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Abstract
The Poisson, geometric and Bernoulli distributions are special cases of a flexible count
distribution, namely the Conway-Maxwell-Poisson (CMP) distribution – a
two-parameter generalization of the Poisson distribution that can accommodate data
over- or under-dispersion. This work further generalizes the ideas of the CMP
distribution by considering sums of CMP random variables to establish a flexible class
of distributions that encompasses the Poisson, negative binomial, and binomial
distributions as special cases. This sum-of-Conway-Maxwell-Poissons (sCMP) class
captures the CMP and its special cases, as well as the classical negative binomial and
binomial distributions. Through simulated and real data examples, we demonstrate this
model’s flexibility, encompassing several classical distributions as well as other count
data distributions containing significant data dispersion.

Keywords: Conway-Maxwell-Poisson (CMP), Negative binomial, Poisson, Binomial,
Geometric, Bernoulli, Over-dispersion, Under-dispersion

Mathematics Subject Classification: 60E05; 62F10

1 Introduction
The Poisson distribution is one of the most popular discrete distributions, serving as a
natural, classical distribution tomodel count data. It is well-known that a random variable
Y that is Poisson distributed with rate parameterμ∗ has a probability mass function (pmf)
of the form,

P(Y = y) = μ
y
∗e−μ∗

y!
, y = 0, 1, 2, . . . ,

whereμ∗ equals both themean and variance of the distribution. The relationship between
the mean and variance implies a goodness-of-fit index, GOF = Var(Y )

E(Y )
= 1, i.e. equi-

dispersion is established. This constraining assumption, however, does not oftentimes
hold true for real data – an issue that has significant implications affecting numerous
applications.
Over-dispersion relative to the Poisson distribution (i.e. where the variance is greater

than the mean) is a common feature among real data. The most popular distribution to
model over-dispersion is the negative binomial distribution; for such a random variable Y
with a negative binomial(n, p) distribution, its pmf is

P(Y = y) =
(
y + n − 1

y

)
(1 − p)ypn, y = 0, 1, 2, . . . ,

where y denotes the number of failures before the nth success in a series of Bernoulli trials
with success probability, 0 ≤ p ≤ 1. The geometric distribution with success probability
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p is a special case of negative binomial (n, p) where n = 1. The mean and variance of
this random variable are E(Y ) = n(1−p)

p and Var(Y ) = n(1−p)
p2 , respectively, thus the

goodness-of-fit index for dispersion is

GOF = Var(Y )

E(Y )
= 1

p
≥ 1. (1)

This dispersion index motivates considering the negative binomial distribution as a
viable option for addressing data over-dispersion. In fact, this distribution is a popu-
lar choice for modeling over-dispersion in various statistical methods (e.g. regression
(Hilbe 2008)) and is well studied with statistical computational ability in many softwares
(e.g. SAS, R, etc.). The negative binomial distribution, however, is unable to address
data under-dispersion, as demonstrated in Eq. (1). This result further illustrates that the
Poisson GOF is the boundary case of the negative binomial distribution; the Poisson dis-
tribution is known to be the limiting case of the negative binomial distribution where
n → ∞.
The binomial distribution (while arguably a truncated count distribution) is an under-

dispersed count distribution relative to the Poisson model. A binomially distributed
random variable Y with b Bernoulli trials and success probability p∗ has the pmf,

P(Y = y) =
(
b
y

)
py∗(1 − p∗)b−y, y = 0, 1, 2, . . . , b.

