEEV, three in New London County and one in New Haven County. All cases were 

reported in September. There were no significant differences in MIR between states for the 

period that cases were reported (P=0.8644, t=0.1783). I repeated this test comparing monthly 
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MIR in New London preceding the date of reported cases to monthly MIR in all other counties 

during the same period but found no statistically significant difference between means 

(P=0.4203, t=0.8874).  

Vector Index  
 

Vector Index (VI) has been used in many studies to analyze trends in mosquito infection 

rate by adjusting for vector species composition and vector population density.  On average, VI 

is lowest at the beginning of the transmission season and peaks in September. To estimate the 

association between vector index and human EEEV incidence, as well as the strength of this 

associate compared to other entomological factors, I plotted monthly average VI, Infection rate, 

and abundance for years with and without outbreaks between 2001 through 2019 (Figure 4). 

Vector Index was significantly higher in years that had outbreaks compared to those that did 

not have outbreaks. The average difference in mean VI between outbreak and non-outbreak 

years is 74.3± 8.77 (P=0.0029, t=8.029) 
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Figure 3: a) Mean Weekly Abundance of Cs. melanura b) Mean Weekly MIR of Cs. melanura c) Mean Weekly 
Vector Index of Cs. melanura. Red arrows signify horse cases and blue around signify human cases. 
a 

 
b 

 
c 
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Climate Analysis   
 

Current evidence suggests that both seasonal and annual climate variability influence 

mosquito abundance, vector capacity, viral fitness, and EEEV transmission dynamics.vii Using 

historic climate data, I sought to identify annual and seasonal weather patterns associated with 

entomological indices and EEEV transmission. Association was measured between each climate 

variable and each vector indices before and during transmission season. Results are shown 

below in Table 2. The strongest association was between mosquito abundance and mean 

temperature during the transmission season (r=0.5285, P<0.0001). There were no significant 

associations between vector indices and accumulated rainfall, average min/max tempurature 

during the previous Winter or Fall season. Mean temperature was not significantly different 

between outbreak and non-outbreak transmission seasons (P=0.2105).  

Table 2: a) correlation between climate variables and Culiseta melanura abundance & infection rate December – February b) correlation 
between climate variables and Culiseta melanura abundance & infection rate September - November c) correlation between climate variables 
and Culiseta melanura abundance & infection rate March - May 
   

PPT (INCHES) TMIN (DEGREES 
F) 

TMEAN (DEGREES 
F) 

TMAX (DEGREES 
F) 

 
 

ABUNDANCE 

r 0.2351 -0.2405 -0.1887 -0.2817 

95% confidence interval  -0.2589 to 0.6316 -0.6350 to 0.2536 -0.6015 to 0.3036 -0.6607 to 0.2117 

WINTER p-value 0.3326 0.3214 0.4392 0.2426 

 
 

INFECTION 
RATE 

r 0.3044 -0.1346 -0.1071 -0.1186 

95% confidence interval  -0.1878 to 0.6745 -0.5648 to 0.3532 -0.5455 to 0.3773 -0.5537 to 0.3673 

p-value 0.2051 0.5828 0.6625 0.6286 

 
 

ABUNDANCE 
FALL 

r -0.03509 0.1633 0.2501 0.3817 

95% confidence interval  -0.4927 to 0.4377 -0.3272 to 0.5845 -0.2439 to 0.6411 -0.1020 to 0.7195 

p-value 0.8866 0.5041 0.3017 0.1068 

 
INFECTION 

RATE 

r -0.2655 -0.264 0.08411 0.3834 

95% confidence interval  -0.6507 to 0.2284 -0.6497 to 0.2299 -0.3971 to 0.5290 -0.1001 to 0.7204 

p-value 0.272 0.2748 0.7321 0.1052 

 
 

ABUNDANCE 
SPRING 

r 0.09123 -0.101 -0.107 -0.03949 

95% confidence interval  -0.3910 to 0.5342 -0.5412 to 0.3827 -0.5455 to 0.3774 -0.4960 to 0.4341 

p-value 0.7103 0.6809 0.6628 0.8725 

 
 

INFECTION 
RATE 

r -0.1735 -0.124 -0.05487 0.01771 

95% confidence interval  -0.5913 to 0.3178 -0.5574 to 0.3626 -0.5075 to 0.4215 -0.4516 to 0.4794 

p-value 0.4776 0.613 0.8235 0.9426 
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Spatial Analysis  
 

For this study I used ArcGIS Pro and SaTScan v9.6 to create a risk map of human Eastern 

Equine Encephalitis transmission in Connecticut (figure 4). All mammalian cases were reported 

in New London or New Haven County. Figure 5 shows that New London had the highest amount 

of EEEV positive mosquitoes as well as the largest number of mammalian cases. According to 

the spatial clustering analysis, the largest clusters of infected mosquitoes fell almost entirely in 

the New London county with a few smaller ones in New Haven County. New London also had 

the highest density of freshwater wetlands compared to all other counties in Connecticut. 

