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ABSTRACT

This study used a Spectron Industries SE-590 portable spectroradiometer to investigate a common 

Midwestern wetland species, Ceratophyllum. Primary research objectives were: determine the effect of 

Ceratophyllum on the composite spectral signal upwelling from a column of water, determine the depth 

constraint for remote identification of Ceratophyllum, and ascertain the presence of Ceratophyllum in 

chlorophyll-laden water. Characteristic absorption features at 443 nm and 670 nm decreased with 

increasing depth and also as the algal chlorophyll concentrations increased. A wavelength shift in the NIR, 

associated with increasing depth was found to exist for water columns relatively free of algal chlorophyll as 

well as those containing denser concentrations of algal chlorophyll. The depth constraint was not 

determined and requires further study.
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CHAPTER ONE: Introduction 

Wetlands

Wetlands are an essential component of the global ecosystem. They preserve ecological balance 

by providing flood and sediment control, storing ground and surface water, and furnishing habitat for fish, 

migrating and nesting birds and other wildlife (Thompson 1992). They may also improve water quality 

and provide areas of aesthetic value (Leslie and Clark, 1990). Recent studies link wetlands to the local and 

possibly the global climate through energy, moisture, and gaseous exchanges with the atmosphere (Pulliam 

and Meyer 1992, Poiani and Johnson 1991). Expanding our understanding of wetlands will help us to fully 

comprehend their functional role in the global environment.

Submergent macrophytes are a common component of US Midwestern wetlands and are 

important constituents in the ecology of wetlands ecosystems. Coontail (Spp. Ceratophyllum), the 

submergent macrophyte under study in this investigation, is the dominant plant of temporary and newly 

formed lakes and ponds containing water rich in organic material. Water fowl are attracted to 

Ceratophyllum; it is a food source for certain species of caterpillars, and Haliplus (crawling water beetles) 

lay their eggs on it (Klots, 1966).

W etlands and Remote Sensing

The observation, study, and assessment of wetland environments have been enhanced by means of 

remote sensing technology. Research endeavors incorporating spectral sensors have served to increase our 

knowledge o f wetlands. Gallie et al. (1992), employing a radiometer, investigated the spectra of suspended 

minerals and chlorophyll a concentrations in a wetland environment. In the past, data collection by means 

of aerial photography followed by airborne and space-based multispectral sensor systems has been the 

predominant technology for examining wetland environments.

A review of wetlands research using the spectral domain leads one to conclude that a substantial 

amount of the work is based on analysis of multispectral remotely sensed image data. Although the 

utilization of hyperspectral (i.e., more than 100 narrow contiguous channels) spectroradiometers has been
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limited to date, the potential seems to exist for highly accurate analysis of wetland environments 

[Rundquist et al. (1990), Goodin et al. (1993) Han (1994)].

Hyperspectral Remote Sensing

Hyperspectral remote sensing is an emerging technology presenting numerous applications in 

environmental evaluation. These systems are a valuable investigative methodology for appraising selected 

components of the wetland ecosystem under controlled conditions (Goodin et al., 1993, Han et al., 1994).

High spectral resolution (i.e. hyperspectral) remote sensing devices are preferred over broad-band 

multispectral systems for many applications and yield results unavailable with conventional multispectral 

systems. Rundquist, et al. (1995) were able to differentiate the "spectral variations associated with 

different algal densities and the effect of both bright and dark 'bottoms' at numerous depths" using a 

hyperspectral system. Using the same sensor system, Han, et al. (1994, 1995) investigated the spectral 

properties of varying levels of suspended sediment in water with variable densities of chlorophyll. 

L iterature Review

What follows is a brief discussion of selected efforts on the subject of remote sensing for 

submergent plants. Also, I intend to underscore the need for focusing research on the hyperspectral 

responses of macrophytes.

Some close range remote sensing research has been done on hydrophytes (Best et al., 1981) and 

some submergent species, but not on submergent macrophytes. Studies of submergent macrophytes have 

used aerial photography as well as broad-band airborne or satellite data: Davis and Brinson (1976), who 

examined submersed macrophytes in the Pamlico River Estuary of North Carolina; Bartlett and Klemas’ 

(1981) study of tidal wetland grasses; and Andersson (1990), who investigated the macrophytes o f Sweden 

using color IR film.

Abundant articles in professional journals and published research papers discuss the employment 

of remote sensing and its expanding implementation using a spectroradiometer. Few reports specifically 

address the spectral characteristics of wetland vegetation in water. Best, et al. (1981) used an Exotech 

radiometer to investigate the spectral reflectance o f hydrophytes. The team conducted this project in the
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field, making it somewhat uncontrolled. Philpot (1981) applied a single-scattering volume reflectance 

model to illustrate how percentage canopy cover and water depth offset the volume reflectance from a 

water column containing submerged aquatic vegetation. Savastano et al. (1984), using an airborne 

multispectral scanner, estimated the coverage of submerged macroplant vegetation for the purpose of 

mapping and estimating biomass. They were able to delineate density of sea grass, bottom types and 

surface coverage at various water depths. Ackelson and Klemas (1986, 1987) investigated remote sensing 

of submerged aquatic vegetation. Using a comparative model and a UDT Scanning Radiometer, they 

analyzed the effects of depth on reflectance from a submerged canopy. With the morphology of the 

submerged, erectophile (vertical) canopy held constant, the authors found that between 490 and 500 nm 

"the volume reflectance appears to be insensitive to changes in canopy depth". They also compared (1987) 

Landsat TM and MSS imagery of submerged aquatic vegetation in the lower Chesapeake Bay area.