Naturally, the bernoulli (p∗) distribution is a special case of the binomial distribu-
tion where b = 1. The associated mean and variance of this random variable equal
E(Y ) = bp∗ and Var(Y ) = bp∗(1 − p∗), respectively, thus the goodness-of-fit index for
dispersion is GOF = 1 − p∗ ≤ 1. The Poisson, negative binomial, and binomial dis-
tributions are popular, classical tools for modeling count data of a particular (in)finite
form. What is most interesting about these distributions is that they each represent sums
of other classical distributions, namely the Poisson, geometric, and Bernoulli distribu-
tions, respectively. The Poisson, geometric and Bernoulli distributions are themselves
special cases of the Conway-Maxwell-Poisson (CMP) distribution – a two-parameter
flexible count distribution that generalizes the Poisson distribution to accommodate
data over- or under-dispersion. This work introduces and thus considers the sum of
CMP random variables to establish the flexible class of distributions that encompass the
Poisson, geometric, Bernoulli, negative binomial, binomial, and CMP distributions as
special cases.
The paper is outlined as follows. Section 2 acquaints the reader with the CMP distribu-

tion in order to motivate and introduce the sum-of-Conway-Maxwell-Poissons (sCMP)
class in Section 3, including discussion of the statistical properties associated with this
larger class of count distributions. Section 4 addresses parameter estimation and statisti-
cal computing procedures. Section 5 illustrates the flexibility of this class of distributions
via simulated and real data examples. Finally, Section 6 concludes the manuscript with
discussion.

2 The Conway-Maxwell-Poisson distribution
The CMP distribution is a viable two-parameter count distribution that generalizes the
Poisson distribution in light of data dispersion. Conway and Maxwell (1962) derive the
distributional form, motivated by considering a queuing system with a flexible state-
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dependent service rate where ν describes the degree to which the system service rate is
affected by the system state. The resulting pmf has the form

P(X = x | λ, ν) = λx

(x! )νZ(λ, ν)
x = 0, 1, 2, . . . (2)

for a random variable X, where λ = E(Xν) denotes a generalized form of the Poisson
rate parameter, ν ≥ 0 is a dispersion parameter, and Z(λ, ν) = ∑∞

j=0
λj

(j!)ν normalizes the
distribution such that the distribution satisfies the basic probability axioms. The disper-
sion parameter, ν, accounts for the amount of data over- or under-dispersion relative to
the Poisson distribution: ν = 1 implies that data equi-dispersion exists, while ν > (<)1
denotes under- (over-) dispersion relative to the Poisson model. The CMP distribution
includes three well-known distributions as special cases: the Poisson(μ∗ = λ) distribution
when ν = 1, the geometric distribution with success probability p = 1 − λ when ν = 0
and λ < 1, and the Bernoulli distribution with success probability p∗ = λ

1+λ
as ν → ∞;

see Table 1 for details.
Shmueli et al. (2005) provide the moments for the CMP distribution via the recursion,

E(Xr+1) =
{

λ [E(X + 1)]1−ν r = 0
λ ∂

∂λ
E(Xr) + E(X)E(Xr) r > 0.

(3)

The expected value and variance can alternatively be represented as

E(X) = λ
∂ logZ(λ, ν)

∂λ
≈ λ1/ν − ν − 1

2ν
, and (4)

Var(X) = ∂E(X)

∂ log λ
≈ 1

ν
λ1/ν , (5)

where the approximation holds for ν ≤ 1 or λ > 10ν (Sellers et al. 2011); see
Minka et al. (2003) for details. More generally, the associatedmoment generating function
of X is MX(t) = Z(λet ,ν)

Z(λ,ν)
, from which the higher moments can be obtained for X.

The CMP distribution satisfies several nice properties. The distribution has an expo-
nential family form with joint sufficient statistics

{∑n
i=1 xi,

∑n
i=1 log(xi! )

}
for {λ, ν}. Fur-

ther, the ratio between probabilities of two consecutive values is nonlinear in x, namely,

γX,x = P(X = x − 1)
P(X = x)

= xν

λ
. (6)

The linear relation among probabilities of two consecutive values is achieved when ν =
1, i.e. given data equi-dispersion associated with the Poisson(λ) model. Meanwhile, for
ν = 0 and λ < 1 (i.e. the geometric distribution with success probability 1−λ), we confirm
that the ratio between probabilities of two consecutive values is constant, equaling 1

λ
> 1.

