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University of Nebraska, 2003
Advisor: Hesham Ali

ABSTRACT

‘Motivation: Many modeling frameworks have been applied to infer regulatory networks
from gene expressioh data sets. Linear Additive Models (LAMs), as one large category of
models, have been‘gaiining more and more popularity. One problem associated with _this
kind of models is that the system is often under-determined because of excessive number
of unknown parameters. In addition, the pra_cticél utility of these rr;odels has remained

unclear.

Methods: Ba_sed on LAMs, we developed an improved method to infer gene regulatory
networks from time-series gene expression data sets. The r_nethdd includes an incremental
connectivity model with indexed regulatory elements aild a linear time complexity fitting .
algorithm embedded with genetic algprithm. Comparing to previous LAMs, where a fully
connected model is used, the new technique reduces the number of. parameters .by O(N),
therefore increasing the chance of recovering the underlying regulatory network. The
fitting algorithm increment the connectivity during the ﬁtting process until a satisfactory

fit is obtained.
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Results: We pefformgd a systematic study to explore the data minihg ability of LAMs. A
ggideline to use LAMs is provided: If the systerii is small (3-20 elemerits); more than
90% regulation-pathways can be correctly determined. For large scale system, either a
clustering is needed or it is necessary'to ir_l;tegrate other information besides expression
‘pr‘ofille only. ‘Cdupled with clusfering method; .WP; applied our method to Rat Central
Newous System development (CNS) data with 112 genes. We were able to efﬁcigntly
generate regﬁlatory networks with statistically significant pathways ’whjch have been

previously predicted.
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Chélpter 1: Gene Expression

The difference between man and monkey is
gene regulation.

-- Leroy Hood

This thesis is structured as the following: In chapter 1, I introduce some basic biol'ogigal_
concepts about g'ehe regulatory networks and techniques to profile gene expression.
These concepts and déta underlie the model of a real gene regﬁlatéry network system. In |
chapter 2, a thorough literature review and analysis éf current modeling and simulation
methods applied to the study of -gene regulatory networks will be given. An introduction
of cluétering methods is also included in this éhapfer. The first two chapters serve a
purpose of iﬁtroduction. In chapter 3, a new modeling method are presented and
explained. This method consists of two parts: an incremental model and a ﬁttiﬁg
algorithr;l. A theoretical analysis of this method is also provided. In‘ chapter 4, the method
is implemented and the performance is testedi Results from application to real expression

data sets are also provided. |

1.1 A Little Bit Biology
As the Human Genome Project is almost complete, biology is marching into post-

genomics era. Research focus is also moving from biological sequence analysis to



functional genomics- analysis.‘ Every gené in a genome plays a role like a node in a
network. The functional study of genes and their relaﬁonships is indispensable to answer
some basic ciuestions such as development, evolution, diseases étc. However, these -
efforts are poorly made compared with sequence analysis. Some questions we would like

‘to ask are:

o What are the functional roles of different genes?

o How are genes regulated?

o How.do genes and their products inferact? |

o How does gene expression level differ in various cell types a{ld diseases

conditions?

This chapter introduces the basics of gene regulatory networks and experimental methods
to measure and survey genme expression. Before we dive into gene expression data
analysis and gene regulatory networks, I should give a brief review of biology

background.

Tﬁe central dogma (Figure 1) of molecular biology states th'atv genetic information is
stored"in DNA, transcribed to messenger RNA (mRNA), and then translated into proteins.
This picture is sighiﬁcantly auginented by the fact that certain proteins (transcriptioh
factors) can bind to DNA and regulate transcription. These mechan'isms form the back

bone of gene regulatory networks. Biology system is notoriously complex. In the human



body, almost all cells have entire ‘copy of genomic DNA. Yet this same genetic
information yields a large ﬁumber of different cell types. The fundamental difference
between a neuron and a liver cell, for example, is whiqh genes are expressed. Human
genome contains about 30,000 genes. There are about 5;000 different proteihs expressed
in every cell, where there are more than 200 different cell types and more than 10" cells

in the entire body.

Figure 1 Central Dogma of Molecular Genetics



DNA, RNA'and proteins have different functions. DNA is the molecular storehouse of
genetic information. When cells divide, the Di\IA is replicated, so that each daughter cell
* maintains the same genetic infbrmation as the mother cell. RNA acts as an intermediate
from DNA to proteins. Only a single copy of DNA is present in a-cellz; but multiple
copies of the same piece of RNA may ’be present, allowing cells to make huge amount of
protein. In eukaryotes, DNA is féund in the nucieus only. RNA is copied 1n the nucleus
and then moved out of nuCl_eus, where it is transcribed into proteins. Proteins are
specialized machines, each of which fulfills it own task, which may be transporting
oxygen, catalyzing reactions, or responding to extra cellular signals etc. One of the most
interesting functions a prqtein may have is ‘binding directly or 'indirect.ly to DNA to
perform transcriptional regulation, thus formi'r‘lg a closed féédback loop of gene

regulation.

Trénscription: Transcription is a complicated set of events that leads from DNA to
messenger RNA.'Usually a gene consists of a coding region and a regulatory region. The
coding region ié the part of gene that encodes a certain protein. The regulatory region is
the part of the DNA that contributes to the control of the gene. In particular, itvcontains
binding sites for transcription factors, which act by binding to the DNA (directly or with
ovther transcription factors in a small complex) and affecting the initiation of transcription.
The regulatory region varies in size from 10 to 100,000 bases and contains binding sites-
for single or multiple transcription factors. Transcription factors may act either positively

or negatively; that is, an increase in the amount of transcription factor may lead to either



more or less gene expression, respectively. Another input mechanism is phosphorylation

or déphosphorylation of a bound transcription factor by other proteins.

Transcription factors are sometimes called trans-regula‘tor"y» elements, and theDNA sites
‘where transcription factors bind are called cis-regulatory elements. The collection of cis-

regulatory elements upstream of the codin'g region can be called the promoter.

Spﬂlicing:_In prokaryotes, thevcoding region is contiguous, but in eukaryotes the coding
regibn is typically split up into several paﬁs. Each of these coding parts is called an exon,
and the parts in between the exons are called introns. In eukaryotes, franscriptjon occurs’
in the nqcleus, translation occurs in the cytosol. Between transcription and trainslation,‘ the
mRNA must be moved'physically from inside the nucleus to outside. As part of this
process, the introns are edited out, which is called splicing. In some cases, there are
- -alternative splicings, that is, the same stretch of DNA can be edited in diffé_rent ways to
form different proteins. At fhe end of splicing process, or directly after the transcription

process in prokaryotes, the mRNA is in the cytosol and ready to be translated.

Translation: In the cytosol, mRNA binds to ribosomes, complex macromolecules whose
function is to create proteins. A ribosome moves along the mRNA three bases at a time

and each three-base combination, or codon, is translated into one of the 20 amino acids.



Post-translational Modification: The function of the ribosome is to copy the one
dimensional structure of mRNA into a one-dimensional sequence of amino acids. As the .
process goes on, the one-dimensional séquence of amino acids folds up into a final three- -

dimensional protein structure.

More Steps: Several more steps are possible in the flow Qfﬁinformation frtom' DNA to a
- protein. First, proteins Vimay be modified after they are translated. Proteins may
agglomerate. In particular, many traﬁscription factors bind to DNA in a multimeric state.
DNA iS a stable moleculcie‘, but mRNA and proteins are constantly being vdégrallded by
cellular machinery and ‘recycled. Spepiﬁcally, ‘mMRNA is degraded by a ribohuclease
(RNase), which compétes with ribosomes to bind to mRNA Protéins are degraded by
cellular machinery, including prqteasomes signaléd by ubiquitin tagging. Prote’ih.
degradation is regulated by a variety of ‘more specific enzymes, which ﬁay differ from

one protein target to another.

1.2 Gene Expression Measurement

As we have seen, gene expression is a complex'proces_sl and is regulated in evéry step
from DNA to its products._Knowing the gene transcript abundance in various tissues,
developmentai stages and under various conditions is important for understaﬁding gene
functions and relationships. 'Aithough mRNA is not the ultimate product of a gene, it
makes sense to use mRINA level to monitor gene expression lével because transcription is

the first step in gene regulation. Moreover, the measurement of mRNA levels currently is



considerably cheaper and can be done in a more high-throughpﬁt way then rdirec”t
measurements of the protein levels. Mdny mcthods have been developed for_ detecting
mRNA levels and idcntif;triﬁé the diffgrentialiy expressed gene. Other methods, such as
mass spectrometric ident.ifice.ltion of gel-separated prqteins, allow the state of a cell to be

characterized 611 the proteomic level [Kahn 1995].