Gross et al. (1988) analyzed the effects of solar angle on reflectance from wetland vegetation 

using a Mark II fixed band radiometer. The authors sampled a wide variety of wetland vegetation 

including plants from the Genera Spartina, Phragmites, Scirpus, Salicornia, Typha, Hibiscus, and 

Polygonum. They compiled a data set of spectral responses based upon the morphology of the wetland 

vegetation canopy. Armstrong (1993) conducted research using Landsat Thematic Mapper data to 

calculate the biomass of seagrass in the Bahamas.

Titus (1993) offered a methodology for determining distribution of submergent macrophyte 

vegetation in the field and follow-on verification of field data, a method of direct relevance to my own 

research as the ability to spectrally differentiate submergent vegetation including Ceratophyllum was a 

partial impetus for this study.

Penuelas et al. (1993), using a Spectron Engineering 590 spectroradiometer fitted with 15° field of 

view optics, looked at the in situ spectral response of several common wetland plants. The in situ nature of 

their experiment necessitates the consideration of outside variables when analyzing the spectral responses 

of the data. Compared to the other wetland plants characterized, Ceratophyllum exhibited a low response 

in all wavelengths analyzed (500 - 1100 nm) . However, in comparison with other submergent vegetation
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the spectral response of Ceratophyllum was high. While these research endeavors yielded copious amounts 

o f information, much is still unknown about the spectral characteristics of wetland environments, 

specifically, Ceratophyllum. This unattached submergent freshwater macrophyte is significant because it 

can completely cover the bottom of aquatic environments, altering spectral responses of lake bottoms 

(Cook 1974).

Objectives

My research addresses three principal objectives. I attempt to: 1) determine the effect of a 

submerged canopy of vegetation (specifically, Ceratophyllum) on the composite spectral signal (visible and 

near-infrared) upwelling from a column of clear water; 2) establish the depth constraint(s) for 

identification of submerged Ceratophyllum from remote platforms in clear water; and 3) determine 

whether or not it is possible to discern the presence of Ceratophyllum in the water column when the water 

is not clear (i.e., when algal phytoplankton are present). Because these objectives are quite specific, an 

element of precision was required. Therefore, my data were collected with a hyperspectral instrument 

operating at close-range in a controlled, artificial aquatic mesocosm.

This study represents a small portion o f an on-going project to investigate spectral characteristics 

of Midwestern wetland ecosystems and individual wetland components in a controlled setting. By 

controlling extraneous factors, useful baseline data can be gathered.

Because of the strong absorptive properties of water, the spectral response will vary with changing 

depth, and differences in the density of algal chlorophyll. This made it necessary to investigate the effects 

o f an increasing water depth over the Ceratophyllum, on the spectral irradiance, particularly in the red and 

NIR portions of the electromagnetic spectrum, where vegetation exhibits the strongest responses (Campbell

1987).

Depending on various amounts o f vegetation, sand or mud, the composition of wetland bottoms 

can be expected to differ. Different bottoms possess different reflective properties. This of course affects 

the volume reflectance based on the bottom composition being investigated. Therefore it is essential to 

utilize a controlled environment for discerning exact bottom reflectance, to accurately quantify and
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measure component contents like suspended sediment or chlorophyll in the water. Similarly, algal 

chlorophyll densities vary among sites. This necessitates a joint investigation of comparative reflectance 

responses of Ceratophyllum under varying densities of chlorophyll in the water.
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CHAPTER TWO: Methodology 

The Macrophyte Panel

Harvesting of the vegetation, Ceratophyllum, used for this experiment occurred at a quiet pond in 

Allwine Prairie Preserve, located at 168th and State Street, Omaha, Nebraska. The collection took place in 

early May of 1993. Due to the multiplicity of species of Ceratophyllum and the difficulty in field 

classification of each form, it was not feasible to key the vegetation to the specific level. Ceratophyllum 

was keyed only to the generic level. The vegetation was transported to a research site near Mead, 

Nebraska. It was placed in a 9500 liter pool, which served as a nursery. Fertilizer was periodically added 

to the pool. While it is typical for the pools at the research site to become heavily laden with algae, the 

Ceratophyllum nursery maintained a clear, clean appearance. This leads one to the assumption that the 

nursery environment was such that the Ceratophyllum were able to grow and maintain themselves in a 

manner similar to a natural environment.

