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ABSTRACT

The intersex gene (2-60.5) lies at the terminus of the regulatory pathway that 

determines sex-type in Drosophila. Its product functions with the female-specific product 

o f doublesex, another gene in the sex-determination regulatory pathway, to regulate 

female-specific differentiation. However, the mechanism of this regulation has not been 

clearly demonstrated. Using a temperature-sensitive allele at intersex to eliminate its 

function at time points both during development and in the adult stage, the mode by 

which intersex regulates female determination was addressed.

When chromosomal females bearing a temperature-sensitive intersex allele are 

raised at a permissive temperature, they develop as phenotypic females. Animals raised 

at a restrictive temperature until the mid-pupal stage of development and then shifted to 

the permissive temperature also develop as normal females. In contrast, animals kept at 

a restrictive temperature past the mid-pupal stage, or animals raised at a permissive 

temperature and then shifted to a restrictive temperature before the mid-pupal stage 

develop as sterile females. Therefore, for fertility to be retained, intersex function must 

be present at least until the mid-pupal stage.

To determine if the function of intersex is also required in the adult to maintain 

the female differentiated state, as well as to address its mode of action, intersex function 

was eliminated in the adult female. To this end, diplo-X females bearing a temperature-



sensitive intersex allele were place at a restrictive temperature as adults and used to 

analyze whether intersex exerts transcriptional control over the female-specific expression 

of the yolk protein gene, ypl. Even after placing animals bearing the temperature- 

sensitive allele at a restrictive temperature for up to twenty days, ypl transcription 

persisted at levels equivalent to sibling controls having normal intersex function. These 

data suggest that intersex does not function to positively regulate female-specific gene 

expression, but does not rule out that inter sex functions to repress male-type gene 

expression in females.
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INTRODUCTION

Investigations into sexual differentiation in Drosophila have defined a regulatory 

pathway for sexual differentiation in which a set of genes acts hierarchically to control 

all aspects of sex type (Figure 1). The primary determinant for sex-type is the X- 

chromosome to autosome ratio (Baker et.al., 1987; Bridges, 1921). Haplo-X flies with 

one X chromosome and two sets of autosomes, a 1:2 X:A ratio, are male. On the other 

hand, diplo-X flies with two X-chromosomes and two sets of autosomes or a 2:2 ratio of 

X:A are female.

The mechanism by which sex-type is determined can be summarized as follows: 

Sex- type in Drosophila is initially determined by a choice of whether or not to activate 

an early promoter for the Sex-lethal (Sxl) gene. Activation of the early promoter initiates 

a female-type developmental pathway in diplo-X individuals. Failure to activate this early 

promoter results in a male-type pathway. It is the early Sxl promoter that is sensitive to 

the X-chromosome to autosome ratio (X : A ratio). This ratio is transmitted to Sxl via 

the products of "numerator" signal genes, sisterless-a (sis-a) and sisterless-b (sis-b) (Cline 

1983), and denominator maternally expressed genes, daughterless (da) and deadpan (<dpn) 

(Cline 1980; Young-Shepard et al., 1992). The products of the signal genes 

transcriptionally activate the Sxl early promoter in diplo-X individuals. Once a functional 

Sxl product is made via this early promoter, a female-specific pathway is maintained is
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a cell autonomous manner: A Sxl late promoter is activated in a non-sex specific manner, 

but the pre-mRNAs deriving from it are processed in a sex-specific manner, and 

dependent on functional Sxl product for a functional mRNA to be produced. This product 

of Sxl autoregulates Sxl pre-mRNA splicing and directs female-specific development. 

This autoregulation action of Sxl protein in females initiates a cascade of female-specific 

splicing of downstream genes that ultimately directs female development. An absence of 

functional Sxl product, obtained if the early Sxl promoter is not activated, leads to a 

male-specific pathway.

To consider the details of how the early Sxl promoter is activated, consider that 

for an organism to initially distinguish between male and female developmental 

pathways, there must exist a mechanism that responds differentially in diplo-X animals 

(females) and haplo-X animals (males): one that is sensitive to the X : A ratio. This 

mechanism uses X-linked "x/a numerators" or signal genes, whose relative dose is directly 

linked to the number of X-chromosomes. The sis genes have been identified as two of 

the many possible signal genes which are distributed uniformly on the X-chromosome 

(Cline 1988). These genes become activated prior to cellularization in the syncitial 

embryo at nuclear cycle 9 and cease transcription at the blastoderm stage of development 

(Cline and Erickson, 1991). Genetic analyses have shown that these numerator elements 

act in conjunction with the maternal products of the da and dpn loci to activate Sxl early
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in development, da and dpn are maternal effect gene that function during oogenesis to 

produce materials required for normal development of progeny. Consequently, the 

maternal genotype, and not the progeny genotype, determines the progeny phenotype. As 

a result, the da and dpn maternal contribution is the same in both haplo-X and diplo-X 

animals, and itself is unable to distinguish different X:A ratios, da is a lethal mutant: 

Its lethal to both males and females at a restrictive temperature, and lethal only to females 

at a semi-permissive temperature. Early Sxl transcripts needed to initiate a female-type 

pathway fail to accumulate in progeny of da mothers at the semi-permissive and 

restrictive temperature.

Because the signal genes are X-linked, their dosage will depend on the number of 

X-chromosomes. Males will have one dose of sis-a+ and sis-b+, whereas females will 

have two doses of sis-a+ and sis-b+. Their dose is critical to sex-type determination. 

Decreasing the dose of sis genes from one to two in diplo-X animals results in female 

lethality, as functional Sxl gene product is not produced, and genes used in dosage 

compensation are not inactivated. Furthermore, increasing the dose from one to two in 

haplo-X animals results in male lethality. This result from the activation of Sxl which is 

not tolerated in haplo-X animals (Cline, 1984). Increasing the dose of sis genes also 

suppresses the diplo-X lethal effect of da at the semi-permissive temperature (Cline

1988). This interaction suggests that the maternal da product is needed only to control
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the effectiveness of the signal genes.

Taken together, these data support a model in which the signal elements, the sis 

genes, along with maternal gene products da and dpn transduce the X:A ratio to the 

target, Sxl. A female-specific pathway will be initiated if a functional Sxl product is 

produced and a male-specific pathway will be initiated if a non-functional product is 

produced.

