Plant Species Distribution Along Topographic Gradients in Tallgrass Prairies of Eastern Nebraska.

Ghanim A. S. Abbadi

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Recommended Citation

Abbadi, Ghanim A. S., "Plant Species Distribution Along Topographic Gradients in Tallgrass Prairies of Eastern Nebraska." (1993). Student Work. 3322.
https://digitalcommons.unomaha.edu/studentwork/3322

This Thesis is brought to you for free and open access by DigitalCommons@UNO. It has been accepted for inclusion in Student Work by an authorized administrator of DigitalCommons@UNO. For more information, please contact unodigitalcommons@unomaha.edu.

Plant Species Distribution Along Topographic Gradients in Tallgrass Prairies of Eastern Nebraska.

A Thesis
Presented to the
Department of Biology
and the
Faculty of the Graduate College
University of Nebraska
in Partial Fulfillment
of the Requirements for the Degree
Master of Arts
University of Nebraska at Omaha

by
Ghanim A. S. Abbadi
May 1993

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI EP74924

Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

THESIS ACCEPTANCE

Acceptance for the faculty of the Graduate College, University of Nebraska, in partial fulfillment of the requirements for the degree Master of Arts, University of Nebraska at Omaha.

Committee

Acknowledgements

I would like to express my appreciation to Dr. Thomas B. Bragg for general assistance in completion of my thesis research, Ann Antlfinger for assistance in experimental design and statistical analysis, David M. Sutherland for assistance in computer graphics, and Mr. Frank Hartranft for assistance in computer use.

TABLE OF CONTENTS:

Abstract 1
Introduction 2
Methods
Study Sites 3
Vegetative Analysis 4
Statistical Analysis 5
Results and Discussion
General Results 5
Species Gradients 6
Literature Cited 43
LIST OF TABLES
Table I. Species composition (canopy cover \pm Standard Error) of Stolley Prairie by species and topographic location 14
Table II. Species composition (canopy cover \pm Standard Error) of Bauermeister Prairie by species and topographic location 21
Table III. Statistical comparison of topographic locations within sites 26
Table IV. Comparison of topographic location (TOPO) between sites 33

LIST OF FIGURES:

Fig. 1. Grass and forb canopy cover from hilltop (Topographic Location 1)
to lowlands (Topographic Location 5) at Stolley and
Bauermeister Prairies . 7

Fig. 2. Canopy cover of big bluestem from hilltop (Topographic Location 1) to lowlands (Topographic Location 5) at Stolley and Bauermeister Prairies . 8

Fig. 3. Canopy cover of flowering spurge showing a decline from hilltop (Topographic Location 1) to lowland (Topographic Location 5)
at Stolley and Bauermeister Prairies . 10

Fig. 4. Canopy cover of Scribner dichanthelium and leadplant at Stolley Prairie showing maximum cover at mid-slope locations 12

Abstract

Plant species composition was evaluated along a slope gradient in two native tallgrass prairies of eastern Nebraska. Forb cover differed significantly $(\mathrm{P}<0.05)$ along the topographic gradient at both sites, however, grass cover differed only at one site ($\mathrm{P}<0.05$). A site-by-site comparison by topographic location indicates significant differences between lower slopes for grass and between upper slopes for forbs. Big bluestem (Andropogon gerardii Vitman) dominated all topographic locations at both sites (average cover $=64 \%$) with no significant differences in the topographic distribution. Kentucky bluegrass (Poa pratensis L.), little bluestem (Andropogon scoparius Michx.), false boneset (Kuhnia eupatorioides L.), prairie wild rose (Rosa arkansana Porter), prairie violet (Viola pedatifida G. Don), and sedge (Carex L. spp.) also showed no significant topographic preference at either site. Mid-slope locations contained the greatest number of species that differed significantly along the topographic gradient. Leadplant (Amorpha canescens Pursh) and indiangrass (Sorghastrum nutans (L.) Nash) were the two most common species showing high canopy cover values in mid-slope locations at both sites. Significant topographic distributions were also noted for scouring rush (Equisetum laevigatum A. Br.) at both sites and for finger coreopsis (Coreopsis palmata Nutt.) found at only one site. Flowering spurge (Euphorbia corollata L.) and sideoats grama (Bouteloua curtipendula (Michx.) Torr.) were significantly higher on the hilltop locations of one site.

Introduction

The tallgrass or bluestem prairie (Andropogon-Panicum-Sorghastrum; Küchler 1964), was once an extensive ecosystem dominating the eastern portion of the prairie region of central North America. Within the tallgrass prairie region there is considerable latitudinal variability in species composition (for example, see White and Glenn-Lewin 1984 and Umbanhowar 1992). In addition, within this broad-scale heterogeneity there is also variability such as that resulting from slope angle (Umbanhowar 1992) that affects soil moisture and that is an important correlate of compositional variation (White and Glenn-Lewin 1984). Additional local heterogeneity, such as those resulting from different soil, climatic, and biotic processes result in a heterogeneity that is often recorded over gradients of only a few centimeters and that suggesting different histories of plant establishment. Such diversity has been associated with factors such as soil moisture, soil texture, nutrient composition (especially phosphorus, nitrogen, calcium and sodium), and salinity (Curtis 1955, Dix and Butler 1960, Partch 1962, Bliss and Cox 1964, Dix and Butler 1960, Dix and Smeins 1967, Ungar 1970, Redmann 1972, Barnes and Harrison 1982, Barnes et al. 1983, Nelson and Anderson 1983, Archer 1984, Polley and Collins 1984, Polley and Wallace 1986, Tatina 1987, Schimel et al. 1991, Umbanhowar 1992).