The site where the mesocosms are located is the Agricultural Research and Development Center 

(ARDC) of the University of Nebraska-Lincoln. Staff of The Center for Advanced Land Management 

Information Technologies (CALMIT) and Creighton University Department of Biology constructed 

artificial pools at ARDC. Each pool is 3.66 meters in diameter and 0.91 meters deep.

The research pools are intended to simulate shallow sheltered aquatic ecosystems. Simulated 

ecosystems that can be controlled and manipulated are commonly referred to as mesocosms. The 

mesocosm holding the Ceratophyllum was allowed to winter over unattended. It proved healthy, 

reproducing a good crop of vegetation in the spring of 1994. The crop remained stable until the time of the 

experiment in the summer of 1994.

A “macrophyte panel” was fabricated using the following techniques: Randomly selected 

individual plants of Ceratophyllum were systematically tied, using black nylon thread, approximately 5 

centimeters (cm) apart to a black wire mesh panel (with hexagonal one inch openings). The panel, 1.524
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meters by 1.524 meters in size, was attached to black rigid plastic pipe 3.81 centimeters in diameter. The 

macrophyte panel was returned to the nursery and maintained there until the time of data collection.

To minimize extraneous reflectance, black nylon rope was used to attach the macrophyte panel to 

pulleys positioned outside the pool. The pulleys were intended to facilitate the raising and lowering of the 

panel during the data gathering procedures explained below.

Data Collection Procedures

The macrophyte panel was placed in a pool identical in size and shape to the nursery pool. A 

black liner (4 mil black polyethylene film) was inserted into the pool during data collection. The black 

liner is necessary to minimize side and benthic reflectance. Diminution of benthic reflectance is especially 

important, since one of the primary aims of this research was to investigate the macrophyte, not the actual 

bottom surface of dark mud, etc. According to Ackelson et al. (1987), a water depth of greater than 1.9 

meters is the juncture at which the bottom reflectance is no longer a factor in the spectral responses of 

submerged vegetation. The artificial mesocosms at Mead are not this deep, necessitating the elimination of 

the bottom as a reflectance component.

A Spectron Industries SE-590 portable spectroradiometer was employed to acquire spectral data. 

The SE-590 has 256 channels, four of which are reserved for header information. The remaining 252 

channels allow contiguous sensing over a wavelength range of 368.40 nanometers (nm) to 1111.37 nm. 

Nominal band width is 2.95 nanometers (Han et al. 1994).

The SE-590 was attached to a truck-mounted telescoping boom for precision targeting. The 

sensor was approximately 1.45 meters above the water surface of the pool. A 15 degree optic device was 

attached to the sensor, yielding an instantaneous field of view (on the water surface) of approximately

228.67 cm . During data collection, the truck was oriented east to west, with the boom facing south. This 

reduced any shadowing within the area of interest (Figure 1).
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Figure 1. Experimental Set-Up
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Solar angle influences the reflective responses of some types of wetland vegetation (Gross et al.

1988). Water also exhibits different reflective properties based on solar altitude. When the sun is low on 

the horizon, water is highly reflective. Conversely, high sun angle results in stronger absorption of solar 

radiation. This necessitated the collection of data within 4 hours of solar noon to diminish such effects.

The "ideal" for collection of close-range hyperspectral data is a completely clear sky. The 

development of clouds, especially high cirrus, is often a problem during the growing season in Nebraska, 

and this was a problem during the summer of 1994. Continual monitoring for this condition was 

necessary, as it could greatly alter the results o f the study. The most common monitoring procedure, a 

visual check of sky conditions at fifteen minute intervals, was utilized. Additionally, a Li-Cor Pyranometer 

was used to detect fluctuations in the incoming solar radiation.

Spectral data were acquired as the macrophyte panel was lowered in increments of ten (10) 

centimeters, from a minimum depth of 2 centimeters to a maximum depth of 75 centimeters. Two 

centimeters was selected as the minimum point because at this depth the Ceratophyllum was covering the 

surface, but fully suspended in the water. This reduced the possibility o f the panel affecting the angle of 

reflectance of the macrophytes. Seventy-five centimeters was the point at which the panel came to rest on 

the bottom of the pool. A complete depth of 91 centimeters was not attained because space had to be 

allocated for water displacement caused by the macrophyte panel and weights. Four concurrent scans of 

the target area were taken at each depth and meaned.

Duggin and Philipson (1982) suggest the use of a calibration panel during the data collection 

procedures. A Kodak 18 percent gray card (25 cm by 25 cm), cross referenced to a Barium-Sulfate 

(BaS04) panel (70 cm by 70 cm), was used in calibrating spectral data to solar downwelling radiation.