Once activated in a diplo-X individual, Sxl has two functions. First, Sxl acts to 

positively autoregulate itself, serving as a memory mechanism for sex-type in each of the 

cells (Cline 1985). Second, it controls the expression of other genes in three distinct 

regulatory pathways: somatic sex-determination, germline sex-determination, and dosage 

compensation (Cline 1985; Gergen 1987; cline 1983; Maine et al., 1985).

The function that Sxl has in somatic sex determination is controlled by sex-specific 

RNA-splicing. In haplo-X flies, Sxl has no function (Salz et al. 1987), as the pre-mRNA 

transcript is alternatively spliced to include an exon containing a termination codon 

resulting in a truncated non-functional protein (Bell et al. 1988). In diplo-X animals, 

a female-specific alternative splicing pattern of the Sxl pre-mRNA marks the initiation of 

a cascade of sex-specific alternative RNA splicing events. In haplo-X animals, this 

cascade is absent, suggesting that the male-type pathway for sexual differentiation is a 

default pathway in this regulatory hierarchy.
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Initial activation of Sxl occurs only in diplo-X animals, where early Sxl mRNAs 

begin to accumulate. These early Sxl mRNAs use an alternate early promoter which is 

within the first intron of later produced transcripts (Keyes 1992)(Figure 2). These early 

transcripts are not detected in mutant da mothers. Furthermore, early transcripts are 

abnormally expressed in sis-a and sis-b embryos, sis-b, dpn, and da proteins are 

members of the helix-loop-helix family, which bind DNA as heterodimers and function 

as transcriptional regulators (Murres et al., 1989). Therefore, it would appear that these 

signal elements activate Sxl activating transcription at Sxl's early promoter (PE).

The mRNAs produced using this early promoter begin to accumulate at 

approximately the same time the protein products of these sis genes are accumulating, two 

to four hours after fertilization. They are of three different size classes: large (4.0 kb), 

medium (3.1 kb), and small (1.7kb) (Figure 2). After this early sex-specific 

transcriptional activation, this promoter is silent and a late promoter is activated in a non

sex-specific manner. mRNAs about 300 base pairs larger than the early transcripts are 

produced in females and mRNAs about 500 base pairs larger are produced in males.

Upon processing, both the early and late female-specific pre-mRNAs yield two 

similar protein products that differ in only the first 24-26 N-terminal amino acids. Male- 

specific splicing of the pre-mRNA retains a male-specific exon, #3. This exon contains 

an inffame stop codon which results in a nonfunctional, truncated protein. Transcripts
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in females use an alternative splicing pattern which excludes this exon, allowing them to 

produce a functional Sxl product. It is this Sxl product that functions to autoregulate the 

female-specific splicing at later produced pre-mRNAs. Sxl protein acts by blocking the 

3' splice site of the male exon of the Sxl mRNA produced from the late promoter (PL) 

thereby generating female-specific spliced transcripts. In contrast to the late mRNAs, 

the early transcripts do not appear to be subject to regulation by sex-specific processing. 

Transcripts produced from the early promoter have a default splicing pattern that skips 

both exon #2 and the male-specific exon #3 (FIG #2). Therefore, mRNAs produced 

from the early promoter have a default splicing pattern that excludes the male-specific 

exon and produces a functional Sxl product. This exon skipping may be a result either 

of some special feature of the E l exon, such as secondary structure or incompatibilities 

between splice donor and splice acceptor sites, or of a maternally derived splicing factor 

that is required for this exon skipping event.

To control female somatic sex-type in diplo-X animals, the Sxl locus acts solely 

through the transformer {tra) locus (McKeown et al., 1988). Like Sxl, tra gene also 

functions only in diplo-X animals (Baker et al., 1987) and is regulated at the level of 

alternative RNA splicing (Boggs et al., 1987). The first exon in tra can be spliced at 

either a sex-non-specific or female-specific site. In females an alternative 3' splice site 

is used to generate an mRNA with a long open reading frame encoding a functional tra
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gene product (McKeown, 1992). A default site is used in males and about half of the 

time in females. Like the Sxl male transcripts, this default splice site results in an mRNA 

with a stop codon that does not produce a functional tra gene product. Alternative 

splicing is achieved by female-specific inhibition of the splice site used in males and is 

dependent on thirty-five nucleotides nearby the regulated splice-site (McKoewn, 1992). 

Sequence comparisons between tra and Sxl reveal this to be a conserved sequence, 

suggesting that Sxl regulates tra and Sxl directly by binding and competing with factors 

necessary for male-specific binding.

Unlike Sxl and tra, transformer-2 (tra-2) produces identical transcripts in the 

somatic cells of both female and male flies, suggesting that tra-2 may be expressed 

constitutively. However, like tra, tra-2 is required for female differentiation, as an 

absence of tra-2 function leads to diplo-X animals developing as males, tra-2 appears, 

with tra, to regulate a third locus, dsx. The female specific product of tra works in 

unison with the product of the tra-2 gene to control female-specific RNA splicing at the 

dsx locus, a locus which is functional in both males and females (Baker and Ridge, 1980).

Two dsx functions are achieved in the two sexes by sex-specific splicing of its 

pre-mRNAs. This ultimately leads to sex-specific proteins, dsx™le and dsxkmale. In the 

absence of female-specific regulators, Sxl, tra, and tra-2, male-specific 3' splice sites and
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polyadenylation sites are used. With the regulatory factors, a female-specific 3' splice 

site and polyadenylation site are used. This results is the production of two different 

proteins with a common sequence of 397 amino acids coupled to sex-specific C-terminal 

regions of 152 (male) or 30 (female) amino acids (Burtis and Baker 1987).

The female-specific splice site choice at dsx depends on the function of the tra and 

tra-2 gene products. In their absence, a male-specific pattern of processing occurs. 