1.2.1 DD-PCR (Differential Display PCR)

Through the arbitrary ampliﬁcation and comparison of different mRNA sources, DD-
PCR allows identification of 'differehtiélly expressed genes in various in vitro and in vivo
systems. The key element of the method is to use a set;qf oligonucleotide .primers to
amplify messenger RNA 3' termini. One primer is anchored to polyadenylate tail of a
subset of mRNAs and the other is a short primer with an arbitrary sequence so that it
anneals at different position related to the first primer. The amplified cDNAs labeled with
radioisdtope are then distribu£ed on'\ a denaturing polyacrylamide gel and visualized by
- autoradiography. Side-by-side comparison of mRNA species from two or more related
samples ailows identification of both up- and downregulation genes of interest [Liang and

Pardee]. -

1.2.2 DNA Microarray
Microarray is one of the latest bfeakthroughs in experimental molecular biology, which
allow monitoring of gene expression for tens of thousands of genes in parallel.

Terminologies that have been used in the literature to describe this technology include,



but not liﬁﬁted to: biochip, DNA chip, DNA microarray, z;nd gene array. In order to study
gene expression in DNA microarray technology, mRNA is hybridized to a high-density
array of wirr.uvn"c;bilized ‘target sequences, each corresponding to a specific. gene. The
‘mRNAs being sampled are la‘beléd with fluorescent dyes and are then hybridized to the
array where each mRNA will quantitatively hybridize to its complementary target
sequence. The expression level of a particular gene can be visualized by observing the
fluorescence at each spot of the array. If two differently labeled mRNAs are used then
one can quéntitatively compare gene expression level in both samples. There are two

main variants of the DNA microarray technology.

1. cDNA array: probe cDNA (500~5,000 bases long) is immobilized to a solid surface
such as glass using robbt spotting and exposed to a set of targets either separatély orina
mixture. This method is Widely considered as developed_at Stanford University [Schena

et al., 1995][Ekins and Chu 1999].

2. Oligonucleotide ‘ar'ray: an array of oligonucleo‘tide‘ (20~80-mer oligos) or peptide
nucleic acid (PNA) probes is synthesized eithgr iﬁ situ (on-chip) or by conventional
synthesis followed by on-chip immobilization. ‘The afray-is exposed to labeled sample
DNA, hybridized, énd the identity/abljndance of complementary séquerices is determined.
Due to the combinatorial nature of the process, very large numbers of mRNAs can be
probed at the same time. This method, "historicaliy" called DNA chips, was developed at

Affymetrix, Inc. , which sells its photolithographically fabricated products under the




GeneChiQ ® trademark. Many companies are manufacturing oligonucleotide based chips

using alternative in-situ synthesis or depositioning technologies.

- 1.23 RT-PCR (kev‘erse Transci'iptase_ PCR) |

To measure gene expression using RT-PCR, the mRNA is first reverse-transcribed into
cDNA, and the cDNA is then amplified to measufébl'e levels using PCR. Using built-in
calibration- techniques, RT-’PC'R can achieve high accuracy coupled with an éxceptional
sensitivity. The _method does re‘quii'e PCR primers for all the genes ofﬁ interest, and is not

inherently parallel like the previous methods, so automation is crucial to scale up.

1.2.4 SAGE (Serial Analys'i_s of Géne Expression)

SAGE uses a very different technique for measuring mRNA levels. First, double stranded
cDNA is created from the mRNA. A single 10 base pair (long enough to. uhiquely
identify eacii gene) “sequence tag” is cﬁt from specific location in each cDNA. Then thg
éequence.tags are concatenated iilto a i_ong double strande;d DNA Which can then be
amplified and sequenced. This method has t’wo advantages: the mRNA sequence does not
need to bé known a prior so that it can also detect previdusly unknown genes and it uses.

sequencing techhology that many labs already have.

By measuring transcription levels of genes in an organism under various conditions, at
different developmental stages and in different tissues, we can build up ‘gene expression

profile’ which characterizes the dynamic behavior of each gene in the genome. The gene
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expression profile is often formatted in a matrix with rows representing genes, columns
representing samples (e.g. various tissues, developmental stages, and treatments), and
~each cell containing a number characterizing the expression level of the particular gene in

the particular sample. We will call such a table a gene expression matrix.

1.3 Functional Genomics

“Specificélly, functiona_l genomics refers to the development and appliéatidn of global
(genome—wide or system-wide) experimental approaches to assess gene function by
méking use of theinformation and reagents provided by 'structural genomics. ‘It is
charaéterized by high thf,oughput or large scale experimental methodologiesv combined

with statistical and computational analysis of the results.” [Hietér and Boguski 1997] |

]?;iology is rapidly evolving into a data-rich field, opening up the possibility of data-
drive‘ﬁ research, rather than hypofhesis-driven research. Unfortunately, current
computational techniques are too humble to handle the flood of large scale expression
data. How to design fea_sbnéble computational, technique to make the- most use of
' biologiéai data is a key issue m the résearéh.of functional .genomics. .And: those answers
can certainly lead our understandings of ourselves into a new stage. In this thersis,'Id will
focus on the design of quantitative model for gene regulatory networks inference by
using expression data (gene expression matrix). Hopefully, this thesis can help to answer

somne of (he questions proposed in the beginning of this chapter.
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Chapter 2: Related Works

Biologists can be divided into two
“classes:  experimentalists ~ who
observe things that can not be
explained, - and = theoreticians who
explain things that cannot be
observed.

- Aharon Katzir-Katchalsky

2.1 Introduction
In this-section, I ‘will introduce the basics of modeling, reverse-engineering and its
application in genetic regulatory networks. I will also introduce the concept of data

mining and its relationship with modeling and. In the rest of this chapter, several current

models will be introduced and discussed in detail. .

2.1.1 Modeling and Simulation
“The phrase ‘modeling and simulation ’ designates the complex of activities associated

with constructing models of real world systems and simulating them on a compiiter”

- [Ziegler, 1976]
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From this definition, it is obvious we are mostly concerned with three elements: Real
system, Model and Computer; two relationships: Modeling and Simulation. Their

rel‘ationsliips can be clearly illustrated in Figure 2.

Figure 2 Relationships of Modelirig and Simulation

By a real system, we mean some part of the real world, which is of interest. As a general
rule, we can say that a real system is‘ a source of behavior data. Any variable in the
ﬁsysiem can be plotted against time. This set of plot can be lised to describe the behavior
of the sysfem. A model is a simplified lrepresentation of a real system intended to enhance
our ’abilit“y to understand, predict, and possibly control the behavior of the system. Models
are often expressed in certain common ways such as differential equatii)'iis or graphs. All

these forms of model description provide instructions to generating data. Given a model,

'comppitef is often used to carry out the model instructions suitably encoded as a program.
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Having looked at the three elements, let us consider the two relationships. The modeling
relation concerns the_va'lidity‘of the model, that is, how well the model represents the ;eal
system. There are degrees of strengths for this validity. The model is replicatively valid if
it matqhes data already accjﬁired from the real systerﬂ. Strongér than this is the condition
in which the model is predictively valid, fhat is, when it can match data before data are
acquired from the i‘eal' system. A third, stronger level of validity concé;ns the re}ation
between the structure of the model and the internal workings of the real system. A model
is structurally valid if it not only reproduces the observed real system behavior, but truly
reflects the way in which the real system operates to ‘produce' this behavior. The
simulation relation concerns the faithfulness with which the computer carries out the
‘instructions intended by‘ thé model, that is, number of bugs. The faithfulness with which a
program realizes a model 'is_ often reférred to as. the correctness of the program.
‘Simulation is often used to suggest approximate model, run the model and determine the

validity of the model.

The reasons of modeling and simulation are:
e Tractability — it is too time-consuming Or éxpensive to play with the real system
to ansv;fer “what if” questioné. Examples are car crééh model and cosmos
evolution model. |

‘e Training purposes—such as military project or business game for managers.
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e Black Box problems — when trying to figure out what is going on inside a poorly
understood system. Examples are gene regulatory networks. This kind of model is

like a discovering tool and is the' focus of this thesis.

-2.1.2 Quantitative models

Model is an abstraction or a prototYpe of a thing, a system, or a relationship. Quantitative
models generally include one or more parameters. For example, if we plot people’s age
against height, we may find the dots roughly form a curve. If we model age an(i height as
a linear reiatienship (such as using least square method), the intercept and slope are
parameters need to be foun(i. If the model fit data at an accepted‘ level, the model may be
used to describe reality or make predictions about further as yet unobserved data. If the
model cannot be accepted, we may dump the model, or rnake a more complex model to
fit the data (such as quadratic model instead 'of‘ linear), or add application constraints to
the model (such as liniiting‘age from O to 18). Model building, fitting, and testing are
three non-divisible processes in model construction. Once we forrnulated the model, we
will use some techniques to optimize its parameters and we will see how the model
behave compared with real (iata. Several model fitting methods are cemmonly used:
~ analytical optimization (closed form mathematical methods, such as Linear Algebra,
‘Least Square Methods, and Ordinary Differential Equations), iterative Hill-climbing
techniques (try each parameter at a time iteratively) and meta-heuristic, such as artificial |
neural network and genetic algorithms. I will give more detailed discussion on the three

methods in next chapter. -
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2.1.3 Modeling Gene Regulatory Networks

As Katzir-Katchalsky indicated, there is an obvious gap between experimental biologist.
and theoretical biologist. The apparent complexity of molecular and cellular interactions
currently being studied will increasingly require modeling tools that can be used to
properly design' and interpret biological experiments. To bridge the gap between
experiments and ltheories, formal methods for modeling and simulation of gene regulation
processes are indispensable. As most genetic regulatory systems of interest involve many
genes connected through interlocking positive and negative feedback loopsv, an intuitive
uhderétanding of their dynamics .is' hard to obtain. Using formal methods, the structure
regulatory systems can be described unambiguously, while predictions of their beﬁavior
can be made in a systematic way. ‘Esp‘ecially when supported 'by user—friendiy computer
tools, modeling and simulation rnethodg permit large and complex genetic regulatory

systems to be analyzed.