The CMP distribution has quickly grown in popularity because of its ability to model
count data in a flexible manner. Methodological developments are vast, including works
in distribution theory (Sellers 2012; Sellers and Shmueli 2013; Borges et al. 2014),
regression analysis (Sellers and Shmueli 2009; 2010; Sellers and Raim 2016), control chart

Table 1Well-known distributions associated with the Conway-Maxwell-Poisson (CMP) distribution
for special cases of λ and ν

Case Z(λ, ν) pmf Distribution

ν = 1 eλ P(X = x) = e−λλx

x! , x = 0, 1, 2, . . . Poisson(λ)

ν = 0, λ < 1 1
1−λ

P(X = x) = (1 − λ)λx , x = 0, 1, 2, . . . Geom(1 − λ)

ν → ∞ 1 + λ P(X = 0) = 1
1+λ

; P(X = 1) = λ
1+λ

Bernoulli
(

λ
1+λ

)
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theory (Sellers 2012; Saghir and Lin 2014a; 2014b), stochastic processes (Zhu et al. 2017),
and multivariate data analysis (Sellers et al. 2016). The model has further been applied
for various data problems including fitting word lengths (Wimmer et al. 1994), modeling
online sales (Boatwright et al. 2003; Borle et al. 2006) and customer behavior (Borle et al.
2007), analyzing traffic accident data (Lord et al. 2008), and for use as a disclosure limita-
tion procedure to protect individual privacy (Kadane et al. 2006). See Sellers et al. (2011)
for additional overview and discussion.

3 The sum of Conway-Maxwell-Poissons (sCMP) class of distributions and its
statistical properties

The sum of m independent and identically distributed (iid) CMP variables leads to
what will be termed a sum of Conway-Maxwell-Poissons (sCMP)(λ, ν,m) class of dis-
tributions. Theorem 1 defines the three-parameter structure for some generalized rate
parameter (λ), dispersion parameter (ν), and number of underlying CMP random
variables (m).
Theorem 1. The sCMP(λ, ν,m) distribution has the following pmf for a random variable

Y =
m∑
i=1

Xi, where Xi
iid∼ CMP (λ, ν):

P(Y = y | λ, ν,m) = λy

(y! )νZm(λ, ν)

y∑
x1,...,xm=0

x1+···+xm=y

(
y

x1 · · · xm
)ν

, y = 0, 1, 2, . . . , (7)

where
( y
x1···xm

) = y!
x1!···xm! is the multinomial coefficient.

Proof We prove this result by induction. For m = 2, let Xi ∼ CMP(λ, ν), i = 1, 2 and
Y = X1 + X2. Then, the result holds by the transformation technique (see Chapter 2 of
Casella and Berger (2002)). Similarly, given that the result is true for m = k − 1, we can
likewise apply the transformation technique to show that

P(Y = y) =
∑
xk

λy−xk

[ (y − xk)! ]ν Zk−1(λ, ν)
·

y−xk∑
x1,...,xk−1=0

x1+···+xk−1=y−xk

(
y − xk

x1 · · · xk−1

)ν
λxk

(xk ! )νZ(λ, ν)

= λy

Zk(λ, ν)

y∑
x1,...,xk=0

x1+···+xk=y

[ (y − xk)! ]ν

[ (y − xk)! ]ν (xk ! )ν(x1! · · · xk−1! )ν
·
(
y!
y!

)ν

= λy

(y! )νZk(λ, ν)

y∑
x1,...,xk=0

x1+···+xk=y

(
y

x1 · · · xk
)ν

.