Thus, all of the components necessary for female-specific splicing are present in males, 

except for tra or unknown factors that are induced by tra. In the presence of tra and tra- 

2, the otherwise inefficient dsxkm&le 3' splice is activated to produce a female-specific 

mRNA. The regulation of the splicing of the dsx pre-mRNA could result from activation 

of the female-specific splice and polyadenylation site or repression of the male-specific 

splice and polyadenylation sites, or a combination of these two mechanisms. However, 

considering that the dsx female-specific 3' splice site appears to have a poor consensus 

sequence, and deletions or mutations in a set of 6, 13-nucleotide repeats renders dsx 

incapable of responding to the regulatory effects of tra and tra-2, it has been suggested 

that regulation occurs by splice site activation (McKoewn 1992).

Genetic studies have shown that the products of the dsx locus are required for 

correct somatic sexual differentiation of both sex types. These same studies have also 

suggested that the sex-specific dsx product functions by repressing the expression of
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terminal differentiated genes specific to the opposite sex. However, it has not been 

conclusively demonstrated whether dsx gene products function directly to regulate target 

genes or indirectly through other regulatory genes.

Regulation of the yolk protein (yp) genes provides an ideal system in which to 

look for direct interactions between regulatory and target genes. Yolk protein gene 

transcription is controlled by temporal, sex-specific and tissue-specific factors (Salz et al. 

1989). The yp genes are expressed only in adult females, and are not detected in the 

larval or pupal stages. These genes also show expression limited to two tissues, the non 

sex-specific fat bodies, and the sex-specific ovarian follicle cells (Garabedian et al. 1985).

The yp transcription in the follicle cells is limited to one temporal stage of the 

follicle cell development. In the follicle cell, transcription of the yp genes first appears 

at stage 8, they are abundant through stages 9 and 10, and are scarcely detected at stage 

11 (Brennen et al. 1982). Although the initial development of the ovaries is dependent 

on the presence of the female-specific regulatory genes, once the ovaries have formed, 

synthesis of the yp genes in the follicle cells are no longer under the control of the 

female-specific pathway (Bownes, 1990). Therefore, once the yps have been synthesized 

they are directly transported into the egg.

The yp synthesized in the fat bodies are detected approximately forty-eight hours 

after eclosion. After eclosion, the yp begin to be secreted into the hemolyph, where their
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concentration rises from undetectable to approximately one third of the total hemolyph 

protein (Barnett et al., 1980). The yolk proteins are then selectively transported into the

egg-

Previous studies have shown that proper sex-specific expression of the yp genes 

in the fat body requires continued action of the sex determination regulatory hierarchy 

(Belote, 1985). Furthermore, a 122 base pair fat body enhancer (FBE) of the yolk protein 

genes 1 and 2 (ypl and yp2) is likely to be the target site for sex -specific regulation 

because this enhancer is sufficient to direct female-specific transcription of the yp genes 

in adult fat bodies (Shepherd et al., 1985). The dsxmale and <&xfemale proteins appear to 

act as sequence specific DNA binding proteins, and interact with this FBE sequence in 

gel mobility shift assays (Burtis 1991). Because the two dsx proteins have similar 

binding specificities, it may be that the FBE binding domain exists within the amino acid 

sequence common to their amino-termini. Thus, either their C-termini, or a factor that 

specifically interacts with their C-termini, must provide sex-specificity to their action.

Genetic evidence suggests that, in diplo-X animals the dsxkmale protein functions 

with the product of the intersex (ix) gene to repress genes involved in terminal male-type 

differentiation (Baker and Ridge, 1980). In haplo-X animals however, the dsx™1* 

protein functions alone, without ix function to repress terminal female differentiation 

function. The mechanism by which ix and dsx act together to control terminal
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differentiation is not well understood. Thus, while it is known that the dsx™le and 

dsxkw*k proteins can bind in vitro to the FBE of the yp gene, a gene specifically 

transcribed in females that functions in terminal sexual differentiation (Burtis et al., 1991), 

it is unclear how ix acts within this context to repress male-specific gene expression in 

chromosomal females. In particular, it is not known if ix has any role in sex-specific yp 

gene expression.

One hypothesis addressing this issue (Burtis et al., 1991) is that the male-specific 

C-terminal domain on dsx™1* interferes with the function of an activator protein bound to 

female-specific enhancers and the female-specific C-terminal domain of dsxkmAk interferes 

with the function of an activator protein bound to male-specific enhancers. Therefore, the 

binding of dsxkma]e in vivo to the FBE would not, in itself, necessarily result in the 

repression of the yp genes. A second hypothesis (Burtis et al., 1991) is that dsxkmAle binds 

to the FBE in vitro but not in vivo. In this model, the unique domain of dsxkmAle interacts 

with another protein (perhaps ix) or is modified to alter its binding specificity and change 

its set of target ,genes. Experiments using P-element transformation of a cDNA for 

dsxkmale (to express small quantities of the female-specific gene product) demonstrated 

a significant derepression of yp 1 mRNA expression in haplo-X animals (Burtis and Baker,

1989). Since ix is not thought to be required in haplo-X animals, these experiments may 

be explained by supposing that the dsxkrmk protein can interfere with the formation of the
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dsx1™1* protein. Alternatively, the dsxfemale protein may act to regulate ix. In any event, 

it remains an open question whether ix functions together with <isxfemflle or acts 

independently of dsx to control female development.

As ix is the most terminally positioned gene in the sex-differentiation regulatory 

hierarchy, it should serve to link the hierarchy with the implementation of terminal 

sexual-differentiation. An understanding of ix function should therefore provide 

significant insight into how terminal differentiation is implemented. Unfortunately, ix 

is the least well- characterized gene in the sexual differentiation pathway in Drosophila.

Although ix function is required for normal female development, and it is thought to act 

with dsx to repress male-specific functions, the regulatory factors produced by ix have not 

been identified, and the temporal requirements for its function have not been determined. 

For other regulatory loci, such studies have provided insight as to where in the regulatory 

pathway they are active and with additional genetic analyses, suggested possible 

functional roles.