Results from the finished risk map align with the observations made from all previous mapping 

of mosquito and mammal distribution and incidence of EEEV. 

 
Figure 4: Risk map for mammalian transmission of Eastern Equine Encephalitis based of proximity to high abundance trap, proximity to rap with 
positive EEEV mosquito, and proximity to mammalian case 

Town
Town

Risk of EEEV
Low Risk

High Risk

0 9 18 27 364.5
Miles

/
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Figure 5: Approximate abundance of Culiseta melanura at each trap site. Number above traps indicate the number of EEEV positive Culiseta 
melanura at that site  

 
 

IV. DISCUSSION 
 

This study aims to 1) to measure the association between mosquito abundance, 

infection rate, and disease incidence 2) to characterize the relationship between seasonal 

climate variability in New England with Cs. melanura abundance, infection rates, and incidence 

of EEEV in humans 3) identify spatial patterns of vector distribution and disease transmission. 

Given the rarity of the disease and the small amount of publicly available data, I was not able to 

address all of these aims to completion but have completed a surface level analyses of risk 

5 30

1

3

3

10

15

4143
2

6

1

1417 4
3

4

12

19
12

1

5

1

2 1

19

2

2

1

Pool_size
10
100
500
1,000

10,000

0 13 26 39 526.5
Miles

¯



 21 

factors EEEV in Connecticut that can be used to create and implement targeted and effective 

vector control strategies for Connecticut as well as the other surrounding states affected by 

EEEV. Broadly speaking, the study has five major findings 1) Cs. melanura are more abundant 

during years with reported mammalian cases 2) High abundance traps were close in proximity 

to reported mammalian cases, both of which were concentrated in New London County 3) 

Infection rate was not correlated with mosquito abundance, however years with outbreaks did 

tend to have higher infection rates than years that did not observe outbreaks. 4) Vector index 

appears to be a better predictor of mammalian risk compared to mosquito abundance and 

infection rate. 5) mean temperature during the transmission season was most strongly 

associated with outbreaks compared to all other climatic factors.  

Cs. Melanura abundance in Connecticut between 2001 and 2019 was highly variable but 

peaked during years with high infection rates. Temporal patterns of Cs. melanura did not 

change between outbreak and non-outbreak years, peaking in mid-July and ending by mid-

October across all years analyzed. It is difficult to tease apart exactly what these findings could 

mean for vector control because Cs. melanura are known to have a multiple clutch within a 

year and the timing of larval development varies greatly depending on climate and other 

environmental factors. The finding that outbreak years have higher mosquito abundance 

overall confirms previous studies on vector distribution and makes sense biologically. If there 

are more mosquitoes present then there are more opportunities for them to bite a susceptible 

mammal whether that be human or horse. Additionally, the abundance of Cs. melanura has 

remained stable between 2001 and 2019 which may indicate that pathogen, or environmental 

characteristics may play a larger role in EEEV transmission during outbreak years than vector 
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abundance alone. This could indicate that a different vector has a larger impact on likelihood of 

outbreak in mammals, and that Cs. melanura is exclusively responsible for disease amplification 

within its sylvatic cycle of transmission. Further studies on the vector capacity of suspected 

bridge species are needed to fill in the gaps in the current transmission cycle. It’s hard to draw 

these conclusions however, given the small number of human cases that have occurred in the 

state.  

I calculated Minimum Infection Rate (MIR) in order to estimate of the prevalence of 

EEEV in Cs. melanura in Connecticut. A Spearman correlation revealed a week non-significant 

correlation between infection rate and Cs. melanura abundance. Unexpectedly, MIR was lowest 

at the beginning of the transmission season (June) and increased linearly until October, even as 

Cs. melanura abundance was declining. The same phenomenon was observed in Alabama and 

could be caused by blood meal preferences, host availability, and host–vector interaction 

changes in late summer.xvi xvii xviii My results contrast that of other studies which suggest high 

infection rates early in June may be correlated with mammalian transmission in August-

October. The high MIR rate observed August-September is counteracted by the lower 

population size and biting rate of the Cs. melanura. Cs. melanura most often feed upon 

fledgling birds in the early Spring because these new born chicks have less mobility and no 

feathers to protect themselves from biting insects. By August, most fledging birds have grown 

their feathers and are able to fly away from their nests and therefor are able to better protect 

themselves from biting insects. All four reported human cases of EEEV in Connecticut happened 

in August, despite the fact that MIR continued to rise in September. High infection rate in the 
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late season (September & October) may more so contribute to the following year’s 

transmission as Cs. melanura are known to overwinter.  

