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THE BIOGEOGRAPHY AND GEOMORPHOLOGY OF THE NIOBRARA 

RIVER VALLEY NEAR VALENTINE, NEBRASIA

ABSTRACT

By

Paul J. Hearty

Within the study area located near Valentine, Nebraska, the 

Niobrara River is deeply entrenched in Tertiary siltstones and sand

stones, and covered with Pleistocene and Holocene eolian deposits of 

sand and loess. The 100 m depth of the valley reflects this entrench

ment. Periods of equilibrium of the river are indicated by the 

numerous benchlands that lie within and adjacent to the valley. Mass 

wasting in the form of landslides and creep significantly alter the 

form of these terracelands when it is combined with the shifting of 

the river and saturation by groundwater. Many of the terraces have 

been correlated with climatic events of the Pleistocene and Holocene 

epochs. There is some evidence of uplift in the area. The stratig

raphy of the low terraces reflects the overall downcutting interspersed 

with periods of aggradation.

Some elements of the vegetative community are unique to the 

grasslands, to Nebraska, and to the Great Plains. Representatives of' 

the Rocky Mountain, eastern deciduous, and northern forests interact 

with variables of topography, stratigraphy, and microclimate. Active 

landslides and newly exposed terraces are revegetated in a definite



sequence from annuals to hardwood forests or to grasslands in some 

cases. The parallel zones of woody vegetation on the right bank is 

disrupted by mass wasting events. The paper birch is a Pleistocene 

relic and thrives in the valley under stringent habitat requirements 

such as north facing slopes, springs, and shade of other trees.

The results of this study are numerous and diverse. However, 

in synthesis, they present a concept of the dynamic interaction of 

the physical and biological factors in the area. From these individual 

factors, a grander hypothesis was formulated that describes the Niobrara 

River as the principal contributor of sand in the formation of the 

Nebraska Sandhills.
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INTRODUCTION

The Niobrara River, like most rivers of the Plains, reflects the 

Cenozoic history of the area in its geology, geomorphology, and 

paleontology. The vegetation, for the most part, has developed into 

its present distribution since the end of the Quaternary. This study 

will deal primarily with the geomorphology and vegetation of the area. 

Hypotheses have also been generated from this research on the rela

tionship of the Niobrara River to the neighboring Sandhills which are 

a constant source of interest to many Quaternary scientists.

The geology of the study area is typical of a large part of the 

High Plainst being composed of the White River and Ogallala Groups of 

the Tertiary period. The terraces of the study area resemble terrace 

sequences of many other river valleys of the Plains. The vegetation, 

on the other hand, is representative of only a small area of north- 

central Nebraska. It contains some species at the periphery of their 

range, and others which are extralimital. It is because of a presumed 

unusual interplay between landforms and vegetation that the vegetation 

ecology was included in this study.

Hence, the purpose of this study is twofold: first, to highlight 

many of the natural elements in the area including their interrelation

ships; and second, to relate features of the study area to the region 

and its Cenozoic history. In order to develop this synthesis of environ

mental dynamics in a historical perspective, it has been necessary to



combine what is known about the geology and biology in the study site 

with some of my observations in order to give the reader a clear pic

ture of existing conditions. These conditions have a direct bearing on 

the central thesis: that is, that the dynamics of the geomorphology in 

the area have a dramatic and continuing impact on the vegetation, and 

that the vegetative distribution is an excellent indication of recent 

and past geomorphic events.

Study Area

The study area, the eastern edge of which lies 22 km east of
2Valentine, Nebraska, involves an area of approximately 80 km . Only a 

portion of that was subject to actual field observation and study. The 

investigation concentrated on the river valley, but pursuit of details 

relative to that led far beyond the valley and study area (fig. 1).

This area includes a variety of geomorphic features in a rela

tively homogeneous geologic setting. Among the general landforms are 

dunes, rock benches, alluvial terraces, a floodplain, and a river in 

its progressive entrenchment. Deeply incised and parallel tributary 

canyons enter the river from approximately north 35° west.

The Niobrara River is narrow and swift, often rushing through 

confined straights and rapids in the study area. Further downstream, 

near Johnstown Bridge, it becomes a braided stream (see fig. 5) and 

continues in this manner eastward. The reasons for this change are yet 

unknown.

Aerial black and white and-infra-red photos highlight a number of 

ancient meander re-entrants and cusps. These exist today as numerous
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terraces that lie at various elevations above the river. With progres

sive entrenchment the river presumably encounters a greater number of 

rock obstacles which alter its meandering form. The thalweg, being 

almost entirely cut in rock of a resistant nature, exerts control on 

the lateral and vertical movements of the river. These shifts occur 

during high water following heavy rains in the spring and summer, and 

during ice jams in the winter months (W. Sharp, per. comm.). The flow 

of the river is supported by numerous springs flowing from above the 

impermeable Rosebud Formation. Many enter the river along the steep 

right (or south) bank as waterfalls, while others flow and maintain 

circulation through marshes and abandoned channels.

The majority of the sediments that compose the valley wails are 

Tertiary sands and gravels that overlie Cretaceous marine shales and 

limestones. These elastics were laid down over the High Plains in 

response to the Laramide Orogeny. Atop these Tertiary sediments are 

additional fluvial and aeolian sediments deposited in times roughly 

corresponding to Pleistocene glacial advances further east.

As a result of rapid entrenchment and continuous undercutting of 

the banks by lateral movements of the river, unstable conditions exist 

in the area. Mass wasting occurs frequently and in a variety of forms. 

The most obvious examples are the large debris slides on the right bank.

The Niobrara River has cut its valley into the Springview Table 

that slopes northeastward to the north of the river. On the south, 

high and broad dune-mantled terraces form the southern rim of the 

valley. The dunes become progressively larger on higher terraces until



merging with the Sandhills (fig. 2). The modern valley, its terraces, 

floodplain, and tributaries average about 3 km in width. The higher 

terraces that merge with the Sandhills may be greater than 20 km wide.

The Niobrara River, in flowing across the Great Plains, has cre

ated a deep and sheltered valley that provides a habitat for more mesic 

species than the surrounding grasslands permit. Indeed, it provides a 

riparian connection between the gymnosperms of the Rockies and the 

deciduous trees of the central and eastern United States. In addition, 

relic species of the boreal forest, present during the Wisconsinan 

glacial age, are able to thrive under the microclimatic conditions 

afforded by the valley. These include a combination of slope, slope 

exposure, shade, and moisture that is provided by springs. These 

types occupy zones parallel to the river. Beneath these forest commu

nities exists an understory of grasses and other herbaceous plants. 

Large open areas of grasses are common.

The following chapters will provide in greater detail facts and 

observations essential to the general understanding of the physical and 

biological interactions in the Niobrara River valley. Unfortunately, 

important factors such as wildlife and the influence of man cannot be 

considered in detail in this study despite their obvious role in this 

river ecosystem.

Geology

The following chapter is provided for a general understanding of 

the geology of the area. It also provides unique information about the area 

which is essential to the development of the central thesis of this work.
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The geological setting of the Niobrara valley is similar to that 

of many valleys in the High Plains. It is cut in the Ogallala Group, 

which is composed of silts, sands, and gravels of the Tertiary period. 

The Miocene White River Group (Rosebud Formation) is also represented 

and forms the basal rocks in the valley from near Valentine to near 

the eastern border of the study area. Further downstream, the valley 

bottom is filled with sands and gravels to near Meadville (fig. 1) 

where the Pierre Shale is exposed (Skinner and others, 1972).

Although Nebraska, with few exceptions, is tectonically stable, 

activity has been noted on the Chadron Arch to the west of the study 

area (Stanley, 1971). Evidence that some uplift may occur near the 

study area is presented in this paper.

A combination of the Tertiary stratigraphic setting and periods 

of incision results in the interesting geomorphology of the deep val

ley. The geomorphology is inherently tied to the geology as both are 

a product of the Cenozoic history of the Plains and reflect its chang

ing climates.

Stratigraphy

Throughout the study area the Rosebud formation (Brule) of the 

early xMiocene forms the base on which the Niobrara River flows (fig. 3) . 

This and other Tertiary formations have been described by Skinner and 

others (1972) and Lugn and Lugn (1956). The Rosebud Formation is a 

fine-grained, horizontally bedded, pinkish to gray siltstone. The 

sandstone grades to a browner color, and has more crumbly weathering 

and a slightly coarser texture toward the top of the formation
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(Skinner and others, 1972). In most of the region the formation is 

observed to be in direct superposition on the Pierre Shale of the 

Cretaceous, although it does not outcrop in the study area. Further 

to the east, near Meadville, Nebraska (fig. 3) the Chadron Formation 

lies between the Pierre Shale and the Rosebud Formation. The Chadron 

Formation does not outcrop in the study area. An erosional uncon

formity between the Rosebud and the overlying Valentine Formation, 

creates an irregular contact and causes the Rosebud to vary from 25 m 

to 45 m in thickness. The Rosebud is impermeable while the Valentine 

"sands” are quite permeable. Consequently, springs are plentiful and 

related to many features in the area (fig. 4).

The Valentine Formation is Pliocene in age and lies unconformably 

on the Rosebud. This contact is easily observed along this course of 

the Niobrara due to the great differences in character of the two 

formations. The Rosebud is a consolidated sequence and forms steep 

cliffs, whereas the Valentine is light in color and forms gentler 

slopes. The Rosebud is often stained with oxides precipitated by 

springs flowing over it.