To further address the mechanism by which ix functions to control terminal 

sexual-differentiation, I have determined the times during development when ix function 

is required and assessed whether ix function is required in the adult to maintain female- 

specific gene expression. These studies have provided insight into how ix functions 

within the regulatory sex-determination hierarchy.
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MATERIALS AND METHODS

Temperature shift assay

Diplo-X animals bearing a non-fnnctional ix allele develop into adults that 

display both female and male characteristics. One of the most sensitive measures of 

"intersexuality" is infertility, as intersexual individuals cannot produce offspring 

because of deformed genitalia and analia. Using a temperature-sensitive allele for ix, 

the gene can be turned "off' or "on" during development by placing animals at 

restrictive or permissive temperatures, respectively. Thus, the temporal requirement for 

ix function can be determined by assessing the fertility of flies with temperature- 

sensitive ix function that have been raised for defined developmental periods at a 

restrictive temperature. The ability of such temperature-shifted flies to produce 

offspring was used to indicate whether intersex function was disrupted at a 

developmental period during which intersex was normally required. 

Temperature-sensitive intersex diplo-X flies were obtained by crossing ixph/ SM5, Cy 

with Df(2R)enB /CyO where ixph is a temperature sensitive ix allele on a multiply 

inverted chromosome that is recessive lethal, Df(2R)enB is a deletion of cytological 

region 47E3-6;48A that removes ix function, and SM5 and CyO are balancer
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chromosomes, bearing the dominant Cy (Curly wing) mutation. The straight wing 

progeny that are ixph/ Df(2R)enB raised throughout development at a permissive 

temperature of 18°C produce diplo-X adults that are normal females. When raised at 

a restrictive temperature of 29° C, diplo-X adults are sterile and in lei sexual, 

displaying both male and female characteristics.

To assess when intersex is required for fertile female fertility then, female ixph/ SM5, 

Cy flies were crossed with Df(2R)enb /CyO males, and the reciprocal of this cross, 

ixph/ SM5, Cy males with Df(2R)enb /CyO females, was performed. Virgin female 

animals were collected to carryout this cross. Virgin female flies were collected by 

screening for newly eclosed adults three or four times a day. This allowed for female 

flies to be collected shortly after eclosion, reducing the chances of their being 

inseminated. Females were kept in vials with food at room temperature for three to 

four days and the food examined for production of larvae to assure the females 

collected were virgin. Approximately 125 - 150 females and 150 - 175 males were 

mated in bottles containing standard Drosophila media (molasses / agar / commeal / 

sucrose). To be able to restrict ix function at different developmental periods, a series 

of timed egg lays was performed. To this end, females were allowed to oviposit in 

fresh bottles for 24 hours at the permissive temperature of 18°C, and then transferred 

to new bottles. This procedure was repeated until progeny from the first egg lay
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began to eclose. At this time, the remaining bottles were shifted to the restrictive 

temperature of 29°C. This produced a set of experimental treatments that differed by 

increments of 24 hours at the restrictive temperature and spanned from fertilization to 

eclosion. A parallel set of experiments in which animals was shifted from 29°C to 

18°C in 12 hour intervals were also performed. After eclosion, single straight-wing 

diplo-X adults (ixph/ Df(2R)enb ) were collected, allowed to mate with Canton-S (wild- 

type) males, and placed in individual vials with media. Individual female siblings 

were also placed in vials with Canton-S males as a control. These crosses were 

performed at room temperature (22-25°C). Fertility was assessed by examining the 

media for larval activity.

Assessment o f  ix control over y p l transcription

Some regulatory genes are only necessary for initially determining a 

developmental pathway, while others are essential throughout the life of an organism 

to both set and maintain a pathway. If ix is required to maintain female-specific gene 

expression in diplo-X animals, one would expect a decrease in female-specific gene 

expression in the absence of ix function. One abundant gene product nearly 

exclusively seen in adult females is the product of the yolk protein gene, ypl. This
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gene is expressed in the fat bodies (a non-sex-specific tissue) and the follicle cells 

(associated with the ovaries and a sex-specific tissue). To test whether ix regulates the 

female-specific expression of this gene in adults, temperature-sensitive ix function was 

again employed. First, diplo-X adults bearing temperature-sensitive ix function were 

obtained (as just described) that were normal, phenotypic females having been raised 

at the permissive temperature. These flies were then shifted to the restrictive 

temperature for defined periods of time to eliminate their ix+ function and allow 

assessment o f ix function on yp expression. Cy siblings bearing ix+ function exposed 

to the same conditions were used as controls.

Isolation o f  RNA

RNases were removed from glassware by baking at 180°C for 24 hours, and 

from plasticware by washing with detergent, rinsing with dH20 , drying with ethanol, 

soaking in 3% H20 2 for 10 minutes at room temperature, and rinsing with 0.1% DEPC 

(Diethylpyrocarbonate) treated H20 .

Total RNA was isolated by a hot phenol extraction method (W. Mattox, 

personal communication). Flies were homogenized in a solution of 10 mM Tris-HCl 

pH 7.6 equilibrated phenol and 2x NETS (200 mM NaCl, 2mM EDTA, 20 mM Tris-
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HC1 pH 7.5, 0.1 % SDS) at a ratio of 2:1 heated to 65°C. A total volume of 800 ul 

was used for 20-30 flies. The homogenate was centrifuged for 10 minutes at 12,000g 

and the aqueous phase was aspirated from the organic phase. One back extraction of 

the organic phase was performed by adding 300 ul 2x NETS, mild vortexing and 

centrifuging as above. The aqueous phases were combined and two more extractions 

performed using a volume of phenol equal to that of aqueous solution. The RNA was 

precipitated from the aqueous solution by adding two and a half volumes of ethanol at 

-20°C for at least one hour. The RNA was pelleted by centrifugation (10 minutes at 

12,000 g) and the ethanol was removed by aspiration. The pellet was washed with 

RNase free 70% ethanol (100% ethanol : 0.1% DEPC H20 ) dried in a Speed-vac 

centrifuge. The pellet was resuspended in 50 ul Elution buffer (10 mM Tris-HCl pH 

7.6, ImM EDTA, Ph 8.0, 0.05% SDS). 10 ul of the suspension was removed and 

quantified by spectrophotometry. The remaining RNA was stored at -70°C.