The sCMP(λ, ν,m) class encompasses the Poisson distribution with rate parameter
μ∗ = mλ (for ν = 1), negative binomial(m, 1 − λ) distribution (for ν = 0 and λ < 1),
and Binomial(m, p) distribution

(
as ν → ∞ with success probability p = λ

λ+1

)
as spe-

cial cases. Further, for m = 1, the sCMP(λ, ν,m = 1) is the CMP(λ, ν) distribution.
Accordingly, the sCMP class further captures the special case distributions of the CMP
model: a geometric distribution with success probability, p = 1 − λ, when m = 1, ν = 0,
and λ < 1; and a Bernoulli distribution with success probability p∗ = λ

1+λ
when m = 1

and ν → ∞.
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Figures 1 and 2 display the sCMP class for different values of m = 1, 2, 3, 5 and
ν = 0.5, 1, 5, 30 for λ = 2 (Fig. 1) and λ = 0.25 (Fig. 2), respectively. Both figures illus-
trate the right skewness of the distribution, and show that the range of the data decreases
as ν increases. Figure 1 more clearly demonstrates how m and ν influence the centrality
and shape of the distribution when λ = 2. As previously discussed, the special case where
ν = 1 simplifies the sCMP(λ, ν,m) model to the Poisson(mλ) distribution. This
illustrative example thus displays Poisson models with respective means equal-
ing 4, 6, and 10. The increased variation in the respective figures is consis-
tent with the increased shift in the distribution mean; recall that the Poisson
mean and variance equal each other. Relative to the Poisson model, we see that
(for a given m) increasing ν associates with decreasing variation. Figure 1 dis-
plays longer tail distributions relative to the Poisson distribution for ν < 1 and
shorter tails relative to the Poisson model when ν > 1. Meanwhile (for a given ν),
increasing m clearly associates with increased shifts in the measures of distributional
centrality (i.e. mean, median, and mode).
The ratio between probabilities of two consecutive values is

γY ,y = P(Y = y − 1)
P(Y = y)

= yν

λ
·

∑y−1
a1,...,am=0

a1+...+am=y−1

( y−1
a1,··· ,am

)ν

∑y
b1,...,bm=0

b1+...+bm=y

( y
b1,··· ,bm

)ν , (8)

Fig. 1 sCMP Probability Mass Functions. Collection of probability mass function figures for sCMP(λ = 2, ν ,m)
distributions with varying values for ν = 0.5, 1, 5, 30 andm = 1, 2, 3, 5
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Fig. 2 sCMP Probability Mass Functions. Collection of probability mass function figures for
sCMP(λ = 0.25, ν ,m) distributions with varying values for ν = 0.5, 1, 5, 30 andm = 1, 2, 3, 5

where the ratio of sums drops out in the special case where m = 1 (i.e. one CMP(λ, ν)
random variable); clearly, this produces the special case shown in Eq. (6). For the spe-
cial case where ν = 1, γY ,y = y

mλ
, which is the linear form property of the Poisson

random variable with parameter mλ (i.e. the distribution of the sum of m Poisson ran-
dom variables). Meanwhile, for ν = 0, γY ,y = y

λ(m+y−1) , namely the form associated
with a negative binomial distribution (i.e. the sum of m geometric random variables).
Equation (8) implies that the sCMP model has a mode at 0 when γY ,y > 1, i.e. λ <

yν ·
∑y−1

a1,...,am=0
a1+...+am=y−1

( y−1
a1,··· ,am)

ν

∑y
b1,...,bm=0

b1+...+bm=y
( y
b1,··· ,bm)

ν . In particular, γY ,1 = P(Y=0)
P(Y=1) = 1

mλ
, thus sCMP(λ, ν,m)

models where λ < 1
m have a mode at 0. Figure 2 displays the sCMP(λ = 0.25, ν,m)

distributions for ν = 0.5, 1, 5, 30 and m = 1, 2, 3, 5. Given that λ = 0.25 = 1
4 ,

we expect sCMP distributions where m < 4 to have the mode at 0. This is illus-
trated accordingly in Fig. 2; sCMP(λ = 0.25, ν,m) distributions for m = 2, 3 and any
ν ≥ 0 have the mode at 0, while the sCMP(λ = 0.25, ν,m = 5) distribution has the
mode at 1 for all ν ≥ 0.
The moment-generating function MY (t), probability generating function �Y (t),

and characteristic function φY (t) of a sCMP(λ, ν,m) random variable Y are given,
respectively, as
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MY (t) =
(
Z(λet , ν)

Z(λ, ν)

)m
, (9)

�Y (t) =
(
Z(λt, ν)

Z(λ, ν)

)m
, and

φY (t) =
(
Z(λeit , ν)

Z(λ, ν)

)m
.

