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Abstract The Simplex Method, created by George Dantzig, optimally solves a linear program by pivoting.
Dantzig’s pivots move from a basic feasible solution to a different basic feasible solution by exchanging
exactly one basic variable with a nonbasic variable. This paper introduces the Double Pivot Simplex Method,
which can transition between basic feasible solutions using two variables instead of one. Double pivots are
performed by identifying the optimal basis in a two variable linear program using a new method called
the Slope Algorithm. The Slope Algorithm is fast and allows an iteration of the Double Pivot Simplex
Method to have the same theoretical running time as an iteration of the Simplex Method. Computational
experiments demonstrate that the Double Pivot Simplex Method decreases the average number of pivots
by approximately 41% on a small set of benchmark instances.

Keywords Linear Programming · Simplex Method · Block Pivots · Multiple Pivots · Double Pivots
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1 Introduction

In 1947, George Dantzig created the Simplex Method, which optimally solves a linear program (Dantzig,
1947, 1982). The Simplex Method is one of the most famous and important developments in science and
was recognized by the Journal of Computing in Science & Engineering as one of the top 10 algorithms of
the 20th century (Dongarra and Sullivan, 2000). This paper improves the Simplex Method by constructing
an efficient algorithm to perform double pivots.

Some of the earliest applications of linear programs were developed by Nobel Laureates Kantorovich
(1939) and Koopmans (1949). The Simplex Method changed linear programs from an interesting model to
a practical tool (Dorfman, 1984). Currently, linear programs dramatically impact society by finding better
solutions to problems in numerous industries including logistics (Spitter et al, 2005; Kunnumkal et al, 2012;
Garćıa et al, 2013), finance (Chalermkraivuth et al, 2005; Mansini et al, 2007; Nadarajah et al, 2015),
manufacturing (Tang et al, 2000; Gomes and Oliveira, 2006; Rong and Lahdelma, 2008), medicine (Lee
et al, 2003; Alterovitz et al, 2006; Romeijn et al, 2006), and governmental policy (Gautier et al, 2000;
Bartolini et al, 2007; Zhou and Ang, 2008). It suffices to state that millions of linear programs are solved
every day, which helps create a more efficient world.

The practical importance of solving linear programs faster has motivated researchers to pursue numerous
advancements. The first major advancement occurred when Dantzig and Orchard-Hays (1954) created the
Revised Simplex Method. The Revised Simplex Method is an identical algorithm, but requires less compu-
tational time because it utilizes matrix operations. The running time of the Revised Simplex Method has
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a worst-case bound of O(2n) (Klee and Minty, 1972). However, Spielman and Teng (2004) demonstrated
that the Revised Simplex Method may run in polynomial time when instances are randomly generated and
slightly perturbed.

The next major development occurred when Khachiyan (1979) created a polynomial time ellipsoid al-
gorithm to solve linear programs. Due to the high dependency on the input data, Khachiyan’s ellipsoid
algorithm proved to be ineffective in practice (Goldfarb and Todd, 1989). Next, Karmarkar (1984) pro-
posed the first polynomial time algorithm to solve linear programs that is effective in practice. Numerous
researchers have proposed alternate interior point algorithms and one of the computationally fastest algo-
rithms is the infeasible primal-dual (Kojima et al, 1989; Megiddo, 1989; Mehrotra, 1992; Kojima et al, 1993;
Lustig et al, 1994; Gondzio, 2012). Currently, there still exists a debate as to whether or not interior point
algorithms are computationally faster than the Simplex Method (Terlaky and Zhang, 1993; Bertsimas and
Tsitsiklis, 1997; Illés and Terlaky, 2002; Gondzio, 2012).

Numerous other researchers developed computational improvements to the Simplex Method. Exploiting
the sparseness of matrices (Tolla, 1986; Suhl and Suhl, 1990), handling degeneracy with reduced basis (El-
hallaoui et al, 2010; Raymond et al, 2010), and implementing decomposition methods (Ford and Fulkerson,
1958; Dantzig and Wolfe, 1960; Gilmore and Gomory, 1961, 1963; Appelgren, 1969) have all improved the
computational performance of the Simplex Method.

From a high level perspective, the Simplex Method starts with a feasible basis and pivots to another
feasible basis. A pivot, which is called a classic pivot in this paper, exchanges exactly one element in the
basis with an element that is not in the basis. This paper introduces a double pivot, which can exchange
two elements into the basis instead of one. The Slope Algorithm is a new method that quickly determines
the leaving basis elements by finding the optimal basis of a two variable linear program. Double pivots
are guaranteed to improve the objective function value by at least as much as classic pivots. Implementing
double pivots instead of classic pivots in a simplex framework is called the Double Pivot Simplex Method.
Performing an iteration of the Double Pivot Simplex Method requires the same theoretical effort as an
iteration of the Simplex Method. Computational experiments demonstrate that the Double Pivot Simplex
Method has on average 41% fewer pivots than the Simplex Method on a small set of benchmark instances.

The remainder of the paper is organized as follows. Section 2 provides some background information
about linear programming. The Slope Algorithm is presented in Section 3, and the Double Pivot Simplex
Method is presented in Section 4. Sections 5 and 6 contain a computational study, conclusions, and future
research topics.

2 Linear Programming Basics and Background Information

The necessary background information to understand this paper is taught in numerous undergraduate
and graduate courses in various disciplines worldwide. Additional information is found in Winston (2004),
Bazaraa et al (2009), and Hillier and Lieberman (2015).

A linear program (LP) with n′ variables and r constraints takes the form of maximize z′ = c′Tx′ subject

to A′x′ ≤ b and x′ ≥ 0, where n′ and r are positive integers, c′ ∈ Rn
′
, x′ ∈ Rn

′
, A′ ∈ Rr×n

′
, and b ∈ Rr. Let

N ′ = {1, ..., n} be the set of variable indices and R = {1, ..., r} be the set of constraint indices. The feasible

region of an LP is denoted by S′ = {x′ ∈ Rn
′

+ : A′x′ ≤ b} and the optimal solution of an LP is (z′∗, x′∗),
where x′∗ ∈ S and z′∗ = c′Tx′∗ ≥ c′Tx′′ for all x′′ ∈ S.

Given an LP, the Simplex Method (SM) requires that all constraints be converted into linear equations
by adding r slack variables. This new problem is called the standard linear program (SLP) and is defined
as maximize z = cTx subject to Ax = b and x ≥ 0, where x ∈ Rn+r, c ∈ Rn+r is c′ augmented with r zeros,
and A ∈ Rr×(n+r) is A′ augmented with an r × r identity matrix. Let N = {1, ..., n + r} be the variable
indices and S = {x ∈ Rn+r+ : Ax = b} be the feasible region of an SLP.

Initially, SM requires a starting basic feasible solution. Formally, BV ⊆ N is called a basis if |BV | = |R|
and A.BV is nonsingular. The set of nonbasic indices is NBV = N \ BV . The corresponding basic and
nonbasic variables are xBV and xNBV , respectively. If A.BV

−1b ≥ 0, then BV is a feasible basis with
xBV = A.BV

−1b and xNBV = 0 being the corresponding basic feasible solution. This paper follows the
common notation that a dot “.” represents all the columns or rows of a given vector or matrix. Furthermore,
a set as a subscript restricts the matrix or vector to only those indices of the set. Therefore, A.BV represents
the columns of A restricted to the indices in BV , and xBV is the x values of the indices in BV . In addition,
since SM exchanges an element in BV with an element in NBV , order is important and every basis in the
remainder of this paper is viewed as an r tuple.
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The input to SM is an SLP and a feasible basis BV ⊆ N . The algorithm evaluates each nonbasic
variable’s reduced cost, which is equal to cBV

TA.BV
−1A.i − ci for all i ∈ NBV . If all nonbasic reduced

costs are nonnegative, then the corresponding basic feasible solution and z = cBV
TxBV represents an

optimal solution to SLP. Furthermore, BV is said to be an optimal basis. If BV is not optimal, then there
exists an entering variable with index p ∈ NBV such that cp < 0. In order to determine a leaving variable,
define R+ = {j ∈ R : (A.BV

−1A.p)j > 0}. If R+ = ∅, then the problem is unbounded. If not, SM performs

the ratio test and identifies j∗ ∈ R+ such that
(A.BV

−1b)j∗

(A.BV −1A.p)j∗
≤ (A.BV

−1b)j
(A.BV −1A.p)j

for all j ∈ R+. SM replaces

the j∗th element in BV with p. This process is referred to as a pivot and is called a classic pivot in this
paper. The algorithm continues pivoting until an optimal basis to SLP is identified or SLP is shown to be
unbounded.

In order to generalize SM for other pivoting algorithms, define a simplex framework as the basic steps
of SM independent of the pivoting method. A simplex framework starts with a basis BV and identifies
Q ⊆ NBV . A new basis BV ⊆ BV ∪Q is identified and replaces BV . The act of selecting Q and replacing
BV with BV is called a pivot. The simplex framework repeats this process until an optimal basis to SLP
is obtained or SLP is shown to be unbounded.

An alternative view of a classic pivot, which led directly to the development of this research, defines the
ratio test as optimally solving an SLP with r+ 1 variables and r constraints. If one could solve an SLP with
r+ 2 variables about as quickly as the ratio test solves the r+ 1 problem, then one would expect improved
pivots resulting in faster computational performance. The next section describes the Slope Algorithm, which
can rapidly solve SLPs with r + 2 variables.