Northern Analysis

Total RNA was separated on a denaturing formaldehyde MOPS 1.5% agarose 

gel (as described in Sambrook et al., 1989) at 50 volts for approximately 7 hours. The 

time was determined empirically by visual inspection of a tracking dye (80%
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formamide, lOmM EDTA at pH 8.0, lmg/ml xylene cyanol FF, 1 mg/ml 

bromophenol) loaded with each sample. The RNA was then transferred to a MSI 

Magna NT nylon membrane. Prior to transfer, the gel was treated by soaking in two 

changes of a 10X solution of SSPE to remove the formaldehyde, then in a denaturing 

solution of 0.05 N NaOH and 0.15 M NaCl for 30 minutes, and finally in a solution 

containing 0.1 M Tris pH 7.5 and 0.15 NaCl for 30 minutes. This treatment of the gel 

is in accordance with the manufacture's instructions accompanying the Possiblottm 

pressure blotter for probing transcripts the size of ypl (approximately 1.7 Kb). The 

RNA was transferred to the membrane by using the Possiblottm pressure blotter at 75 

mm Hg overnight. The RNA was cross-linked to the membrane with ultraviolet light 

(254 nm) for thirty seconds at 12,000 microjoules/cm2 in the Stratalinker UV 

crosslinker 1800, and/or by baking at 80°C under a vacuum for one hour.

DNA probes were labeled with 32P by random oligonucleotide priming using 

the Ambion Decaprimertm DNA labeling kit. Reactions were performed as described 

in the manufacture's instructions using 25ng of linearized ypl (Garabedian et al.,

1986) template DNA and 25 ng of linearized rp49 DNA ( O'Connell andRobash,

1984) (both isolated from a plasmid) .

Hybridizations with radioisotopically labeled probes were carried out at 42°C in 

a 0.25 ml/cm2 (of blot) volume of hybridization buffer containing 50% formamide, 5X
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SSPE, 0.1% SDS, IX Denhardt's Reagent (0.02% Ficoll, 0.02% Polyvinylpyrollidone, 

0.02% Bovine Serum Albumin), and 100 mg/ml denatured, sheared fish-sperm DNA. 

Washes were carried out in 5 ml/cm2 0.1X SSPE,0.1% SDS at 50°C with one change 

of wash solution after 10 minutes and three changes of wash solution after successive 

20 minute intervals.

The blots were then scanned at the University of Nebraska Medical Center on 

the Phosphor-Imager to quantitate the level of ypl expression. The blots were also 

exposed to X-ray film at -70°C.
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RESULTS
To determine when during development ix function was required in diplo-X 

flies to produce fertile females, the progeny of the cross ixph/ SM5, Cy with w; 

Df(2R)enb /CyO were shifted between restrictive and permissive temperatures at 

defined stages of development. As expected, Df(2R)enb / ixph diplo-X animals raised 

at a permissive-temperature throughout their development developed as phenotypic 

females. When this genotype was raised at a restrictive-temperature until the mid- 

pupal period and then shifted to a permissive temperature, phenotypic females also 

developed. In contrast, ix temperature-sensitive diplo-X animals kept at a restrictive- 

temperature past the mid-pupal period, or raised at a permissive-temperature and 

shifted to the restrictive-temperature before the mid-pupal period were sterile (Figure 

#3 and #4). Sibling controls showed normal fertility in all treatments. Therefore, for 

female fertility to be retained, ix. function must be present during the mid-pupal period 

(Figure #5).

From these data, intersex temperature-sensitive diplo-X flies raised at the 

permissive-temperature until eclosion develop as fertile, phenotypic females in the 

adult. To understand how ix might control sex-specific transcription in the adult, 

female-specific gene expression was assessed such animals were raised at the 

permissive temperature until eclosion, and then either kept at the permissive-
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temperature or shifted to a restrictive temperature.

The effect of ix function on ypl transcription was addressed through Northern 

blot analysis. Total RNA was extracted from flies kept at the permissive temperature 

after eclosion and shifted to the restrictive temperature after eclosion from diplo-X 

animals containing the temperature-sensitive allele for ix (Df(2R)enb/ixPh) and their 

sibling controls. After the RNA was size-separated and blotted, and the resulting 

Northern blot probed with a 32P-cDNA of the ypl gene (Figure #6), the relative 

amount of ypl transcripts as assessed within the RNA samples. The amount of ypl 

transcription was quantified by scanning the blots with a phospho-imager and 

performing a volume integration of the pixel density of bands resulting from the 

hybridization of 32P-labeled cDNA with ypl RNA transcripts (Figure #7).

To assess the change in levels of transcription between the experimental and 

control groups, the amount of RNA present within each lane was normalized to the 

level of transcripts from the gene rp49 (Figure #6). The amount of rp49 transcripts 

should be the same in flies of the same experimental treatment (Robash,$"%%).

Hence, a profile of the level of ypl normalized to the level of RP49 for 

experimentally treated flies will show how steady state ypl transcription varies with 

experimental treatment. In turn, a dramatic drop in ypl expression in the absence of 

ix function will indicate that ix normally positively regulates (indirectly or directly) the
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transcription of ypl.

To asses whether the genotype, [Df(2R)enb/ixPh], had any effect on the 

transcription of the ypl gene, the ratios of the volume integration values , yp l/ RP49, 

were plotted for animals kept at the permissive temperature for 1, 4, 8, 12, 16, and 20 

days after eclosion (Figure #8). This graph provided a reference to the transcriptional 

level of ypl this genotype, and compared to the sibling controls, when ix function was 

present. A comparison of the range of yp 1 expression in these groups with ranges 

found in previous experiments (Bownes 1983), indicates that this genotype itself does 

not alter steady state ypl expression.

The effects of transcription on the female-specific gene, ypl, in diplo-X 

animals lacking ix function was determined by assaying relative ypl transcription in 

Df(2R)enb/ixPh female and sibling controls after they were placed at the restrictive 

temperature for 4, 8, 12, 16, and 20 days after eclosion. Even after 20 days at the 

restrictive temperature, substantial amounts of ypl transcripts were seen in animals 

lacking ix function (Figure #9). Since the half-life of the ypl transcripts is only 

approximately 12 hours (Bownes and Williams, 1985) and that ypl expression dropped 

to levels barely detectable in trais mutants after only 12 days at a restrictive 

temperature (Belote et al., 1985), an absence of ix function appears to have no effect 

on transcription of the ypl gene in adult diplo-X animals.
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DISCUSSION

In somatic tissues, sexual differentiation appears to be under the control of a 

small number of regulatory genes arranged in a regulatory hierarchy fashion (reviews: 

Baker and Bclotc, 1883, Baker, 1989; Cline, 1993). At the apex of the hierarchy lies 

Sxl, which acts in diplo-X animals to initiate a cascade of female-specific splicing of 

downstream regulatory genes. This culminates in female-specific transcripts produced 

at dsx. Sxl, tra, and tra-2 act within this cascade and must be active to obtain 

ds:cfemale protein. If any of these genes is inactivated by mutation, dsx is spliced using 

a default pattern and produces a male-specific protein. A fifth gene, ix, acts at the 

same level as dsx. While the molecular regulation of ix has not yet been 

characterized, it is thought to function like dsxkmBle, as the absence of a functional ix 

allele produces an intersexual phenotype identical to the absence of a functional dsx 

allele in diplo-X animals.