Traditionally, biologists use “block and arrow” diagram to dem'onstrate a particular
model of molecular mechar;ibsms. In this type of modeling, the functional idea exists
before the model itself ié constructed. It needs to be noted that the term “modeling” in
this. thesis is beyond its traditional meaning. Not only being a means to demonstrate a
particular preconceived functional idéa, modeling in this thesis should be also seen as a
Wayl to organize and formalize existing data on experimentally derived relationships.

“Used in this way, models become a means of minring functionally relevant relationships
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rather than devices to prove the ‘plausibility of a particular preexisting idea. In other
Words, modéling I am concerned in this thesis is a discovering tool using experimental
data. This approach is sometimes called inverse modelirig, or reverse engineering
problem, which is different with the term forward modelirig. Perform a forward modeling
need extensive knowledge of the system of interest, while this is not the case of gene

regulatory networks.

2.1.4 Reverse Epginéering

Traditionally, reverse engineering refers to taking apart an object to see how it works‘ in
order to duplicate or enhance the objeét..,)In automobile industry, ‘for example, a
manufacturer may purpose a competitor’s' vehicle, disassemble it and figure out the
components for the purpose of improving its own product. In software industry, an
example is to reverse machiné code to source code for the purpose of debugging, habking
or improving. In the domain of gene'regulatory network study, reverse engineering is

defined as follows:

Reverse engineering problem (network inference problem):
Given an amount of expression data, what can we deduce about the unknown underlying

regulatory networks? [D’Haeseleer et al., 2000]

Reverse engineerihg typically requires the use of a quantitative model, the parameters of

which are then fit of the real-world data. If the connection structure of the regulatory
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‘network is unknown, the parametric model will necéssarily have to be very general and

simplistic. The results of this sort of model only relate to the overall network structure.

From this problem deﬁnitioh, one may wonder whether existing data mining tools can be
applied to solve this problem. However, it is hard to apply data.mihing tools in their pure
- form. Data mining is often to extract hidden predictive information from large data sets.
Curr_ent data mining tool include decision trees, clustering z;lgorithm, rule induction, and
artificial neural networké, etc. They are mostly used in classification and forecasting
business. We can of course do a classification or clustering to our gene expression matrix.
However, the inter-relationship between al.l genes remains unanswered. Data mining tool
' in its complex fqrm (i;e. neural networks) is notorious for its “black-box” structure which
is not good for clarifying structure of geﬁe/networks. Some literature has made attempts
using neural networks in its modified form to solve réversé ‘engineering prbblem
[D’Haeseleer 2000]. The results are not quite satisfying. Thus, it is bettér to view this
modeling technique as an advanced éomplement of current dat»a fnining tools. Specific
framework of models to solve reverse ;mgineering problem‘will be discussed in the rest’

of this chapfer.

2.2 Boolean Network Model
As a first approximation, the state of a gene can be described by a Boolean variable
expressing that it is active (on, 1) or inactive (off, 0) and hence its products are present or

absent. Interconnections between elements can be represented by Boolean functions
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which calculate next state of a gene from current states of other genes. The result is a

- Boolean Network [Kauffman 1993].

Figure 3 A Boolean Network Example

A Boolean ne.twovrk (Figure 3) G(V,F) cor_isists of a set V={v;,...,v,} of nodes representing
genes and a list F={f},....f»} of Boolean functions, where a Boolean function fi(vis,...,vix)
, with inputs from sﬁeciﬁed nodes v,—;;...,v,-;;is asSigned to each node v;. Each node v; has a
state S(v;)= 0 or 1 which ~iﬁdicate “on’; or “off” state (\)fi gene Vie If it does not cause
confusion, we can omit S. For example, we write v;=1 for denoting S(v;)=1. HC;’ICC, from

definition we have the following definition for a Boolean network:

Vi |z+1= fi(vil It""’vik lt) 1<i<n (1)

We-can rewrite Vilr+1 @8 Vi, Vig,...,Viz as a vector v, this way we can define the network is a

nicer form:
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v.'= £.(%) 1<i<n 2)

where f, ={0,1}" —{0,1} is a Boolean .function map'ping vV itov,'.

Wiring diagram [Liané etal., 1998] G’ and state transition table (complete) is also shown
"in Figure 3. In wiring diagram, the upper row lists thé state atg and lower row the state at
t+1. The transition from one state to the next state is usually determined in a parallel
fashion, applying the Boolean function of ye‘ach element to its inputs. Hénce, trénsitions
between states in a ngtwork are deterministic, with a single output state for é given input,

and synchronous, in the sense that the outputs of the elements are updated simultaneously.

A sequy'cncé of states connected by transitions forms a trajectory of the system. Because
the 'number of states in the state space is finite, the number of sté_ltes n t'rajectory‘ will be
finite as well. More spéciﬁcally, all initial states of a tré}jectory will eventually reach a
steady state or a state cycle, also refen‘edqto as poiﬁt attractor or dynamfc attractor,
respectively. All the state transitions constitute the basin of attraction. The dy_ﬁémics of
Boolean network has been summarized in Kauffman’s book [Kauffman 1993].v and v'

can be measured as a time-series of expression which are normalized to {0,1}.

In Boolean network context, the reverse engineering problem becomes:

Definition: Given a set of v and V' for a series of time points, find f; for all i.
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An equivalent definition is:
Definition: Given a set of time series gene expression data (which can be transformed in
to a set of state transitional tables), find the complete state transitional table (which can

be trunsformed into Boolean functions) with 2" entries.

Liang et al. developed an algorifhm called REVEAL aimed to solve this problem [Liang
et al., 1998]. In brief, this algorithm- uses information theory to establish how given
¢lements are connected in th¢ network and then determines the functions that specify the
logic of the _interactions from the data. Akutsu et al. designed a much simpler algorithm
[Akutsu et al. 1999]. The idea is simply search all poséible Bool_e_an functions which fit

expression pattern time series.

Boolean network represent the first step modeling for gene regulatory networks. It is
simple to analyze and has efficient algorithms but this convenience comes with big price.

The model makes huge assumption of the real system.

1. Discrete time model: synchronous updating which is obviously not true in real
gene regulatory networks. All transcription factor works as a reactant in the

system and they have different kinetics constant.
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2. “On/Off” state: discrete gene states are too sjmple to characférize gene expression
state. We knew that real gene expression patterns are not rectangular waves.

3. It is a deterministic model: a deterministic network is a rigid system, where the
current system state unambiguously determines next system state. In a stochastic
system, on the other hand, current state can have more than oﬁe next state. In
reality, gene networks are stochastic. [Siallasi 1999]

4. Boolean functions: questionable. Transcription factor often lwork as a g1;oup but
whether their relationship are Boqlean Qr_additi?e or something else is still an

open problem. See Figure 4.

Figure 4 Deterministic or Stochastic State Transitions

These criticisms prohibit the use of Boolean network in ﬁne-grained‘ analysis. wacver,

we can make use the concepts here and develop more sophisticate models.

2.3 Linear Additive Model
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From chemical kinetics, we knew that one simple chemical reaction can be described by
the following equations.

A+B—tC

k' 3)
C—~ 5A+B
A, B, and C are three chemical species. According to the equation, C is produced from A

and B at rate constant k. C is also degenerated into A and B at rate constant k’. The actual

faite C is generated in the system can be described by using the folloWing equati_on:
2k AB - K1) @

The lratc of C is generated is determined by 'the concentration of other species (may
include C itself) and all the rate constant k. This is an Ordinary Differential Equation
(ODE) model for chemical specie C.- ODE is a widely used mathematical modeling
method which has many applications in engineéring. Inspired by this idéa, we can use
ODE to model gene regulatory networks since every gene can also be considered a

chemical specie and its interaction can be considered chemical reaction. We can

generalize the ODE model as the f(;llowing equation:

dlv;]
dt

= f;(v) 1<i<n (5)

v;is the ith gene in the system and v is the vector denote all genes in the system. We can

see this equation is very similar to equation (2) which represent Boolean network except
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_that this is a time-continuous and value-continuous model and f,:R"—>R is a general
| (possibly Booiean) function. In the linear model, reveise engineering problem becomes
finding all f;’s that fit equation (5). Since f,—’s are general functions, retrieve them is a hard
job. We can make further assumpfions that f;’s are linear functions. Several variants of
suéh models have been proposed, with eaéh group a different name: connectionist model
[Mjolsness et al., 1991], linear model [D’haeseleer et al., ‘200'0], linearﬁ transcription

model [Chen et al., 1999], and weight matrix model [Weaver et al., 1999].