The equivalent wavelength-specific radiance for the BaS04 reference panel (S(A)) was computed using a 

regression model in the form of

S( A)=a( A)+b( A)* G( A,)
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where G(X) is the measured wavelength-specific radiance from the gray-card, and a(A.) and b(A-) are the 

regression coefficients. Thus, bi-directional reflectance factors (R(X), in percent) were calculated using the 

following equation:

RX = —  C a /lx  100sx
where L(A.) is the wavelength-specific target radiance and Cal(A,) is the calibration factor for the BaS04 

panel. The latter allowed correction both for the non-Lambertian properties of the panel and the slight 

changes in the solar-zenith angle. Two replicate scans were taken at each depth and the mean of the two 

was used in the data analysis (Rundquist, et al. 1995).

Water samples were taken at various times throughout the experiment. For the June experiment 

(see below), a water sample was procured by vertical integration before the macrophyte panel was 

introduced to the pool. Another sample was obtained during the scanning and a third sample was collected 

when scanning was complete. During the July experiments (see below), samples were taken as in the June 

experiment, but also after each dilution. These samples were kept in a cool dark place, to minimize 

degradation prior to being transported to the laboratory for filtration and analysis. Forms of aquatic algae 

are known to "cling" to the Ceratophyllum during harvest, so analysis of the water was necessary to 

determine its chlorophyll content due to the unavoidable presence o f algae in the water.

When scanning was complete on each o f the days that data were collected, a 50 cm by 50 cm 

sample of biomass of Ceratophyllum was harvested from the panel. The area of biomass removed was 

within the field o f view of the spectroradiometer. The biomass was placed in an airtight container in a cool 

dark place, until it could be taken back to the lab to be weighed, oven-dried at 40 degrees Celsius for 48 

hours, and re-weighed.

June Data Acquisition

The first set of spectral data was collected on June 20, 1994. The pool in which the scans were to 

be taken was drained and scrubbed clean. It was then filled with clear water from a nearby well. The black
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liner was washed, placed in the pool and weighted down with cement blocks covered in black poly. The 

pool was then ready for the experiment.

June 20th began with a thin layer o f cirrus clouds over the research site, but these soon dissipated. 

The first calibration scan was taken at 1105 (Table I), followed by a scan of the clean, clear water in the 

pool. This was done as a baseline, prior to introducing the macrophyte panel into the lined pool and to 

insure that the spectroradiometer was in working order. The panel was then placed in the pool and lowered 

to the bottom (75 cm).

The first scan o f the vegetation occurred at 1120 (Table I). The panel was moved to 72 cm and 

another scan was taken and data collection proceeded in this manner until the panel was at a depth of 2 cm. 

Once scanning of the vegetation began, all data were recorded at approximately 1 minute intervals (Table 

I). Additional scans were taken with the panel just breaking the water surface and again at the point at 

which the panel was just completely out o f the water. A final calibration scan was taken at 1136 (Table I).

After the June experiment, the macrophyte panel was returned to the nursery mesocosm. 

Ceratophyllum plants, residing in the nursery, were tied to the panel as previously illustrated, to replace 

those plants that were harvested after the scanning. This was done to prepare the panel for further 

experiments.



12

TABLE I: JUNE DATA COLLECTION: CLEAR WATER

TIME DEPTH CONDITION

1105 N/A CALIBRATION

1107 N/A CLEAR TANK

1120 75 cm PANEL

1121 72 cm PANEL

1123 62 cm PANEL

1124 52 cm PANEL

1126 42 cm PANEL

1127 32 cm PANEL

1128 22 cm PANEL

1130 12 cm PANEL

1131 2 cm PANEL

1132 SURFACE PANEL

1133 ABOVE SURFACE PANEL

1136 N/A CALIBRATION

July Data Acquisition

Prior to acquisition of a second data set on July 21, 1994 the experimental pool was allowed to 

develop an algal bloom so that a dilution series similar to that performed by Rundquist, et al. (1995) may be 

conducted. The sky conditions were similar to those of the June experiment date. Some cloud cover could 

be detected, but prior to the start of data collection, the skies cleared.

The black liner was removed, cleaned and placed back into the experimental pool. A water sample 

was collected before placing the macrophyte panel in the pool. The panel was lowered to the bottom, a
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depth of 74 cm. The bottom depth varied by one centimeter from the June experiment due to an error in 

measuring the water prior to the experiment. A second water sample was taken, and data was collected, 

duplicating the procedures for the June data series (Table II).

TABLE II: JULY DATA COLLECTION: 

CHLOROPHYLL-LADEN WATER

TIM E DEPTH CONDITION

0952 N/A CALIBRATION

0954 74 cm PANEL

0956 72 cm PANEL

0958 62 cm PANEL

1002 52 cm PANEL

1003 42 cm PANEL

1006 32 cm PANEL

1007 22 cm PANEL

1008 12 cm PANEL

1010 2 cm PANEL

1010 ABOVE SURFACE PANEL

1035 N/A CALIBRATION

The macrophyte panel was removed from the pool and deposited in the nursery to minimize stress 

to the vegetation while the pool was pumped and refilled. Ten (10) centimeters of water were then pumped 

out of the pool and replaced with clean, clear well water. During the pumping, some white sediment was 

noted to appear in suspension in the water. This sediment appeared to be stirred up from the bottom of the 

pool. The panel was returned to the experimental pool and lowered to bottom depth of 74 cm. A water
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sample was collected and stored as formerly described. Spectroradiometer scans were then collected as 

specified above. This procedure was replicated two additional times, to produce a series of four scans for 

each depth, on this date.