3 The Slope Algorithm

One of the simplest LPs has only two variables. These LPs can be easily solved by the graphical method,
which is commonly presented in courses teaching linear programming. Many authors have proposed efficient
algorithms to solve such simple problems. For instance, Shamos and Hoey (1976) present a O(rlog(r))
algorithm that can solve two variable LPs while Megiddo (1983) and Dyer (1984) present linear time
algorithms to solve two or three variable LPs. Even though these methods can rapidly find the optimal
solution of a two variable LP, such algorithms do not necessarily determine the optimal basis. For instance,
if the two variable LP has three or more constraints intersecting the optimal solution, then these methods do
not necessarily obtain the optimal basis. If on the other hand, exactly two constraints intersect the optimal
solution, then these algorithms can be easily modified to return the optimal basis. Since an iteration of
the Double Pivot Simplex Method requires the optimal basis from a two variable LP and not the optimal
solution, this section presents the Slope Algorithm (SA), a new method that identifies both the optimal
basis and the optimal solution of a two variable LP.

Since SA is implemented within a simplex framework, these two variable LPs satisfy three conditions:
the cost coefficients of both variables are positive, both of the variables have nonnegativity constraints,
and the right-hand side of every constraint is nonnegative. Formally, let c1, c2 ∈ R+ \ {0}, A ∈ Rr×2, and
b ∈ Rr+. Define a simplex two variable linear program (S2LP) as maximize z = c1x1 + c2x2, subject to
aj,1x1 + aj,2x2 ≤ bj for all j ∈ R, x1 ≥ 0, and x2 ≥ 0. Define S2 = {x ∈ R2

+ : aj,1x1 + aj,2x2 ≤ bj ∀ j ∈ R}
to be the feasible region of an S2LP.

In order to implement SA, the nonnegativity constraints are converted into less than or equal to con-
straints. Define a slope algorithm two variable linear program (SA2LP) as maximize z = c1x1 + c2x2,
subject to aj,1x1 + aj,2x2 ≤ bj for all j ∈ R′ = {1, ..., r + 2}, where c1 > 0, c2 > 0, bj ≥ 0 for all j ∈ R′,
ar+1,2 = ar+2,1 = 0, ar+1,1 = ar+2,2 = −1, and br+1 = br+2 = 0.

SA evaluates the angle or “slope” of each constraint and compares it to the slope formed by the cost
coefficients c1 and c2. Each constraint j ∈ R′ is partitioned into one of nine sets, and each set assigns a
value for a slope coefficient, αj , as follows:
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αj =



−2M If j ∈ R′=< where R′=< = {j ∈ R′ : aj,1 = 0, aj,2 < 0}
−M +

aj,2
aj,1

If j ∈ R′>< where R′>< = {j ∈ R′ : aj,1 > 0, aj,2 < 0}
−M If j ∈ R′>= where R′>= = {j ∈ R′ : aj,1 > 0, aj,2 = 0}
aj,2
aj,1

If j ∈ R′>> where R′>> = {j ∈ R′ : aj,1 > 0, aj,2 > 0}
M If j ∈ R′=> where R′=> = {j ∈ R′ : aj,1 = 0, aj,2 > 0}
M − aj,1

aj,2
If j ∈ R′<> where R′<> = {j ∈ R′ : aj,1 < 0, aj,2 > 0}

2M If j ∈ R′<= where R′<= = {j ∈ R′ : aj,1 < 0, aj,2 = 0}
3M If j ∈ R′== where R′== = {j ∈ R′ : aj,1 = 0, aj,2 = 0}
3M If j ∈ R′<< where R′<< = {j ∈ R′ : aj,1 < 0, aj,2 < 0}.

Denote M > max
{

max
j∈R′

{∣∣aj,1
aj,2

∣∣ : aj,2 6= 0
}
,max
j∈R′

{∣∣aj,2
aj,1

∣∣ : aj,1 6= 0
}
, c2c1

}
. Due to the large value of M ,

viewing the constraints in ascending order according to the values of the αj ’s creates a counterclockwise
orientation of the constraints’ slopes starting from the x1 axis. Fig. 1 depicts the constraints with their
respective αj values. Observe that only eight constraints are viewable because R′== defines the entire two
dimensional space.

Fig. 1 Sample αj for eight classes of constraints of SA2LP

The first step in creating SA determines whether or not an SA2LP is unbounded. The following lemma
provides a relationship between the coefficients from two constraints, which helps derive conditions of an
unbounded SA2LP.

Lemma 1 If an SA2LP has j and k ∈ R′ such that αj < αk and αk ≤ −M , then aj,2ak,1 < aj,1ak,2.

Proof : Assume an SA2LP has j and k ∈ R′ such that αj < αk and αk ≤ −M . If αj = −2M , then
aj,1 = 0, aj,2 < 0, and −2M < αk ≤ −M . Thus, ak,1 > 0. Consequently, aj,2ak,1 < 0, ak,2aj,1 = 0, and
aj,2ak,1 < aj,1ak,2.

If −2M < αj < −M , then aj,1 > 0, aj,2 < 0, and αj < αk ≤ −M . If αk < −M , then −M +
aj,2
aj,1

<

−M +
ak,2
ak,1

, which results in aj,2ak,1 < aj,1ak,2. If αk = −M , then ak,1 > 0 and ak,2 = 0. Thus, aj,2ak,1 < 0

and ak,2aj,1 = 0. Consequently, aj,2ak,1 < aj,1ak,2. 2

Since the origin (0, 0) is feasible, c1 > 0, c2 > 0, x1 ≥ 0, and x2 ≥ 0 for every SA2LP, any feasible ray
d = (d1, d2) ∈ R2 implies that SA2LP is unbounded. Therefore, if there exists d = (d1, d2) ∈ R2

+ such that
aj,1d1 +aj,2d2 ≤ 0 for all j ∈ R′, then SA2LP is unbounded. The following theorem provides necessary and
sufficient conditions for an unbounded SA2LP.
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Theorem 1 An SA2LP is unbounded if and only if the following three conditions hold:
i) R′>> = ∅;
ii) If R′>= 6= ∅, then R′=> = ∅ and R′<> = ∅;
iii) If R′>< 6= ∅, then R′=> = ∅ and

aj,2
aj,1
≤ ak,2

ak,1
for every j ∈ R′>< and every k ∈ R′<>.

Proof : Assume an SA2LP is unbounded, then there exists a ray d = (d1, d2) such that aj,1d1 + aj,2d2 ≤ 0
for all j ∈ R′ and c1d1 + c2d2 > 0. Since x1 ≥ 0, x2 ≥ 0, c1 > 0, and c2 > 0, the unbounded ray must satisfy
d1 ≥ 0, d2 ≥ 0, and d1 + d2 > 0.

Assume there exists a j ∈ R′>>, then aj,1 > 0 and aj,2 > 0. Evaluating d on the jth constraint results
in aj,1d1 + aj,2d2 > 0, contradicting d being a feasible ray. Thus, R′>> = ∅ and i) is satisfied.

Assume there exists a j ∈ R′>=, then aj,1 > 0 and aj,2 = 0. Since d1 ≥ 0, d1 = 0 or d is not a feasible
ray for the jth constraint. Thus, d = (0, d2) where d2 > 0. If any k ∈ R′ has ak,2 > 0, then d is not a feasible

direction for the kth constraint. Thus, R′=> = ∅ and R′<> = ∅, which satisfies ii).
Assume there exists a j ∈ R′><, then aj,1 > 0 and aj,2 < 0. For contradiction, assume k ∈ R′=>,

which implies ak,1 = 0 and ak,2 > 0. In order for d to be an improving direction that is feasible on the kth

constraint, d2 = 0 and d1 > 0. Thus, aj,1d1 + aj,2d2 > 0, contradicting d being a feasible direction for the
jth constraint. Consequently, R′=> = ∅ and the first condition of iii) is satisfied.

Assume there exists j ∈ R′>< and k ∈ R′<>, which implies aj,1 > 0, aj,2 < 0, ak,1 < 0, and ak,2 > 0. Since

d is an improving direction and feasible on the jth and kth constraints, d1 > 0, d2 > 0, aj,1d1 + aj,2d2 ≤
0, and ak,1d1 + ak,2d2 ≤ 0. Therefore, d1 ≤ −aj,2d2aj,1

. Substituting into the second inequality results in

ak,1

(
− aj,2d2

aj,1

)
+ ak,2d2 ≤ 0, which implies d2

(
− ak,1aj,2

aj,1
+ ak,2

)
≤ 0. Since d2 > 0, −ak,1aj,2aj,1

+ ak,2 ≤ 0,

implying that
aj,2
aj,1
≤ ak,2

ak,1
. Therefore, the second condition of iii) is satisfied.

Conversely, assume an SA2LP satisfies conditions i), ii), and iii). Let j∗ ∈ R′=<∪R′><∪R′>= such that

αj∗ ≥ αj for all j ∈ R′=<∪R′><∪R′>=. The claim is that the j∗th constraint defines a ray of unboundedness,
which is d = (−aj∗,2, aj∗,1). Trivially, c1(−aj∗,2) + c2(aj∗,1) > 0 for any j∗ ∈ R′=< ∪R′>< ∪R′>=. Since the
origin is feasible, it suffices to show that d is a feasible direction for each k ∈ R′.

Let k ∈ R′ such that αk < αj∗ . The conditions of Lemma 1 are satisfied and ak,2aj∗,1 < ak,1aj∗,2,

which implies ak,2aj∗,1 − ak,1aj∗,2 < 0. If k ∈ R′ such that αk = αj∗ , then the j∗th and k∗th constraints
are parallel and ak,2aj∗,1 − ak,1aj∗,2 = 0. Consequently, d is a feasible direction for every such constraint
and the remainder of the cases need only consider αk > αj∗ .

If j∗ ∈ R′=<, then R′>< = ∅ and R′>= = ∅ because αj∗ ≥ αj for all j ∈ R′=< ∪ R′>< ∪ R′>=. Since
R′>> = ∅, ak,1 ≤ 0 for all k ∈ R′. Thus, ak,1(−aj∗,2) + ak,2(0) ≤ 0 for all k ∈ R′ and d is a feasible
improving ray.