There are three members of the Valentine Formation that are diffi

cult to distinguish due to similar lithologic character and color. The 

Crookston Bridge, Devil's Gulch, and Burge Members are generally medium 

sands and yellowish in color.

The distribution of the Valentine Formation of the Ogallala Group 

and other Tertiary formations are thought to have been largely con

trolled by tectonic events of that period (Stanley, 1971; Stanley and 

Wayne, 1972). It was earlier thought and more recently refuted that

i
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these sediments were of a lacustrine origin (Lugn and Lugn, 1956).

The only observed representative of the later Pliocene Ash Hol

low Formation, is the Caprock Member. This formation can be seen 

throughout the region as it forms the north rim of the Niobrara valley 

and is composed of a well-cemented, grey, weathered siliceous rock.

The Ash Hollow is not represented on the lower south side as the sur

face has been eroded below that elevation. A thin mantle of dune sand 

lies atop the broad terraces of the south side. Those on the lower 

high benches probably represent minor Holocene shiftings and are not 

contemporaneous with the major dune formation as described by Smith 

(1965) and A. Warren (1976).

The dune sands of the Sandhills and fluvial sands and gravels 

deposited in the Pleistocene are thought to be periglacial manifesta

tions of the glacial events of eastern Nebraska and the Upper Middle 

West (Reed and Dreezen, 1965). The Long Pine Formation (Skinner and 

others, 1972) is Pleistocene gravel present on the Springview Table to 

the north of the Niobrara. This and other formations not present or 

observed in the study area are cited in fig. 3 and fig. 5.

Tectonics

Skinner and others (1972) suggested the possibility of tectonic 

activity as a cause of the entrenchment of the Niobrara River. There 

has been no actual substantiation of faulting or warping in the area, 

yet, there is increasing evidence that some form of crustal movement is 

occurring.
Unusual findings during the field work in the study area indicate 

a possibility of recent local movement in the form of uplift. The most
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obvious is the asymmetry of the valley in the study area. Other indi

cations such as a change in the channel type from meandering to braided 

to the east of the study area and inconsistent grades on terraces sup

port this hypothesis. A number of other supportive details were 

accumulated by the author in investigating this possibility.

In tracing the grades of three high terraces adjacent to the val

ley, an inconsistency was encountered in the area of Muleshoe Greek 

(fig. 6). There an eastward grade of approximately 1.7 m/km to 1.9 

m/km, over a 40 km distance, neared a grade of zero in each case. On 

the Springview Table near Norden, Nebraska (fig. 5), the grade actually 

rises uphill to the east. This is anomalous since the Plains are (and 

have been) drained to the east. Additional evidence for this irregular 

grade is illustrated on figure 5 taken from Skinner and others (197 2, 

fig. 3, pp. 18-19). There is an upgrade eastward at the base of the 

Long Pine Formation in sections C-l and C-2, and D-l and D-2 (fig. 5), 

This is difficult to explain in terms other than tectonics. In addi

tion, the following other changes occur in the same area: (1) An increase

in the number of elevated terraces occurs at the confluence of Fairfield 

Creek and the Niobrara River. (2) There is a change in the nature of 

the channel of the Niobrara at this location from meandering to braided 

suggesting either an increase in grade or discharge. Detailed analyses 

of the grade have not been made as there are no 1:24,000 scale maps 

available throughout the area. There is no substantial addition of 

water either by tributaries or springflow, thereby making the increased 

discharge supposition doubtful. (3) The geomorphic nature of the area 

changes noticeably east of Muleshoe Creek. There it becomes more rough
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and broken in the vicinity of Middle and East Middle Creek, east of 

which slopes then become more gentle (fig. 6).

The number of topographic anomalies in this area thus indicates 

an unusual erosional history that is possibly tied to relatively recent 

tectonism. Further research of this problem is indicated.

Cenozoic History

Although Cretaceous rocks underlie the Tertiary sediments of the 

Ogallala Group, no known significant event, either lithologic or tec

tonic , has occurred previous to the Laramide Orogeny that would have 

directly affected the Niobrara valley. As a result, no consideration 

of events previous to the Cretaceous-Tertiary boundary will be given. 

Special emphasis is placed on the Miocene and Pliocene time periods 

during which the rocks forming the valley walls were deposited, and on 

the Pleistocene during which the principal geomorphic features were 

created. The events of the late Pleistocene are largely responsible 

for the greatest number of landforms now present in the area.

The withdrawal of the Cretaceous sea and the onset of the dia- 

strophic movements of the Laramide Orogeny occurred near the Mesozoic- 

Cenozoic boundary. The area of north-central Nebraska was probably 

still inundated when the first folds began to appear further west. 

Sedimentation was confined to the west within intermountain basins 

throughout the Paleocene and Eocene. The greater elevation of the 

Rockies and the tilt of the plains to the east gave streams the compe

tency to carry sediments further to the east (Lugn and Lugn, 1956).

Deposition of the sediments into which the Niobrara is cut began 

during the Oligocene (White River Group, Rosebud Formation) and continued
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through the Pliocene (Ogallala Group Valentine and Ash Hollow For

mations) . Upon these were deposited Pleistocene fluvial and eolian 

sediments. The climate varied from steppe (Elias, 1942) in the Eocene 

to a subtropical Oligocene environment in which magnolia, fig, and 

breadfruit were common (Dorf, 1959). Lugn (1935) suggested that the 

Miocene was characterized by subtropical climate in the High Plains. 

There was a slow return to temperate conditions as indicated by fossil 

evidence of oak and beech (Dorf, 1959). This gave way to the warmer, 

drier conditions of the Pliocene. Late in the Pliocene the climate 

must have become cooler and more humid to allow the growth of the algal 

beds of the Kimball Formation (Lugn and Lugn, 1956).

Pulses of the Laramide Orogeny, along with climatic fluctuations, 

controlled the sedimentation patterns throughout the Tertiary (Love, 

I960; Stanley, 1971; and Stanley and Wayne, 1972). The drainage was 

southeastward in the Mid-Tertiary and is thought to have been largely 

controlled by a spasmodically rising Chadron Arch. In late-Tertiary, 

the Laramide Uplift shifted this flow more toward the east (Stanley, 

1971). It is possible that a proto-Niobrara drainage may have become 

established during this time. Broad, wide valleys with grades of 0.2 

to 0.6 meters/kilometer (1 to 3 ft./mi.) spread mid-Tertiary sediments 

over the Plains (Lugn, 1935). There was no permanent establishment of 

valleys during this time as the shallow channels would fill and over

flow into others as they aggraded the plain. Stanley and Wayne (1972) 

suspected the Platte River Basin was in existence in the Miocene.

The initial incision of the valleys in the High Plains began in 

the late Pliocene and continued into the Pleistocene with cooler and



wetter climates (Brice, 1964). Broad terrace formation has been 

studied by Reed and Dreezen (1965), Lugn (1935), and Alden (1924). 

These authors determined that major terrace formation occurred on the 

principle river systems in the Plains during early to mid-Pleistocene 

(fig. 7). The highest terrace plains adjacent to the Niobrara may 

have been formed during this period and could correlate with glacial 

events to the east. Figure 7 indicates some correlation between these 

terraces and those determined by this study. Although altitude com

parisons are not reliable, the sequences are similar in this correla

tion. The presence of the Niobrara during the mid-Pleistocene is 

substantiated by the work of Simpson (1960), where a buried reach of 

the Niobrara in southeastern South Dakota was determined to be 6 km 

wide and nearly 70 m deep. The "smooth and gently sloping" valley was 

buried with sediments as old as Illinoian (Simpson, 1960). Almost 

directly to the north of the study area, in central South Dakota,

Flint (1955) found the Missouri to be Illinoian in age. The Niobrara, 

not having been directly altered by glaciers as the Missouri was 

(in central South Dakota), therefore probably predates it.

Renewed valley-deepening preceded Wisconsin deposition of exten

sive dune tracts and loess in Nebraska (Frey and Leonard, 1957). It 

appears that a progressive valley deepening of the Niobrara was con

temporaneous with major dune formation. There is a diminution of dune 

size and extent on terraces of decreasing height in the Niobrara indi

cating a termination of the Wisconsinan glacial event (fig. 8).
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GEOMORPHOLOGY

The following chapter deals with the geomorphological regions 

within the study area, which include landforms created by fluvial ero

sion and mass wasting. Special sections are dedicated to landsliding, 

terrace stratigraphy, and terrace morphology because they constitute 

the principal active geologic processes in the area. Other important 

geomorphic factors exist, such as eolian and other processes which are 

less obvious or presumably less important to the overall biogeography 

and geomorphology of the area.

Geomorphological Regions

The first of the six geomorphic regions is one of broad, dune- 

mantled terraces that lie to the south of the river (region 1). The 

remaining areas are the rolling hills and depressions of low relief of 

the Springview Table (region 2), the region deeply dissected by canyons 

to the north of the river (region 3), the low terraces adjacent to the 

river (region 4), a steep cutbank on the right bank (region 5), and the 

river channel and floodplain (region 6) (fig. 9).

Region 1 . The dune-mantled terraces south of the river range 

from 5 km to 20 km m  width and are present throughout the region.

There are two terraces positively identified and possibly a third one 

entirely covered with dunes. The dunes on the lower one of these prob

ably represent small, Holocene shiftings of larger dunes established 

during the Pleistocene.
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The highest of the terraces lies at about 75 m above the river and is 

suspected to be Sangamon in age as indicated by fossil evidence 

(Voorhies, per. comm.). The terraces obviously predate the dunes, but 

precise periods of the events have not been assigned to the sequence.