When scanning was complete for the dilution series, a 30 cm by 30 cm area of biomass was 

removed from the panel. During the harvest an error occurred resulting in collecting a smaller amount of 

vegetation than during the June experiment. As with the June data, the area of biomass removed was 

within the field of view of the spectroradiometer. Once collected, the vegetation was manipulated in the 

same manner as described for the June data collection.
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CHAPTER THREE: Results and Discussion 

Data Collection

Data were collected on June 20 and July 21, 1994, but all data collected for the panel at a depth of 

2 cm were discarded because the June data file for 2 cm was corrupt. For consistency, the July 2 cm files 

were also deleted.

Water depth varied one centimeter between the June and July acquisition dates. Because of this, 

data collected with the macrophyte panel resting on the bottom of the mesocosm were also discarded.

Significant electronic noise at wavelengths shorter than 400 nm and longer than 900 was detected, 

so data in these wavelengths were eliminated in the analysis. Other researchers (Goodin 1993, Han 1994, 

Rundquist 1996) have used a similar approach.

The data was referenced to the calibration panel as described earlier and converted to reflectance 

values using Han’s computer program, SPECREF. All data values were then plotted and statistically 

analyzed using Microsoft Excel.

All data, except the first set, collected during the July experiment had to be rejected for analysis in 

this endeavor. When these data sets were plotted, the resultant curves were not consistent with typical 

curves for submersed vegetation. It is suspected that sediment from the bottom of the pool came into 

suspension during the dilution series, causing the spectral responses to deviate. While this is an interesting 

addition needing investigation, it is not within the scope of this research to include it for analysis.

W ater Analysis

Analysis of the water in the mesocosm revealed chlorophyll concentrations as evidenced in Table 

III. Evidently the clean, clear water in the tank still contained some suspended algal chlorophyll. Once the 

panel was placed in the tank, the concentration increased slightly. This is due to chlorophyll going into 

suspension from the macrophyte panel. The water sampled from the July data series contained over twice 

the amount of suspended algal chlorophyll as that of the June data.
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TABLE III: CHLOROPHYLL CONTENT OF WATER SAMPLES

DATE CONDITION OF PANEL AVERAGE CHLOROPHYLL 
CONTENT [(UG/L) MAY 
INCLUDE PHEOPHYTIN]

6/20/94 NO PANEL 8.25

6/20/94 PANEL 9.6

7/21/94 1st DILUTION 16.75

Biomass Analysis

The biomass of the Ceratophyllum for the June data collection was 0.0115 g/cm2. The biomass for 

July was 0.0172 g/cm2. An increase in biomass was expected since data collection occurred during the 

height of the Midwestern growing season.

Spectral Reflectance O f Terrestrial Vegetation

The spectral reflectance of healthy, green terrestrial vegetation is characterized by numerous 

absorption features. Two of these features, associated with chlorophyll absorption of visible light, are 

centered near 443 nm (blue) and 670 nm (red). Terrestrial vegetation, particularly grass (Figure 2) is 

further characterized by a strong spectral reflectance in the NIR, with a peak at 705 (nm). While submerged 

aquatic vegetation (SAV) generally exhibits spectral responses similar to terrestrial vegetation, the 

responses tend to be of a lower magnitude. For example, dense healthy grass can exhibit a spectral 

response in the NIR of up to 90%. SAV’s, such as Potamogeton routinely reflect in the NIR at a rate of less 

than 39% (Campbell, 1987). A spectral response of 10 % - 20% is typical in the green portion of the EM 

for terrestrial vegetation, while Potamogeton typically exhibits a reflectance of approximately 5% in the 

same location of the electromagnetic spectrum.
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Figure 2: Characteristic Terrestrial Vegetation Reflectance Curves
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Spectral Characteristics O f Clear And Algal Water

A spectral profile for clean, clear water is characterized by a gradual decline in reflectance across 

the EM spectrum from greater than 3% at 400 nm to approximately 1% at 900 nm (Mittenzwey, et al. 

1992). A water curve, devoid of macrophytes but laden with algal chlorophyll, is markedly different 

Figure 3 is a plot of the clear water data taken with the SE-590 on June 20, 1994. It is characteristic of 

water curves containing small amounts of chlorophyll in suspension as substantiated by Rundquist, et al. 

(1995). They found water containing algal chlorophyll to exhibit the following spectral features: “low 

reflectivity between 400 and 500 nm due to absorption o f blue light, maximum green reflectivity between 

560 and 570 nm, a minor inflection at about 640 nm, classic red absorption near 676 nm, prominent NIR 

reflectivity at about 697 nm, and a minor NIR reflectance feature at about 810 nm”. These findings 

indicate that while clean well water was used for this experiment, it was not devoid of chlorophyll.