If j∗ ∈ R′><, aj∗,2 < 0, aj∗,1 > 0, R′>> = ∅, R′=> = ∅, and R′>= = ∅ due to i), the first condition of iii),
and αj∗ being the maximum αj for all j ∈ R′=<∪R′><∪R′>=. For any k ∈ R′<=∪R′==∪R′<<, ak,1(−aj∗,2) ≤
0 and ak,2(aj∗,1) ≤ 0, so ak,1(−aj∗,2) + ak,2(aj∗,1) ≤ 0. If k ∈ R′<>, ak,1 < 0. The second condition of

iii),
(
aj∗,2
aj∗,1

≤ ak,2
ak,1

for all k ∈ R′<>
)

, implies aj∗,2ak,1 ≥ ak,2aj∗,1. Therefore, ak,1(−aj∗,2) + ak,2(aj∗,1) ≤ 0.

Consequently, d is a feasible direction for each k ∈ R′ such that αk > αj∗ . Thus, d is a ray of unboundedness.
If j∗ ∈ R′>=, then R′>> = ∅, R′=> = ∅, and R′<> = ∅ according to i) and ii). Therefore, ak,2 ≤ 0 and

ak,1(0) + ak,2(aj∗,1) ≤ 0 for all k ∈ R′ such that αk > αj∗ . Consequently, d is a feasible improving ray.
Since all cases have an improving ray, SA2LP is unbounded. 2

The three graphs in Fig. 2 illustrate the conditions of Theorem 1. The j∗ constraint is labeled in each
figure and is represented by the solid line. This constraint identifies a ray of unboundedness as shown in the
theorem. The dashed lines demonstrate constraints that cannot exist for SA2LP to be unbounded.

Since the origin is feasible, an optimal solution to SA2LP exists whenever SA2LP is bounded. The follow-
ing lemma and two corollaries provide other useful relationships between the coefficients of two constraints
and also the objective coefficients c1 and c2. From any SA2LP, define SA2LPj,k to be an SA2LP with only

four constraints. The constraints are the two nonnegativity constraints and the jth and kth constraints from
SA2LP.
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(a) Condition i) of Theorem 1 (b) Condition ii) of Theorem 1

(c) Condition iii) of Theorem 1

Fig. 2 Graphical representation of conditions i), ii), and iii) from Theorem 1

Lemma 2 If an SA2LP has j and k ∈ R′ such that SA2LPj,k is bounded, αj < M , −M < αk ≤ 2M , and
αj < αk, then aj,2ak,1 < aj,1ak,2.

Proof : Assume an SA2LP has j and k ∈ R′ such that SA2LPj,k is bounded, αj < M , −M < αk ≤ 2M ,
and αj < αk. From Theorem 1, the potential combinations for the j and k constraints are limited. The
proof shows that aj,2ak,1 < aj,1ak,2 for all possible values of αj .

If αj = −2M , then aj,1 = 0 and aj,2 < 0. Since SA2LPj,k is bounded and from the conditions of
Theorem 1, αk < M . So ak,1 > 0 and ak,2 > 0. Consequently, aj,2ak,1 < aj,1ak,2.

If−2M < αj < −M , then aj,1 > 0, aj,2 < 0, and αk < 2M or SA2LPj,k is unbounded from Theorem 1. If
αk ≤M , then ak,1 > 0 and ak,2 ≥ 0. Thus, aj,2ak,1 < 0 and aj,1ak,2 ≥ 0, which implies aj,2ak,1 < aj,1ak,2.
If αk > M and because SA2LPj,k is bounded,

aj,2
aj,1

>
ak,2
ak,1

by Theorem 1. Hence, aj,2ak,1 < ak,2aj,1.

If αj = −M , then aj,1 > 0, aj,2 = 0, and αk < 2M or SA2LPj,k is unbounded. Thus, ak,2 > 0,
aj,2ak,1 = 0, and aj,1ak,2 > 0. Therefore, aj,2ak,1 < aj,1ak,2.

If −M < αj < M , then aj,1 > 0 and aj,2 > 0. If αk < M , then
aj,2
aj,1

<
ak,2
ak,1

and aj,2ak,1 < aj,1ak,2,

because αj < αk. If M ≤ αk < 2M , then ak,1 ≤ 0 and ak,2 > 0. Consequently, aj,2ak,1 < aj,1ak,2. If
αk = 2M , then ak,1 < 0 and ak,2 = 0, and so aj,2ak,1 < aj,1ak,2 = 0. 2

Observe that the right-hand side bj and bk are not contained in the proofs or statements of Lemmas 1
and 2. These lemmas are based solely on the slopes, represented by αj and αk. Thus, these relationships
remain between a constraint and the cost coefficients c1 and c2. Since c1 > 0 and c2 > 0, the α value of
the objective function is equivalent to c2

c1
. Since −M < c2

c1
< M , the following two corollaries are direct

applications of Lemma 2.
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Corollary 1 If an SA2LP has a j ∈ R′ such that αj <
c2
c1

, then aj,2c1 < aj,1c2. 2

Corollary 2 If an SA2LP has a k ∈ R′ such that c2
c1
≤ αk ≤ 2M , then c2ak,1 ≤ c1ak,2.

Proof : Assume an SA2LP has a k ∈ R′ such that c2
c1
< αk. From Lemma 2, c2ak,1 < c1ak,2. If c2

c1
= αk,

then ak,1 > 0 and ak,2 > 0. Thus, c2c1 =
ak,2
ak,1

and c2ak,1 = c1ak,2, which implies c2ak,1 ≤ c1ak,2. 2

There are typically an infinite number of points in R2 that satisfy both the jth and kth constraints. This
paper defines the intersection point of the jth and kth constraints as the unique extreme point of the feasible
region defined by only these two constraints. If no such extreme point exists, then the jth and kth constraints
are parallel, aj,1ak,2 − aj,2ak,1 = 0, and the constraints are said to be nonintersecting. Consequently, any
intersecting constraints satisfy aj,1ak,2 − aj,2ak,1 6= 0, and the intersection point is given by x = (x1, x2),

where x1 =
bjak,2−bkaj,2

aj,1ak,2−aj,2ak,1 and x2 =
aj,1bk−bjak,1

aj,1ak,2−aj,2ak,1 .

Theorem 2 identifies nonsupportive constraints in S2 by evaluating x on a particular constraint. A
constraint is said to support a polyhedron if there exists a point in the polyhedron that meets the constraint
at equality.

Theorem 2 If a bounded SA2LP has i, j, and k ∈ R′ such that αi < αj < αk ≤ 2M , αj < M , and the
intersection point of the jth and kth constraints violates the ith constraint, then the jth constraint does not
support S2.

Proof : Assume an SA2LP is bounded and there exists constraints i, j, and k ∈ R′ such that αi < αj <
αk ≤ 2M , αj < M , and the intersection point of the jth and kth constraints, x, violates the ith constraint.
The points in R2 that meet the jth constraint at equality can be expressed as x + ρ(aj,2,−aj,1) and
x+ λ(−aj,2, aj,1) where ρ ≥ 0 and λ > 0.

Evaluating x+ ρ(aj,2,−aj,1) for all ρ ≥ 0 on the ith constraint results in ai,1x1 + ai,2x2 + ρ(ai,1aj,2 −
ai,2aj,1). Since x violates the ith constraint, ai,1x1+ai,2x2 > bi. The ith and jth constraints satisfy either the
conditions of Lemma 1 or Lemma 2 and ai,2aj,1 < ai,1aj,2. Therefore, ai,1x1+ai,2x2+ρ(ai,1aj,2−ai,2aj,1) >
bi for all ρ ≥ 0, and none of these points is in S2.

Evaluating x+λ(−aj,2, aj,1) for all λ > 0 on the kth constraint results in ak,1x1 +ak,2x2 +λ(−ak,1aj,2 +

ak,2aj,1). Since x satisfies the kth constraint, ak,1x1 +ak,2x2 = bk. The jth and kth constraints satisfy either
the conditions of Lemma 1 or Lemma 2 and aj,2ak,1 < aj,1ak,2. Thus, ak,1x1 + ak,2x2 + λ(−ak,1aj,2 +

ak,2aj,1) > bk for all λ > 0, and none of these points is in S2. Consequently, the jth constraint does not
support S2. 2

Corollary 3 trivially extends this result to constraints with larger slope values. The proof is obtained by
simply swapping x1 and x2 and applying Theorem 2.

Corollary 3 If a bounded SA2LP has j, k, and l ∈ R′ such that αj < αk < αl ≤ 2M , −M < αk, and the
intersection point of the jth and kth constraints violates the lth constraint, then the kth constraint does not
support S2. 2

The next two corollaries identify intersection points of constraints and apply Theorem 2 and Corollary
3 to determine nonsupporting constraints. Combining these results enables the creation of a linear time
procedure to identify a feasible extreme point of S2, assuming α is sorted.

Corollary 4 If a bounded SA2LP has h, i, j, and k ∈ R′ such that αh < αi < αj < αk ≤ 2M , αj < M , and
the intersection point of the jth and kth constraints satisfies the ith constraint but violates the hth constraint,
then the ith and jth constraints do not support S2.