To better understand how ix functions in this pathway, it is essential to know 

when during development ix is required for normal female development. This 

information, with genetic analysis of genes acting upstream of ix allows for the 

development of testable models that address the means by which regulatory genes 

control ix expression as well as the function of ix.

The transcriptional profiles for the genes that function upstream of ix in the
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sex-determination regulatory cascade have been determined and mirror when these 

genes are known to be required to function. Keyes and Cline (1992) showed that 

early female-specific Sxl transcripts produced briefly during the syncitial blastoderm 

stage were required for later female-specific transcription profiles at times in 

development when a constitutive promoter is used. Transcripts at tra-2 were detected 

starting in the second larval instar, and found throughout adult life, times when tra-2 

has been shown to be needed to function. Sex-specific tra and dsx transcripts are seen 

in diplo-X third instar and continue throughout adult life, when tra and dsx function is 

known to be required. In each of these cases, requirements for gene function parallel 

the transcriptional profiles observed.

Not only do individual gene transcriptional profiles parallel their functional 

requirements, the interdependence of one gene's transcriptional profile on another's 

reflects the epistatic interactions between them. Female-specific Sxl mRNA splicing is 

required for female-specific tra mRNA splicing as well as the autoregulatory Sxl 

female-specific splicing. Female-specific splicing of tra is then required for the 

female-specific dsx splicing.

Results presented in this thesis demonstrate that ix is required to function at 

least between the embryo and mid-pupal period, as ix function is required at this time 

to produce fertile females. Thus, it may be predicted that ix transcription will be
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required during this time as well. Previous studies have shown that ix mutations do 

not alter dsx transcriptional profiles. Taken with the results presented here, this 

suggests that either (1) dsx controls ix function (directly or indirectly) or (2) dsx 

functions in parallel with ix.

Given the temporal requirements for ix function that have been demonstrated 

here, which overlap when sex-specific splicing occurs at dsx pre-mRNAs, one can 

propose a number of hypotheses as to how dsx and ix may function in parallel. 

However, before considering potential molecular mechanisms for their interactions, it 

will be useful to review prior experiments on the control of yp transcription by the 

sex-determination regulatory hierarchy and, more specifically, consider implications of 

experiments presented here in regards to ix control over yp expression.

Belote (1985) demonstrated that fat body yolk protein expression is under the 

control of the sexual regulatory hierarchy pathway. Using a temperature-sensitive 

mutation (tra-2ts) of the tra-2 gene, synthesis was shown to be dependent on a 

functional tra-2 gene product. Diplo-X tra-2ts heterozygotes reared at the permissive 

temperature develop as normal fertile females and display female-type yp expression. 

However, diplo-X tra-2ts homozygotes reared at the restrictive temperature develop as 

pseudomales and display male-type yp expression (i.e., none). In this experiment, 

diplo-X animals were allowed to develop as normal females at a permissive
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temperature and shifted to a restrictive-temperature two days after eclosion. The steady 

state level of ypl transcription in these flies persisted for several days; however, after 

three days the levels of the yps began to drop off significantly. After thirteen days the 

yps were only present at very low levels relative to wild-type controls. Hence, the 

decrease in yps was a result of eliminating the function of tra-2, and is a result of 

transcriptional control.

The role of dsx is controlling yp expression has also been examined. Diplo-X 

animals that are dsxD/dsx+ develop as intersexual animals which often have only 

partially developed ovaries. Comparison of yp hemolymph levels, (which reflect fat 

body yp expression) between dsx°/dsx+ and wild-type flies showed that yp levels are 

greatly reduced in dsxD/dsx+ animals (Bownes, 1983). Using diplo-X animals 

heterzygous for the dsxD, dsxD/ +, the transcription and translation of the yp genes 

were analyzed from animals up to ten days after eclosion. The level of transcription 

in these intersexual animals was not significantly different from wild-type controls, 

although one population of dsxD animals did produce transcripts several fold higher 

then the same population of wild type-controls. However, the level of yp present in 

the hemolymph was dramatically reduced in all the dsxD populations compared to their 

wild-type controls. Further analysis of the fat body tissue showed that the lack of yp 

in the hemolyph was not due to a secretion deficiency but rather to a decreased rate of
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translation. A mechanism for decreased efficiency in translation is not known; 

however, it is not related to structural aspects of the mRNA population, for the mRNA 

was equivalent to wild-type mRNA in a cell-free translation system. It is important to 

keep in mind that these results may not reflect the direct control by dsx of yp 

transcription, as yp transcription in dsxP/dsx* animals may also be impacted by a 

feedback mechanism in which the amount of ovarian tissue indirectly regulates the 

amount o f yp expression. Therefore, because of the intersexuality of the dsxD/dsx+ 

animals it is difficult to make inferences that dsx directly controls yp transcription 

from these data alone.

Indeed, all previous experiments used to assess whether dsx or ix directly 

regulates sex-specific regulation in somatic cells have used diplo-X adults flies which 

have developed as phenotypically intersexuals. While an earlier experiment (Bownes 

and Nothiger, 1981) on the effects of ix function on yp expression in diplo-X animals 

demonstrated that diplo-X flies lacking a functional ix allele had a reduced level of 

yolk protein circulating in the hemolymph. These ix flies exhibit a wide range of 

intersexual phenotypes. Since the synthesis of yolk proteins may be related to the 

extent of intersexuality (for example, intersexes which have a more male phenotype 

may show a greater reduction of yolk protein synthesis than intersexes having a more 

female phenotype), these experiments are difficult to interpret. Furthermore, in these
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experiments the effects of ix were assessed on yp protein levels, by determining the 

concentration of yp secreted into the hemolymph, and ix effect on yp transcription was 

not assessed. The decreased amount of yps found in the hemolyph in these intersexes 

could also be due to a decreased rate in translation, as was seen in the dsxD/+ flies 

performed by Bownes (1983). Therefor, the effects that the functional product of ix 

exerts on the transcriptional regulation of the yp genes has not been addressed directly.