Abiotic gradients resulting from regional and local heterogeneity have been correlated with various plant gradients. Partch (1962) and Umbanhowar (1992), for example, found considerable variation in local plant distribution in Wisconsin due to the great range in water-holding capabilities of soils. Some species like tall cinquefoil (Potentilla arguta Pursh) were found in more xeric sites while others, like indiangrass (Sorghastrum nutans (L.) Nash) were found in more mesic areas. Other species, such as big and little bluestem (Andropogon gerardii Vitman.
and A. scoparius Michx.), prairie phlox (Phlox pilosa L.), and the non-native Kentucky bluegrass (Poa pratensis L.) were found in all soil moisture classes except those lowland or wet areas where moisture was highest. In these areas, sedges (Carex L. spp.), and switchgrass (Panicum virgatum L.) were most prevalent. Similar species distributions for some of the same species were noted by White and Glenn-Lewin (1984).

The present study examines a gradient from upland to lowland in an eastern Nebraska tallgrass prairie in order to identify any relationship between slope-location and plant species composition. While soil moisture was not measured due to 1992 being a wet year, slope locations were considered to represent a soil moisture gradient as suggest in several studies including those by Tolstead (1942), Barnes and Harrison (1982), Abrams and Hulbert (1987), and Tatina (1987).

Methods

Study Sites

The study was conducted at two native, tallgrass prairies located approximately 16 km . west of Omaha in Douglas County, Nebraska: Stolley Prairie, a 10 ha site, and Bauermeister Prairie, a 12.5 ha site. These prairies are two of the largest tallgrass prairie remnants in the Omaha area. Both sites are maintained using prescribed fire but neither site had been burned for two growing seasons prior to this study. Species descriptions of these sites by Boettcher and Bragg (1989) and Bragg (1991) address general composition but do not evaluate within- or between-site gradients.

Stolley prairie (NW1/4, Section 15, Township 15N, Range 11E), privately owned by

William Stolley, is situated approximately 6 km . north of Bauermeister Prairie (NE1/4, W1/2, Section 3, Township 14N, Range 11E). Bauermeister Prairie is presently owned the City of Omaha and is located on one of the recreational dam sites. Elevations at Bauermeister Prairie range from a hilltop location of 358 m to a lower slope at 340 m above mean sea level. Those at Stolley Prairie range from an upper slope varying from $354-360 \mathrm{~m}$ to a lower slope at 341 m .

Monthly temperatures for the region average from -6 C in January to 24 C in July. Precipitation from 1961 to 1990 averaged 75 cm . annually, with most occurring from May through September (National Oceanic and Atmospheric Administration 1990). Neither site has a history of grazing by cattle. General soils of the study area are Typic Hapludolls of the Mollisol soil order. At Stolley Prairie, soils are of the Marshall silty clay loam soil series while those at Bauermeister Prairie belong to the Marshall and Ponca silty clay loam soil series (Bartlett 1975).

Vegetative Analysis:

At each site, three principal, east-west transects were established that extended from hilltop (Bauermeister Prairie) or upper-slope (Stolley Prairie) locations to lower-slope locations. These transects were systematically located on east-facing slopes, the only topographic setting found at both sites. The transects were labelled from A (north) to C (south). Five points were equally spaced along each of the three principal transects representing five points along a topographic gradient. Twenty-meter-long subtransects were established at right angles to the main transect at each of the five points. These subtransects, referred to as topographic locations in this study, were numbered from 1 (hilltop or upper-slope) to 5 (lower-slope). Along each 20 m -subtransect, ten, $30 \times 50 \mathrm{~cm}\left(0.15 \mathrm{~m}^{2}\right)$ plots were systematically located. In each plot, canopy cover was
evaluated by species and by total-grass and total-forb cover, using a modified Daubenmire (1959) canopy cover technique (Bragg 1991). Coverage categories used were: less than $1 \%, 1-5 \%, 5-$ $\mathbf{2 5 \%}, \mathbf{2 5 - 5 0 \%}, \mathbf{5 0 - 7 5 \%}, \mathbf{7 5 - 9 5 \%}, \mathbf{9 5 - 9 9 \%}$, and greater than 99%. The mid-point values for each cover category were used for analysis.

Species diversity is measured as Species Richness (S), a count of the number of species. Plant species were identified and verified at the University of Nebraska at Omaha (OMA) Herbarium. Species nomenclature is from the Great Plains Flora Association (1986). Plot sampling was conducted in August and September 1992.