Proof : Assume a bounded SA2LP has constraints h, i, j, and k ∈ R′ such that αh < αi < αj < αk ≤
2M , αj < M , the intersection point of the jth and kth constraints, x, satisfies the ith constraint, and
violates the hth constraint. Let the intersection point of the ith and kth constraints be x. Since x satisfies
the ith constraint, x = x + λ(ak,2,−ak,1) for some λ ≥ 0. Evaluating x on the hth constraint results in

ah,1x1 + ah,2x2 + λ(ah,1ak,2 − ah,2ak,1). Since x violates the hth constraint, ah,1x1 + ah,2x2 > bh. The hth

and kth constraints satisfy either the conditions of Lemma 1 or Lemma 2 and ah,2ak,1 < ah,1ak,2. Thus,

ah,1x1 +ah,2x2 +λ(ah,1ak,2−ah,2ak,1) > bh. Consequently, x violates the hth constraint and the conditions

of Theorem 2 are satisfied, which implies that the ith and jth constraints do not support S2. 2
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Corollary 5 If a bounded SA2LP has j, k, l, and m ∈ R′ such that αj < αk < αl < αm ≤ 2M , −M < αk,
and the intersection point of the jth and kth constraints satisfies the lth constraint, but violates the mth

constraint, then the lth and kth constraints do not support S2. 2

SA identifies an optimal solution to SA2LP by finding constraints j and k ∈ R′ such that αj <
c2
c1
≤ αk,

SA2LPj,k is bounded, the intersection point of the jth and kth constraints is feasible, and αk − αj is
minimized. The following theorem formalizes that the first three conditions are sufficient to identify an
optimal solution to SA2LP.

Theorem 3 An optimal solution to SA2LP occurs at the intersection point of the jth and kth constraints
if the following three conditions hold:

i) αj <
c2
c1
≤ αk ≤ 2M ;

ii) SA2LPj,k is bounded;

iii) The intersection point of the jth and kth constraints is feasible.

Proof : Assume SA2LP has j and k ∈ R′ such that SA2LPj,k is bounded, αj <
c2
c1
≤ αk ≤ 2M , and the

intersection point of the jth and kth constraints, x, is feasible. The proof shows that every direction from x
is either infeasible or nonimproving. So, partition all possible directions in R2 \ {(0, 0)} into the following
four sets:

– D1 = {d ∈ R2 \ {(0, 0)} : d = β(aj,2,−aj,1) + (1− β)(ak,2,−ak,1) for all β ∈ [0, 1)};
– D2 = {d ∈ R2 \ {(0, 0)} : d = β(−aj,2, aj,1) + (1− β)(ak,2,−ak,1) for all β ∈ (0, 1)};
– D3 = {d ∈ R2 \ {(0, 0)} : d = β(−aj,2, aj,1) + (1− β)(−ak,2, ak,1) for all β ∈ (0, 1]};
– D4 = {d ∈ R2 \ {(0, 0)} : d = β(aj,2,−aj,1) + (1− β)(−ak,2, ak,1) for all β ∈ [0, 1]}.

Since −M < c2
c1
≤ αk, the jth and kth constraints satisfy Lemma 2 and aj,2ak,1 < aj,1ak,2. Evaluating

any d ∈ D1 on the jth constraint results in β(aj,1aj,2) + (1−β)(aj,1ak,2)−β(aj,2aj,1)− (1−β)(aj,2ak,1) =

(1 − β)(aj,1ak,2 − aj,2ak,1) > 0 for all β ∈ [0, 1). Thus, x + λd violates the jth constraint for every λ > 0,
and D1 is a set of infeasible directions from x.

Evaluating any d ∈ D2 on the jth constraint results in −β(aj,1aj,2) + (1 − β)(aj,1ak,2) + β(aj,2aj,1) −
(1−β)(aj,2ak,1) = (1−β)(aj,1ak,2−aj,2ak,1) > 0 for all β ∈ (0, 1). Thus, x+λd violates the jth constraint
for every λ > 0, and D2 is a set of infeasible directions from x.

Evaluating any d ∈ D3 on the kth constraint results in −β(ak,1aj,2)− (1− β)(ak,1ak,2) + β(ak,2aj,1) +

(1 − β)(ak,2ak,1) = β(−ak,1aj,2 + ak,2aj,1) > 0 for all β ∈ (0, 1]. Thus, x + λd violates the kth constraint
for every λ > 0, and D3 is a set of infeasible directions from x.

Evaluating any d ∈ D4 on the objective function results in β(c1aj,2− c2aj,1)+(1−β)(−c1ak,2 + c2ak,1).
Since αj <

c2
c1

, the conditions of Corollary 1 are satisfied and aj,2c1 < aj,1c2. Thus, β(c1aj,2 − c2aj,1) ≤ 0
for all β ∈ [0, 1]. Since c2

c1
≤ αk, c2ak,1 ≤ c1ak,2 by Corollary 2 and (1 − β)(−c1ak,2 + c2ak,1) ≤ 0 for all

β ∈ [0, 1]. Consequently, every d ∈ D4 is a nonimproving direction. Since every direction from x is infeasible
or nonimproving and SA2LP is a linear convex problem, x is an optimal solution. 2

The above results enable the creation of SA (Algorithm 1), which optimally solves S2LPs. The input
to SA is an S2LP, and SA returns that either S2LP is unbounded or the optimal solution z∗, x∗ along
with j∗ ∈ R′, k∗ ∈ R′, αj∗ , and αk∗ . The j∗ and k∗ represent the intersecting constraints that provide the
optimal solution to S2LP. Even though j∗, k∗, αj∗ , and αk∗ are not part of S2LP’s solution, this information
is necessary to identify the optimal basis.

SA correctly solves any SA2LP. The check for unboundedness follows the conditions of Theorem 1 when
the constraints are viewed from their α values. If SA2LP is bounded, then the algorithm returns an x∗ at
the intersection point of two constraints, j∗ and k∗. Clearly, such a j∗ and k∗ exist due to the nonnegativity
constraints. One constraint has an α value less than c2

c1
and the other constraint has an α value greater than

or equal to c2
c1

. The point is validated against all constraints according to Theorem 2 and Corollaries 3, 4,
and 5. From Theorem 3, x∗ is an optimal solution to SA2LP.
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Algorithm 1 - The Slope Algorithm (SA)

1: begin
2: From S2LP, create the corresponding SA2LP;
3: Calculate α = (α1, α2, ..., αr+2);
4: Let P = (ρ1, ..., ρr+2) be the array of constraint indices such that αρj ≤ αρj+1 ∀ j ∈ {1, ..., r + 1};
5: Find j′ ∈ R′ = {1, ..., r + 2} such that αρj′ <

c2
c1
≤ αρj′+1

;

6: k′ ← j′ + 1;

7: if
(
αρj′ = −2M and αρk′ ≥M

)
or

(
−2M < αρj′ < −M and αρk′ = 2M

)
or

(
αρj′ = −M and

αρk′ = 2M
)

or
(
−2M < αρj′ < −M and M < αρk′ < 2M and

aρ
j′ ,2

aρ
j′ ,1
≤ aρ

k′ ,2

aρ
k′ ,1

)
then

8: return S2LP is unbounded;
9: else

10: j ← j′;
11: k ← k′;
12: Calculate x = (x1, x2) from constraints ρj′ and ρk′ ;
13: while j > 1 or k < r + 2 do
14: if j > 1 then j ← j − 1;

15: if aρj ,1x1 + aρj ,2x2 > bρj then
16: j′ ← j;
17: k ← k′;
18: Calculate x = (x1, x2) from ρj′ and ρk′ ;

19: if k < r + 2 then k ← k + 1;

20: if aρk,1x1 + aρk,2x2 > bρk then
21: k′ ← k;
22: j ← j′;
23: Calculate x = (x1, x2) from ρj′ and ρk′ ;

24: z∗ ← c1x1 + c2x2;
25: x∗ ← x;
26: j∗ ← ρj′ ;
27: k∗ ← ρk′ ;
28: return z∗, x∗, j∗, k∗, αj∗ , and αk∗ ;

29: end

To determine the running time of SA, observe that SA first calculates every element of the array α
in O(r) and sorts this array (lines 3-4). There are numerous sorting algorithms and let S(r) be the effort
required by the selected algorithm to sort r elements. The main step of SA (lines 5-28) first determines two
intersecting constraints in O(r). The check for unboundedness is performed in O(1). If SA2LP is bounded,
then SA calculates x in O(1). Each iteration of the while loop either validates that the current x is feasible
on up to two constraints in O(1) or that x violates a constraint. If a violation occurs, a new x is calculated.
From Corollaries 4 and 5, if x violates a constraint, then every constraint between j′ and j or k′ and k
is nonsupportive in SA2LP. Consequently, the while loop is repeated at most O(r) times. Thus, the entire
main step requires O(r) effort. Furthermore, SA requires O(1) to report a solution to SA2LP or that SA2LP
is unbounded. Consequently, SA requires O(S(r)) effort and the most time-consuming step is sorting the
array α. From merge sort, S(r) = r log(r) and SA runs in O(r log(r)) time. Example 1 demonstrates SA.
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Example 1 Consider the following S2LP.

Maximize z = 2x1 + x2
Subject to −3x1 − 5x2 ≤ 0 (1)

4x1 + 3x2 ≤ 100 (2)
2x1 − x2 ≤ 20 (3)
x1 + x2 ≤ 9 (4)

−2x1 + x2 ≤ 6 (5)
x2 ≤ 6 (6)

3x1 + x2 ≤ 37 (7)
x1 ≤ 9 (8)
x1 − x2 ≤ 3 (9)
x1 , x2 ≥ 0

Fig. 3 Graphical Representation of Example 1

The first step of SA converts S2LP into SA2LP by changing the nonnegativity conditions into constraints
−x1 ≤ 0 (10), −x2 ≤ 0 (11), and assigning R′ = {1, 2, ..., 11}. Fig. 3 presents a graphical representation
of SA2LP in R2. SA calculates α = (3M, 34 ,−M −

1
2 , 1,M + 2,M, 13 ,−M,−M − 1, 2M,−2M) and then

sorts the indices of the constraints according to these values, resulting in P = (11, 9, 3, 8, 7, 2, 4, 6, 5, 10, 1).
SA identifies j′ = 5 and k′ = 6 because αρj′ = 1

3 < c2
c1

= 1
2 ≤ αρj′+1

= 3
4 . Since −M < αρj′ , none of

the conditions for an unbounded SA2LP are satisfied. The algorithm continues by setting j = 5, k = 6,
and calculating the intersection point of the ρ5 and ρ6 constraints, (7) and (2). This intersection point is
x = (11

5 ,
152
5 ), represented by x1 in Fig. 3.