In D’haeseleer’s dissertation [D’haeseleer’s 2000], he used the following equation to

describe the linear additive model:

v, < : .
-——:ZWﬁV-"*'b- 1<i<n (6)

“wj; is the constant indicate the influence of gene j on the reglilation of gene i. b; is the
external influence constant on gene i. He also transforms this equation into the followirig

equation by mhltiply dt and add v(z) to both side of equation (6):

v =v,t+d)=) w,v,O+b,  1<i<n 7)
J

Or,

viZ.ZW‘jivj—'_b'i I<i<n (8)
j
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In a compact form, equation (8) can be written as:

v=Wv+b 9)

This is a linear equation system. Given enough example of v; (expression data), we can

use linear algebra or multiple regression equivalently to solve W and b so that Ji’s are

retrieved.

Chen et al. 'develop- a more elaborate model for the gene regulatory syStem [Chen et al.,

1999].
Degradation
Figure 5 Dynamic Modeling of Gene Regulatory Network [Chen et al., 1999]
v . . dp -
—=Cp—Ry —=Lv-Up (10)
dt dt

where the variables and functions are defined as follows:
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Vi mRNA concentration, n dimensional vector

15 : ~ protein concentration, n dimensional vector

C: Transcription function; nX n non-degenerate matrix

R:  Degeneration rates of mRNAs; nxn non-degenerate diagonal mafrix
L: " Translational constants; nXn non-degenerate diagonal matrix

U Degeneration rates of proteins; nxn nbn—degenerate diagonal matrix

From Figure 5, each gene is rggulated by multiple other gene produgts; so that C is not a
-diagonal matrix. Other functions R, L, U are controlled by a single source, so that ghey are
diagonal matrices. This model is closer to real system but it needs protéin level
measurements. Also this mpdel clearly has more parameters and reverse ehginecring this

‘model is more difficult. This phenomenon is common in modeling community. No pain,

no gain.

‘Note_ that the variables ih equation (6) can theoretically become negative, or unboundedly
- large. Since these variables typically correspond to concentration leyels, we may want to
irhpos'e ;ealistic upper and lower bouhds, Most genes exhibit a sigmoid (S shape) curve.
Weaver et ql; [Weaver et al., 1999] designed a‘varia_nt linear discrete-time model, in

which the linear additive model is further transformed using a sigmoid function to make

it more biological realistic.
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vt +) =S ww, @) +b,) 1<i<n (a1
j

Or in a continuous time form proposed by Reinitz et al.:

dv,
—dt-’-zS(Zwﬁvjfl-bi)—rivi 1<i<n (12)
~ ,

where r; is the decay ‘constant for gene i;  sigmoid function S§(.) can be .
S(;c) =(1+e™)7", S (x)'= tanh(x), or a more biologically justiﬁea dose-response curve

(see Figure .6). Clearly this model is inspired by the concept of Artificial Neural Network

computing. Genes works as neurons in a recurrent neural network. Weighted input sum

‘are viewed as regulating power for a gene and this ;um is used to determine whether the

gene‘.will “fire” or not. Eécause ANN has many.well developed theories and concepts,

people in ANN field are more likely use it in their research.

y=1(1+EXP(-x))

y=x -
10 - 1.2 -
. 1 4
5-
0.8 -
0 > 0.6
>N A 0.4 -
-5 A
0.2
-10 A 0
:\\
-15 4
X

Figure 6 Sigmoid Transformation



In summary, linear additive model is a very useful and simple tool for modeling

“dynamic gene regulation system. Many powerful ‘mathematical tools, such as

Ordinary Différential Equation, Linear Algebra, and Statistics, support the reverse
engineering of this model. Its continuous-value functions are also more realistic than
Boolean network. However, its name “indicates its weakness: it is linear and. additiVe;
which imply that reguiations are modeled as independent events. Actual biological
system is far more complicated than this. For q:_xample, it is known that t;anscriptional
regulators have different activities depending on their protein partners [Garrell ef al.,
1991]. Additive functions are also a huge assumption and thus need to be verified or

confirmed.

2.4 Bayesian Network Model
In the formalism of Bayesian networks [Friedman‘et al., 2000], the structure of a
genetic regulatory system is modeled by a directed acyclic graph G( V,E ). The vertices

i€V, 1<i<n, represent genes and correspond to random variables X;.

If i is a gene, then X; will describe the expression level of i. For each X, a conditional

distribution p(X ,| parent(X ) is defined, where parent(X,) denotes the variables

corresponding the direct regulators of i in G. The graph G and conditional distribution

p(X, | parent(X,)), together defining the Bayesian network, uniquely speéify a joint

probability distribution p(X).

27
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A conditional independency i(X;; Y|Z) eﬁ_(press the fact that X; is independent of ¥
given Z, where Y and Z denote sets 6f variables. The graph encodes the Marko:v
assumptions, stéﬁing that for every gene i in G, i(X;. nondescendants(X;)|parents(X;)).
By means of ;t:;—W_Ma‘lrkov assumption, the joint probability distribution can be

decomposed into -

pX)=T] p(X,| parents(X,)) (12)
i=1 :

Figure 7 A Bayesian Network Example [Friedman et al., 2000]

Given a set of independent values for X transformed by a set of expression. data,
learning techniques for Béyesian networks allow one to induce the network. Basically,
the techniques rely on a matching score to evaluate the networks with respect to the

data and search for the network with optimal score.

A Bayesian network approach towards modeling regulatory networks is attractive

because of its solid basis in statistics, which enables it to deal with the stochastic



aspects of gene expression and noisy measurements in a natural way. Moreover,
Bayesian networks can be used when only incomplete knowledge about the system is

available.

| 2.5 Clustering

A key step in the analysis of genqexpression data is the identification of groups of
genes that manifest sifnilar expression patterns. ~This translates to the algorithmic
problem of clustering gene expression data. .A clusterihg problem consists of elements
and a feature vector for each element. A meaéure of siﬁﬁlmity is defined between
pairs of such vectors. (In gene expression, elements are usually" genes, the vector of
each gene contains its expression levels under each of the monitored conditions, and
similarity can be measured, by the \correlat’ion coefﬁcient between vectprs.) The goal
is to partition the elements into subsets, which are called clusters, so that two criteria
are satisfied: homogenei;y —elements in the same cluster are highly similar to each
~other; and léeparation - elements from diffelfent clusters have low similarity to each
other. For elements with unknown or largely unknown mechanisms‘ such as a gene
regulatory network, ciustering often rcpreseﬁt the first step data analysis. In artificial
intelligeric; terminology, clustering is an un-supervising learnih;g method because
clusters are totally derived from data itself (no pre-knowledge about the data). The
purpose of clustering gene expression data is two folded: organize expression data to
facilitate visual analysis; reduce the number of entries to enable advanCéd data mining

and analysis. Several algorithmic techniques were previously used in clustering gene



‘expression data, including hierarchical clustering, self organizing maps, K-means,
and graph theoretic approaches. I will use a combination of clustering methods in the

last chapter.

2.6 Other Issues

In the beginning of this chapter, I have introduced the concept of validity of model.
Our goal is to create a structural valid model of the real system. However, all current
models are far from this goal _belcause_the_;internal detailed mechanisms of the gene
regulatory networks are largely unkn_own.‘ Every model makes some assumptions Qf
the real system, which is fine for coarse—g_rainéd modeling. For fine-grained modeling

~ are needed in the future to reveal detailed gene networks.

Computing complexity is another concern in the modeling work. One genome often
contains thousands of genes; One organism may have billions of cells. Fitting the
parameters of the model require heavy computation. Deriving parameter for the
model i§ often NP—hard? such as the case of Bayesian networks. \Designing‘efficient
algc;rithms is one major topic in the modeling community. In the next two chapters, I

will apply genetic algorithms for efficient modeling of gene networks.

Measuring more variables (so that parameters) allows for a more exact modeling, but
makes the correct model exponentially harder to find. It is well known- that the more

variables one models, the harder the modéling task becomes, because the space of



models .'.[O be searched increases exponentially with the numbers of parameters of
" model, and therefore with the number of variables. This is often referred to as the
Cuf&e of Dimensionality. To get around the curse, I will perform a clustering
procedure to reduce the number of variables and parameters.

Data requirement is another key concern when we perferm a modeling. Gene
expression data are often awkward in dimensionality (this dimensionality is not the
same as Curse of Dihlensionality which means search spaee). We are often
confronted with a table of data with thousands of genes and only dezens of time point
measurements. An analogy to this is trying to solve a linear eQuation, system with

thousands of unknown variables and only dozens of equations. However, this

situation will be improved with the advance of biological technology. Again,

clustering may also help to avoid this problem. Anyway, determining how many data

points are needed to perform a successful modeling is a prerequisite work.

In summary, several modeling frameworks are introduced in this chapter. These
examples. are by no means exhaustive. Actually, papers in this area are coming at an
exponential rate and this trend has no signs to stop in the near future. The Wofks in
this chapter arouse my interest and set up a background for this thesis. In next chapter,
a new incremental model and its reverse—engineering algorithm will be introduced. I
will also give a formal analysis of its data reqilirement and algqrithm complexity.