The moment generating function technique can be used to show that, given the same
parameters λ and ν, the sum of independent sCMP distributions is invariant under
addition (i.e. the sum of sCMP random variables has a sCMP distribution). For two
independent random variables, Y1 ∼ sCMP(λ, ν,m1) and Y2 ∼ sCMP(λ, ν,m2),

MY1+Y2(t) = MY1(t) · MY2(t)

= Zm1(λet , ν)

Zm1(λ, ν)
· Z

m2(λet , ν)

Zm2(λ, ν)

= Zm1+m2(λet , ν)

Zm1+m2(λ, ν)
,

which is the mgf of a sCMP(λ, ν,m1 + m2) distribution, therefore Y1 + Y2 has a
sCMP(λ, ν,m1 + m2) distribution. This result is logically sound because Y1 and Y2
respectively represent the sum of m1 and m2 iid CMP (λ, ν) random variables; thus,
Y1 + Y2 defines the sum of m1 + m2 iid CMP random variables, which precisely has a
sCMP(λ, ν,m1 + m2) distribution. This distinction is key between the CMP distribution
and the larger sCMP class – the CMP distribution does not have the invariance property
under addition.

3.1 Moments of the distribution

One can differentiate Eq. (9) to obtain the moments of the sCMP model, with the help of
the following relation.
Theorem 2. For a normalizing function of the form, Z(λet , ν), where Z(·, ·) is as defined
following Eq. (2), the kth (k = 1, 2, 3, . . .) derivative is

∂kZ
(
λet , ν

)
∂tk

=
∞∑
j=0

jk
(
λet

)j
(j! )ν

. (10)

Proof This proof is straightforward, given the differentiation formula for exponential
functions.

This result proves helpful in showing that the sCMP(λ, ν,m) has mean E(Y ) =
mE(X) and variance V (Y ) = mV (X), where E(X) and V (X) (provided in Eqs. (4)-(5),
respectively) are the mean and variance of a CMP(λ, ν) random variable X.

3.2 Introducing the generalized Conway-Maxwell-Binomial (gCMB) distribution

Conditioning a CMP random variable on a sum of two independent CMP random
variables produces a random variable whose distribution is Conway-Maxwell-Binomial
(CMB) (Kadane 2016) (alternatively termed as “Conway-Maxwell-Poisson-Binomial” in
Shmueli et al. (2005) and Borges et al. (2014)). The CMB random variable X has the pmf,

P(X = x | r, p, ν) =
(r
x
)νpx(1 − p)r−x∑r

k=0
(r
k
)νpk(1 − p)r−k , x = 0, 1, 2, . . . , r, (11)
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for r ∈ Z+, p ∈ (0, 1), and ν ∈ R such that ν = 1 produces the usual binomial(r, p)
distribution, ν > 1 corresponds to data under-dispersion relative to a binomial distribu-
tion while ν < 1 corresponds to data over-dispersion relative to the binomial(r, p) model.
Extreme distribution cases hold where, for ν → ∞, the pmf is concentrated at the point,
rp and, for ν → −∞, it is concentrated at 0 or r (Borges et al. 2014).
Analogously, conditioning a sCMP variable on the sum of two independent sCMP vari-

ables produces a generalized form of the CMB distribution; we denote this as the gCMB
distribution. Letting S = Y1 +Y2 where Y1 ∼ sCMP(λ1, ν,m1) and Y2 ∼ sCMP(λ2, ν,m2)