The dunes have been largely stabilized presumably by a general 

climate change and a rising water table. The most operable process on 

them now, however, is common deflation (blowouts) initiated by dis

turbed or absent grass cover. Because much of the area is heavily 

grazed by cattle, blowouts are always present in varying degrees of 

stabilization through revegetation.

On a larger scale, synthesis of information gathered from working 

on the high terraces indicates a possible role of the Niobrara River 

in the evolution of the High Plains, particularly the Nebraska Sand

hills. A critical factor is the possible capture of the headwaters of 

the Niobrara by the North Platte River. Capture of the headwaters 

appears to have taken place as a result of: (1) activity on the Hart-

ville Uplift in eastern Wyoming in the late Pleistocene or Holocene 

(fig. 10), (2) obstruction of the flow of the Niobrara waters by dur

able Pre-Cambrian granite and metamorphics (fig. 10), and (3) decreased 

downcutting ability of the Niobrara upstream from the uplift of the 

Chadron arch (Stanley, 1971; Stanley and Wayne, 1972).

Evidence for the Niobrara having drained the Colorado and Wyoming 

Rockies, now drained by the North Platte, is: (1) Granites (including

anorthosite) are present in the Niobrara's fill terraces (Stanley,

1971). There is no outcropping of granite in the present drainage 

basin. (2) The width of the terraces near Valentine are of a much



Figure 10 - A location map of areas of uplift and rivers in 
central and western Nebraska and eastern Wyoming. The location 
of figure 12 is noted where the drainage areas of the Niobrara 
and the North Platte Rivers are nearest. It is in this area 
that stream capture is suspected.

L.cĉ r/oAJ 
OJ= FF/6. / Z

S&.DfirK STUDY

3 A AS —

(Taken from the Tectonic r-Iap of North America, 1S63, Denover-Geppert)
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greater size (20 km) than appropriate for the short, upriver length.

(3) A 7 km width and a 70 m depth of a buried reach of the Niobrara 

near Yankton, South Dakota (Simpson, 1960), filled with Illinoian sedi

ments, attests to the greater size of the Niobrara in the past. (4) ERTS 

photographs and topographic maps of the area show a broad, upland sur

face typical of late Pleistocene outwash streams (fig. 11). Such 

terraces could not have formed with the Niobrara heading in the plains 

as it does now. (5) A low divide (fig. 12A) separates the two systems 

between Lusk and Douglas, Wyoming— the location of the Hartville 

Uplift. In addition, north-south profiles (fig. 12b ) reveal what may 

be interpreted as a broad valley of the ancestral Niobrara River.

The following hypothesis is, in part, contingent upon the valid

ity of the previous evidence: the Niobrara, as an outwash stream heading 

in the Rockies during the Wisconsinan, could provide part of a contin

uous sediment source, instrumental in the formation of the Sandhills 

of Nebraska.

Evidence supporting this theory is as follows: (1) The Niobrara

and its major tributaries form the complete northern boundary of the 

Sandhills (fig. 13). (2) The high terraces of the Niobrara near Valen

tine show an 1intertonguing' effect with the Sandhills by having larger, 

successively better developed dunefields on progressively higher ter

races (fig. 11). This illustrates the decreasing discharge of the 

Wisconsinan rivers concurrently with the termination of major dune 

formation. Lower terraces with smaller, more disorganized dunes may 

represent local Holocene shiftings.
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Many attempts have been made to explain the great volume of sand 

of the Sandhills. Lugn (19 35) first thought the Ogallala Formation 

(Group) to be the source of the sand. Later, Lugn (1951), Reed and 

others (1965), Stanley and Wayne (1972) and Wayne and Stanley (1972) 

implied chat the early Pleistocene alluvium, which becomes finer to the 

east, was the probable main source of both the dune sand and the loess. 

A. Warren (1976) stated that the megadunes were derived from winnowing 

of underlying fluvial sands. These theories of a static sand source 

(degradation of Pliocene and Pleistocene beds) could be amended or 

superseded with the addition of a continuous recharge of sand by the 

ancestral Niobrara. The present theories seem to be insufficient to 

explain the volume and extent of the Sandhills.

Region 2. The most suitable description of the second region 

is one of rolling hills and depressions, with 5 m to 10 m relief on the 

Springview Table. This area lies entirely to the north of the river.

It slopes gently eastward and northward and is substantially higher by 

20 m to 30 m than the south rim. Steep cliffs are present at the north 

rim which are due to the resistant Caprock Member of the Ash Hollow 

Formation of the late Pliocene.

Several buttes of the Ash Hollow Formation lie atop the Spring

view Table and, upon examination, disclosed interesting periglacial 

features. Flaty rock fragments were heaved, presumably by frost, into 

vertically oriented positions most likely during Wisconsinan glacial 

events when this region was subject to a periglacial environment. Flat- 

top Mountain, which is located about 5 km west north west of Sparks,
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Nebraska (fig- 1), is approximately 30 m higher than the surrounding 

plain and contains these features. The rock fragments resemble 

caliche and commonly stand 50 cm to 80 cm higher than the ground 

surface.

Region 3. This region is related to the rolling hills of the 

second region as they are both oriented at approximately north 35° west. 

Region 3 has been greatly dissected by streams that are rapidly cutting 

into Tertiary White River and Ogaliala Formations. This suggests not 

only the same genesis, but a relationship where the morphological 

features of the plain provide 'leaders’ for the headward eroding can

yons (fig. 14). The streams originate in the depressions.

The oriented canyons are cut up to 80 m into the Valentine and 

Rosebud Formations. They resemble the oriented topography described 

by Russell (1929), White (1961), and Beaty (1975). It appears that 

wind-oriented dunes and possible valley training by the wind may also 

play a role.

The streams that drain these canyons are intermittent for the

most part, although springflow above the Rosebud may cause them to be

otherwise during better years. The streams may be up to 5 km in length
2 2and drain areas from 5 km to 9 km . Summer thunderstorms and resul

tant high water alters the character of the canyons significantly. 

During such a storm in June of 1976, the author recorded a change in 

depth of an unnamed intermittent creek (located in figure 9) from 15 

cm to 110 cm in less than one hour. The bed of the stream (Rosebud
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Formation) was deepened by 10 cm, while 30 cm of sand was deposited 

on the flats near the river.

Headward erosion by these tributaries may also be very rapid 

because the scarps in the headlands are usually devoid of vegetation 

and inclined at angles up to 60°. Mass wasting in the form of rock 

falls and slides aid in the process of erosion. Because of the 

southerly exposed headwalls, presumable thermal expansion and freeze- 

thaw accelerate the mass movement processes as well as increase the 

effect of gullying by the production of loose material.

All of the previously described canyons lie to the north of 

the river. There are small V-shaped tributaries on the south side 

of the river but none exceed 1 km in length. This apparently is 

the result of the preferential undercutting of the right bank and 

the inability of those tributaries to keep pace with the downcutring 

of the master stream. The numerous waterfalls on the right bank 

serve as an indication of this inability. The preferential under

cutting of the right bank will be explored further in this paper.

Region 4 . This region is immediately adjacent to the canyons 

of region three, and is persistent throughout the lower portions of 

the valley. It is composed of nearly flat-lying terraces on the left 

bank at 2.5 m, 3.5 m, and 9.0 m above the river. They have no obvious 

pairing with terraces on the right bank except possibly that at 2.5 m. 

Together the low terraces are approximately 0.5 km wide although they 

may vary in width from 2 5 m to 1.5 km.



It is the broad, flat-lying nature of this area which allows the 

most intensive agriculture in the river valley. Some alteration of 

the surface morphology has occurred because of human activity. Large 

deposits of fine-grained alluvium are deposited as fans on the terrace 

flats and at the mouths of canyons. Sheetwash and gullying rapidly 

remove soil from bare or newly tilled fields. Buried soils are fre

quent at depths of tens of centimeters below fine, light sands and 

silts (see section on terrace stratigraphy). The low terraces and 

steep cutbank on the right side of the river will be more thoroughly 

discussed later in this chapter.

Region 5 . This area is contemporaneous in formation with the 

fourth, yet it differs greatly in morphology. The right bank is con

siderably steeper than the left, with fewer terraces. Most of these 

are isolated benches at no persistent level. The right bank is actu

ally a terrace riser that has been greatly modified (by mass wasting) 

located at the base of the 35 m terrace. The surface of this terrace 

slopes upward at approximately 1 .0 ° toward the higher terraces and the 

Sandhills which lie 1.0 km and 15 km distant, respectively. The ter

race is generally flat except for a few small dunes that have migrated 

across it. The scarp at the base of the terrace is inclined from 20° 

to 50° as a result of undercutting by the river and calving by landslips

Because of the steep slope and previously described stratigraphy 

there is constant and widespread springflow midway up the cutbank.

This is an important factor in many cases in this study.
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Region 6 . This geomorphic area is the river and its floodplain 

which follow a meandering course throughout the study area. The single

channeled river is an average of 25 m in width although there are several 

gaps through which the river accelerates as rapids. Occasionally, 

ephemeral islands appear in the river and may migrate downstream.

The thalweg, which is generally 1.0 m to 2.0 m deep, is cut in 

rock through most of the study area and has a peculiar relationship to 

the entire river bed. The usual location of the thalweg at the outside 

of a bend, does not hold true in many reaches in the Niobrara valley.

It may appear at the inside of a bend as shown in figure 15.