To address more directly the control by a; on yp transcription, the experiments 

presented here were performed using a temperature-sensitive allele for ix and diplo-X 

adults that developed as phenotypic females (identical to their sibling controls). The 

function of ix was turned off by shifting the mutants to the restrictive temperature after 

eclosion. The role ix+ plays in regulating the control of yp transcription in adult 

females was assessed through analysis of the level of yolk protein transcripts (ypl) 

present in these flies compared to sibling controls exposed to the same conditions.

The results suggest that ix does not function to regulate sex-specific transcriptional 

control of the ypl gene. Thus, previously reported results of reduced yp levels in the 

hemolymph in ix flies appear to be the result of assaying an intersexual phenotype. 

However, the possibility remains that the earlier results might reflect translational 

control of yp, similar to that seen in dsxD animals.

More solid support for dsx control over yp transcription comes from molecular
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analysis. A 127 base pair enhancer element of the ypl and yp2 genes is likely to be 

target of sex-specific regulation as this enhancer is sufficient to direct the female- 

specific transcription of the yp genes in adult fat bodies (Garabedian et al., 1986). 

Burtis and Baker (1991) have used DNA footprinting experiments with in vitro 

expressed dsx™1*' and dsxkma]e protein to demonstrate that these bind specifically to the 

fat body enhancer (FBE). While this provides a molecular mechanism by which sex- 

specific products of the sex-determining regulatory hierarchy control the target genes 

involved in terminal somatic differentiation, it does not, per se, provide a mechanism 

for sex-specific control; both dsxmale and <Axfemale products bind to the FBE.

Genetic analysis of the sex-determining regulatory pathway has suggested that 

it acts through negative regulation. Each sex-specific dsx product is thought to repress 

the expression of gene products needed for terminal differentiation in the opposite sex. 

This view stems from the fact that in the absence of either dsx product, both diplo-X 

and haplo-X animals, display identical intersexual characteristics.

Given the sex-specific carboxy-termini of the dsx proteins, a number of models 

may be formulated as to how dsx negatively regulates the FBE. A hypothesis 

presented by Burtis and Baker (1989) is that in males, dsx™1* binds to the FBE in vivo 

(inhibiting transcription of the yp genes), while in females, dsxfeimle does not bind the 

FBE in vivo, even though it binds in vitro. This change in specificity for the FBE
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results from the interaction of dsxfemale protein with that of another female-specific 

regulatory gene. One candidate gene product for this interaction is thought to be that 

of ix.

The results presented here show that a lack of ix function in phenotypic 

females has no dramatic effect on ypl expression. These results therefore suggest that 

ix function is not required to positively control female-specific gene expression, 

consistent with the idea that ix functions as a negative regulator.

If dsxkmaX& protein fails to interact with the FBE due to its interaction with ix 

protein, and ix protein is not positively regulating ypl expression, then one would 

expect that in a simple model, ix blocks dsx from negatively regulating ypl 

expression. The presence of ix protein in diplo-X animals blocks dsx from binding to 

the FBE, and consequently, yp transcription proceeds. It would seem to follow that in 

the absence of ix function then, dsxfeimle would bind the FBE and yp expression would 

be limited. This is not seen however. Therefore, at this simplistic level, the proposal 

by Burtis and Baker is untenable.

Could ix protein still interact with dsx, but not be a negative regulator?

Suppose ix protein acted with dsxkmAle so that it would still bind to the FBE, but this 

binding then results in stimulation of yp expression, and not inhibition in its absence. 

This model too would seem untenable, as in the absence of ix function, one would
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expect decreased stimulation. Logically then, these simple models seem equivalent, 

and neither fully explains the data here.

How might these data and models be reconciled? One simple, and untested 

possibility is that ix does not act in the adult. An absence of ix function due to a 

temperature-sensitive product would not appear any different than a "natural" absence 

of ix function. Under this scenario, dsxkmals might bind to the FBE, and because of its 

female-specific carboxy-terminal, stimulate yp expression independent of any other 

regulatory gene. The function of ix would therefore be required only up to the mid- 

pupal period for female-type cellular differentiation, as shown by the temperature- 

shift/fertility experiment presented here.

A second model would propose that ix function is required in the adult, but 

only to repress male-specific functions. It may or may not interact with dsx, but if it 

does, only at the loci normally expressed in males. Experiments to test this hypothesis 

are currently underway by other workers in the laboratory in which this work was 

performed. Clearly, detailed knowledge of the transcriptional profile and protein 

product of ix would aid in the resolution of these issues.

A third model intended to explain the need for ix and <AxfeimIe function to 

produce a female phenotype in diplo-X animals may be generated by considering the 

newly obtained data. In this model, dsxfemals acts as a positive regulator for terminal
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female-specific gene expression. Furthermore, dsxfemale acts in conjunction with ix to 

repress male-specific gene expression. This cooperative interaction could proceed 

through a heterodimer between the two gene products or they could act independently 

of one another to recognize cis-acting DNA elements that repress transcription, dsxjnale 

would then act as only a negative regulator of female-specific gene expression in 

haplo-X animals.

Previous evidence (Burtis et al., 1991) has shown dsx{emale can activate female- 

specific gene expression in haplo-X adults. Using P-element transformation (Burtis 

and Baker, 1989) a cDNA copy of dsxfemale was transformed into haplo-X flies. 

Expression of this female-specific regulatory cDNA gene or a gene controlled by it 

significantly derepressed the expression of the yp 1 gene. However, the mechanism 

for this derepression is unknown at the present time. Based on the observations that 

the FBE is able to direct the sex-specific expression of the yp genes, and ix is not 

required in haplo-X individuals, this model would predict that dsxkm*{e functions by 

positively regulating ypl gene expression by binding to the FBE and inducing 

transcription.