SA assigns j = 4 and the feasibility of x is validated on the ρ4 constraint, (8), because 11
5 < 9. Next,

k = 7 and the point is tested on the ρ7 constraint, (4). This point is infeasible because 11
5 + 152

5 > 9. From

Corollary 3, (2) does not support S2 and SA assigns k′ = 7 and j returns to 5. From SA, x becomes (14,−5),
which is the intersection point of (7) and (4) and is represented by x2 in Fig. 3. SA updates j = 4 and x
is evaluated on (8), which indicates an infeasibility since 14 > 9. Thus, j′ = 4 and k = 7. The updated x
occurs at (9, 0), the intersection of (8) and (4), and is represented by x3 in Fig. 3. SA assigns k = 8 and x
does not violate (6), (3), and (5), but it does violate (9). From Theorem 2 and Corollary 4, both (8) and
(3) do not support S2. The algorithm assigns j′ = 2 and k = 7. The new x = (6, 3) is the intersection point
of (9) and (4), and is identified by x4 in Fig. 3. SA follows with k = 8 and this point does not violate (6),
(11), (5), (10), and (1). Thus, x = (6, 3) satisfies all the constraints and by Theorem 3, this point is the
optimal solution to S2LP. SA reports z∗ = 15, x∗ = (6, 3), j∗ = 9, k∗ = 4, α9 = −M − 1, and α4 = 1.

Similar to the Dual Simplex Method, SA starts super optimal and moves toward feasibility while still
maintaining the optimality condition. When an x is infeasible, one constraint is replaced with another
constraint, which maintains a basis structure. From the corresponding basis of the starting constraints,
one could create dual simplex pivots to obtain SA’s sequence of super optimal solutions. However, the
order of pivots would be unique and a standard implementation of the Dual Simplex Method is unlikely to
result in the identical sequence of super optimal solutions. Furthermore, the Dual Simplex Method does not
necessarily have a starting basis and thus it is unlikely to start with a basis that corresponds to the first x.

SA is a new method to solve simple two variable LPs with fairly stringent assumptions. The authors
believe that a straightforward exercise can modify SA to solve any two variable LP. For this paper, the true



The Double Pivot Simplex Method 11

benefit of SA is realized as a pivoting technique incorporated in a simplex framework. The next section
discusses the concept of a multiple pivot simplex method and presents the Double Pivot Simplex Method.

4 Multiple Pivots and the Double Pivot Simplex Method

A common technique to decrease the solution time of LPs is to solve the problem on a subset of variables.
The optimal basis from this subproblem is used to identify a new subset of variables, and the process
repeats until the optimal basis to a subproblem identifies the optimal basis of the original instance. In this
paper, this general methodology is called a multiple pivot simplex method. Block pivots (Howard, 1960;
Padberg, 1999; Ye, 2011), decomposition methods (Dantzig and Wolfe, 1960), and column generation (Ford
and Fulkerson, 1958; Gilmore and Gomory, 1961, 1963; Appelgren, 1969) can all be classified as multiple
pivot simplex methods.

Formally, a multiple pivot simplex method starts with an SLP and a feasible basis BV ⊆ N . The method
identifies Q ⊆ NBV such that Q 6= ∅ and cBV

TA.BV
−1A.q−cq < 0 for some q ∈ Q. Define a multiple pivot

linear program (MPLP) as maximize z = −(cBV
TA.BV

−1A.Q − cQ)xQ subject to (A.BV
−1A.BV )xBV +

(A.BV
−1A.Q)xQ = A.BV

−1b, xBV ≥ 0, and xQ ≥ 0. Let BV ∗ be an optimal basis to MPLP and BV ∗

replaces BV . This process continues until an optimal basis to SLP is obtained. Observe that if a non-optimal
basis is selected to MPLP, then BV ∪Q could remain unchanged, and the algorithm may never terminate.
Consequently, either Shamos and Hoey (1976), Megiddo (1983), or Dyer (1984) algorithms cannot be directly
applied to solve the MPLP when |Q| = 2 since none of these methods determine the optimal basis.

In order to view SM in terms of a multiple pivot simplex method, observe that |Q| = 1 and MPLP
consists of r + 1 variables, r constraints, and r + 1 nonnegativity constraints. The r + 1 variables are the
r basic variables and the one entering nonbasic variable. The ratio test identifies the optimal basis of this
problem. Therefore, a classic pivot identifies the optimal basis of an MPLP with r + 1 variables.

The next section describes the Double Pivot Simplex Method (DPSM), which is a novel multiple pivot
simplex method. DPSM has |Q| = 2 and each subproblem is optimized using SA. Even though other
researchers have created multiple pivot simplex methods with |Q| > 2, these researchers used classic pivots
to obtain the optimal basis to their subproblems (Howard, 1960; Padberg, 1999; Ye, 2011). Thus, DPSM is
novel and could be used to solve the subproblems from these other multiple pivot methods as well.

4.1 The Double Pivot Simplex Method

The first step in generating the Double Pivot Simplex Method (DPSM) is to prove that SA identifies an
optimal basis for any MPLP with |Q| = 2. To prove this claim, convert S2LP into standard form (SS2LP)
by adding r slack variables. Each constraint of SS2LP has the form of aj,1x1 + aj,2x2 + xj+2 = bj for
all j ∈ R. If implemented within a simplex method environment, these slack variables are precisely the
existing basic variables. Furthermore, the only nonzero reduced costs are c1 and c2, which are both positive.
The right-hand side is precisely the values of the basic variables, which are greater than or equal to zero.
Removing the basic variables from this instance results in S2LP. Theorem 4 proves that SA returns sufficient
information to determine an optimal basis, assuming that SS2LP is bounded. In addition, this result also
provides an alternate proof to Theorem 3 in which SA identifies an optimal solution to S2LP.

Theorem 4 Implementing SA on a bounded S2LP with output j∗, k∗, αj∗ , and αk∗ results in the following
sets being an optimal basis for SS2LP:

i) If αj∗ = −2M , then BV = {3, 4, ..., k∗ + 1, 1, k∗ + 3, ..., r + 2};
ii) If αk∗ = 2M , then BV = {3, 4, ..., j∗ + 1, 2, j∗ + 3, ..., r + 2};
iii) If αj∗ 6= −2M and αk∗ 6= 2M , then BV = {3, 4, ..., j∗ + 1, 1, j∗ + 3, ..., k∗ + 1, 2, k∗ + 3, ..., r + 2}.

Proof : Implementing SA on a bounded S2LP returns j∗, k∗, αj∗ , and αk∗ . In order to prove BV is an
optimal basis to SS2LP, all possible cases of αj∗ and αk∗ are examined.

Assume αj∗ = −2M , and let BV = {3, 4, ..., k∗ + 1, 1, k∗ + 3, ..., r + 2} with NBV = {2, k∗ + 2}.
Since S2LP is bounded, −M < αk∗ < M , ak∗,1 > 0, and ak∗,2 > 0; therefore, cπk∗+2 = c1

ak∗,1
> 0 and

cπ2 =
ak∗,2c1
ak∗,1

− c2, where cπ is the calculated reduced cost. According to SA, c2c1 ≤ αk∗ and the conditions of

Corollary 2 are satisfied. Therefore, c2ak∗,1 ≤ c1ak∗,2, which implies cπ2 ≥ 0. Since ak∗,1 > 0, the columns
of BV = {3, 4, ..., k∗ + 1, 1, k∗ + 3, ..., r + 2} in SS2LP are linearly independent and therefore, BV is an
optimal basis to SS2LP.
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Assume αk∗ = 2M , BV = {3, 4, ..., j∗ + 1, 2, j∗ + 3, ..., r + 2}, and NBV = {1, j∗ + 2}. Since SS2LP is
bounded, −M < αj∗ < M , aj∗,1 > 0, and aj∗,2 > 0; therefore, cπj∗+2 = c2

aj∗,2
> 0 and cπ1 =

aj∗,1c2
aj∗,2

− c1.

According to SA, αj∗ <
c2
c1

and the conditions of Corollary 1 are satisfied. Therefore, c1aj∗,2 < c2aj∗,1,
which implies cπ1 > 0. Since aj∗,2 > 0, the columns of BV = {3, 4, ..., j∗ + 1, 2, j∗ + 3, ..., r + 2} in SS2LP
are linearly independent, and BV is an optimal basis to SS2LP.

Assume that αj∗ 6= −2M , αk∗ 6= 2M , BV = {3, 4, ..., j∗ + 1, 1, j∗ + 3, ..., k∗ + 1, 2, k∗ + 3, ..., r+ 2}, and
NBV = {j∗+2, k∗+2}. The first step is to prove that the columns of BV in SS2LP are linearly independent.
Since αj∗ <

c2
c1
≤ αk∗ ≤ 2M , the conditions of Lemma 2 are satisfied. Thus, aj∗,2ak∗,1 < aj∗,1ak∗,2 and so

aj∗,2ak∗,1 − aj∗,1ak∗,2 < 0 (†). Consequently, the columns of BV in SS2LP are linearly independent. One

can verify that cπk∗+2 =
−c2aj∗,1+c1aj∗,2

aj∗,2ak∗,1−aj∗,1ak∗,2 . The conditions of Corollary 1 are satisfied, so aj∗,2c1 < aj∗,1c2.

Combining this fact with (†) results in cπk∗+2 > 0. Similarly, cπj∗+2 =
c2ak∗,1−c1ak∗,2

aj∗,2ak∗,1−aj∗,1ak∗,2
. The conditions of

Corollary 2 are satisfied, so c2ak∗,1 ≤ c1ak∗,2. Coupling this fact with (†) results in cπj∗+2 ≥ 0. Thus, BV is
an optimal basis for SS2LP. 2

With the primary results, DPSM (Algorithm 2) is presented within the context of a revised simplex
framework. The reader can easily create a dictionary, or tableau version. Even though not necessary, DPSM
follows the spirit of Dantzig’s rule and selects the two indices with the most negative reduced cost for
the entering variables. DPSM’s input is an SLP, a feasible basis BV (typically the slack variables), and
a sufficiently large number M . Observe that DPSM performs a classic pivot if there is only one negative
reduced cost (lines 14-22).