Mass Wasting

Introduction

Landsliding is the most obvious process altering the form of the 

river valley. It operates in conjunction with the lateral and vertical 

cutting of the river by broadening the distance between the valley walls 

and depositing the material in the river to be carried away.

Methodology

Data were collected at five slide sites of varying ages and 

degrees of activity. Tape and level measurements were made and tree 

core samples were taken; the slide material was sampled and identified. 

Diagrams were made and photos were taken of the areas as the processes 

were investigated. Other sites were observed and compared to the five 

study sites. Tree coring was done not only to determine the ages of 

slides but also to aid in the development of a revegetation scheme later 

in this work.
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Figure 15 - An aerial photograph of a length of the 
Niobrara River where the thalweg is located in anom
alous places within the river. The dashed line is 
the thalweg while the solid line is the entire width 
of the river. North is toward the top of the photo.
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Findings

On a regional basis, sliding occurs from near Valentine, through

out the study area, to the mouth of the Niobrara. The Pierre Shale 

outcrops near Meadville, Nebraska, and is largely responsible for 

larger-scale sliding downstream from that point. Within the study area, 

the sliding is confined to those reaches where the river aids the 

process by the formation of steep slopes up to 55°. The process of 

river undercutting is concomitant with processes of mass wasting, that 

may, at times, operate semi-independently as a result of maturation of 

the soil and accumulation of debris on the slope. This accumulation is 

a function of creep, sheetwash, sandruns, and sliding at higher levels 

on the slope. Saturation takes place because groundwater flows easily 

through the Valentine Formation that lies above the nearly impermeable 

Rosebud. This stratigraphic situation can be found from near Valentine, 

Nebraska, to near Meadville where the Pierre Shale forms the basal 

rocks.

The occurrence of debris sliding is, for the most part, restricted 

to the south bank. There are fewer comparable situations on the north 

due to the gently sloping nature of that side of the river. On the 

south, the banks are generally greater than 40° and have north to east 

exposures. Of the 12 km of river valley within the study area, approx

imately 5 km are susceptible to landsliaing due to steep slopes alone 

(fig. 16). Landsliding occurs most commonly at bends in the river; 

however, it is also frequent elsewhere.

Two types of slides were identified: the first is a greatly 

deformed debris slide (II-B, Varnes, 1958) of which slides 1 through 4
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are characteristic (figs. 17-20); the second type, slide 5 (fig. 21), 

originates similarly to the first one but differs as it enlarges 

itself by additional sliding, gullying, and creep. The latter slide usually 

appears as a large, white, and unvegetated scar as large as 50 m in height.

The movement in slides 1 through 4 appears to have taken place at 

a fairly rapid rate on the order of seconds to hours. The enlargement 

of the bare slope as represented in slide 5 may take tens of years.

Slide 1 may be at the initial stages similar to slide 5 type since 

additional sliding has taken place there within the study period (fig.

17). There were no cases where intermediate stages of sliding were 

observed (e.g. large cracks, toppled trees, etc.).

The slides are typically composed of colluvium and bedrock with 

a buried or surface soil of variable thickness. Sometimes they include 

dense stands of woody vegetation whose roots often bind the mass 

together during the slide. Trees may be severely tilted or dislodged 

from the soil material, but many remain upright indicating that the 

sliding took place in one coherent movement.

In a new slide that occurred in the spring of 1977, a large, 

already dead, ponderosa pine (Pinus ponderosa), was broken in half 

during the slide but remained upright at the base of the scar (fig. 22).

This slide is located 2.5 km southeast of the Cherry County line on 

the river. The tree slid from high on the bank to the river and 

remained upright which suggests that sliding, as opposed to flowing, 

was the mechanism involved. The fact that the tree was freshly broken 

suggests rapidity of motion. Because a large amount of material is 

bound by the roots, a very low center of gravity also must aid in
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Front view

B p

B p

Side view Bp

Figure 17A -Front and side views of Slide 1 in 197 6/ 
shortly after sliding. Species symbols (Ta, Bp) are 
explained in figure 34.



Front view

Pp

P p

Side view
197 6 Debris

Ta

Figure 17B - Front and side views of Slide 1 in 1977 , after 
additional sliding took place. The outline of the 197 6 
slide area is marked in the upper figure. (See figure 34 
for symbol explanation).
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Figure 17C - Photos of Slide 1 in 197 6 and in 1977, 
after additional sliding took place. Note that the 
fallen paper birch at the top of the slide in the 
top photo is also present in the lower photo.

1976

1977
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Table I - Data on Slide 1 in 1976 and 1977. See figure
16 for location and figure 17 for diagrams and photos.

Slide 1 - Fall 1976 

Slope: Average cutbank slope, 40°; slide scar 41.5°.
3Approximate volume: 3 00 m .

Length: 2 0 m.
Width: Maximum, 12 m.
Shape: Parabolic scar; base slightly concave. 
Approximate age: Less than 3 years.
Vegetation cover: Bare to covered with sparse annuals.

Slide 1 - Summer 1977

Slope: Average cutbank slope, 40°; scar, 41.5° to 
50° .

3Approximate volume: 7 00 m .
Length: 3 5 m.
Width: 3 0 m.
Shape: Three interlocking parabolas.
Approximate age: Less than 9 months 
Vegetation cover: Bare; isolated annuals.
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Front view

Ta

Side view

Figure 18 -Front and side views of Slide 2. A s y m 
metric rings in the tilted trees at the base of 
the scar indicate the slide occurred less than 5 
years previous to 1977. (See figure 34 for species 
code)



Table II - Photograph and data on Slide 2.

S l i d e  2

Slope: 41.5°.
Volume: 100 m 3 .
Length: 10 m.
Maximum width: 1 m.
Shape: Semi-circular to s l i g h t l y  parabolic. 
Approximate age: Less than 5 years.
Vegetation cover: Thin, with many small annuals.
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Front viev7

Jv

Ov

Side view

Figure 19 - Front and side views of Slide 3. Note 
young trees growing on the slide scar. Their a v 
erage age (by coring and sectioning) was determined 
to be approximately 2 5 years. The approximate age 
of the slide is thus, 3 0 years, allowing for the 
first sere of annuals. (See fig. 34 for species code).



Table III - Photograph and data on Slide 3.

Slide 3

S l o p e : '35° ,
Volume: 4 00 m .
Length: 3 0 m.
Maximum width: 15 m.
Shape: Nearly triangular.
Approximate age: 30 years or less(+ 5).
Vegetation cover: Ironwood and juniper saplings

herbaceous ground cover.



Front view

Ta

J v

Side view

Figure 2 0 - Front and side views of Slide 4. Cores 
taken from the juniper (Jv) and basswood (Ta) in
dicate the slide took place from 5 to 15 years 
previous to 197 6. (See figure 16 for location).



Table IV - Photograph and data on Slide 4.

S 1 id e 4

Slope. 4 0°.
Volume: 3 50 m 3 .
Length: 3 5 m e 
W i d t h : 10 m .
S h a p e : Near1y tr iangular.
Approximate age: 5 to 15 years.
Vegetation cover: Annuals, Eguisetum, and sapling

pine, juniper, and ironwood.
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Figure 21A - Horizontal, A - A 1 and B - B 1(contour), and vertical, 
C~C', profiles on a slide bank similar to Slide 5. Note the 
saw-edged effect from gullying on the horizontal profiles and 
the vertical cliffs on the C to C 1 profile. The scale is 
approximately 1 mm = 1 meter.

EAST WEST
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r

L

Figure 22 - A photograph of a new landslide that 
occurred in May of 1977, 2.5 km southeast of the 
Cherry County line (fig. 16). Note the broken tree 
projecting from the landslide debris. This and the 
living basswood to the right suggest that sliding, 
as opposed to flowing was the mechanism involved.



keeping the tree upright. Other upright living trees that typically 

bound large chunks of material were also present in the slide debris.

An interweaving of roots aids a coherent slide although there is some 

breaking apart of these individual root masses during sliding.

Water seeping over the Rosebud at the base of the Valentine 

saturates parts of these formations as well as the surface mantle of 

colluvium. In doing so the pore pressure is increased, decreasing the 

shear strength of the material, resulting in failure on the slope. The 

coherence of the Valentine (loosely to unconsolidated sands) is 

readily lost upon saturation. The Rosebud, on the other hand, increases 

in stability with constant saturation. This property is noted at sites 

where springs and larger falls enter on the right bank. The small 

streams, instead of creating an incision in the bank where they enter, 

actually create a protrusion in the rock over which the spring flows.

In those areas where the Rosebud is alternately wet and dry, the 

material crumbles readily. The latter property may owe its existence 

to the expansion and contraction of clays in the formation.

Immediately after sliding, before material accumulates on the 

scar, the bank often remains wet and in some cases may have springs 

flowing over it. Because the paper birch is inherently linked to 

steep, north-facing slopes and moist conditions, presence is a good 

indicator of potential slide areas. Paper birch are commonly found in 

slide debris.

In addition to landsliding, other forms of mass wasting are pres

ent in the area. A more subtle form of mass movement is the impercep

tible but ever-operating soil creep. This process continually interacts
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with the debris slides by overloading already steep banks with addi

tional colluvium. Arched and toppled trees commonly occur and serve 

as an indication of this and other types of movement.

Earthflows are thought to occur but none have been positively 

identified. Deposits resembling those of an earthflow have been located 

on the right bank but are much overgrown by vegetation. Another form 

of mass wasting is derived from the sands of the Valentine Formation.

'Sandruns * may flow in a wet or dry state and are a source of collu

vium overloading slopes.