Then results and conclusions will be presented in chapter 4.

31
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Chapter 3: Incremental Modeling_ahd Fitting

Algorithm

- I may be wrong and you may be right,
and by. an effort, we may get nearer
to the truth. .

--Karl R. Popper

“*Recent technol.ogy advanéement hgs made. large-scale gene expn;ssion surveys a reality.
- Along with genome sequence data, massive gene expression data sets have made biology
a data-rich subject. These data sets provide an opportunity to direcﬂy view the activity of
hundreds of genes in parallel. However, manual analysis of these hﬁge data sets is often
not practical. Development of computational methods and data mining tools for
knowledge inference from gene expression data base is the only way to face this
challenge. Current Widely used metho‘ds to facilitate analysis of gene expression (iata sets
are clustering, classification, and visualization tools. These methods are used to group
genes based on the similarity of éxpression patterns. If two genes are clustered togethér in
- this way, then they may share a -common funcﬁonal role. But if they have distinc£
expression patterns, how they are related? It is obvious that a simple clustering analysis

cannot answer this question..
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In order to answer this kind of query, we ﬁeed to construct a gene regulatory network.
The knowlédge of gene regulatory network and its interactions will further the
understanding of _important biological proceséeé ‘such as disease, cell cycle,. and
development. Drawing regulatory network information from time series expression data
sets is a reverse engineering vprobl'em. A common approach to solving this problem has its
basis in matherﬁatical modeling; we adopt this approach here. We' first construct a
mathematical model which ;imulates the _real gene regulatory system with some
simplification. Then we apply fitting alg’orithfns to search for the best model parameters
that will let the model behave closest to the data. The result parameters are then used to

construct the regulatory network.

3.1 Introduction

In this chapter, I will present a new incremental model formally and give a fitting
algofithm. A formal complexity analysis and data requirement analysis will also be
prepared. How to 'build, test and fit the model will be discussed in detail. The

-implementation and festing of the fitting algorithm and model is left in the next chapter.

As I have introduced in chapter 2, modeling a real system is a complex procesé. Several
important issues have to be considered:

o Whatis the formalism of the model?
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o How well the modei structurally represents the real system?
o How to reverse-eﬁgineer (fit, train) the model? |

o) rHow many data we need to fit the model?

o How long it takes to fit the model?

o How well the model fit the data?

o What information can we get from the model?

In this chapter, I will give a detailed answer for the first five problems. The last two

problems will be discussed in the next chapter.

3.2 Genetic Algorithms
In this section, a very brief description of Genetic Algorithms (GAs) will be given. For a

more complete description, see e.g.[Holland 1975],‘ [Whitley 1994].

In a GA, the annown parameters of the problem are encoded in strings of digits referred
to as chromosomes. Initially, a population of individuals, each associated with one such
string, is generated'by assigning random values to all the Jocations (genes) along the
strings. Theﬁ, for each in&ividual, the variables are read off from the chromosome, the
relevant computation is carried out, and the fitness of Fhe individual is evaluated. The
assignment of fitness values should be such that individuals close to reaching the goal set.
by the user obtain higher fitnesses than those Who are far fro:m the goal. When all the

individuals in the first generation have been evaluated, the second generation is formed
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greater probability of being selected than those with low fitness, and then combining the

genetic material contained in their chromosomes to form new strings, and, finally,

allowing a small degree of recombination (i.e. cross-over) and mutation (i.e. random

variation) of the newly formed chromosomes. The chromosomes thus formed constitute

the second generation, which is evaluated by repeating the procedure used for the

evaluation of the first generation. This iteration continues -until a satisfactory solution has

been found. A pseudo-code of canonical GA is shown below:

while (1)

{

Compute and save the fitness u(m) for each

individual m in current population M(t);

Define selection probabilities p(m) for each
individual m in M(t) so that p(m) is

proportional to u(m);

- Generate M(t+1) by probabilistically

selecting individuals from M(t) to produce

offspring via genetic operators;

Figure 8 A Canonical Genetic Algorithm

3.3 Incremental Model
The model is inspired by previous works as I introduced in chapter 2, especially by the

linear additive models and neural network models. First let us revisit Reinitz’s neural

network model [Reinitz et al., 1995]:
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DSy b= 1<i<n 0

j
The growth rate of the expression level for a gene is controlled by the transformed
weighted sum of all other 'genes plus a bias term and a decay rate. v; is the expression.
level of the ith gehe; the léft-hand side is the growth rate of v;; wy is the nxn weight
matrix element represent regulation power of the jth gene to the ith gene; b; is the
constant bias ten."n for the ith .gene; S(-) is a sigmoid function which can be

S(x)=(+¢e*)". This is a continuous-time and continuous-value model which reflects

.more reality than a éimple B’c')olean discrete model. The‘ sigmoid transformation
- constrains the expression growth rate in a reasonable range. This is the advantagé over a
simple linear additive model in which the growth rate can be extremely high and low.
The downside of this model is also éignificant: biological processes are simplified by the
weighted matrix; gene regulations are modeled as independent -events without
considering combined effects; the huge sparse rﬂatrix contains too many parameters and

thus is computationally hard to solve.

GAs have been widely applie;1 in many areas including fitting genetic regulatory network
models [Ando et al., 2000][Wahde et ai., 1999]. In théir papers, they describe the
application of GA to existing models such as Weaver et al. [Weaver et al., 1999]. They
claim the results are plausible and make biological sense. However, since Weaver’s
model consist of too many parameters (nXn, n is the number of genes), we need at least

n time-series data points to effectively fitting the model, which is not possible for genome
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scale modeling under current technology. In other words, this kind of models is usually
under-determined. Another problem with this kind of models is the parameter matrix is
very sparse. Most of them are zeros. Thus most of the computing power is wasted in
determining this sparse matrix. Because GAs are usually regafded as slow, it is not
possible tu do 4 large-scale analysis. In fact, both m;thods from Ando et al. and Wahde et
al. can only be used fo deal with very small nétworks sugh as 4 nodes. A third problem is
encoding a large _number of parameters is not feasible. For pxample: if we are studying a
1,000 genes system (which is a relatively small genomé), we have at least 1,000,000
parameters to fit. If we are using genetic algorithm, each parameter is a substring the
chromosome. ifeach parameter is encoded as 3 bits, the chromosome will be more than
3;000,000 iaits long. ﬁandling such a huge chromosome in a genetic algorithm is alinoét
impoésible. We have to design a new encoding schéme or a ner model for such system.
A fourth problem is that this kind of modelé only considers linear effect of gene
regulation. In other words, géne§ are independently regulating target gene. This is a huge
assumption of the gene regulation pattern and clearly not truc% from experimental results.
In my model, interactibn effects of gene regulation are considered as a non-lincar term,
e.g. v, Xv,.

3.3.1 Basic Model

Following the above analysis, the models were built:

dv. . :
}7‘ = ml.S(wpivp" —w,v, + b)—rv, )
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In order to improve computability of (1), Basic Model (2) is introduced. Instead of
including whole weight matrix as parameters, I search for the one that is responsible for
regulating other genes activity. By doing this I add two new parameters p and g in (2).
See Figure 9 for an illustration. p is a gene encode an enhancer for gene i. g is a gene
encode an repressor for gene i. Traditionally all parameters we have seen in this thesis are
on coefficient position. But now p and g are on subscript position. This trick allows us to
save significant time and space to reverse engineering the model without losing important
information. This is like encoding computer memory address using address buses. In (1),
we have more than nxn parameters. In (2), we have only 6n parameters. Model (2) is not
easy to fit by mathematical method since it doesn’t have a canonical form. However, if
we fit the model using GA, the chromosome is relatively short due to lower number of
parameters. Evaluation the fitness is also much easier since this model has a lighter

computation load than (1).

Genes List

dv;
—d—’- =mS(w,v, +w, v, +b)—ry,
4

Figure 9 Basic Model

m; 1s the maximum expression growth rate allowed for gene i. Weaver et al. [Weaver et
al., 1999] introduced this parameter in their model. This parameter is used to scale the
growth rate to a reasonable level because Sigmoid function S(*) output a value from O to

1. Note that all parameters in the model are non-negative (p, g are integers).
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There 1s a natural constraint that every gene in the system has at least one enhancer and
one repressor, so that the expression is controlled in a reasonable level. I thus
conveniently use gene p and gene g to model this fact. An obvious problem with this
model is the connectivity of each gene is limited to 2 with one enhancer and one
repressor. However, the fact is that every node often has low connectivity (usually less
than 10) so that this is a reasonable approximation. Anyway, we can also extend this

model to include more connections easily if we wish to model in greater detail:

dv.
—dlf— = miS(winp WiV tw,v, + bi ) — Vi 3)

In (3), I added another promoter s for i to increase the connectivity to 3. In fact, we could

include as many ingredients in the model without adding much complexity.