Algorithm 2 - The Double Pivot Simplex Method (DPSM)

1: begin
2: while cBV

TA.BV
−1A− c 6≥ 0 do

3: p← argmin
p∈N\BV

cTBV A.BV
−1A.p − cp;

4: q ← argmin
q∈N\(BV ∪{p})

cTBV A.BV
−1A.q − cq;

5: if cBV
TA.BV

−1A.q − cq < 0 then
6: Let S2LP be: Maximize z = −(cBV

TA.BV
−1A.p − cp)xp − (cBV

TA.BV
−1A.q − cq)xq

Subject to (A.BV
−1A.p)xp + (A.BV

−1A.q)xq ≤ A.BV −1b
xp ≥ 0 and xq ≥ 0;

7: Solve S2LP with SA;
8: if S2LP is unbounded then return SLP is unbounded;

9: if αj∗ = −2M then BVk∗ ← p;

10: if αk∗ = 2M then BVj∗ ← q;

11: if αj∗ 6= −2M and αk∗ 6= 2M then
12: BVj∗ ← p;
13: BVk∗ ← q;

14: else
15: θ ←M ;
16: for each i ∈ R do
17: if (A.BV

−1A.p)i > 0 and (A.BV
−1b)i

(A.BV −1A.p)i
< θ then

18: θ ← (A.BV
−1b)i

(A.BV −1A.p)i
;

19: l← i;

20: if θ = M then return SLP is unbounded;
21: else
22: BVl ← p;

23: return x∗BV ← A.BV
−1b, x∗N\BV = 0, and z∗ = cTx∗;

24: end

In the absence of degeneracy (Section 4.2), DPSM optimally solves an LP following an identical argument
as the proof of correctness for SM. If the current solution has two or more variables with negative reduced
costs, then DPSM performs a double pivot. If the current solution has only one variable with negative
reduced cost, then DPSM selects this variable and performs a classic pivot. Therefore, either pivot results in
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an updated basis with an improved objective value (considering a nondegenerate problem). Since there are
a finite number of bases, DPSM either finds a ray of unboundedness or the optimal basis, which identifies
the optimal solution.

In order to assess the benefit of DPSM, one should compare the improvement and effort per iteration
of SM and DPSM. Assume both methods have the same basic feasible variables. If one of DPSM’s entering
variables is identical to the entering variable, xp, in SM, then the objective value from DPSM’s pivot is at
least as good as the objective value from SM’s pivot. Furthermore, SM and DPSM only pivot to the same
basis when SA returns αj∗ = −2M .

The theoretical effort required by an iteration of SM with a classic pivot involves calculating A.BV
−1

and identifying an improving variable xp, which is achieved by evaluating cBV
TA.BV

−1A.NBV − cNBV .
The ratio test calculates A.BV

−1A.p, A.BV
−1b, and performs a division. Changing the entering variable

with the leaving variable requires O(1) effort. Numerous methods have been developed to decrease the
computational effort required to perform each of these tasks and the fastest running times are dependent
upon the implemented improvements. For example, finding the inverse can be accomplished in O(r3) (Ed-
monds, 1967; Schrijver, 1998), but there are faster methods to merely update an inverse (Strassen, 1969;
Coppersmith and Winograd, 1990; Williams, 2012). Thus, the effort per iteration is limited by calculating
the inverse and identifying the entering and leaving variables. Consequently, each iteration of SM requires
O(rn+ I(r)) effort where I(r) is the time required to find the inverse of an r × r matrix.

The theoretical effort for an iteration of DPSM requires calculating A.BV
−1 and identifying two improv-

ing variables, xp and xq. These steps are nearly identical to SM and require identical theoretical effort. SA
determines the leaving variables in O(S(r)) effort, where S(r) is the time required to sort a set of r elements.
Exchanging the basic variables is performed again in O(1). Thus, each double pivot is restricted by calcu-
lating the inverse and identifying the entering variables, which requires O(rn + I(r)) effort. Consequently,
a double pivot and a classic pivot require the same theoretical effort per iteration.

In practice, commercial or open source solvers do not calculate the inverse at every iteration, instead
solvers update the basis. Numerous researchers devised schemes to efficiently update the basis matrix
(Dantzig and Orchard-Hays, 1954; Bartels, 1971; Forrest and Tomlin, 1972; Reid, 1982; Eldersveld and
Saunders, 1992; Suhl and Suhl, 1993; Huangfu and Julian Hall, 2015). Consequently, the theoretical run
time of SM in practice is O(rn + U(r)) where U(r) is the effort required to update the basis matrix of a
problem with r constraints. Since n ≥ r due to the addition of slack or artificial variables, SA’s run time is
dominated. Thus, DPSM also requires O(rn + U(r)) effort in practice. Example 2 demonstrates DPSM in
a tableau format.

Example 2 Consider the following LP.

Maximize z = 20x1 + 12x2 + 15x3 + 6x4
Subject to x1 − 2x2 + 3x3 + x4 ≤ 99 (1)

x1 + x3 ≤ 40 (2)
4x1 + 9x2 + x3 + 4x4 ≤ 106 (3)
2x1 + 2x2 + x3 + x4 ≤ 60 (4)
2x1 − x2 + 5x3 ≤ 170 (5)
x1 , x2 , x3 , x4 ≥ 0

Table 1 contains three tableaus that demonstrate DPSM’s pivots. The first tableau represents the above
LP in standard form and DPSM begins with BV = {5, 6, 7, 8, 9}. The variables with the two most negative
reduced costs correspond to x1 and x3 with p = 1 and q = 3. SA solves maximize z = 20x1 + 15x3 subject
to A.{1,3}(x1, x3)T ≤ b, x1 ≥ 0, and x3 ≥ 0. SA calculates α = (3, 1, 14 ,

1
2 ,

5
2 , 2M,−2M) and identifies

α4 = 1
2 < c3

c1
= 15

20 ≤ α2 = 1 with x = (x1, x3) = (20, 20). This point satisfies all constraints, and SA

returns j∗ = 4, k∗ = 2, α4 = 1
2 , and α2 = 1. Due to the returned values, the nonbasic indices 1 and 3

replace the fourth and second elements in BV , resulting in BV = {5, 3, 7, 1, 9}. The second tableau in Table
1 demonstrates this double pivot’s outcome.

The next iteration begins by identifying the variables with the two most negative reduced costs, x2 and
x4, resulting in p = 2 and q = 4. SA solves maximize z = 2x2+x4 subject to A−1

.BV A.{2,4}(x2, x4)T ≤ A−1
.BV b,

x2 ≥ 0, and x4 ≥ 0. SA calculates α = (3
2 , 3M, 13 ,

1
2 ,

3
5 , 2M,−2M), identifies α3 = 1

3 <
c4
c2

= 1
2 ≤ α4 = 1

2 ,
and assigns x to (−14, 48). SA eventually determines that the optimal solution occurs at x∗ = (0, 6), the
intersection point of (3) and (6), and returns j∗ = 3, k∗ = 6, α3 = 1

3 , and α6 = 2M . Since αk∗ = 2M , the
nonbasic index 4 replaces the third element in BV , resulting in BV = {5, 3, 4, 1, 9}. The third tableau in
Table 1 presents the result of this double pivot. Observe that there are no variables with negative reduced
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cost in the third tableau. Thus, BV = {5, 3, 4, 1, 9} is an optimal basis to the SLP and DPSM reports the
optimal solution z∗ = 706 and x∗ = (14, 0, 26, 6, 1, 0, 0, 0, 12).

Table 1 Double Pivot Simplex Tableau - Example 2

BV
z x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS
1 -20 -12 -15 -6 0 0 0 0 0 0

x5 0 1 -2 3 1 1 0 0 0 0 99
x6 0 1 0 1 0 0 1 0 0 0 40
x7 0 4 9 1 4 0 0 1 0 0 106
x8 0 2 2 1 1 0 0 0 1 0 60
x9 0 2 -1 5 0 0 0 0 0 1 170

1 0 -2 0 -1 0 10 0 5 0 700

x5 0 0 2 0 3 1 -5 0 2 0 19
x3 0 0 -2 1 -1 0 2 0 -1 0 20
x7 0 0 3 0 1 0 2 1 -3 0 6
x1 0 1 2 0 1 0 -1 0 1 0 20
x9 0 0 5 0 3 0 -8 0 3 1 30

1 0 1 0 0 0 12 1 2 0 706

x5 0 0 -7 0 0 1 -11 -3 11 0 1
x3 0 0 1 1 0 0 4 1 -4 0 26
x4 0 0 3 0 1 0 2 1 -3 0 6
x1 0 1 -1 0 0 0 -3 -1 4 0 14
x9 0 0 -4 0 0 0 -14 -3 12 1 12

When comparing SM to DPSM, SM solves the LP from Example 2 with four iterations. Starting
with BV = {5, 6, 7, 8, 9}, SM moves to the following bases: {5, 6, 1, 8, 9}, {5, 6, 1, 3, 9}, {5, 2, 1, 3, 9}, and
{5, 4, 1, 3, 9}. Consequently, DPSM performs 50% fewer iterations than SM.

Observe that DPSM has three types of double pivots and this example presents two of them. The first
double pivot replaces two variables in the basis. The second double pivot exchanges only one variable in
the basis, which implies that one of the entering variables, x2, is also a “leaving” variable. In this pivot,
the index that enters the basis corresponds to the variable with the second most negative reduced cost, x4.
The other type of double pivot (αj∗ = −2M) corresponds exactly to a classic pivot and the variable with
the most negative reduced cost is the only entering variable.