Terrace Morphology

Introduction

The terraces along the Niobrara reflect the downcutting and the 

resulting entrenchment of the river. Treads are evident along its 

course at levels from the modern floodplain to those disappearing 

below the Sandhills. The terraces are ancient floodplains resulting 

from periods of stability of climate or tectonism in the downcutting 

process of the river.

Methodology

The approach used to describe the terrace morphology is twofold 

and suited to the scale of the terrace groups. The first is the con

struction of topographic profiles by the tape and Abney hand level 

method. Thirty-one profiles were made from the rim of the south bank 

to the tread of the 9 m terrace on the north. The profiles were spaced 

every 200 m in the western 3 km of the study area, and every 400 m in 

the remainder. The topographic profiles were drafted both individually
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and in two five-profile composites to illustrate terrace persistence 

(see appendix I). The second method was the use of U.S.G.S. 1:62,500 

maps to locate the largest of the terraces (appendix II). ERTS photo

graphs also facilitated description of higher terraces. Thorough 

descriptions were then made of many details of the terraces.

Findings

The terraces were ranked in three distinct groups: the lowest 

group having terraces at 2.5 m, 3.5 m, and 9.0 m; the intermediate 

group having occasional broken segments between 15 m and 50 m, with a 

persistent level at approximately 35 m? and the high group having 

levels at roughly 60 m, 75 m, and 95 m above the modern floodplain.

These terraces have been formed as a result of alternating 

periods of .'stability and downcutting. Possible reasons for the downcut

ting are: (1) regional uplift, (2) changes in discharge, and (3) a

decrease in load. The river, as indicated by numerous low terraces 

on the left bank and the steep cutbank and lack of low terraces on 

the right bank, has cut in an asymmetric fashion. Reasons for this 

asymmetry may include: (1) uplift from the north, (2) bedrock topog

raphy inclined to the south, (3) "pushing" of the river to the south 

by tributaries entering the river from the north, (4) Coriolis effect, 

and (5) any combination of these.

The persistent terraces of the low group are often nearly level 

and sometimes sloping away from the river. These were referred to as 

glacis terraces (Hitchcock, 1857). In spite of this common occurrence, 

the mean slope for the 2.5 m terrace is 0.6° toward the river. The
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3.5 m terrace also has these characteristics with a mean slope of 1.4° 

toward the river. Abandoned channels, overflow channels, marshes and 

swamps are common on these two lowest terraces as a result of both 

high ground water and the glacis terrace feature. The riser slopes of 

these vary greatly from 3° to 35°. The mean slope of the risers 

decreases with terrace age which corresponds to the height above the 

river. The riser slope decreases rapidly up to the level of the 3.5 m 

terrace and gradually from then with increasing terrace tread height 

(fig. 23). Slope equilibrium is apparently reached near the 3.5 meter 

level and corresponding age, or at about 10° slope. The present riser 

slope is dependent on its original configuration and subsequent degra

dation through time. The low terraces on the north bank are generally 

wider than their equivalents (if they exist) on the south. An unusual 

feature on the south bank is the presence of many swamps and marshy 

areas— which are not present in a similar location on the north bank.

The 9 m terrace is the highest persistent terrace of the low 

group. The tread rises at an average of 2.9° and varies from sloping 

1.0° away to 7.0° toward the river.

Many landforms alter the normally flat nature of the low terraces. 

Included are: small gullies and streams, steplike meander scars, natural 

levees, alluvial fans, and abandoned channels. The gullies develop as 

water flows over terraces during heavy rains. Some gullies in poorly 

maintained areas enlarge rapidly unless preventive measures, such as 

diversion ridges, are taken. In rainy years, standing water may be 

present on the glacis terraces, encouraging the growth of marsh and 

sedge plants. There are six major tributary streams that cross the low
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Figure 23 -- A comparison of terrace tread height with riser slope 
showing the rapid degradation of slope in the early period after 
formation, and the' slower degradation of slopes above the 3.5 meter 
level.
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Figure 24, a & b - Ground (a) and aerial (b) photographs 
of step-like morphology that occurs on many meander r e 
entrants abandoned in the process of downcutting. The 
upper photo is directed toward the northeast; north is to 
the top of the aerial photo.

a .



terraces within the study area.

Small, steplike terraces, no more than 0.5 m high, illustrate the 

simultaneous vertical and lateral cutting of a meander. Erosion occurs 

from the outside of the meander and progresses inward and downward 

(fig. 24). These landforms result from the impediment of the downstream 

migration of meanders by rock-defended cusps, causing the meander to 

move out of the re-entrant.

Another interesting lanaform that occurs on some low terraces is 

a rise on the lip of the terrace adjacent to the lower terrace riser.

The rise is usually 0.5 m higher than the tread on which it is located. 

It probably owes its existence to natural levee formation that occurred 

during the original floodplain formation and its subsequent preservation.

Several abandoned channels in various stages of invasion by plants 

are present throughout the valley. The older channels are generally 

open, grassy areas, while the newer are filled with water provided at 

times by springflow.

The mechanisms that alter the form of the terraces to the great

est degree are gullying and the formation of alluvial fans. With time, 

the processes of erosion and deposition erase the angular form of the 

terraces and replace it with rounded and gently sloping hills. The 

gullies attack the risers and fans are deposited on gently sloping 

treads. Erosion occurs where the relief is the greatest, and deposi

tion increases on more gentle declivities. The result of these 

processes is a decrease in the rectilinear form of the slope and a slow 

progression toward a smoother form through time. Rapid gullying and 

deposition of fans has been documented in several cases following heavy



rains (fig. 25). These are primary mechanisms for altering the land

scape. This decrease in the rectilinear form of the benchlands is 

evidenced by the increase in tread slopes as the height of the tread 

above the river increases (or as the age increases). An averaging effe 

seems to operate throughout the valley where the steeper slopes become 

gentler, and the flatter areas increase in slope with time. The tread 

slopes on the 2.5 m, 3.5 m, and the 9.0 m terraces average 0.6°, 1.4°, 

and 2.9°, respectively. Figure 26 illustrates how a terraced valley 

wall would evolve through time by the processes of gullying on the 

risers and deposition on the treads. Additional degradation of the 

slope occurs through mass wasting, which may by calving and slumping 

periodically increase the slope of the riser.

There are no persistent terraces above the 9 m level and below 

the 35 m level. The terraces that are present are small, isolated 

benches, located mainly on the right bank. Features similar to these 

lie at 14 m and 18 m. The lack of terraces at this intermediate level 

may represent an interval of progressive downcutting, during which 

most surfaces were destroyed by a duration of lateral and vertical move

ment. The 9 m tread, being broad and persistent, may indicate a 

period of stability at one level. A period during which the river did 

not downcut would allow for greater lateral movements (fig. 27) and 

for the valley configuration as it is today.

Those terraces that lie in the high terrace group occur regularly 

at elevations of 60 m, 75 m, and 95 m above the river. They are broad, 

flat benches as much as 15 km wide. They are often cut by deep tribu

tary valleys, creating large plateau-like areas. They grade gently
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a .

L  _  _____________________________________ b.r

L
Figure 25 a & b - (a) A gully eroding the edge of 
the 3.5 m  terrace . (note the river beyond the gully), 
(b) Erosion of a terrace riser (foreground)and depo
sition of a fan on the tread of a 3.5 m terrace. The 
river lies within the trees at the top of the photo.

v
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Figure 2 6 - Diagrammatic sequence of the evolution of 
terrace-land morphology.

A. Terrace formation by downcutting. Note angular 
form.

B. Obliteration of angular form by erosion of risers
and deposition on treads.

erosion

deposition

C. Slope modified to gently sloping.

Location X

D. New terrace formation by downcutting and initiation
of the cycle.

Location X
downcutting



Figure 27 — Probable evolution of the lower valley morphology 
as dictated by periods of stability and downcutting. These 
periods were dictated by both climate and tectonic activity. 
(Elevations at t.he right of the diagram are meters height 
above the river)

60 meters-*,

— 35 meters

—  9 meters 
——3.5 meters 
— 2.5 meters

A. Rapid vertical cut from the 35 meter level.
B. Prolonged stability at the 9 meter level during 

which parallel retreat widens valley floor.
C. Degradation proceeds to present level of the 

river.
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eastward at slopes of 1.5 m/km to 1.9 m/km. The high terraces within 

the Niobrara Valley appear as rolling hills with accordant summits 

(fig. 28). The 60 m terrace on the north of the river clearly depicts 

this morphology.

Most of the tributaries flowing into the Niobrara River from the 

north have paired terraces in the middle parts of their lengths (fig. 

29). They have been destroyed lower in the valley by downcutting of 

the tributary streams. The tributary terraces appear, however, to be 

accordant with those of the master stream. No terrace formation has 

occurred along the right bank tributaries. This could be a resuJ_t of 

the rapid undercutting of that bank and the consequent rapid cutting 

of the tributaries. Accordance, however, does not occur as evidenced 

by the numerous waterfalls.

It is the nature of a stream of diminishing load to degrade its 

bed to form terraces simply by the sweep of the river as it degrades 

(Davis, 1906). This factor combined with possible uplift in the area 

has created a spectrum of terraces through time along the Niobrara 

River. The incision of the Niobrara into Tertiary beds has probably 

taken place since mid-Pleistocene (Skinner and others, 1972). It 

occurred in pulses in response to both climatic fluctuations and pos

sible tectonic activity. The periodicity of the downcutting is 

represented by the numerous gaps where no persistent terraces are pres

ent. No reversal of this trend has been indicated.
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Terrace Stratigraphy

Introduction

This section is essentially a supplement to the previous section 

on terrace morphology. The stratigraphy of the low terraces gives an 

impression of the recent history on the order of several hundred years. 