For better resemblance to a real biological system, the model is designed to be value-
continuous, time-continuous, and value-constrained by a sigmoid function. Because gene
regulatory networks are very sparse networks with most connections being zero, it is not
necessary to design a fully connected model. By indexing regulating genes instead of
including all genes in the model, we avoid a fully connected model which is the case in a
recurrent neural network. The advantage of doing this is two-folded: computation load is

significantly reduced and, more importantly, the number of parameters is reduced by
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O(n)(see next section for detail). As we know, search space grows exponentially with
number of parameters. Reducing the number of parameters improves the chances of

pinning down the right regulatory network.

3.3.2 Nonlinear Model
In order to attack the linear assumption of (1), I included a nonlinear term in this

nonlinear model:

dav.

1

; - miS(WpivP + quvq + WaiVsV, + bi ) — Vi )

The intention of introducing non-linear term wgvsv; 1s to honor the fact some gene
regulations are dependent to each other. This term means that the regulation to gene i
from gene s and ¢ are dependent to each other and the co-regulating effect 1s scaled by
parameter wg,;. The bold arc in Figure 10 demonstrates this dependent interaction. We can
use this term to model this kind of interaction conveniently because the value of the term
depends on the expression level of both gene s and gene t. The genes regulations are no
longer independent events. One can affect others. Previous work fears to put this
nonlinear term to the model because of the computability. But now, with our basic model
frame work, this term can be calculated without too much pain. See basic model for the

recason.
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Figure 10 Nonlinear Model

Similar to basic model, the nonlinear model may become complex if we allow
connectivity more than 2. For example, wupeivaveve could mean gene a, b and ¢ are co-
regulating gene i and they depend on each other. It should be noted that parameters s and
t may be same as p and g in (4). Also note that wg; can be negative to represent the

negative co-regulation effect.

The nonlinear model can also be extended to model more subtle relationship. For
example, it is known that transcriptional regulators have different activities depending on
their protein partners [Garrell er al., 1991]. To model such complex relationship, we

could add this term to the model:

(Wabivavb+ Wacivavc) 5)
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This term models the fact that gene a has different regulating effects to gene i depending
on gene b and gene c. It is obvious that the value of this term depends on the value of v,
and v.. Because there are two weight parameters in the term, the discriminating effects
can be represented. We can see that the nonlinear model framework is flexible, which is

required to model complex ettects of biological mechanisms.

A common modeling guideline is to increase model complexity until reality (data) is
satisfied. From equation (2) to (5), we are following this guideline. One trick we can play
here is we can automate this process to make an incremental modeling. This will be

explained in next section.

3.4 Model Analysis

For a black-box system, modeling is in the middle of science and art. We build the model
based on limited knowledge of the black box, then add flavor to the model according to
personal understanding. We then collect data from experiments to train the model.
Parameters of the model are known when the training is done. Those parameters can be
used to test the validity of the model and also reveal the internal interaction of the real
system. Recall that if the predictive data generated from the model is close to the real
data in an acceptable level, the model is called replicatively valid or predictively valid.

However, our goal is to generate a structurally valid model.
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Only when the interaction revealed from the model is observed by experiment, the model
can be called structurally valid. Otherwise, this model can be wrong or incomplete. All
previous work in this field is still in the predictively valid model level and this fact is
somewhat overlooked by the researchers. Generating a structurally model needs greater
knowledge about the system we are studying and also a greater mathematical insight.
Even if a structurally valid model for one biological system can be derived, don’t forget
the fact that diversity is a major biological feature. So in this page, I’d rather say that this
field is only a beginning, not an end. The situation in this field is just like some
proponents [Bittner et al., 1999] said: “We can stay in our room, maximizing our feeling
of safety, but minimizing our vision. Or we can venture forth — albeit with more “baby
steps” — to confront our greatest fears: non-linear or multi-input relationships.” Although

gene regulatory networks seems too complex to model, computation is our only way out.

In my model, I added nonlinear modeling and subscript parameter to overcome the
deficiencies of linear additive modeling. Nonlinear terms help to reveal dependent
regulating interactions. Introducing subscript parameters significantly reduce the number
of parameters. In a fully connected network model, the number of parameters is o(n?),
where n is number of genes. In this proposed incremental connectivity model, the
number of parameters is O(nk), where k is network connectivity. For large scale system, k
is far less than n and can be seen as a constant, so the number of parameter is actually
O(n). So we see the number of parameters is reduced by O(n) in this model. Recall the

curse of dimension: search space exponentially grow with the number of parameters.
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The search space is then significantly reduced. This analysis suggest that fitting the
incremental connectivity model by some kind of search algorithms, such as a GA, could
more likely yield better results than fitting a fully connected model. As far as I knew,
those improvements are first introduced to this field. However, the inference from the
model fitting needs to be confirmed by experiment results to prove my model is

structurally valid. A structurally valid model is still a long-term goal at this point.

Another major advantage of this modeling framework I presented is its adaptive
capability. When used with GA, we can add any ingredients to the model to incorporate
greater detailed modeling as I have shown above. This process can be automated by
designing a fitting algorithm embedded with GAs. The advantage doing this is we avoid a

fully connected model without losing modeling performance.

It should be kept in mind that the models I introduced in this chapter are coarse-grained
models. The data and understanding of the system limit our ability to model it at in-depth
biochemical level. We cannot realistically hope to characterize all the relevant molecular
interactions one-by-one—at least not in the near future. Many aspects of the system are

ignored temporarily.

The model presented here is a non-spatial model. Spatiality can play an important role,
both at the level of intercellular interactions, and at the level of cell compartments (e.g.

nucleus vs. cytoplasm vs. membrane). Most processes in multicellular organisms,
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especially during development, involve interactions between different cells types, or even
between cells of the same type. A spatial model is needed to accommodate such

modeling requirements.

The deterministic nature of my model determines this is a coarse-grained one. In order to
make a fine-grained model, stochastic character has to be added. However, due to its
complexity, stochastic model is limited for small system. For large system such as a

genome, we can only focus on deterministic model.

3.5 Data Requirement

From linear algebra or multiple regression, we know that we need at least n+1 data points
to train a fully connected network model. However, my model is a continuous model with
a limited connectivity k. Up till now, it is still an open problem that the data required for
continuous modeling with limited connectivity. Some researcher suggest that the data
requirement be klog(n/k) [D'haeseleer et al., 2000]. However, this is still a conjecture. In

later chapter, I will try to use experimental methods to test this hypothesis.

3.6 Model Fitting Algorithms
As I have mentioned in chapter 2, many methods exist for model fitting. If the search
space is not big, simple exhaustive can be used to guarantee a global optimal found. If the

problem can be solved mathematically, an analytical optimization should be enough and
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fast. If the search space is huge but has single smooth global optimal, a hill climbing
technique (gradient based) could be used. If all these “good” conditions fail, a GA or
other meta-heuristic can be used to fit the model. The topic of this thesis is not on GA
itself but modeling. Instead, I will only focus its application as a heuristic function
optimizer. For this purpose, GA can be usetul for two largely distinct purposes [Everett
1996]. One purpose is the selection of parameters to optimize the performance of a
system. Such systems typically depend upon decision parameters, chosen by the system
designer. Appropriate or inappropriate choice of decision parameters will cause the
system to perform better or worse, as measured by some relevant objective or fitness
function. By encoding the set of parameters as a bit string and evaluate there performance
by fitness function in a GA, one can usually find a good (not necessarily best) set of
parameters to optimize the system performance. The second potential use for GAs has
been less discussed, but lies in the field of testing and fitting quantitative models. This is
the focus of this thesis. We know that fitting a quantitative model 1s the work to find a set
of parameters which make the model behaves like real system. In contrast to the situation
where we were trying to maximize the performance of a system, we are now trying to
find parameters that minimize the difference between the mode and the data. Fitness
function in this sense is expressed as the difference between the model and the measured
data. We know this model may contain thousands of genes and thus thousands of
parameters. Recall dimension curse: search space exponentially grows with the number
of parameters. Thus it is not possible to explore the whole search space to find global

optimal. Another by-product from dimension curse is that large scale expression data
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often does not have enough data points to train the model so that the system is under-
determined. This fact infers that we may find many locations in the search space that
have very good fitness. This kind of model is hard to train by analytical method such as
linear algebra. GAs are especially useful to do this kind of “dirty” work. We don’t need
to know how to solve the parameters, a fitness function is enough. This flexibility offered
from GA is particularly useful in training non-regular form of models. We know the gene
regulatory network is a complex system. The mechanisms are not well understood. The
fitness function is noisy since gene expression measurement is noisy. The shape of the
fitness function is very likely to be non-unimodal (no single hill) and non-smooth. All
these characteristics of the problem inspire us to use GAs in the model fitting process.
The problem of GA is that it is a heuristic and thus no global optimal is guaranteed and it
is a weak method, which means it is a general method and should be inferior to a domain
specific method. However, there are no domain specific methods available for this

problem and we have to accept GA as a desirable method for fitting this model for now.