Statistical Analysis

A non-parametric (NPAR1WAY procedure) (SAS Institute 1985) was used to analyze significant effects because the type of data used in this study were not normally distributed (Zar 1984). This procedure performs analysis of variance on rank scores of a response variable. Species occurring in less than two plots were not statistically analyzed. The a priori level of significance was set at $\mathrm{P}=0.05$.

Results and Discussion:

General Results

Differences between the two sites included a slightly higher plant diversity at Stolley Prairie $(S=42)$ than at Bauermeister Prairie $(S=38)$ (Tables I and II). In addition, total grass cover along the topographic gradient differed significantly $(\mathbf{P}<0.05)$ at Bauermeister but not at Stolley

Prairie. Forb cover, however, which differed significantly along the topographic gradient at both sites (Table III), was generally higher in mid-slope (topographic location 2-4) than on hilltop, upper, or lower slopes (Fig. 1, Table IV). These results differ from those of a study on both sites by Boettcher (1989) in which grass and forb cover were lowest on hilltops. Boettcher's study, however, was not designed to assess a topographic gradient. The results of the present study suggest a general gradient in grasses and forbs but one that, in the absence of a clear upland-to-lowland gradient, may not be solely related to soil moisture.

A site-by-site comparison by topographic location indicates significant differences ($\mathrm{P}<0.05$) between lower-slopes (topographic locations 3-5) for grass and between upper slopes (topographic location 1) for forbs (Table IV). These results suggest some basic differences between the two sites evaluated, a conclusion also reached by Hickey (1992). More importantly, these results emphasize the need for adequate site replication in studies, even those on such broad, vegetative characteristics as grasses and forbs.

Species Gradients

Big bluestem dominated all topographic locations at both Stolley Prairie (average cover = 69%) and Bauermeister Prairie (59\%) (Tables I and II). Differences between the sites, however, were significant ($\mathrm{P}<0.05$) only for mid-slope locations (topographic locations 2-4) (Fig. 2, Table IV). No significant differences in the topographic distribution of big bluestem were noted for either site (Table III), a result previously reported by Abrams and Hulbert (1987). Other species also showing no significant topographic distributions at either site included Kentucky bluegrass, little bluestem, false boneset (Kuhnia eupatorioides L.), prairie wild rose (Rosa arkansana Porter), prairie violet (Viola pedatifida G. Don), and sedge. The lack of topographic

Fig. 1. Grass and forb canopy cover from hilltop (Topographic Location 1) to lowlands (Topographic Location 5) at Stolley and Bauermeister Prairies. Vertical lines are Standard Error bars.

Fig. 2. Canopy cover of big bluestem from hilltop (Topographic Location 1) to lowlands (Topographic Location 5) at Stolley and Bauermeister Prairies. Vertical lines are Standard Error bars.
effect on the distribution of Kentucky bluegrass and little bluestem is the same as reported by Abrams and Hulbert (1987). Black-eyed susan (Rudbeckia hirta L.) differed significantly along the topographic gradients $(\mathrm{P}<0.10$ and $\mathrm{P}<0.05$) but no pattern was apparent (Table IV). This result is not surprising given the annual nature of the species and its tendency to become established in areas of bare soil.

Other species, however, were consistent in showing patterns of topographic distribution. Leadplant (Amorpha canescens Pursh), smooth brome (Bromus inermis Leyss. spp. inermis), scouring rush (Equisetum laevigatum A. Br.), and indiangrass were the only species to show significant $(\mathrm{P}<0.05)$ topographic distributions at both sites. Species with statistically significant $(\mathrm{P}<0.05)$ topographic distributions, but only at one site included white aster (Aster ericoides L.), Scribner dichanthelium (Dichanthelium oligosanthes (Schult.) Gould var. scribnerianum (Nash) Gould), flowering spurge (Euphorbia corollata L.), stiff sunflower (Helianthus rigidus (Cass.) Desf.), and switchgrass at Stolley and whorled milkweed (Asclepias verticillata L.), sideoats grama (Bouteloua curtipendula (Michx.) Torr.), finger coreopsis (Coreopsis palmata Nutt.), false sunflower (Heliopsis helianthoides (L.) Sweet var. scabra (Dun.) Fern.), prairie phlox, black-eyed susan, and prairie goldenrod (Solidago missouriensis Nutt.) at Bauermeister Prairie (Table III). Of the species with statistically significant topographic distributions, flowering spurge at Stolley Prairie (Fig. 3) and sideoats grama at Bauermeister Prairie were significantly higher on hilltops or uplands (topographic locations 1-2) (Table III). No species showed this topographic distribution at both sites. For each of these species, the highest cover on the replicate site also occurred on hilltops although the statistical differences along the topographic gradient were not significant. Prairie phlox at Bauermeister Prairie was also significantly higher on hilltops although there were too few

Fig. 3. Canopy cover of flowering spurge showing a decline from hilltop (Topographic Location 1) to lowland (Topographic Location 5) at Stolley and Bauermeister Prairies. Vertical lines are Standard Error bars.
plants from Stolley Prairie for a statistical comparison.
Mid-slope locations (topographic locations 2-4) contained the greatest number of species that differed significantly at one or both sites (Tables I and II). Leadplant was the only species with a similar, significant topographic distribution occurring at both sites (Fig. 4). Indiangrass also showed significant topographic distributions at both sites. This species' canopy cover was highest on upper- and mid-slope locations although there were significant, between-site differences in hilltop and upland (topographic locations 1-2) and slope (topographic location 5) locations. Abrams and Hulbert (1987), however, observed that neither leadplant nor indiangrass were significantly affected by topographic location although they only considered hilltop and lowland settings.