 Vector Index (VI) has been used in many studies to analyze trends in mosquito infection 

rate by adjusting for vector species composition and vector population density.  I found that 

vector index has a much higher associated with mammalian transmission compared to MIR or 

vector abundance alone. Given the derivation of vector index, these results indicate the MIR 

and vector abundance together contribute to EEEV transmission but not as a separate risk 

factor.  There must be both a high abundance of Cs. melanura and a simultaneously high MIR 

for a transmission event to occur. The highest VI was found in New London county. Although 

New Haven county had a similarly high mosquito abundance to New London, the MIR was 

markedly lower in New Haven than it was in New London. This combination of high abundance 

and high MIR may explain why all mammalian cases of EEEV were reported in New London 

county. The average difference in mean VI between outbreak and non-outbreak years is 74.3± 

8.77 (P=0.0029, t=8.029). These results suggest vector control efforts may be more successful if 

they focus exclusively on preventing amplification of EEEV early in the season, or keep 

mosquito abundance low in the later season (primarily August).  

  Current evidence suggests that both seasonal and annual climate variability influence 

mosquito’s abundance, vector capacity, viral fitness, and EEEV transmission dynamics.xix Using 

historic climate data, I sought to identify annual and seasonal weather patterns associated with 

entomological indices and EEEV transmission. Mean daily temperature showed a moderate 

association with mosquito abundance during the transmission season (r=0.5285, P<0.0001). A 

study from the Journal of Medical Entomology conducted laboratory experiments to assess the 
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effects of temperature on Cs. melanura development and adult biting rate. xvi Researchers 

found that warmer temperature led to more prolific mosquito reproduction and biting activity.  

Water and air temperatures in freshwater wetlands also may regulate the northern limit for 

virus amplification each year. xvi Fall, Winter, and Spring temperatures almost all had non-

significant correlations with Cs. melanura abundance as seen in table 2. These findings are 

possibly a result of sampling bias given the rarity of infection especially in mammals as well as 

the short study period (18 Years). These results may change if climate and mosquito abundance 

was assessed over a much longer time period.  

 For this study I used ArcGIS Pro and SaTScan v9.6 to create a risk map of human Eastern 

Equine Encephalitis transmission in Connecticut. Results show high mosquito abundance in 

both New Haven and New London County. Compared to New Haven County, New London 

county has a much higher density of freshwater wetland habitat as well as a larger number of 

EEEV infected mosquitoes reported. The high abundance of Cs. melanura may be a result of 

sampling bias given that these traps were likely checked most frequently and properly 

maintained given their close proximity to the Agricultural Experimentation Station. New Haven 

county had no reported mammalian cases in 2019 while New London had six horse cases and 

four human cases reported. While there is similar Cs. melanura abundance in both counties, 

New London has a higher density of mosquito habitat as well as a high infection rate among Cs. 

melanura. These results that suggest that neither abundance nor MIR on their own contribute 

to EEEV transmission but rather that both must be high in order for a transmission event to 

occur. These results also emphasize the importance of wetland habitat in EEEV amplification. 

There are more susceptible passerine birds in New London than in New Haven, suggesting that 
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EEEV is most prolific in areas that have both high mosquito abundance and high abundance of 

fledging birds.  

 The Connecticut State Health Department currently recommends using personal insect 

repellent to prevent EEEV transmission. Results from this study suggest that largescale 

insecticide spray in the county of New London, especially in freshwater wetlands, may combat 

the incidence of EEEV in humans. Spraying before mosquito abundance and MIR reach their 

peak (around august) could prevent mammalian transmission of EEEV in the state of 

Connecticut.   

This study has some limitations including lack of data, scale of analysis, and distribution 

of mosquito traps. Some of the temporal findings lack sufficient statistical significance because 

the number of mammalian cases has been so low in the state of Connecticut. Future studies 

that look at distribution of Cs. melanura, freshwater wetlands, and passerine birds in bordering 

states would reveal why Connecticut seems to be an outlier for total mammalian cases 

reported. A second limitation is the dispersion of mosquito traps throughout the state of 

Connecticut. Traps are concentrated in high risk areas, meaning those that have both a high 

density of wetlands as well as a large nearby susceptible human population. The traps in the 

northwest region of the state are sparse and may bias results from the spatial analysis in 

particular. Inclusion of data on wild bird populations, population level immunity in both birds 

and mammals, and virus strain may allow for a more robust assessment of human risk in the 

state of Connecticut. Ultimately, this study was able to conclude that the occurrence of a 

transmission event is dependent upon the culmination of several different environmental, 

entomological, and host factors working simultaneously. 
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