There are details of this stratigraphic record that appear to corre

spond to the arrival of Europeans circa 1870.

Methodology

Seven stratigraphic sections were measured; two with a hand soil 

auger and the remainder by trenching or from exposed outbanks. Diagrams 

and photos were taken of each of the five trenches. All of the sections 

were made on the north side from 2.5 m and 3.5 m terraces except for

trench 5 taken from the 9 m terrace (fig. 30).

Findings

In all cases there were unconsolidated sediments lying on the 

Rosebud Formation which formed rock benches (fig. 31). The particle 

size of the sediments ranged from fine clays to 25 cm cobbles. The 

strata were generally horizontally and cross bedded silts to medium 

sands, with lenses of clays. Cobbles typically formed the bases of the 

sections. Most of the materials were light colored; the sands were 

about 95 percent quartz with the remainder feldspar. The cobbles were 

apparently locally derived caliche. The clays were light brown in color 

in the thick lenses of 5 cm to 10 cm. At the base of trench 2, a rich, 

black silty clay about 30 cm thick was exposed. Occasionally strings 

of limonite pebbles were present in horizontally bedded sands and silts.
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Imbricated cobbles found in trenches 1 and 3 indicated, by their orien

tation, a direction of flow similar to the present. A centimeter 

square piece of charcoal was found at 130 cm depth in hole 2. The 

specimen was collected for possible radio carbon dating.

Possibly due to provenance, past history, and leaching, the 

sands that compose the .terrace alluvium were free of calcareous material 

when tested under a 40x microscope with hydrochloric acid. The sands 

and clays were generally very clean with no apparent oxidized material 

other than a few limonite pebbles. These may have been transported 

into the area.

The azonal soils of the terraces increase in thickness from a 

5 cm-thick weak "A" horizon on the 2.5 m terrace to an average of 15 

cm-thick horizon on the 3.5 m level and to a 70 cm profile on the 9 m 

terrace. This is a reflection of the increasing age with height of the 

terrace above the river.

In some locations, soil horizons were observed buried at some 

depth below the surface. These cases appear to have resulted from 

alluvium recently deposited by sheetwash and flooding. The breaking of 

the sod by plowing and overgrazing has accelerated erosion rates from 

the valley sides, and also deposition on the treads on the valley 

bottom. On several occasions, the author has witnessed recent erosion 

and deposition on terraces. On the low terraces, large gullies were 

cut in risers, while large fans, hundreds of meters across, were created 

in a single storm in May 1977 (fig. 25). During this thunderstorm 

nearly 70 cm of silty sand was deposited on the 3.5 m terrace. The 

size of the deposit was not only increased by three preceding drought



years which destroyed much of the vegetation cover, but also by newly 

tilled fields for spring planting. After many years of such deposi

tion, alluvial fans two and three meters thick are not uncommon. An 

iron bean pot, presumably of the late 19th century, was found in an 

enlarging gully under approximately 2 m of sediments (A. Connor, per. 

comm.). Another rich, buried soil occurs at the headwall of slide 3, 

midway up the large cutbank of the right bank. It lies below 90 cm 

of colluvium in which well-established, woody vegetation grows.

Locally, there have been episodes of cut and fill as the river 

shifted across the floodplain. In a cutbank located 0.5 km southeast 

of a bridge near the Cherry County line, evidence of cut and fill is 

present. In the 9 m terrace in which this section is located, about 7 

m of that is Rosebud, while the remainder consists of unconsolidated 

sediments (fig. 32A). A short distance downstream, the Rosebud slopes 

at about 45° to near the river level while the level of the sediments 

continued at the 9 m level. On higher terraces near the Sharp farm,

0.7 km east of Brewer Bridge (fig. 30), another cut and fill sequence 

was observed and described (fig. 32B) .

A great deal of information cannot be derived' from this cursory 

study of terrace stratigraphy. This is due in part to the reconnais

sance nature of this study and in part to the inconsistency of the 

data collected. However, several conclusions can be made. First, the 

low terraces are first cut in bedrock and then mantled with alluvium.

The proportion of rock thickness to alluvium is often 1:3, respectively. 

Secondly, the trench sections indicate that one, or possibly two, 

sweeps of the river were made, in the trench area. The gradational
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Figure 32; A and B - Local cut and fill sequences within the 
study area. Locations are shown in figure 30.

A. Local cut and fill near the Cherry County line.
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B. Cut and fill near the Sharp farm
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sequences of rock cobbles diminishing in size upward to silty material 

in one or two sets are evidence to this. Thirdly, there were braided 

streams or migrating sandbars in the area that now contains a meander

ing stream. The cross bedding in the trench sections seems to indicate 

this possibility. Fourthly, backwater swamps or bogs were present in 

the area now containing the channel. Fifthly, numerous buried soils 

indicate rapid deposition which has recently been taking place and may 

be at a more rapid rate with the arrival of Europeans. Finally, ter

race sections contain rock material not unlike that in the present 

thalweg, indicating little change in the carrying capacity of the river 

in the recent past.



VEGETATION ECOLOGY

Introduction

The Niobrara River and the study area lie deep within the North 

American prairie biome. South of the river is the Sandhills prairie 

dominated by little bluestem (Andropogon scbparius) , reed grass (Cala- 

movilfa longifolia), needle grass (Stipa comata), and yucca plant 

(Yucca glauca) (Kaul, 1975). Directly to the north of the study area, 

midgrass prairie dominates, while further to the west, the Sandhills 

prairie extends as far north as the Minnechaduza Creek (Kaul, 1975). 

Representatives of both of these types of prairie are present within the 

study area.

The asymmetric river valley in the study area presents an 

interesting aspect of phytogeography, as it contains a mixture of 

Rocky Mountain, Eastern Deciduous, and boreal species interspersed with 

grasslands. The river flov/s east to southeast through a deep valley. 

Dense stands of deciduous forest dominate the valley bottom on the 

right bank; this thins vertically and becomes a mixed bur oak (Quercus 

macrocarpa), red cedar (Juniperus sp.), and ponderosa pine (Pinus pon- 

derosa) woodland. The valley rims are typically dominated by nearly 

pure stands of ponderosa pine. The vegetation of the left bank is 

characterized by a flood plain-type woodland which lines the river on 

the low, flat terraces, and gradually gives way to grasslands on the



higher benches. The deep, tributary valleys are usually wooded. The 

distribution and the habitat of the vegetation in the river valley are 

among the principal investigations of this chapter. One must consider 

from the onset of this discussion that man and his agriculture have 

probably affected the natural vegetation a great deal and that some of 

the results may not be indicative of natural distribution.

The regional climate is characterized by low rainfall (500 mm per 

year) distributed in the form of thunderstorms in the spring and "summer 

with smaller amounts in the form of snow in winter months. Summer tem

peratures may frequently exceed 38°C while those of the winter may fall 

below -29°C. There is an approximate 180-day growing season. Much of 

the precipitation results from the meeting of polar fronts with warm, 

moist Gulf air (U.S. Weather Service). The low precipitation and high 

evaporation rate places the regional climate in the class of semi-arid. 

This type of climate is typical of grasslands (steppe), yet, microcli- 

matic influences (exposure, groundwater, and topography) within the 

study area most likely are more important in maintaining many non

grassland species at or beyond the periphery of their normal ranges.

The mixed forest mapped by Pool (1914) and Kuchler (1964) 

contains representatives of the Rocky Mountain and Eastern Deciduous 

forests, and relic species of northern forests in a grassland setting. 

Pollen profiles by Sears (1961), Watts and Wright (1966) and Moran 

(1973) trace the northward withdrawal of a boreal forest from 13,000 to 

approximately 5,000 years ago. The paper birch (Betula papyrifera) 

remains as evidence of this forest (and periglacial climate). Wells 

(1965), on the other hand, views the presence of the scarp woodlands



of the Great Plains as sanctuaries from prairie fires that swept the 

Plains, set both naturally and-by man. The scarps acted as a firebreak 

because of the rapid change in topography and wetter conditions that 

prevailed there. Recent reduction in the occurrence of prairie fires 

in the Plains may result in the reversal of this trend.

Methodology

The point-centered quarter method (hence referred to as PCQ) 

(Cottam and Curtis, 1956) was used to sample the woody vegetation.

Three transects were drawn across the valley. On the right bank 

(south), the transects each have three lines, while on the left bank

(north), they have two and three lines (fig. 33). A line is a 100 m

length divided into ten points. At each point a perpendicular was 

drawn dividing the line into quadrants. The nearest tree was sampled 

in each quadrant for species, basal area and distance from the center 

point. A transect is the sum of lines on both the north and south 

sides of the river. The transects are indicated by Roman numerals I, 

II, and III, while the lines are indicated by Arabic numerals 1, 2, and

3, north and south. On the left bank, two locations were sampled of

two and three lines each. Figure 33 shows the map and topographic 

location of all of the transects and lines.

Observation of plant distribution in tributary valleys and topo

graphic profiles were used to create generalized maps of the makeup of 

a ’typical' tributary flora in its upper and lower reaches. Descrip

tion of the vegetation present on landslips yielded a sequence of 

revegetation of landslips. Age of the landslips was determined by
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coring, using an increment borer on fallen or disturbed trees. Thick, 

dark, asymmetric rings were present in these tilted trees. Westing 

(1965) described this phenomenon, detectable by wood cores, as reaction 

wood. It occurs after a tree is displaced from its vertical orienta

tion, when its normal pattern of secondary growth is altered, and the 

disorientation is counteracted. The response can be categorized as 

geotropic and ceases when the trunk is again vertically oriented. All 

ages of landslips and seres in the text are determined by this method 

which must be considered approximate at best.