A significant pattern of topographic distribution, although only at one site, was also recorded for eight other species. Of these, those with the highest canopy cover on mid-slope locations were whorled milkweed, white aster, Scribner dichanthelium, stiff sunflower, and switchgrass at Stolley Prairie and false sunflower and prairie goldenrod at Bauermeister Prairie. All but false sunflower and Scribner dichanthelium were found also to have the highest average canopy cover on mid-slope locations at the other, replicate site although there was no significant difference detected along the topographic gradient (Table III). Abrams and Hulbert (1987), however, reported that white aster was not significantly affected by topographic location although they only contrasted an upland with a lowland setting and did not evaluate slope locations. Switchgrass, usually a species of more mesic habitats (e.g. see Partch, 1962), was uncommon at Stolley Prairie occurring only in a swale on the slope evaluated. Cover of this species is normally highest in lowland settings (Abrams and Hulbert 1987).

Fig. 4. Canopy cover of Scribner dichanthelium and leadplant at Stolley Prairie showing maximum cover at mid-slope locations. Hilltop $=$ Topographic Location 1, Lowland Topographic Location 5. Vertical lines are Standard Error bars.

Species whose topographic distributions were significant at both sites and which were highest in canopy cover in the lower-slope (topographic location 5) were scouring rush, found at both sites, and finger coreopsis, found only at Bauermeister Prairie. However, much of the truly lowland habitat has been lost, at Stolley Prairie, to cultivation, and at Bauermeister Prairie, to inundation resulting from construction of a flood-control dam.

Conclusions drawn from species data are similar to those for the general vegetative categories (grass and forb). The lack of a gradient from upland to lowland, shown in other studies to represent a moisture gradient, suggests basic differences between the two sites that does not solely represent a distribution based on soil moisture. Additionally, the data suggest some basic differences between the two sites that emphasizes the need for adequate site replication in grassland studies, whether the study be focussed at micro-scale or macro-scale events.

SPECIES	TOPOGRAPHIC LOCATION				
	$\underset{\text { hilltop }}{1}$	2	3	4	5 lower-slope
STOLLEY PRAIRIE (SITE 1)					
Total grass	92 ± 1.8	96 ± 1.0	94 ± 1.6	95 ± 1.1	96 ± 1.0
Total Forb	18 ± 3.3	20 ± 4.3	30 ± 4.6	38 ± 4.6	17 ± 3.8
Species Richness	25	23	25	28	22
GRASS AND GRASS-LIKE:					
big bluestem (Andropogon gerardii Vitman)	66 ± 3.4	74 ± 4.0	71 ± 2.4	67 ± 2.8	67 ± 3.5
little bluestem (Andropogon scoparius Michx.)	3 ± 1.4	1 ± 0.5	2 ± 0.8	0.5 ± 0.2	2 ± 1.3
sideoats grama (Bouteloua curtipendula (Michx.) Torr.)	1 ± 0.7	tr	tr	0.8 ± 0.5	2 ± 1.3
smooth brome (Bromus inermis Leyss. ssp. inermis)	38 ± 5.9	32 ± 5.3	18 ± 4.1	18 ± 4.6	53 ± 3.8
sedge (Carex spp.)	0.7 ± 0.51	2 ± 1.3	1 ± 0.5	1 ± 1.2	2 ± 0.8

Table I. Species composition (canopy cover \pm Standard Error) of Stolley Prairie by species and topographic location. $\underline{\underline{t r}=<0.05 \%}$ cover.

SPECIES	TOPOGRAPHIC LOCATION				
	$\begin{gathered} 1 \\ \text { hilltop } \end{gathered}$	2	3	4	5 lower-slope
slimleaf dichanthelium (Dichanthelium linearifolium (Scribn.) Gould)	0	0	0	0	0
Scribner dichanthelium (Dichanthelium oligosanthes (Schult.) Gould var. scribnerianum (Nash) Gould)	7 ± 2.1	5 ± 1.9	20 ± 4.1	20 ± 3.6	12 ± 3.0
Canada wild rye (Elymus canadensis L.)	0	4 ± 3.8	0	0	0
muhly (Muhlenbergia sp.)	0	0	tr	0	0
switchgrass (Panicum virgatum L.)	0	3 ± 1.8	0	0	0
Kentucky bluegrass (Poa pratensis L.)	14 ± 1.8	15 ± 2.8	17 ± 2.2	20 ± 2.8	11 ± 1.8
green foxtail (Setaria viridis (L.) Beauv.)	2 ± 1.5	0	0	0	0
indiangrass (Sorghastrum nutans (L.) Nash)	7 ± 2.3	3 ± 1.0	16 ± 3.5	13 ± 3.1	4 ± 1.8
porcupine-grass (Stipa spartea Trin.)	0.5 ± 0.5	0	0	0	0.5 ± 0.5