The function of <Axfema,e and ix, in this model, would be to coordinately repress 

male-specific terminal differentiation. Since, diplo-X flies lacking either ix or dsxkm*{e 

produce similar phenotypes which possess both male and female characteristics, these
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two female-specific regulatory genes are thought to repress male differentiation in 

diplo-X animals. However, in this model the specificity for male-specific gene 

repression is generated through direct interactions of the functional gene products of 

both ix and dsxfem&le. This interaction emerges from the fact that neither ix nor dsxfemaB 

is able to repress male gene expression by itself.
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Figure #1. Model for the Sex Determination Regulatory Hierarchy

In this figure, arrows represent steps of positive control, while a bar at the end 

of a line indicates negative control. In males, the regulatory pathway is relatively 

simple, and a single gene, doublesex, acts in a male-specific mode to repress female 

differentiation. In females, an X:Autosome ratio of 1:1 leads to the sex-specific 

transcriptional activation of Sex-lethal, which in turn leads to a cascade of sex-specific 

RNA splicing events that ultimately cause the doublesex locus to be expressed in a 

female-specific manner. The doublesex female product acts with that produced by 

intersex to repress male differentiation, thereby allowing female differentiation to 

ensue.
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Figure 2. Model for Regulation of Sxl

This figure illustrates a simplified model (Keyes, 1992) for the pathway 

initiated through transcriptional regulation of Sxl. The actual details of the activation 

process are likely to be more complex than shown here. For example, there are many 

additional maternal and zygotic regulatory proteins that could be involved in promoter 

activation.
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Figure 3. Temporal Requiremenof ix Function for Fertility.

At 18°C the fertilized egg is able to develop into a mature adult in 

approximately seventeen days. The pupal stage of development is reached after 

approximately 10 days. When ix function is limited before the mid-pupal stage (13-14 

days), diplo-X animals develop as sterile females. On the other hand, if ix function is 

present up to or at this stage, these individuals develop as fertile females.
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Figure 4. Restoration of Fertility by Providing ix Function.

At 29°C the fertilized egg develops into a mature adult in about sixteen half

days (8 days). The pupal stage of development at this temperature is reached at about 

9 half-days (4 1/2 days) after fertilization. If ix function is not restored before the 

mid-pupal stage (11 half-days) the flies develop as sterile females. However, if ix 

function is restored before the mid-pupal stage, they develop as fertile females.
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Figure 5. Transcriptional Activity of the Sex-Determination Regulatory Hierarchy.

This developmental time plot is based on observations of flies developing at 

25°C. The segments for sis, Sxl, tra, tra-2, and dsx indicate the time during 

development that transcripts are present in diplo-X flies. The segment for ix spans the 

time period that this gene is required to produce fertile females. Arrows at the end of 

the lines indicate that these genes are required through the adult stage.

*tra is expressed at a very low rate in early development but, increases to a 

much higher level that corresponds to the temporal need for tra in the sexual 

regulatory pathway.

** While I have shown that ix function is necessary during the mid-pupal stage, 

my data does not clearly demonstrate its requirement in the adult female. Therefore, 

the terminal part of the line is indicated by a dashed line.
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Figure #6. ypl and rp49 Expression in Females Having ixts Function.

Diplo-X Df(2R)enb/£xPh (ix) and sibling controls (+) kept at the permissive 

temperature or shifted to the restrictive temperature for various periods o f time after 

eclosion. The numbers above each pair of ix and + represent the number of days 

after eclosion transcription was assayed. Total RNA was extracted, size-separated by 

denaturing electrophoresis, and blotted. The Northern blot was sequentially probed 

with 32p-labeled ypl and rp49, and a autoradiograph obtained. A composite of the two 

autoradiographs is shown here.

There is considerable expression of ypl, relative to sibling controls, even after 

females spent 20 days at the restrictive temperature.
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Figure #7. Quantitative Analysis of ypl Transcription in ixts Females.

The blot described in figure 6 was quantified by a volume integration (using 

the Image Quant program), that summed all pixels minus the background within a set 

area specified on the blot. This was performed to give the indicated values which 

correspond to samples kept at the permissive-temperature, samples shifted to the 

restrictive temperature, (ix) indicates samples that were diplo-X Df(2R)enb/ixPh, and 

(+) indicates samples that were sibling controls. (Time) refers to the number of days 

after eclosion transcription was assessed. The ypl value divided by the rp49 value 

gives the ratio, which will be used to compare transcriptional level between the ixts 

and the sibling controls.
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MTFRSEX  SIBLING CONTROL

Time ypl rp49 Ratio
1 255927 29585 8.65
4 2122501 98220 24.61
8 795683 43617 18.24
12 3064281 122792 24.96
16 1385535 96262 14.39
20 517569 95919 5.4

Time ypl rp49 Ratio
1 401703 51918 7.74
4 349811 19042 18.37
8 1304343 154233 8.46
12 753748 76649 9.83
16 24909990 85565 29.11
20 882934 75470 11.70

SAMPLES SHIFTED TO THE RESTRICTIVE TEMPERATURE 

fA/FEfiSEX SIBUNG CONTROL

Time ypl rp49 Ratio
4 71519 20108 3.56
8 398003 11387 34.95
12 509170 72811 6.99
16 2579165 103264 8.04
20 968584 71564 13.53

Time VPl rp49 Ratio
4 6642
8 72063 4680 15.4
12 1361038 72717 18.72
16 476223 59221 8.04
20 657059 71954 9.13
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Figure #8. Level of ypl Expression in the ixts and Sibling Controls Kept at the 

Permissive Temperature.

In this figure are depicted the level of ypl expression relative to rp49 for 

diplo-X Df(2R)enb/£cPh and their sibling controls at the permissive-temperature (data 

analyzed as described in figure 7).
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Figure #9. The Level of ypl Expression ixts and Sibling Controls Kept at the 

Restrictive Temperature.

In this figure are depicted the level of ypl expression relative to that of rp49 

for Diplo-X Df(2R)enb/ixPh and their sibling controls shifted to the restrictive- 

temperature after eclosion (data analyzed as described in figure 7).
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