are independent, and given S = s,

P(Y1=y1 |S= s)=

⎧⎪⎪⎨
⎪⎪⎩

(
s
y1

)ν (
λ1

λ1 + λ2

)y1 (
λ2

λ1 + λ2

)s−y1

⎡
⎢⎢⎣

y1∑
a1,...,am1=0

a1+...+am1=y1

(
y1

a1, . . . , am1

)ν

⎤
⎥⎥⎦

·

⎡
⎢⎢⎢⎣

s−y1∑
b1,...,bm2=0

b1+...+bm2=s−y1

(
s − y1

b1, . . . , bm2

)ν

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

/G
(

λ1
λ1 + λ2

, ν, s,m1,m2

)
(12)

where

G (p, ν, s,m1,m2) =
s∑

k=0

(
s
k

)ν

pk(1 − p)s−k

⎡
⎢⎢⎢⎣

k∑
a1,...,am1=0

a1+...+am1=k

(
k

a1, . . . , am1

)ν

⎤
⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎣

s−k∑
b1,...,bm2=0

b1+...+bm2=s−k

(
s − k

b1, . . . , bm2

)ν

⎤
⎥⎥⎥⎦ (13)

is a normalizing constant and p = λ1
λ1+λ2

. Thus, the conditional probability of a
sCMP(λ1, ν,m1) random variable given the value of a sum of sCMP random variables as
described above is

P(Y1 = y1 | S = s) ∝
(
s
y1

)ν

py1(1 − p)s−y1

⎡
⎢⎢⎣

y1∑
a1,...,am1=0

a1+...+am1=y1

(
y1

a1, . . . , am1

)ν

⎤
⎥⎥⎦

·

⎡
⎢⎢⎢⎣

s−y1∑
b1,...,bm2=0

b1+...+bm2=s−y1

(
s − y1

b1, . . . , bm2

)ν

⎤
⎥⎥⎥⎦. (14)

This generalized CMB distribution [denoted as gCMB(p, ν, s,m1,m2)] contains several
special cases. When m1 = m2 = 1, the gCMB distribution reduces to the CMB(s, p, ν)

distribution. For ν = 1, the probability reduces to

P(Y1 = y1 | S = s) =
( s
y1

)
(m1p)y1 [m2(1 − p)]s−y1

[m1p + m2(1 − p)]s

=
(
s
y1

) (
m1p

m1p + m2(1 − p)

)y1 (
m2(1 − p)

m1p + m2(1 − p)

)s−y1
,
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i.e. given data equi-dispersion, we have a binomial distribution with s trials and p∗ =
m1p

m1p+m2(1−p) = m1λ1
m1λ1+m2λ2

success probability. In particular, for m1 = m2 = 1 and

ν = 1, the gCMB distribution reduces to the Bin(s, p) = Bin
(
s, λ1

λ1+λ2

)
distribution. For

the special case where λ1 = λ2 = λ, Eq. (12) reduces to the following for y1 = 0, . . . , s:

P(Y1 = y1 | S = s) =

( s
y1

)ν

[∑y1
a1,...,am1=0

a1+...+am1=y1

( y1
a1,...,am1

)ν

]⎡
⎣∑s−y1

b1,...,bm2=0
b1+...+bm2=s−y1

( s−y1
b1,...,bm2

)ν

⎤
⎦

∑s
c1,...,cm1+m2=0

c1+...+cm1+m2=s

( s
c1,...,cm1+m2

)ν ,

i.e. a gCMB(1/2, ν, s,m1,m2) distribution. In particular, this implies that

s∑
c1,...,cm1+m2=0

c1+...+cm1+m2=s

(
s

c1, . . . , cm1+m2

)ν

=
s∑

y1=0

(
s
y1

)ν

⎡
⎢⎢⎣

y1∑
a1,...,am1=0

a1+...+am1=y1

(
y1

a1, . . . , am1

)ν

⎤
⎥⎥⎦

·

⎡
⎢⎢⎢⎣

s−y1∑
b1,...,bm2=0

b1+...+bm2=s−y1

(
s − y1

b1, . . . , bm2

)ν

⎤
⎥⎥⎥⎦.