Table I. Species composition (canopy cover \pm Standard Error) of Stolley Prairie by species and topographic location.
tr $=<0.05 \%$ cover.
SPECIES

Table I. Species composition (canopy cover \pm Standard Error) of Stolley Prairie by species and topographic location. $\operatorname{tr}=<0.05 \%$ cover.

SPECIES	TOPOGRAPHIC LOCATION				
	$\begin{gathered} 1 \\ \text { hilltop } \end{gathered}$	2	3	4	5 lower-slope
tall thistle (Cirsium altissimum (L.) Spreng.)	0	2 ± 1.5	0	0	0
horse-weed (Conyza canadensis (L.) Cronq.)	1 ± 1.2	0	0.5 ± 0.5	tr	3 ± 1.4
finger coreopsis (Coreopsis palmata Nutt.)	0	0	0	0	0
white prairie clover (Dalea candida Michx. ex Willd.)	1 ± 1.3	0	0	0.5 ± 0.5	0
Illinois tickclover (Desmodium illinoense A. Gray)	0	0	0	0.6 ± 0.5	0
purple coneflower (Echinacea angustifolia DC.)	tr	0	tr	0	0
smooth scouring rush (Equisetum laevigatum A. Br.)	0	0.5 ± 0.5	tr	0	2 ± 0.8
flowering spurge (Euphorbia corollata L.)	7 ± 2.4	7 ± 2.1	3 ± 1.4	1 ± 0.5	2 ± 0.8
fire-on-the-mountain (Euphorbia cyathophora Murray)	1.0 ± 0.5	0	0	0	tr

Table II. Species composition (canopy cover \pm Standard Error) of Bauermeister Prairie by species and topographic location. For full scientific citation, see Table I. tr $=<0.05 \%$. cover

SPECIES	TOPOGRAPHIC LOCATION				
	1	2	3	4	5
	hilltop				lower-slope

BAUERMEISTER PRAIRIE (SITE 2)

$85+2.3$
$\begin{array}{ll}m & n \\ m & \eta \\ +1 & +1 \\ \infty & \underset{\sim}{\infty}\end{array}$

21

SPECIES	TOPOGRAPHIC LOCATION				
	$\begin{gathered} 1 \\ \text { hilltop } \end{gathered}$	2	3	4	5 lower-slope
Poa pratensis	10 ± 1.2	4 ± 1.1	7 ± 1.6	5 ± 1.4	6 ± 1.1
Setaria viridis	0	0	0	0	0
Sorghastrum nutans	14 ± 4.0	29 ± 3.2	14 ± 2.8	10 ± 2.6	10 ± 1.9
Stipa spartea	0	0	0	0	0
FORBS AND OTHER SPECIES					
Achillea millefolium	0	0	0	0	0
Ambrosia artemisiifolia	0	0	0	0	0
Amorpha canescens	3 ± 1.5	9 ± 2.8	4 ± 2.2	5 ± 1.9	tr
Asclepias syriaca	0	0	0	0	0
Asclepias verticillata	3 ± 1.0	3 ± 1.4	9 ± 2.3	1 ± 0.5	tr
Aster ericoides	4 ± 1.8	3 ± 1.1	6 ± 1.6	8 ± 1.9	4 ± 1.6
Aster laevis	0	0	0	0	0
Bouteloua curtipendula	1 ± 0.7	tr	0	0	tr
Cirsium altissimum	0	0	0	0	0
Calystegia sepium	0	0	0	0	0

Table II. Species composition (canopy cover \pm Standard Error) of Bauermeister Prairie by species and topographic location. For full scientific citation, see Table I. $\mathbf{t r}=<0.05 \%$. cover

SPECIES	TOPOGRAPHIC LOCATION				
	$\begin{gathered} 1 \\ \text { hilltop } \end{gathered}$	2	3	4	5 lower-slope
Conyza canadensis	tr	tr	tr	1 ± 0.5	1 ± 0.2
Coreopsis palmata	0	$1 \pm .05$	0	0	4 ± 2.1
Dalea Candida	tr	0	tr	0	0
Desmodium illinoense	0.5 ± 0.5	0	tr	1 ± 0.5	0
Echinacea angustifolia	0	0	0	0	1 ± 1.2
Equisetum Laevigatum	0	0		0	tr
Euphorbia corollata	10 ± 2.6	6 ± 2.4	7 ± 2.1	5 ± 1.9	2 ± 0.9
Euphorbia cyathophora	0	0	0	0	0
Gaura parviflora	0	0	0	0	0
Helianthus rigidus	5 ± 1.9	6 ± 2.9	10 ± 2.6	4 ± 1.5	6 ± 2.4
Heliopsis helianthoides	12 ± 3.0	11 ± 4.3	24 ± 4.2	23 ± 4.2	10 ± 2.6
Kuhnia eupatorioides	tr	0	1 ± 0.5	tr	0
Lactuca spp.	0	0	tr	tr	tr
Lespedeza capitata	0	0	0	4 ± 3.8	0
Oenothera sp.	tr	1 ± 0.5	tr	0	0
Oenothera villosa	1 ± 0.7	0	tr	0	0