Deep water that is completely free o f chlorophyll will not significantly reflect in the NIR 

(Campbell 1987). While this experiment did not encompass deep water, volume reflectance with a bottom 

influence was negated by lining the artificial mesocosm with black vinyl. The volume reflectance in the 

NIR of the water is minimal, less than 2%. Compared with the curve of the terrestrial vegetation, which 

characteristically reflects strongly in the NIR, this reflection is negligible.

Ceratophyllum in Clear Water

Figure 4 represents a plot of the usable data of Ceratophyllum in clear water. This chart discloses 

a general trend of decreasing reflectance relative to an increase in depth. As the depth at which the 

Ceratophyllum was immersed increased, the percentage of spectral reflectance decreased across the 

spectrum. This finding is not unexpected because of the strong absorptive properties of water.
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Gross et al. (1988) found different spectral responses based upon the morphology of the wetland 

vegetation canopy. They classified the canopy as being either planophile or erectophile. A planophile 

canopy is one that is horizontal in nature. An erectophile cover is generally vertical. In my experiment, as 

the water depth at which the macrophyte panel decreased, the Ceratophyllum canopy changed from 

primarily erectophile (vertical) in nature to a more planophile (horizontal) structure. The most dramatic 

decrease in reflectance is noted between 12 cm and 22 cm in depth, seemingly due to the change in the 

Ceratophyllum canopy structure.

Comparing the spectral responses through all wavelengths, at 12 cm in depth the vegetative 

response exceeds that of the clear water (Figure 5). At 22 cm and 32 cm the vegetative response again 

exceeds that of the clear water, except where chlorophyll-a absorption is noted at 415 nm (Figure 6). The 

volume reflectance of water continues to exceed that of the vegetation well into the green portion of the 

EM, at 534 nm. At this wavelength range (415-534 nm), the reflectance attributable to vegetation is 

unaffected by further changes in depth (Figure 6).

Overall, the dominant peak in the NIR region shifts to a shorter wavelength as depth increases 

(Figure 4). Rundquist et al. (1995) investigated the spectral response at varying depths in clear water over a 

dark and light bottom. The results presented in Figure 4 are consistent with the findings of Rundquist, et 

al. (1995) over a dark bottom. The dominant peak at 12 cm of depth is at 750 nm (Table IV). A gradual 

shift in the peak of approximately one nominal bandwidth per 10 cm depth increase is evident. The result 

is a reflectance of approximately 2.7 percent at 738 nm for the Ceratophyllum at 72 cm, compared with a 

reflectance of greater than 13% at 750 nm for the panel resting in water at 12 cm.
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TABLE IV: NIR PEAK SHIFT FOR CERATOPHYLLUM  IN CLEAR WATER

(Table Values Are Percent Reflectance)

DEPTH (cm)

WAVELENGTH 
OF PEAK R 

(nm)

12 22 32 42 52 62 72

735 10.05 7.16 5.33 4.09 3.53 2.97 2.69

738 10.94 7.7 5.64 4.23 3.6 3.13 2.68

741 11.8 8.14 5.81 4.25 3.57 3.06 2.57

744 12.49 8.4 5.86 4.18 3.44 2.88 2.39

747 13.04 8.51 5.74 3.97 3.19 2.64 2.15

750 13.34 8.43 5.49 3.65 2.86 2.33 1.86

Rundquist et al. (1995) and Mittenzwey et al. (1992) found that, as chlorophyll concentrations 

increased, the maximum reflectance for the NIR peak near 705 nm shifted to longer wavelengths. These 

findings are significant because increasing water depth influences the spectral response (in this portion of 

the EM) inversely to that of increasing algal chlorophyll content.

Figure 7 depicts Ceratophyllum at all depths in clear water scanned at 443 nm. The level of 

absorption increases from 12 to 42 cm in depth. After this point the level of absorption is diminished 

through 72 cm. Saturation is not attained at 72 cm for this spectral feature giving impetus to repeating the 

experiment at a deeper depth.

Figure 8 shows Ceratophyllum in clear water at 670 nm, the area of red absorption. A general 

trend of increasing absorption can be seen with increasing depth. The most dramatic change is again 

between 12 and 22 cm. Unlike the area of blue absorption, saturation is not reached and the absorption 

continues through 72 cm. This too suggests the need to repeat the experiment at deeper depths.
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Figure 9 illustrates the spectral feature o f NIR reflection at 705 nm. As depth increases, the 

amount of reflectance from the vegetation is diminished and the NIR absorption by the water increases. 

Again, it does not appear that saturation is reached at this wavelength.
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Ceratophyllum in Chlorophyll-laden W ater

The general shape and trend of the reflective responses of Ceratophyllum in the chlorophyll-laden 

water are the same as those of the clear water (Figure 4, Figure 10). For example, the Ceratophyllum at 12 

cm exhibits a markedly stronger response than for the succeeding depths, similar to that of the clear water 

response. There are, however, numerous detailed changes to observe.