As symbolically indicated in figures 35 and 36, some results 

of lines compared more favorably with adjacent lines higher or lower 

on the transect. This deserves only a casual mention since it is an 

indication of the variability of vegetation zones parallel to the river.

A separate section of this chapter deals with a general habitat 

of the paper birch. PCQ data as well as field observations were used 

in developing this description.

Results

The complete results of the PCQ sampling and the species encoun

tered in the Niobrara Valley are included in figure 34. The dominant 

species were plotted on a composite profile of the vegetation and 

diagrammed according to similarities in dominance results (figs. 35 and 

36). Habitat characteristics of each line and the dominant species 

therein are listed in table V.

Line 1 (of transects I, II, and III— south) is frequently dom

inated by basswood and green ash. From the data available, it appears
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Figure 3 5 -Composite vegetation profile produced 
from the sum of the point-centered quarter 
sample 
figure

SOUTH

NORTH

©  Approximate elevation of sample line

Point-centered quarter dominance results 
with graphic grouping of similar PCQ lin

for the south bank 
e s .

Rank
1 Ta Ta Qm

2 Fp Bp Pp

3 Ua Pp Jv

1 Ps Qm /  pp
o4L Ta Jv Jv

3 Fp Pp Qm

1 Fp Qm Pp

2 Qm Jv Jv

3 Bp Ov Qm

TRANSECT I

TRANSECT II

TRANSECT III

Line 1 Line 2 Line 3
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that the greatest species diversity exists in this north-facing, moist, 

gently to moderately sloping habitat. The zonation of the vegetation 

is quite well defined as indicated by the PCQ results. It appears that 

these belts widen and narrow in response to slope, nutrients, and 

landsliding.

Line 2, transect I, results resemble the findings of line 1 and

could consequently be classified as such. This is also the case with

line 3, transect I, which is better matched with the results of line 2. 

An anomaly in line 2 is the presence of ponderosa pine as the third dom

inant among more mesic species. This ranking occurs because of one 

large tree (hence, high basal area, upon which dominance is based) among 

the more mesic species. A possible explanation for this and other simi

lar anomalies is that the pines and junipers are more competitive in 

areas of rapid soil creep and landslips, since these areas are more 

xeric due to thin or absent vegetation and/or soil. The parallel zona

tion is also disturbed directly by past landsliding as new seres occupy 

the scar.

Line 2 (of transects I, II, and III— wouth) is dominated by bur

oak, with sub-dominants of juniper and ponderosa pine. This zone is

generally steep (25° to 35°), wide, somewhat xeric, and contains morpho

logically low and dense vegetation. The oaks of this stratum resemble 

those of the riser to the 9 meter terrace on the north side (fig. 36). 

The low, angular form of the oaks of these two zones contrast with the 

tall, straight oaks of the 3.5 meter terrace. This zone will be dis

cussed later.



Line 3 (transects I, II, and III— south) is dominated by ponderosa 

pine, juniper, and bur oak, in that order. The open, park-like stands, 

often among rocky cliffs, and xeric conditions typify this habitat. 

Yucca, cactus (Opuntla), and grasses are scattered around the bases of 

the medium-sized pines and dense clusters of juniper. Where the wood

land of the south bank gives way to the grasslands of the Sandhills, 

there is a distinct ecotone, often less than 10 meters wide, occupied 

by species of Prunus and Rhus♦

Disruption of the understory vegetation is occurring in the higher 

areas of line 2 and line 3. Both fire and overgrazing are evident. 

Numerous burned oak stumps are present in line 3 and large gullies are 

cut between root masses of larger trees in the higher areas. The long

term effect of livestock browsing on understory plants would be the 

disruption of the normal plant succession because of the destruction of 

the sapling trees. Brush fires would have much the same effect. The 

effect of rapid gully erosion originated by trampling of the soil- 

binding ground cover is much more severe.

The vegetation zones of the left bank (north) are determined 

mostly by the geomorphology. The zones, like the terraces, are gener

ally sinuous, sporadic, and subparallel to the river. Areas of grasses 

and marsh plants which separate the woody zones are found in places 

that are either very dry or saturated, as in old meander scars.

Much of the virgin woodland of the low terraces has been cleared 

for farming (A. Connor, per. comm.), leaving only few-acre patches of this 

woodland. In addition, heavy grazing and rooting by cattle and hogs has 

taken place in the woodland which may alter the composition to some degree.



Big bluestem and sideoats gramma are commonly found in low-lying, 

well-managed pasture areas. These native grasses were most likely 

ubiquitous in the valley bottom previous to settlement. Presently, 

undesirable grasses and forbs (downy brome and thistle) inhabit the 

seriously overgrazed areas.

Line 1 (transectsI and II— north) is dominated by box elder. 

Willows (Salix spp.) and green ash (Fraxinus pennsylvanica) are sub- 

dominants in the open riparian woodland of the 2.5 m terrace. This

floodplain woodland is similar in its composition, form and habitat

characteristics to many others of the Plains.

The box elder appears to be the first woody vegetation to become

established on the newly-formed low terraces. It usually grows in 

clusters of four to six trees. The trunks at the outside of the clus

ters are often leaning at angles of greater than 45° from the vertical, 

and some are actually resting on the ground, supported by limbs. This 

may either be a result of flooding or saturated, weak, silty soils 

that are unable to support the tree. There is no evidence (Sigafoos, 

1964) to indicate past flooding.

In line 2 (transects I and II— north) the dominant box elders are 

gradually being replaced by younger oaks and green ash. There are many 

sapling oaks and no sapling box elders among the understory vegetation. 

The box elders of this line are four times greater in basal area than 

on line 1. Large, straight, sixty-to-eighty-year-old oaks are present 

at the top of this riser to the 3.5 meter terrace. In some areas, these 

dominate the canopy creating shady, park-like areas. Areas toward the 

back of this terrace are open owing to the glacis terrace form and



saturation. Figure 36 illustrates the relative distribution of these 

species on the low terraces.

Line 3 (transect II— north), is dominated by oaks younger than 

those of the adjacent lower terrace tread (fig. 36). The formation of 

the riser was contemporaneous with that of the tread of the 3.5 meter 

terrace. Considering this, one might conclude that the oaks on the 

riser can outcompete other species (including box elders dominant in 

adjacent areas) because of light, water, or other environmental factors.

Tributary Vegetation 

The vegetation of the tributaries is zoned altitudinally like 

that of the south bank and has elements of many of the lines mentioned. 

In longitudinal profile, the zones wedge upstream as contour lines do 

in stream valleys (fig. 37A). The highest zone is dominated by pines 

similar to line 3, south. The middle zone (and the broadest) is an 

oak-juniper dominated zone as in line 2 south. The lowest, that extends 

onto the floodplain of the Niobrara, is most like the box elder zone 

(lines 1 and 2, north) of the low terraces (fig. 37B). The basswood- 

dominated forest of the lowest portions of the south bank does not occur 

in the tributary valleys of the north bank. It does, however, mix with 

the dense paper birch stands in the deep tributaries of the south bank. 

Occasional clusters of birch are found in the left bank tributary val

leys where the meandering stream cuts a north-facing bank.

General Discussion 

An overview of the natural factors facilitates an understanding 

of the patterns of the woody vegetation in the valley. The permeable
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sands of the Valentine Formation overlying the impermeable siltstone 

of the Rosebud, create springs midway up the south bank- Plants 

requiring plentiful moisture occupy areas from this contact downward.

The area above the contact of the Valentine and the Rosebud is occupied 

by a lower diversity of more xeric species. Isolated terraces and the 

low terraces of the north bank receive more direct insolation, usually 

resulting in grass cover except where groundwater is near or at the 

surface. In such a case, a variety of hydrophytic and mesic species 

grow. Where increased slope allows drainage of the soil, hardwoods 

(oak, box elder) are typically found.

The parent material is partially responsible for the nutrients 

available to the plants. The sandy Valentine is easily leached of its 

calcium carbonate as well as the little organic matter that may accumu

late. Plants requiring high levels of CaCO^ (e.g. juniper) thrive in 

locations where the parent material is at or near the surface— near 

landslips and active slopes. The Rosebud, due to its finer grain com

position and impermeability, allows more organic material to accumulate, 

hence, creating better soils to support those plants that require this 

(e.g. linden and birch).

In summary, the high diversity and density of woody vegetation on 

the lower parts of the south bank contrast with the sparser woods and 

grasses found elsewhere. This is due to the more favorable environmen

tal conditions that are present in the former location. The microclimate 

in these more favorable areas is characterized by a constant water sup

ply, lower winds, less insolation, more stable slopes, smaller tempera

ture fluctuations, and better soils.
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Figure 37A - A generalised map view of* the tributary vege
tation north of the Niobrara River. Vegetation profiles 
A-A* and B-B1 are illustrated in figure 37B.

0 ^ v \ -  7 m
^bov<£. -FloocrfpUi n

tfbove -Hoc d y)ai

t fb o v e -fleead p>!airs

n o r t M

Floodplain types-- cottonwood (Pd) f willows(Sa), 
§reen ash (Fp), and box elder (An)♦

Midslope—  bur oak (Qm) and juniper (Jv).