Table II. Species composition (canopy cover \pm Standard Error) of Bauermeister Prairie by species and topographic location. For full scientific citation, see Table I. $\operatorname{tr}=<0.05 \%$. cover

SPECIES	TOPOGRAPHIC LOCATION				
	$\underset{\text { hilltop }}{1}$	2	3	4	5 lower-slope
Oxalis dillenii	tr	tr	tr	tr	tr
Panicum virgatum	0	0	0	0	0
Phlox pilosa	9 ± 3.7	tr	1 ± 0.5	1 ± 0.2	tr
Physalis heterophylla	1 ± 1.2	0	0	0	0
Potentilla arguta	$1 \pm .5$	1 ± 0.7	2 ± 1.0	0	0
Physalis sp.	tr	1 ± 0.5	0	0	0
Psoralea argophylla	0	0	0	0	0
Ratibida pinnata	0	2 ± 1.5	0	0	0
Rhus glabra	0	tr	0	0	0
Rosa arkansana	0.5 ± 0.5	0	2 ± 0.8	0	tr
Rudbeckia hirta	3 ± 0.9	8 ± 2.4	5 ± 1.9	4 ± 1.5	12 ± 3.1
Solidago missouriensis	3 ± 1.8	4 ± 2.1	8 ± 2.9	1 ± 1.2	0
Vernonia baldwinii	0	0	tr	0	tr
Viola pedatifida	tr	0	1 ± 0.5	tr	tr

Table III. Statistical comparison of topographic locations within sites. Only species with			
a sufficient frequency are included on the table.	SITE	F VALUE	P VALUE
SPECIES	1	1.381	0.2435
Grass	2	2.961	0.0218
Forbs	1		
	2	4.745	0.0013
Amorpha canescens	1	5.319	0.0005
	2	6.168	0.0001
Andropogon gerardii	1	2.759	0.0301
	2	1.070	0.3738
Andropogon scoparius	1	1.731	0.1462
Asclepias verticillata	2	0.868	0.4846
		1.777	0.1366

Table III. Statistical comparison of topographic locations within sites. Only species with
a sufficient frequency are included on the table.
Table III. Statistical comparison of topographic locations within sites. Only species with
a sufficient frequency are included on the table.

SPECIES	SITE	F VALUE	P VALUE

0.0007
0.2014
0.3462
0.0026
$\stackrel{\rightharpoonup}{8}$
0.8592
0.1081
0.1215
0.3669
0.0078
5.101
1.513
$\underset{\sim}{\text { 국 }}$

$\stackrel{N}{0}$
1.855
1.084
3.604
-N

- N
- N
- N
$-N$
\sim
SITE F VALUE P VALUE
$-N$
\square
--

Table III. Statistical comparison of topographic locations within sites. Only species with a sufficient frequency are included on the table.			
SPECIES	SITE	F VALUE	P VALUE
Dalea candida	1	0.828	0.5096
	2	1.365	0.2491
Desmodium illinoense	1	1.339	0.2582
	2	0.738	0.5675
Dichanthelium oligosanthes	1		
	2	5.407	0.0004
		0.799	0.5276
Echinacea angustifolia	1	0.904	0.4635
	2	1.00	0.4097
Equisetum laevigatum	1	3.239	0.0140
	2	2.949	0.0222
Euphorbia corollata			
	1	2.717	0.0321
		1.833	0.1255

SPECIES	SITE	F VALUE	P Value
Euphorbia cyathophora	1	1.686	0.1563
Helianthus rigidus	1	2.848	0.0261
	2	0.895	0.4688
Heliopsis helianthoides	1	0.256	0.9055
	2	3.459	0.0099
Kuhnia eupatorioides	1	1.304	0.2713
	2	1.075	0.3709
Lactuca sp.	1	0.970	0.4259
	2	0.657	0.6230
Oenothera sp.	2	1.858	0.1209
Oenothera villosa	1	1.365	0.2491
	2	2.234	0.0682

Table III. Statistical comparison of topographic locations within sites. Only species with
a sufficient frequency are included on the table.