Double pivots are guaranteed to improve the objective function by at least as much as classic pivots. The
classic pivot from the starting basis results in an objective value of z = 530. Thus, the relative improvement
of a double pivot is

(
700
530 −1

)
×100% = 32.1%. Performing a classic pivot from BV = {5, 3, 7, 1, 9} results in

an objective value of z = 704. The second double pivot’s relative improvement is
(
706−700
704−700−1

)
×100% = 50%.

Thus, even if a double pivot has a single entering and leaving variable, the benefit may be substantial.

4.2 The Double Pivot Simplex Method and Degeneracy

Degeneracy causes issues for SM and occurs when at least one basic variable of an SLP equals zero. Degener-
ate SLPs may force SM to complete extra operations by performing multiple iterations at the same feasible
solution. Additionally, degenerate SLPs may cycle, which prohibits SM from terminating. Implementing
anti-cycling techniques enables SM to avoid cycling and terminate (Bland, 1977; Todd, 1985; He, 1999;
Elhallaoui et al, 2010; Raymond et al, 2010). This section demonstrates that implementing SA instead of
the ratio test in a simplex framework diminishes some of the issues caused by degeneracy.

Theorem 3 guarantees that an optimal solution to a bounded SA2LP occurs at the intersection point of
the jth and kth constraints as long as this point is feasible, αj <

c2
c1

, αk ≥ c2
c1

, and SA2LPj,k is bounded. SA
returns constraints j∗ and k∗, which not only fulfill Theorem 3’s conditions, but also satisfy αk∗ − αj∗ ≤
αk − αj for all j and k pairs of constraints that meet Theorem 3’s conditions (Algorithm 1, line 5). The
selection of these particular constraints results in an optimal basis according to Theorem 4. Example 3
provides a degenerate problem that helps explain this concept.
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Example 3 Consider the following S2LP.

Maximize z = 5x1 + 4x2
Subject to x1 − x2 ≤ 3 (1)

x1 ≤ 3 (2)
2x1 + x2 ≤ 6 (3)
3x1 + 2x2 ≤ 10 (4)
x1 + x2 ≤ 4 (5)

2x1 + 3x2 ≤ 10 (6)
x1 + 2x2 ≤ 6 (7)

x2 ≤ 3 (8)
−x1 + x2 ≤ 3 (9)
−x1 − x2 ≤ 0 (10)
x1 , x2 ≥ 0

Fig. 4 Graphical Representation of Example 3

The graphical representation of the S2LP is presented in Fig. 4. Solving this S2LP with SA results in
z∗ = 18, x∗ = (2, 2), j∗ = 4, k∗ = 5. Observe that α4 = 2

3 <
c2
c1

= 4
5 < α5 = 1 and α5 − α4 = 1

3 . There are
six pairs of constraints that satisfy Theorem 3 and identify the optimal solution: (3) and (5), (3) and (6), (3)
and (7), (4) and (5), (4) and (6), and (4) and (7). The reader can verify that none of the bases corresponding
to these pairs of constraints are optimal unless the basis is derived from (4) and (5). Therefore, SA identifies
the optimal basis even for degenerate S2LPs. Observe that the algorithms by Shamos and Hoey (1976),
Megiddo (1983), or Dyer (1984) all solve a two variable LPs. However, these algorithms may end with any
one of these six pairs of constraints intersecting at the optimal solution. Consequently, these fast algorithms
do not always identify the optimal basis and cannot be used as a multiple pivoting strategy within a simplex
framework as previously mentioned.

In contrast, implementing classic pivots on this degenerate S2LP demonstrates a weakness of SM. Per-
forming four classic pivots with Bland’s rule results in a basis with constraints (5) and (6). Even though
this basis identifies the optimal solution, one more pivot is required to obtain the optimal basis. Thus,
degeneracy caused additional work for SM, but not for DPSM.

In order to determine whether or not DPSM performs better than SM on degenerate problems that
cycle, consider the 11 instances summarized by Gass and Vinjamuri (2004). These 11 problems cycle when
solved with SM without any anti-cycling technique. However, DPSM identifies the optimal solution (or
an unbounded LP) in every one of these 11 LPs. Therefore, DPSM avoids cycling on these frequently
demonstrated degenerate LPs.

In conclusion, DPSM handles the problems caused by degenerate LPs more effectively than SM. One
should not infer from this section that DPSM completely eliminates all issues of degenerate LPs, and
determining whether or not DPSM cycles is an important unresolved research question.

5 Computational Study

This section discusses the authors’ attempts to determine whether or not DPSM is computationally faster
than SM. The study was performed on an Intelr CoreTM i7-6700 3.4GHz processor with 32 GB of RAM,
and coded in C++. A portion of the study implements DPSM and SM with CPLEX Version 12.5, a high
performance mathematical programming solver. CPLEX’s preprocessing operations were turned off in order
to measure the real effectiveness of DPSM over SM.
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5.1 Implementation of DPSM and SM

The authors began the study by implementing DPSM and SM explicitly. The code not only computes
A.BV

−1 at every iteration using LU decomposition (Press et al, 2007), but determines explicitly the reduced
cost cBV

TA.BV
−1A − c of all nonbasic variables, the right-hand side A−1

.BV b, and the constraint values
A−1
.BV A.p and A−1

.BV A.q of both improving variables.

This implementation was tested on 3, 000 randomly generated instances and DPSM outperformed SM
with an average improvement in solution time of approximately 17% for dense instances and 30% for sparse
problems. Furthermore, DPSM also had an average of approximately 17% fewer pivots for dense instances
and 30% for sparse problems. The number of pivots was highly correlated to the solution time. These
instances were also run with CPLEX’s primal algorithm. CPLEX surpassed both methods and solved the
instances in a few seconds, while both DPSM and SM required hours. This result is not surprising as
explicitly implementing DPSM or SM eliminates decades of computational advancements.

To attempt to take advantage of these computational advancements, the authors implemented DPSM
and SM using many of the routines available in CPLEX. Entering variable for SM is obtained from the
CPXgetdj routine. Routines CPXgetx and CPXbinvacol are used to perform the ratio test and determine
the leaving variable. The CPXpivot routine updates the basis by swapping the leaving variable with the
entering variable.

A similar implementation is followed for DPSM. Both entering variables are obtained from the CPXgetdj
routine. Two calls to the CPXbinvacol routine and one call to the CPXgetx routine creates an S2LP. SA
solves the S2LP and identifies the leaving and entering variable(s). Unfortunately, the CPXpivot routine
only allows for a single exchange of variables. Thus, if two variables enter the basis, the CPXpivot routine
is called twice. If either of the other type of pivots occur, the CPXpivot routine is called once.

Both DPSM and SM require a starting feasible basis, which can be obtained from a Phase 1 implemen-
tation using either DPSM or SM. In this study, CPLEX’s Phase 1 reported a feasible basis, which is used
as the starting basis for both DPSM and SM.

Solution times obtained with these implementations became comparable with CPLEX’s primal algo-
rithm. Obviously, these implementations are still slower, but it only slowed the solution time by less than
50%. With a reasonable implementation of DPSM and SM, the study solved benchmark problems from
Netlib (Gay, 1985) and MIPLIB (Koch et al, 2011). Instances from MIPLIB are mixed integer programs
and were changed to LPs by eliminating the integrality constraints. To avoid the upper and lower bound
simplex implementations, additional constraints were added to the problems in order to represent variables
with lower and upper bounds.

During the computational experiments, the authors encountered serious issues with numerical instability
from the CPXpivot routine. This issue prohibited DPSM and SM from terminating and/or led to numerically
singular bases for many of the benchmark instances. When a basis is found to be singular, CPLEX removes
one or more variables from the current basis and re-includes these variables on further iterations when an
optimal basis is obtained. If after re-including these variables the basis is no longer optimal, then CPLEX
proceeds until an optimal basis is found; otherwise, an optimal solution to the problem has been found.

Unfortunately, the authors could not duplicate CPLEX’s internal repair process in the implementation of
SM or DPSM. Failure to correctly repair the basis may result in incorrect and/or illegal pivots. The authors
attempted to fix this problem through more frequent refactoring of the basis (CPX PARAM REINV ),
restricting the number of times CPLEX repairs the basis (CPX PARAM SINGLIM ), and tracking the
kappa value to identify when a pivot makes the basis become unstable. However, none of these attempts
resolved the issue.

The reader should know that CPLEX’s numerical instability occurred in both DPSM and SM. The
computational experiments found problems where DPSM solved, but SM did not, and vice versa. Therefore,
this computational study only reports the results of the benchmark problems where both DPSM and SM
solved the instance.

5.2 Computational Results and Analysis

Tables 2 and 3 describe all instances solved from Netlib and MIPLIB, respectively. These tables present the
number of pivots (Phase 2 only) performed by each method, including CPLEX’s primal algorithm. It also
describes the percentage improvement obtained with DPSM over SM and DPSM over CPLEX. Improvement

is defined as δDPSM
SM

=
y
SM
−y

DPSM

y
SM

× 100% and δ DPSM
CPLEX

=
y
CPLEX

−y
DPSM

y
CPLEX

× 100% where yDPSM is the
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number of pivots performed by DPSM, ySM indicates the number of pivots performed by SM, and yCPLEX
equals the number of pivots performed by CPLEX’s primal algorithm.