Ridge ponderosa pine (Pp).
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Figure 37B - Vegetation profiles across tributary valleys 
north, of the Niobrara River. Elevations are height above 
floodplain. Grasses bound the woody vegetation of1 the 
valleys on both sides.

LOWER REACHES OF THE TRIBUTARY -- Profile A—A r

Qm JvJ v An Pd Qm

(See figure 37A for interpretation of species code)

UPPER REACHES OF THE TRIBUTARY — > Profile B-B7:

Pp

QmJ v
Qm Jv

Pd

over 20 m



Plant Succession on Landslips 

A chronology of landslide revegetation became apparent while work

ing out frequencies of landsliding and morphological characteristics of 

landslides. The suecessional sequence in figures 38 and 39 is a rough 

description of the time periods and seres required to progressively 

reoccupy a scar laid bare by landsliding. The age references were 

inferred from the results of coring trees disturbed or fallen by sliding. 

This method is more accurate in the early stages of revegetation since 

these trees may still be living. The most significant research on geo- 

tropism was done by Westing (1965). Later research by Shroder (1975) 

used dendrochronological methods in monitoring the movement on rock 

glaciers in southern Utah. Approximate ages in later stages of revege

tation were determined by comparison with the ages of other stands of 

similar composition. This was achieved by coring and sectioning: of the 

trees of a sere and finding a mean age. Previous seres were dated by a 

similar method until a total approximate age of the succession could be 

determined.

Plant Succession on Terraces 

A successionary sequence, similar to that of landslide revegeta

tion, was determined for low terraces on the left bank. As the river 

downcuts, it leaves its old floodplain free from seasonal flooding, and 

new vegetation types are able to grow (fig. 40). Each part of the suc

cession was determined by the present location of species relative to 

the river level and those species dominating, or beginning to dominate 

the progressively higher terrace levels. The emergence of oak as a



Figure 3 8- Schematic sequence of revegetation of landslip 
scars. The serai stages have been determined from observa
tion of scars at various stages of revegetation. The ages 
are approximate and have been determined by coring of d i s 
turbed or fallen trees (see text for explanation).

Colluvium

B. Slope failure by saturation, under
cutting, or reduction of inter-granular 
friction. (See fig. 39, photo A)

Lugs

C. Invasion of early pioneers (compos- 
i-tae, liliaceae, leguminosae, and 
graminae) from 0 to 8 years.
(See fig. 3 9, photo B)

t<S£rj_ncj^_

1



Figure 38 (cont1)
D. Early mid-succession, early occupatipn 
o£ juniper and ironwood from 10 .to 
25 years after sliding. (See fig. 3 9/ 
photo C)

-*■

springs

El Late mid-succession, preliminary 
presence of young pine, basswood, an< 
oak between 2 5 and 7 5 years after 
sliding. (fig. 39, photo C)

F. Re-establishment of dominants 
(or climax)in approximately 
2 00 years, (fig.3 9, photo 13) /
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Figure 39, A thru D - Photographs illustrating 
plant succession on landslips. These photos were 
taken m  the study area of landslides of varying 
degrees of revegetation. The sequence of letters, 
A , B ,C , and D, correspond to the letters B,C,D-E, 
and F, respectively, in figure 38.

A. F a i l u r e  of slope.
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Figure 3 9 (cont1)

C . M id •- success i o n «,

D. Re - e s t. a b 1 i s hm ent of d om in an t s .
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Figure 4 0 - Diagrams of plant succession on terraces. The upper 
diagram shows the species as they progress through the sequence.
The lower diagram shows the succession relative to downcutting of 
the river. The terraces above the 9 m height are generally grassed. 
The diagrams were taken from actual situations on the Niobrara River
TIME

TERRACE HEIGHT ABOVE RIVER0

SANDBAR
WILLOWS ELM JUNIPERPOPLAR

RUSHES
OAK-GRASSESBOX ELDER

GREEN ASHWILLOWSSEDGES T A L L ^
GRASSES

9 m

A. Floodplain vegetation: 
willows, and rushes.

grasses, sedges,

A
B. After downcutting of the river, willows, 

cottonwood, and box elder begin to grow on 
the higher terrace.

ii\A

grasses /
ikdjuAj)

b l  1 l)y o u n g e r ^ M g L y  open • / v u 
oaks

older oaksr
J  / older_Js>ox elder

young box
elder

C. After repeated downcutting, older box elders, 
green ash, and oaks begin to dominate the now 
elevated terrace.



dominant on the 3.5 meter terrace is a good example of this concept 

(see lines 1, 2, and 3— north, fig. 36).

Habitat Characteristics of the Paper Birch~*~

According to Kaul (per. comm.) and Laustrup (per. comm.) the 

Niobrara River Valley between Valentine and Meadville is the only 

place in the Great Plains where western and eastern forests meet.

For this reason, it is a region of great biological interest. The 

pines occupy the drier sites while oak and basswood are found in the 

more sheltered places. Paper birch is there too, the only location in 

the state for this tree of cooler, northern forests. The rough topog

raphy, inaccessibility of the area, and the infrequency of fire have 

kept the environment relatively unchanged.

Certainly, these factors are essential to maintaining a popula

tion of birch, but the microclimatic conditions are directly respon

sible for the survival of the population.

The location of the birch is generally in a linear zone, parallel 

to the river and midway up the slope on the right bank. The slope is 

steep, and faces north to east. The low sun angle and the surrounding, 

dense vegetation aid in creating a cool atmosphere in that area.

The line of birch lies at the contact of the Valentine and Rose

bud Formations where numerous cool springs are present. The coolness 

of the water flowing down the slope modifies the local atmosphere. The 

air near these springs is quite pleasant even on the hottest days of 

summer. Accurate measurements of the microclimatic conditions are needed.

■*-Many thanks go to Mark Laustrup, a fellow graduate student, for 
accumulating much of the previous research on this topic.



The birch always occurred in lines 1 and 2, of the south bank

transects of the PCQ samples. Absolute frequencies were as high as

60 percent (occurring in 6 of 10 points sampled), and densities were
2as high as 2 individuals per 100 m plot. The line of birch typically 

lie within the boundary between the basswood-dominated and the oak- 

dominated woodlands. The soil usually has a thick humus layer (20 cm) 

and a fairly rich 'A' horizon. It is moist to saturated in most 

locations.

Paper birch has been found to be tolerant of an anaerobic (satu

rated) seed bed (Huikari, 1955). At the same time, it has been found 

to be tolerant of xeric conditions (Fraser, 1954). The xeric sites 

within its contiguous range may be moister and cooler than those 

described within the study area. In addition, being extralimital, the 

birch within the study area may have more flexible habitat requirements 

than those within the contiguous range. In the Niobrara Valley, there 

are no birch occupying xeric sties such as those described for the 

study area. Small clusters are, however, found on the north-facing 

slopes of the meandering tributary valleys of the left bank, which are 

significantly drier than the habitat of the right bank locations (fig. 

41) .

Possibly due to environmental stress, the population of birch 

does not appear to be reproducing sexually in the area, but does so 

vegetatively by cloning. Cloning is suspected because there are no sap

ling birch present in areas other than at the base of a cluster. In 

addition, there are no evenly spaced stands of individuals as they
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would appear if they were spreading fertile seed. Trees are found in 

clusters of three to ten trees of varying ages (fig. 42).



1 00Figure 42, a & b - (a) A photograph of paper birch cloning, 
and, (b) in moderate to dense stands midway up the south 
bank.



CONCLUSIONS

Due to the nature of this interdisciplinary study, the conclusion 

are numerous and diverse. Many important findings resulted from work 

within the Study area; other findings have gone beyond the area and 

made inferences on the evolution of the region based on some of the 

study area data. Principal findings resulting from work within the 

study area are:

1. The geology is representative of a large area of the Great 
Plains.

2. There is mounting evidence that local tectonic activity 
has occurred (or is occurring) in the area.

3. Broad, upland terraces resemble those described by Reed 
and others (1965), Lugn (1935), and Alden (1924). Also, 
lower terrace sequences are similar to others of the 
plains.

4. There are six distinct geomorphic subregions within the 
study area that have resulted from various processes.

5. Mass wasting processes are major influences in shaping 
terrace risers while fluvial processes erode the canyons 
and deposit alluvium on the terrace treads.

6 . Of the low terrace group, treads lie at 2.5 m, 3.5 m, and 
9.0 m above the Niobara River. Terraces of intermediate 
levels exist as small, isolated benches. The one at 35 m 
above the river is the only persistent terrace of this 
group. The high group is extensive throughout the upland 
areas at levels of 60 m, 75 m, and 95 m (approximate) 
above the river level.

7. Rates of erosion and deposition appear to have increased 
with the presence of agriculture in the area.

8 . The river is generally downcutting but periods of aggrada
tion have also occurred.

9. An unusual biogeographical situation exists in the area 
where biomes of the Rocky Mountain, Eastern Deciduous, and 
northern forests overlap in the deep valley within the 
grasslands. There are zones of deciduous, mixed, and 
evergreen (pine ana juniper) trees parallel to the river 
on the terrace risers. Grasses occupy flatter areas except 
where the groundwater is abundant.

10. The relic paper birch occupies sites where north-facing 
slopes, high groundwater, and shade are present.
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It is my hope that the information gathered on the Niobrara may 

aid other workers in the fields of geology, geomorphology, and vegeta

tion ecology. Parts of this study are obviously cursory in nature, but 

the sum of the parts of this study may provide the reader a general 

understanding of the interaction of natural factors.
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