SPECIES	SITE	F VALUE	P VALUE

0.1057
0.1057
0.0544
0.0269
0.1670
0.4097
0.2978
0.0906
管
0.7358
0.0009
0.3513

SPECIES	SITE	F VALUE	P VALUE
Rosa arkansana	1	0.490	0.7433
	2	2.145	0.0782
Rudbeckia hirta	1	2.071	0.0875
	2	3.059	0.0187
Solidago missouriensis	1	1.857	0.1211
	2	2.580	0.0398
Sorghastrum nutans	1	4.898	0.0010
	2	6.951	0.0001
Stipa spartea	1	0.750	0.5595
Vernonia baldwinii	2	0.750	0.5595

$\begin{array}{l}\text { Table III. Statistical comparison of topographic locations within sites. Only species with } \\ \text { a sufficient frequency are included on the table. }\end{array}$
SPECIES
SITE
:---

Table IV. Comparison of topographic location (TOPO) between sites: $1=$ hilltop, $5=$ lower-slope). Only species with sufficient frequency to be statistically tested are included. | SPECIES | TOPO | F VALUE | P VALUE |
| :--- | :---: | :---: | :---: |
| Grass | 1 | 0.435 | 0.5120 |
| | 2 | 3.114 | 0.0829 |
| | 3 | 9.868 | 0.0026 |
| | 4 | 9.993 | 0.0025 |
| Forbs | 5 | 5.653 | 0.0207 |
| | | | |
| | 1 | 19.655 | 0.0001 |
| | 2 | 20.454 | 0.0001 |
| | 3 | 32.231 | 0.0001 |
| | 4 | 3.152 | 0.0811 |
| | 5 | 11.136 | 0.0015 |
| | | | |
| | | 0.050 | 0.8245 |
| | 1 | 2.941 | 0.0917 |
| | 2 | 7.838 | 0.0069 |
| | 3 | 2,872 | 0.0955 |
| | 4 | 2.037 | 0.1589 |

Table IV. Comparison of topographic location (TOPO) between sites: $1=$ hilltop, $5=$ lower-slope). Only species with sufficient frequency to be statistically tested are included.

SPECIES	TOPO	F VALUE	P VALUE
Andropogon gerardii	1	1.255	0.2673
	2	10.329	0.0021
	3	7.619	0.0077
	4	9.194	0.0036
Andropogon scoparius	5	0.050	0.8237
	1	1.533	0.2206
	2	8.175	0.0059
	3	0.086	0.7708
	4	5.567	0.0217
	5	0.308	0.5812
	1	2.560	0.1150
	2	1.357	0.2489
	3	0.108	0.7436
	4	1.374	0.2460
	5	3.247	0.0767

Table IV. Comparison of topographic location (TOPO) between sites: $1=$ hilltop, $5=$ lower-slope). Only species with sufficient frequency to be statistically tested are included. | SPECIES | TOPO | F VALUE | P VALUE |
| :---: | :---: | :---: | :---: |
| Bouteloua curtipendula | 1 | 0.115 | 0.7359 |
| | 2 | 0.000 | 0.9999 |
| | 3 | 4.462 | 0.0390 |
| | 4 | 2.157 | 0.1473 |
| | 5 | 2.081 | 0.1546 | 0.0001

0.0001
0.0001
0.0003
0.0001

0.0001
0.0002
0.0001
0.0071
0.0001 29.115
30.450
17.337
14.801
172.303

\[

\]

Table IV. Comparison of topographic location (TOPO) between sites: $1=$ hilltop, $5=$ lower-slope). Only species with sufficient frequency to be statistically tested are included.

SPECIES	TOPO	F VALUE	P VALUE
Dichanthelium oligosanthes	1	0.088	0.7678
	2	1.518	0.2229
	3	13.070	0.0006
Echinacea angustifolia	4	19.232	0.0001
	5	4.855	0.0316
	1		
Equisetum laevigatum	3	1.00	0.3215
	5	1.00	0.3215
	2	1.00	0.3215
Euphorbia corollata	3	1.00	0.3215
	5	1.00	0.3215
	1	0.799	0.0561
	2	0.001	0.4178
	3	2.395	0.9796
	4	3.943	0.1272
	5	0.204	0.6532

Table IV. Comparison of topographic location (TOPO) between sites: $1=$ hilltop, $5=$ lower-slope). Only species with sufficient frequency to be statistically tested are included. TOPO F VALUE P VALUE

Table IV. Comparison of topographic location (TOPO) between sites: $1=$ hilltop, $5=$

$\begin{array}{l}\text { Table IV. Comparison of topographic location (TOPO) between sites: } \\ \text { lower-slope). Only species with sufficient frequency to be statistically tested are included. }\end{array}$			
SPECIES	TOPO	F VALUE	P VALUE
Sorghastrum nutans	1	2.945	0.0915
	2	60.881	0.0001
	3	0.111	0.7403
	4	0.672	0.4156
	5	4.251	0.0437
Viola pedatifida			
	1	1.243	0.2696
	2	3.551	0.0645
	3	0.803	0.3740
	4	5.303	0.0249
	5	1.316	0.2561

Literature Cited

Abstract

Abrams, M.D. and L.C. Hulbert. 1987. Effect of topographic position and fire on species composition in tallgrass prairie in northeast Kansas. The American Midland Naturalist 117(2):442-445.