As with the clear water, a shift in the dominant peak NIR reflectance is observed (Table V). The 

dominant peak shifts to a longer wavelength as the Ceratophyllum depth increases. Indicative of the clear 

water, a gradual shift in the peak of approximately one nominal bandwidth per 10 cm depth increase is 

evident. The resultant reflectance is approximately 2.8 percent at 738 nm for the Ceratophyllum at 72 cm, 

compared with a reflectance of greater than 10% at 750 nm for the panel resting in water at 12 cm. 

Interestingly, the maximum reflectance at these wavelengths is less than the clear water reflectance, while 

the minimum reflectance is greater than the clear water response. Further comparison of Tables IV and V 

shows the dominant peak for the chlorophyll-laden water to be at a longer wavelength than for the clear 

water. This shift may be attributable to the increase in chlorophyll-a in the water, which characteristically 

increases the spectral response in this portion of the EM spectrum and is certainly consistent with the 

findings of Rundquist et al. (1995) and Mittenzwey et al. (1992), as previously mentioned.
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TABLE V: NIR PEAK SHIFT FOR CERATOPHYLLUM IN  

CHLOROPHYLL-LADEN WATER

(Values Are Percent Reflectance)

DEPTH(cm)

Wavelenth

(nm)

12 22 32 42 52 62 72

738.4 8.93 6.33 4.83 3.89 3.62 3.39 2.80

741.36 9.59 6.67 4.97 3.93 3.61 3.35 2.73

744.32 10.13 6.88 5.00 3.87 3.50 3.21 2.55

747.28 10.51 6.94 4.92 3.70 3.30 2.96 2.31

750.24 10.70 6.86 4.70 3.40 2.98 2.62 2.00

753.20 10.66 6.60 4.36 3.04 2.60 2.23 1.66

A comparison of Figures 10 and 4 makes it apparent that the reflectance found in the data for the 

chlorophyll-laden water has been reduced in all wavelengths at all depths. Specifically, the changes in the 

signal as depth changes in the green portion of the EM have diminished compared to the clear water data 

set. The general slope of the curve for the chlorophyll set is also steeper in this part of the EM spectrum. 

The absorption of chlorophyll in the blue and red is also greater for the curves of the Ceratophyllum in the 

chlorophyll-laden water. Increased absorption in the blue and red regions of the EM spectrum is consistent 

with an increase in chlorophyll content in the water (Rundquist et al., 1995). The reflectance in the NIR is 

also diminished. Typically, an increase in chlorophyll is indicative of a stronger spectral response in the 

NIR (Rundquist et al., 1995). It appears the absorptive properties of the water eclipse an increase in the 

response due to the augmentation of chlorophyll in the water.

To fully investigate the significance that chlorophyll in the water has on the spectral response of 

Ceratophyllum, it is necessary to compare each depth for which data was collected to the responses in the
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clear water. At 12 cm (Figure 11), the reflectance of Ceratophyllum in the chlorophy 11-water mirrors that 

of the clear water. The obvious difference is in the signal strength. In the blue and short end of the green 

portions of the EM, the absorption by the clear water does not exceed the reflectance of the Ceratophyllum. 

The reflectance of Ceratophyllum in the chlorophyll laden water is less than that of the clear-water 

Ceratophyllum.

Figure 12 is a depiction of Ceratophyllum at 22 cm in both water qualities. The signal of 

Ceratophyllum under both conditions is overshadowed by the clear water response in the longer half of the 

blue region of the electromagnetic spectrum. In the upper end of the red domain (approximately 694 nm), 

the chlorophyll response is less than the clear water response, but still mirrors the reflectance of 

Ceratophyllum in clear water. Looking at this region at 32 cm (Figure 13), the clear water reflectance of 

Ceratophyllum comes very close to the reflectance of plain water, while the chlorophyll-water response is 

diminished even further than at the 22 cm depth.

At 42 cm in depth (Figure 14), the gaps between the peaks and valleys of the responses under both 

aquatic conditions diminish. This is particularly evident in the NIR region. It is also observed that the 

signal from the clear water Ceratophyllum and that from the chlorophyll-laden water were completely 

overcome by the clear water signal at the two critical absorption features in the blue and red portions of the 

EM (see discussion below).

Figure 15 graphs Ceratophyllum at 52 cm. At this depth, many perturbations are noted. The 

absorptive properties of water exceed the reflectance of Ceratophyllum in the entire blue and a good 

portion of the green region of the EM. The peaks and valleys of the chlorophyll-laden responses found 

throughout the spectrum exceed the clear water reflectance of Ceratophyllum. Specifically, the peak 

reflectance of Ceratophyllum in the chlorophyll-laden water in the green section of the EM exceeds the 

clear water response of Ceratophyllum. In the NIR region the two peaks have nearly identical responses. 