The model fitting algorithm is slightly different from a traditional GA. In order to adapt
the connectivity of the model and automate the modeling process, I embed a GA inside a
loop. If the model fitness is not sufficient, the model will update by increasing
connectivity by one. A GA then fit the new model in hope of increasing the fitness to an
acceptable threshold. This process will repeat until the model is acceptable. This

algorithm is displayed as in Figure 11.
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equations utilizing Runge-Kutta method. Thus, efficiency in evaluating the model is a
major concern when model is designed. For fully connected model, at each time point,
there are n differential equations to evaluate. For each equation, we have to compute the

sum of n weighted regulations terms. Thus,

T(n)=gxpxtxnxn=0(mn*)
where g: number of generations
p: population size

t: length of time series

n: number of genes

When fitting the fully connected model utilizing a GA, time complexity is determined by
number of generation, population size, length of time series, and number of genes. For
large-scale system, number of genes can be treated as the only variable and the other are

constants.

For the incremental connected model fitting algorithm, time complexity is different
because connectivity is restricted by k. For each loop, a GA is performed and model
connectivity increase one until fitness reaches a satisfied level. For large-scale system,
connectivity can be treated as a constant because it is far less than n. So the algorithm has

a time complexity:



k
T(n)= gXpXIXnXZi = gXpXtXnXO(kz) = 0nk?*) = O(n)

i=1
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Similar analysis can be applied to space complexity. In a GA, each chromosome is an

array of parameters. In a fully connected model, every chromosome has a space

complexity of O(n). so the space complexity for the GA is:

S(n)= pxnx0(n) =0(n*)

In the incremental connected model, space complexity for each chromosome is reduced

to O(k). So the total space complexity for the fitting algorithm is reduced to:

S(n) = pxnx0k) = O(nk) = O(n)

Fully Connected Incremental

Model Connected Model
Time Small System o(n*) O(nk*)
Complexity  Large System o(n’) O(n)
Space Small System O(n*) O(nk)
Complexity  Large System o(n°) O(n)

Table 1 Complexity Comparison of Fully Connected Model and Incremental Connected Model
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It is important to note that the above analysis is based on constant number of generations.
If the termination method is by convergence, things will be a lot complicated and that is

beyond the scope of this thesis.

3.8 Summary

In this chapter, I present a continuous-time continuous-value neural network flavor gene
regulatory network model with incremental connectivity. I adapt the connectivity of a
recurrent neural network model by indexing regulatory elements and including nonlinear
interaction terms. The new technique reduces the number of parameters by O(n),
therefore increasing the chance of recovering the underlying regulatory network. In order
to fit the model from data, I have developed a genetic fitting algorithm with O(n) time
complexity and that adapts the connectivity during the fitting process until a satisfactory

fit is obtained. The advantage and limitation is also discussed for this model.
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Chapter 4: Implementation, Testing and Results

Biology easily has 500 years of
exciting problems to work on.

-- Donald E. Knuth

The purpose of this thesis is two folded: develop a method and apply this method to deal
with specific problems. Based on the method I presented in last chapter, the model fitting
algorithm will be implemented in this chapter. Some experiments will be designed to test
the performance of the algorithm. The model and algorithm will also be used to reveal
real gene regulatory networks. This method along with clustering analysis is applied to
two sets of data, rat central nervous system (CNS) and yeast whole genome. These data
sets represent small-scale and large-scale gene expression measurements respectively.

The results followed by a discussion were also given in the end.

4.1 Algorithm Implementation
The fitting algorithm is implemented in C++. The core of this fitting algorithm is a GA.
In order to save time and ensure accuracy, I use a C++ GA library obtained from

http://lancet.mit.edu/ga/ [Wall 2002] as part of the code. When implementing a GA, we

usually have many schemes and parameters to choose. And the decision of choosing
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which scheme and parameter often has great impacts on the GA performance. In this

case, I found that standard setting work pretty well in terms of fitness and efficiency.

Below is a table of parameter settings for this algorithm.

Scheme/Parameter Type
Replacement Non-Overlapping
Scaling Sigma-Truncation
Selection Roulette Wheel
Chromosome-Type Real Number
Mutation Gaussian
Mutation Rate 0.01

Cross-Over
Cross-Over Rate
Number of Generations

Population Size

Uniform Cross-Over

0.7

500

30

Table 2 Algorithm Settings

I use sigma-truncation scaling in stead of linear scaling to avoid pre-convergence

problem. Real number is convenient to encode mode] parameters such as weight and bias

terms. It should be noted that GA is basically a heuristic. Thus we can not guarantee the

model retrieved from GA is a global optimal one. The algorithm may be trapped in a
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local optimum with near optimal fitness. In order to overwhelm local optimal noise, I

make multiple runs take the majority of each parameter.

4.2 Evaluation Function

The evaluation function demands a simulation to be implemented. For each setting or
parameters, I use the model to compute a set of simulation time series expression data.
This data is compared with real time series data and the difference is the misfit (reverse

of fitness). In a formal definition:

ﬁmesszl 1‘ — = T ! ©)
IS LSS (1) - v, (1)

i=1 =0

In this definition, fitness is defined in the region (0,1]; u;(7) is the computed expression
data for gene i at time ¢ under a set of parameters (which is coded as a chromosome in

GA); vi(1) is the observed expression data for gene i at time ¢.

Instead of trying to get analytical solution for the ODE system, numerical method (fourth

order Runge-Kutta method) is used here to calculate approximate solution.

1%
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t, =1t +th, i=0l,..,n-1,
where

K, = ft,.V),
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4.3 Algorithm Testing

The task of testing and validating this method is two-folded: 1. testing whether the fitting
algorithm is effective in reconstructing the correct gene regulatory network. 2. testing the
whether the model can represent biological reality. In order to perform the first task, we
need to generate some simulated networks from the model, and then run the algorithm to
compare the input and output networks. If the first testing passed, we can then go ahead
with the second task by applying the algorithm to real gene expression data sets and
confirm the resulting network with known gene regulatory pathways. In this section, we
perform the first task. The performance of the fitting algorithm can be measured by the

difference between the input and output networks.

Definition: For two directed graphs with the same number of nodes, the graph
similarity/distance is the number of matches/mismatches in the vertices matrix divided

by the product of connectivity and the number of nodes.
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For each random network, fitting algorithm runs 100 times and the value with majority

votes was selected for each parameter. The output network was then constructed from

model parameters. Modeling performance was then computed by comparing input and

output networks. Each point in the performance surface is the average measurement of

100 random networks with corresponding input sizes.

From this figure, we can get the following important conclusions:

1.

Because of the sheer complexity of modeling a biological system, practical input
size for the fitting algorithm is 3-15 gene clusters. For large input size, clustering
is necessary to reduce the input.

When input size is 3-15 genes, the algorithm can identify as many as 90% correct
regulatory pathways.

Surprisingly, the length of time series is NOT the longer, the better. We found
when the length of time series is close to the number of genes, this fitting
algorithm generates optimal results.

Modeling performance is clearly better than [Wahde et al., 2000] in which a fully
connected model are used. Fully connected model required more data points to fit

the model and the resulting network largely divergent [Wahde et al., 2000].

Now that we have shown the fitting algorithm is able to reconstruct gene regulatory

network under certain circumstances, I will apply this method to some real gene

expression data sets to test whether the model can reflect biological reality.
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4.4 Application to Rat CNS Data

The analysis in this section is based on the data obtained by Wen et al. [Wen et al., 1998]
The data set consists of measurements of gene expression levels for 112 genes during the
development of central nervous system of rats, focusing on cervical spinal cord. Each
gene was measured at nine different points in time using RT-PCR protocol. The first
measurement was made 10 days before the birth, and the intervals between measurements
were 2 or 3 days. The data provide a temporal gene expression pattern of spinal cord
development based on major families of inter- and intracellular signaling genes. The 112
genes were clustered into 5 groups (waves) according to their Euclidean distances. Wen
et al. found that genes belong to distinct functional classes and gene families clearly map
to particular expression patterns. Specifically, wave 1 contains genes active during initial
proliferation, wave 2 is associated with neurogenesis, wave 3 contains most genes for
neurotransmitter signaling, wave 4 consists of genes active during the final maturation of

the tissue, and wave 5 is made up of diverse genes.

Figure 13 Five Gene Expression Waves [Wen ef al., 1998]
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sample are very small. This fact implies the results has higher signal-noise ratio and thus
the fitting process pinned down model parameters much more effectively than the method
of Wahde et al. In addition, our method does not require multiple time series data which
the mefhod of Wahde et al. does in order to pin down parameters. Thus, theoretically and
practically, the method we are proposing is superior to the one presented by Wahde ef al.
Another interesting result is the distribution of indices is closely related to the distribution
of weights. If the distribution of indices is crispy, that is, one value dominate the others,
its regulation weight tends to be large with small standard error, such as Cluster 1
enhancing Cluster 2. On the other hand, if the distribution of indices is ambiguous, its
regulation weight tends to be small with big standard error, such as Cluster 1 enhancing
itself. In the former case, a regulation pathway can be identified and include in the final
results. The latter case indicates there is no or weak regulation in this pathway. Following

this analysis, I construct the underlying network which is shown in Figure 15.
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3. Cluster 4 has a down-regulation pathway to Cluster 1 through Cluster 3. Wahde er
al., also reported Cluster 4 is responsible for lowering expression of Cluster 1 and

Cluster 3 but in a direct way.