Archer, S. 1984. The distribution of photosynthetic types on a mixed-grass prairie hillside. American Midland Naturalist 111:138-142.

Barnes, P.W. and A.T. Harrison. 1982. Species distribution and community organization in a Nebraska Sandhills mixed prairie as influenced by plant/soil-water relationships. Oecologica 52:192-201.

Barnes, P.W., L.S. Tieszen, and D.J. Ode. 1983. Distribution, production and diversity of $\mathrm{C}_{3}-$ and C_{4} - dominated communities in a mixed prairie. Canadian Journal of Botany 61:741-751.

Bartlett, P.A. 1975. Soil survey of Douglas and Sarpy Counties, Nebraska. U.S. Department of Agriculture, Soil Conservation Service and University of Nebraska Conservation and Survey Division. U.S. Government Printing Office, Washington D.C. 79 pp. plus maps.

Bliss, L.C. and G.W. Cox. 1964. Plant community and soil variation within a northern Indiana prairie. American Midland Naturalist 72:115-128.

Boettcher, J.F. 1981. Native tallgrass prairie remnants of eastern Nebraska: Floristics and effects of management, topography, size, and season of evaluation. Master of Arts Thesis, University of Nebraska at Omaha.

Boettcher, J.F. and T.B. Bragg. 1989. Tallgrass prairie remnants of eastern Nebraska. Pages 1-7 In Proceedings of the Eleventh North American Prairie Conference (T.B. Bragg and J. Stubbendieck, editors), University of Nebraska Printing. 293 pp.
\# Bragg, T.B. 1991. Implications for long-term prairie management from seasonal burning of loess hill and tallgrass prairies. Pages 34-44 In Fire and the environment: ecological and cultural perspectives: Proceedings of an international symposium (S.C. Nodvin and T.A. Waldrop, editors). U.S. Department of Agriculture General Technical Report SE69, Forest Service, Southeastern Forest Experiment Station. 429 pp.

Curtis, J.T. 1955. A prairie continuum in Wisconsin. Ecology 36:558-566.

Daubenmire, R. 1959. A canopy-cover method of vegetational analysis. Northwest Science 33:43-64.

Dix, R.L. and J.E. Butler. 1960. A phytosociological study of a small prairie in Wisconsin. Ecology 41:316-327.

Dix, R.L. and F.E. Smeins. 1967. The prairie, meadow and marsh vegetation of Nelson County, North Dakota. Canadian Journal of Botany 45:21-58.
\& Great Plains Flora Association. 1986. Flora of the Great Plains. University Press of Kansas. 1392 pp.

Hickey, S.M. 1992. The influence of fuel bed heterogeneity on plant response to fire in the tallgrass prairie. Master of Arts Thesis, University of Nebraska at Omaha. 46 pp.

Küchler, A.W. 1964. Potential natural vegetation of the coterminous United States. Special Publication Number 36. New York, NY: American Geographical Society.

National Oceanic and Atmospheric Administration. 1990. Local climatological data: Annual summary with comparative data - Omaha (North), Nebraska. National Climatic Data Center, Asheville, North Carolina. 8 pp.

Nelson, D.C., and R.C. Anderson. 1983. Factors related to the distribution of prairie plants along a moisture gradient. American Midland Naturalist 109:367-375.

Partch, M.L. 1962. Species distribution in a prairie in relation to water holding capacity. Proceedings of the Minnesota Academy of Science 30:38-43.

Polley, H.W. and S.L. Collins. 1984. Relationship of vegetation and environment in Buffalo Wallows. American Midland Naturalist 112 (1):178-186.

Polley, H.W. and L.L. Wallace. 1986. The relationship of plant species heterogeneity to soil variation in Buffalo Wallows. The Southwestern Naturalist 31 (4):493-501.

Redmann, R.E. 1972. Plant communities and soils of an eastern North Dakota prairie. Bulletin of the Torrey Botanical Club 99:65-76.

SAS Institute Inc. 1985. SAS Users Guide: Statistics, Version 5 Edition. Cary, North Carolina. 957 pp .

Schimel, D.S., T.G.F. Kittel, A.K. Knapp, T.R. Seastedt, W.J. Parton and V.B. Brown. 1991. Physiological interactions along resource gradients in a tallgrass prairie. Ecology 72 (2):672-684.

Tatina, R. 1987. Gradient analysis and description of a transition zone prairie in eastern South Dakota. Proceedings of the South Dakota Academy of Science 66:51-64.

Tolstead, W.L. 1942. Vegetation of the northern part of Cherry County, Nebraska. Ecological Monographs 12:255-292.

Umbanhowar, Jr., C.E. 1992. Reanalysis of the Wisconsin prairie continuum. American Midland Naturalist 127:268-275.

Ungar, I.A. 1970. Species-soil relationships in sulfate dominated soils in South Dakota. American Midland Naturalist 83:343-357.

Zar, J.H. 1984. Biostatistical analysis. Prentice Hall, Inc., Englewood Cliffs, New Jersey. 718 pp.