The additional chlorophyll in the water causes a higher reflectance, thus overcoming the absorptive 

properties of water in the near infrared area.
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At 62 cm (Figure 16), the chlorophyll-laden water peak in the green and NIR is even more 

predominant, completely surpassing the clear water responses. Again, this is attributable to the strong 

absorptive properties of clear water and the reflective properties of chlorophyll in solution. The 

Ceratophyllum at 72 cm (Figure 17) mirrors, at a weaker reflectance, the response at 62 cm.
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Figure 18 depicts Ceratophyllum at all depths in clear and chlorophyll-laden water scanned at 443 

nm, a point characteristic of blue absorption. The absorption in increased by up to one percent in the 

shallower depths. Note the distinctive drop at 22 cm and the rise at 52 cm in the chlorophyll-laden water. 

At the deeper depths, while the absorption is higher than the clear water, there is a diminution of it 

beginning at 42 cm and continuing through 62 cm.

The red absorption feature (Figure 19) of Ceratophyllum in chlorophyll-laden water mimics the 

clear water curve. The only difference is again in the intensity of absorption. The increased absorption of 

up to 0.7 percent is attributable to an increase in chlorophyll in the water.

Figure 20 illustrates the spectral feature of NIR reflection at 705 nm. As depth increased, the 

reflectance decreased for both water qualities. As mentioned earlier (Figure 9), this is expected for the 

clear water curve, given the absorptive properties of water. Interestingly, the incidence of NIR reflectance 

(at this wavelength) did not exceed the clear water response with an increase in chlorophyll in the water.

Both the data sets are highly correlated, as can be expected from the previous discussions (Figure 

21). The general trend is one of decreasing correlation between the clear water spectra and the spectra of 

the chlorophyll-laden water as depth increases. Ceratophyllum at 12 cm in both water qualities has a 

correlation coefficient of 0.99034. The correlation decreases to a minimum of 0.95457 at 62 cm and 

increases slightly to 0.95523 at 72 cm. Given the trends discovered upon comparison of each depth for 

clear and chlorophyll water, these correlation coefficients are congruent with the previously discussed 

findings.

Figure 22 shows the variance at all wavelengths between the clear and chlorophyll-laden water for 

each depth. In the clear water, as depth increased the variance decreased. The same was true for the algal 

water. It appears the strong absorptive properties of water diminished the signal strength as the depth 

increased. It is noted, with one exception, that the degree of variance among the depths in the chlorophyll­

laden water is less than that of the clear water (Table VI). The exception is at 62 cm, which had a higher 

variance in the chlorophyll-laden water than the clear water.
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Investigating the variance for each depth, some points of interest are noted. The 12 cm canopy 

had the largest variance of nearly six points. The variance dramatically decreased at a depth of 22 cm. 

This trend continued through the depths, with the exception noted above, to a nearly equal variance at 72 

cm.
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TABLE VI: VARIANCE ANALYSIS

W ATER QUALITY

DEPTH (cm) CLEAR CHLOROPHYLL

12 14.40457228 9.941563731

22 4.186152019 2.954599728

32 1.335318591 1.153924075

42 0.699308232 0.568934522

52 0.542073591 0.530613411

62 0.467774211 0.510164983

72 0.433090925 0.43375064
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CHAPTER FOUR: Conclusions

Close-range hyperspectral remote sensing allows one to investigate the most minute details and 

changes occurring in wetland environments. Findings in this study support the objectives o f my research to 

determine the effect o f a submerged canopy of Ceratophyllum on the composite spectral signal upwelling 

from a column of clear water and to determine whether or not it is possible to discern the presence of 

Ceratophyllum in the water column when the water is laden with algal phytoplankton.

This study did not, however, fully meet the objective of establishing the depth constraint(s) for 

identification o f submerged Ceratophyllum from remote platforms in clear water. In certain portions of the 

electromagnetic spectrum, a depth at which the spectral response no longer fluctuates was not ascertained. 

Clearly further studies using deeper mesocosms need to be conducted.

Additional information gleaned from this experiment includes the determination that with 

increasing depth the signal decreases, regardless o f water quality and the fact that both data sets are highly 

correlated to one another. The findings o f this study provide a basis for further research to continue to 

assess the wetland environment. For example, this experiment needs to be replicated using numerous 

dilutions o f algal-chlorophyll solutions and Ceratophyllum in order to verify the previous findings. 

Certainly, the need exists to investigate the saturation point of various vegetative bottoms, using a plethora 

o f water conditions. Goodin et al. (1993) investigated suspended sediment, as did Han (1994).

Additionally, Han added chlorophyll to the equation. The next natural step is to combine the findings and 

research o f Han and Goodin to include submerged aquatic macrophytes, eventually building up to the 

investigation of a complete wetland ecosystem.

Combining these two objectives will result in a more clearly defined ability to assess wetland 

environments using close-range hyperspectral remote sensing. This is important, as stated before, in order 

to fully comprehend wetlands' functional role in the global environment
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