Table 2 Results of Instances from Netlib

Name Rows ColumnsNonzeros
Number of Pivots δDPSM

SM
δ DPSM
CPLEXCPLEX SM DPSM

ADLITTLE 57 97 465 58 100 56 44.0% 3.4%

AGG 489 163 2541 64 85 45 47.1% 29.7%

AGG2 517 302 4515 85 87 55 36.8% 35.3%

BANDM 306 472 2659 227 305 152 50.2% 33.0%

BEACONFD 174 262 3476 88 95 52 45.3% 40.9%

BRANDY 221 249 2150 194 271 208 23.2% -7.2%

CZPROB 930 3523 14173 1122 3741 1681 55.1% -49.8%

DEGEN2 445 534 4449 1041 6771 1145 83.1% -10.0%

FIT1D 25 1026 14430 911 1064 847 20.4% 7.0%

FIT1P 628 1677 10894 987 1357 797 41.3% 19.3%

FIT2D 26 10500 138018 20166 13298 11663 12.3% 42.2%

GANGES 1310 1681 7021 294 678 268 60.5% 8.8%

GROW15 301 645 5665 977 871 759 12.9% 22.3%

GROW7 141 301 2633 208 246 139 43.5% 33.2%

KB2 44 41 291 35 40 37 7.5% -5.7%

LOTFI 154 308 1086 177 377 261 30.8% -47.5%

RECIPELP 92 180 752 33 34 16 52.9% 51.5%

SC50A 51 48 131 20 18 11 38.9% 45.0%

SC50B 51 48 119 19 16 11 31.3% 42.1%

SCAGR25 472 500 2029 357 433 259 40.2% 27.5%

SCAGR7 130 140 553 81 84 52 38.1% 35.8%

SCFXM1 331 457 2612 171 227 118 48.0% 31.0%

SCFXM2 661 914 5229 327 503 276 45.1% 15.6%

SCFXM3 991 1371 7846 502 794 445 44.0% 11.4%

SCORPION 389 358 1708 270 271 242 10.7% 10.4%

SHARE1B 118 225 1182 150 404 198 51.0% -32.0%

SHARE2B 97 79 730 40 80 39 51.3% 2.5%

SHELL 537 1775 4900 325 404 244 39.6% 24.9%

SHIP04L 403 2118 8450 346 366 195 46.7% 43.6%

SHIP04S 403 1458 5810 155 145 76 47.6% 51.0%

SHIP08L 779 4283 17085 668 717 382 46.7% 42.8%

SHIP08S 779 2387 9501 454 567 291 48.7% 35.9%

SHIP12L 1152 5427 21597 276 262 153 41.6% 44.6%

SHIP12S 1152 2763 10941 187 187 101 46.0% 46.0%

STANDATA 360 1075 3038 138 113 62 45.1% 55.1%

STANDMPS 468 1075 3686 418 409 245 40.1% 41.4%

STOCFOR1 118 111 474 91 59 32 45.8% 64.8%

STOCFOR3 16676 15695 74004 18931 21221 18254 14.0% 3.6%

Average 40.2% 22.4%
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Tables 2 and 3 show that DPSM averages 41% fewer pivots than SM and 23% fewer pivots than CPLEX’s
primal algorithm. Each double pivot identified an average of only 2 constraints that updated x, implying
that Theorem 2 and Corollaries 3, 4, and 5 are infrequently implemented. The study shows that on average
83% of pivots entered two variables in the basis, 2% entered the variable with the most negative reduced
cost, and 15% entered the variable with the second most negative reduced cost. Overall, only 0.05% of the
iterations had a single negative reduced cost, which implies that the vast majority of the iterations pivoted
with SA and not with the ratio test.

Table 3 Results of Instances from MIPLIB

Name Rows ColumnsNonzeros
Number of Pivots δDPSM

SM
δ DPSM
CPLEXCPLEX SM DPSM

50v-10 233 2013 2745 222 212 116 45.3% 47.7%

dfn-gwin-UUM 158 938 2632 137 126 76 39.7% 44.5%

ger50 17 trans 499 22414 172035 751 623 345 44.6% 54.1%

germanrr 10779 10813 175547 78 77 55 28.6% 29.5%

ic97 potential 1046 728 3138 47 48 24 50.0% 48.9%

janos-us-DDM 760 2184 6384 342 318 161 49.4% 52.9%

mcsched 2107 1747 8088 3118 4158 3666 11.8% -17.6%

noswot 182 128 735 10 33 10 69.7% 0.0%

ns1766074 182 100 666 83 224 137 38.8% -65.1%

timtab1 171 397 829 54 53 30 43.4% 44.4%

Average 42.1% 23.9%

The average objective’s relative improvement per pivot of all benchmark instances solved is δ = 170%.

Define the objective’s improvement per iteration as δ =
(
zdouble pivot−zcurrent
zclassic−zcurrent − 1

)
× 100% where zcurrent is

the z value of the current basis, zdouble pivot is the z value after a double pivot, and zclassic is the z value after

a classic pivot. If a classic pivot does not improve the objective function, then δ =
(
zdouble pivot−zcurrent

zcurrent

)
×

100%. In other words, δ represents the percent in objective improvement that occurs by using a double pivot
compared to the improvement attributed to the use of a classic pivot. Thus, all values of δ are averaged to
create δ.

When analyzing based on pivot type, δ = 473% for double pivots that enter two nonbasic variables into
the basis, δ = 135% for double pivots that enter the variable with the second most negative reduced cost,
and obviously δ = 0% for double pivots that enter the variable with the most negative reduced cost.

Even though DPSM outperforms SM and CPLEX’s primal algorithm in number of pivots, the question
of whether or not DPSM is computationally faster still remains. Tables 2 and 3 do not include solution times
because the vast majority of these instances were solved by DPSM, SM and CPLEX’s primal algorithm in
less than a tenth of a second. Obtaining reliable data on such small time increments is both inconclusive
and unconvincing. It suffices to say that DPSM, SM, and CPLEX’s primal algorithm were very close in
computational time for these instances.

To provide a partial answer, some dense and sparse random LPs that did not present numerical instability
issues with respect to the CPXpivot routine were solved with DPSM and SM. These LPs were large enough
to produce reasonable solution times for comparison. In total, 50 problems that ranged from 2, 000−10, 000
variables and 1, 000 − 5, 000 constraints were solved. On average, these problems solved with DPSM in 62
seconds, SM in 54 seconds, and CPLEX’s primal algorithm in 39 seconds. When broken down by steps, SM
spent on average 1% of the solution time to find the entering variable, 6% to obtain the right-hand side
values and constraint matrix values of the entering variable, 1% to perform the ratio test, 91% to swap
the leaving and entering variables using the CPXpivot routine, and 1% for all other operations. Similarly,
DPSM spent on average 1% to find both entering variables, 11% to create S2LPs, 1% to find the leaving
variable(s) with SA, 86% to exchange the leaving with entering variable(s) using the CPXpivot routine
(called once or twice depending on the type of pivot), and 1% for all other operations. Therefore, the vast
majority of time is spent pivoting and creating data for the ratio tests or S2LPs. Thus, SA is similar in
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computational speed to the ratio test, which follows the theoretical analysis that both algorithms have the
same theoretical running time per iteration.

This small study demonstrates that SA does not significantly impact DPSM’s solution time. The most
expensive step corresponds to the CPXpivot routine. This routine not only updates the basis’ inverse fac-
torization, but also calculates the solution of all basic variables, reduced cost values, dual price values, etc.
Unfortunately, DPSM frequently calls the CPXpivot routine twice during an iteration, which forces unnec-
essary work. Thus, this implementation of DPSM is at a competitive disadvantage compared to both SM
and CPLEX’s primal algorithm. Consequently, only a full implementation of DPSM in a quality commercial
or open source linear programming solver can truly answer whether or not DPSM is faster than SM. Fully
implementing DPSM requires the development of an efficient method to update the basis for double pivots.

6 Conclusions and Future Research

This paper introduces the Double Pivot Simplex Method, which improves one of the most famous and useful
algorithms in science. At each iteration, the Double Pivot Simplex Method pivots on two variables, while
the Simplex Method pivots on only one. The paper first presents the Slope Algorithm, a fast method to find
the optimal basis and the optimal solution of a two variable linear program. Combining the Slope Algorithm
within a simplex framework creates the Double Pivot Simplex Method. The Slope Algorithm is fast, and the
most time-consuming step is sorting an array of numbers with size equal the number of constraints. This
result enables an iteration of the Double Pivot Simplex Method to have the same theoretical running time
as an iteration of the Simplex Method. Moreover, the objective value improvement per iteration of a double
pivot is at least as large as the improvement from a classic pivot. In addition, the Double Pivot Simplex
Method also diminishes some of the negative effects caused by degenerate linear programs. Computational
experiments tested the Double Pivot Simplex Method on a small set of benchmark instances from Netlib
and MIPLIB and showed that it reduces the number of pivots compared to the Simplex Method by over
40% on average.

The Double Pivot Simplex Method lays the foundation for a host of important future research topics.
The first topic should determine the benefit of double pivots in state of the art linear programming solvers.
The primary research task should develop an efficient method to update the basis factorization with two
variables.

Another topic should extend double pivots to other Simplex Method results, including creating the
Double Pivot Dual Simplex Method, developing the Double Pivot Simplex Method with Upper Bounds,
finding a small instance that cycles with the Double Pivot Simplex Method (or proving that the Double
Pivot Simplex Method does not cycle), and generating pivoting rules to avoid cycling for the Double Pivot
Simplex Method. Furthermore, the development of a triple (or more) pivot method is another promising
research topic.

Research should also investigate how the Double Pivot Simplex Method can benefit from parallel com-
puting. Since DPSM requires more work per iteration than SM (creating S2LP), can a portion of this step
be performed in parallel? Along the same lines, if one answers the aforementioned triple or more pivot
problem, a parallel implementation should become more effective.

Expanding the applicability of the Slope Algorithm generates additional future research topics. Currently,
the majority of optimization algorithms move from one solution to another solution by following a single
direction, which involves solving a one dimensional search problem. In contrast, the Slope Algorithm moves
between solutions over a two dimensional space. Consequently, the Slope Algorithm is a two dimensional
search algorithm. Can two dimensional search methods be developed to improve the solution time of interior
point methods, nonlinear programming algorithms, and other optimization techniques?
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