Apparently, both results agree with some regulations. One major difference is what
cluster is responsible for the rising expression level of Cluster 47 Wahde er al. suggest
Cluster 1 and Cluster 3 are the cause for the rising expression in Cluster 4. However,
from Figure 14 and Table 3, Cluster 2 got 79 votes out of 100 and the regulation weight
is 7.6 . 1 7out of a possible 10.0. Clearly our results indicate Cluster 2 has a dominant and

strong up-regulation effect to Cluster 4.

The generation of the regulatory network is based on the model and the data. It is
“important to note that the model is a simplification of real complex regulatory systems.
We make some assumptions and may miss some important details in the model. The
purpose of this method and result network is mainly to present biologists a more possible
network rather than a final network. The results may also be biased by the selection of
survey genes. A close and complete system is one assumption of the model. Although the
112 genes are important in the CNS development, there are still thousands of genes,
which are not included in the study, may also play important roles in the regulatory

system.
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4.5 Application to Yeast Whole Genome Data

The fast advance of microarray technology allows us to measure expression thousands of
genes in a single experiment. In this section, we have used one data set obtained from
[Eisen et al., 1998] for budding yeast S. cerevisiae. This data set includes all 2467 yeast
genes which represent more than 35% of all yeast genes. All the genes have a functional
annotation in the Saccharomyces Genome Database [Cherry et al., 1997]. For this
microarray, three time series experiments are performed of the mitotic cell division cycle
[Spellman et al., 1998], sporulation [Chu et al., 1998], and the diauxic shift [DeRisi et al.,
1997]. Eisen et al. combined all the experimental data and performed a hierarchical
clustering analysis on the data set. They found genes with unrelated sequence but similar
functions reveals similar expression patterns. However, a simple clustering analysis
cannot reveal the relationship among different clusters. Our goal here is two-folded: 1.
uncover the relationships among the clusters for each experiment. 2. compare the
networks constructed for each experiment. Hopefully, this may lead us to understand how

experiment changes affect the gene regulations.

As we mentioned, clustering is usually the first step when organizing complex or
unknown data such as gene expression data. Clustering is also a necessary step in order to
perform a quantitative modeling process. Combining all experiments data, we carried out
a clustering procedure using a software obtained from Eisen er al.. We first use
hierarchical clustering to visualize the data set. The data set can be roughly divided into

10 distinct expression patterns. Because hierarchical clustering method can not explicitly
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separate the data set (the output of a hierarchical clustering is a tree), we then use k-mean
clustering (set k£ to 10) to automatically divide the data set into 10 clusters. (see Figure
16). Based on clustering analysis, Eisen et al., reported that genes with similar function
cluster together. However, by closely examining the yeast genome wide gene expression

pattern at http://genome-www.stanford.edu/clustering/Yeast.html, we can see genes with

same function are distributed everywhere. On the other hand, one cluster can contain
many genes with diverse functions. The correlation between functions and clusters is not
significant and there is not a simply one to one mapping between clusters and functions.
The sheer complexity of functional genomics cannot be explained by a simple clustering

analysis.















70

is probably null. On the other hand, if there is some really high column dominating a
distribution, the parameter is very likely identified with confidence. If the frequency of an
index occurrence is larger than 40% from a distribution, then we classify it as an
identified regulation. Then based on those identified parameters we can construct the

underling regulatory networks (see Figure 22, 23).

From Figure 22 of DIA, we can summarize the regulation as the followings:

1. Clusters 2 and Cluster 5 play major roles in regulating the system during DIA.
Cluster 9 and 10 has only one out-going edges. The other six clusters have no out-
going regulating edges so that they are very silent in terms of regulating. We can
also see this in b view of Figure 20.

2. Cluster 2 has 7 out-going edges and 5 of them are down-regulation. Cluster 5 has

6 out-going edges. 3 of them are up-regulation 3 of them are down-regulation.

From Figure 23 of SPO, we can summarize the regulations as the followings:
1. Cluster 1, 5, 8 and 10 plays important roles in the system during SPO. Other 6
clusters has no out-going edges. We can also see this result in b view of Figure 21.
2. Cluster 6 and 7 has exactly same regulation connections. Their expression

patterns are also similar during SPO.
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3. Cluster 1 has 5 out-going edges, 3 of them are down-regulations and 2 of them are
up regulations. Cluster 5 has 5 out-going edges, 4 of them are up-regulations.

Cluster 8 has 3 out-going edges with all of them are down-regulations.

Because the expression patterns are very different between DIA and SPO, the generated
networks also have lots of difference. Comparing the two networks, we can get more

Interesting results.

1. From b view of DIA results, we can see cluster 2, 5, 9 and 10 are very actively
regulating the network. From & view of SPO results, we can see cluster 1, 5, 8
and 10 are very actively regulating the network. Cluster 2 and 9 are very silent
during the SPO process. On the other hand, Cluster 1 and 8 are also very silent
during DIA process in terms of regulating.

2. Cluster 3, 4, 6, 7 work passively in both environments. They are simply receivers
of the regulations. They do not have out-going edges at all. Interestingly, their
expression level changes dynamically if we look at Figure 19. This phenomenon
tells us one thing: the most dynamic one does not necessarily have to be the most
active one. Expression level change is the result of the regulation, not the cause of

the regulation.
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4.6 Conclusion

Linear Additive Models (LAMs) are one category of mathematic models which are
applied to reconstruct gene regulatory networks from time. series expression data sets. We
pointed out a parameter problem associated with LAMs: all LAMs contain a fully
connected network, which has too many péramefers to be effectively pinned down. We
proposed a new incremental connectivity model and a fitting algorithm to overcome the
problem. By using this method, the number of parameters can be reduced by O(N) and
the minimal s()lution can be obtained. We provided a guideline ‘forv LAM users by
systematically testing modeling performance of randomly generated networks. We also

obtained satisfactory modeling performance by testing real expression data sets.

For known network, we define graph similarity to measure the modeling performance.
For unknown network, we use certain statistic, such as p-value or variance to measure the
modeling performance. These measurements can also be used to compare performance of

different methods.

Because gene expression data sets, especially microarray data sets are highly noisy,
overfitting the system would lead to fitting to noise; therefore, finding a near optimal
solutions may be more appropriate than finding the optimal one. In such a scenario, a GA
would be used to find near optimal solutions. When the number of elements increases, the
number of near optimal solutions also inc‘reases.’This may explain why we got very low

modeling performance for large scale systems. Note that low modeling performance for~
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large scale netW(;rk dbes not mean no solutioﬁs found but mean too many near optirnal‘
solutions (fitness>0.95) found. Fitness threshold is.set 0.95 to ensure high performance of
fitting algorithm. If the threshold is too low, the solution tends to be diverge‘nt. On the
other hand, if the threshoid is set too high, such as 0.99, the algorithm may overfit the

data. A reasonable threshold will tolerate noise and avoid overfitting problem.

We are facing a dilemmatic situation for large scale system: with large length of time
series, the system may be determined but the noise .in data will made the results
unreliable. On the other hand, if we tolerate the noise to some degree, tﬁe large number of
solutions will make the infe_rénce impossible. This is an .intrinsic problem, therefore
searching algorithms other than GA would not likely to improve thé performance. Irideed,
D'haeseleer (2000) reported very high condition number (6.3- 104) obtained from fitting a
65-node gene network using linear regression method. This fact implies a relatively-large
system can be largelky underdetermined and thus the model fitting performance may be
pretty low. The only way to improve the performance is to integrate other information
with gene expression profile to constrélin the system search space. One recent study b.y
Gardner et al. (2003) reported integrating pérturbations experiment design with linear
additive models successfuliy pre;iicted SOS pathways. Howgver, there are no
demonstrated utility of such methdds to large scale network reconstruction. In addition,
these methods needs specially designed data sets which are not the case of most current

data bases.
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As we knew, this is the ﬁrst study to eXplore the utility of LAMs in data mining time
series gene expression data sets. Because our method has reduced search space than other
LAMs, it is not likely other LAMs will 'outperform thls ‘one. Therefore, our results
represent not only anex,ample of LAMs, but also a generalization of current LAM

technolo gy;

We found LAMs can only deal with small networks. One may Wonder whether brute
force method can be used to tackle the optimal solution. Because of the sheer complexity
of biological system, the answer will be no. For example, for a small network with 10
elemen_t‘s,v with each node having 6 parameters and each -parameter having 10 possible
‘values, the total possible values will be 10°° which is beyond the power current

computers.

Because GA or other optimization tools are not a factor in determining modeling
performance, the only constraint of the modeling performance is the size of search space.
In the near future, we will investigate integrgting promoter sequence data wrth expression
data to constrain the system search space. Moreover, we will consider adding stochastic
feature to the model and designing a domain specific fitting algorithm to make this
method more accurate and powerful. At this step, we believe this methocl a useful tool for

biologists who are interested in design and analysis of expression experiments.
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