The probability generating function for the gCMB distribution is

φY1|S=s(t) =
∑s

y1=0
( s
y1

)ν
(tp)y1(1 − p)s−y1

[∑y1
a1,...,am1

( y1
a1,...,am1

)ν
][∑s−y1

b1,...,bm2

( s−y1
b1,...,bm2

)ν
]

G(p, ν, s,m1,m2)

=
H

(
tp
1−p , ν, s,m1,m2

)

H
(

p
1−p , ν, s,m1,m2

) ,

where

H(θ , ν, s,m1,m2) =
s∑

y1=0

(
s
y1

)ν

θy1

⎡
⎣ y1∑
a1,...,am1

(
y1

a1, . . . , am1

)ν
⎤
⎦

⎡
⎣ s−y1∑
b1,...,bm2

(
s − y1

b1, . . . , bm2

)ν
⎤
⎦.

(15)

4 Parameter estimation and statistical computing
Because m is a natural number, we consider a series of sCMP estimations for a given m,
from which we can determine an optimal sCMP(λ, ν,m) model. Given m, estimates for
λ and ν are obtained via maximum likelihood estimation (MLE), where we consider the
log-likelihood,

logL(λ, ν | m) =
N∑
i=1

logP(Yi = yi | λ, ν,m)

for a random sample Y1, . . . ,YN , where P(Yi = yi | λ, ν,m), i = 1, . . . ,N is defined in
Eq. (7). Given the complex nature of the log-likelihood function and the corresponding
score equations, as well as the constrained parameter space for λ > 0 and ν ≥ 0, max-
imum likelihood estimates are determined via the nlminb function in R (R Core Team
2017) which is used to identify the parameters that minimize the negated log-likelihood
function (thus determining the MLE values). Meanwhile, parameter robustness is quan-
tified through the corresponding standard errors for the stated estimates obtained via the
information matrix,
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I(λ, ν) = −N · E
(

∂2 lnP(Y=y)
∂λ2

∂2 lnP(Y=y)
∂λ∂ν

∂2 lnP(Y=y)
∂λ∂ν

∂2 lnP(Y=y)
∂ν2

)
,

where P(Y = y) is defined in Eq. (7). The information matrix is computed (via the
hessian function in the numDeriv package (Gilbert and Varadhan 2016) in R (R Core
Team 2017)) and inverted, and the square root of the resulting diagonal elements contain
the standard errors of the parameter estimates.
Optimal sCMP(λ, ν,m) models are determined by comparing potential conditional

sCMP models where m is assumed known and identifying the conditional model with
the largest log-likelihood value. Section 5 illustrates this procedure via simulated and real
data examples.
Statistical computing for the Poisson and negative binomial distributions are conducted

in R (R Core Team 2017) via the function, fitdistr, contained in the MASS pack-
age (Venables and Ripley 2002). This package uses an alternative parametrization for
the negative binomial model, namely θ = n and μ = n(1−p)

p , hence we can back-
solve for p = θ

μ+θ
. Estimates for θ and μ are reported in the discussions provided

in Section 5.

5 Examples
5.1 Simulation study

The sCMP distribution is a generalizable distribution that encompasses five classical
distributions: the Bernoulli, binomial, Poisson, geometric, and negative binomial distri-
butions; more broadly, for a general m, the sCMP distribution captures the binomial,
Poisson, and negative binomial distributions. To demonstrate this general flexibility, data
samples of size 100 were generated from a binomial(b = 3, p∗ = 0.667), Poisson(μ∗ = 6),
and negative binomial(n = 3, p = 0.333) distribution, respectively. To assess model
performance, we compare model estimation via the sCMP distribution (assuming m =
1, 2, 3, 4) with estimations assuming a Poisson and negative binomial distribution, respec-
tively; the CMP distribution is the sCMP(m = 1) case. Table 2 provides the parameter
estimates and standard errors associated with the various models considered for model
comparisons via the log-likelihood (log(L)), Akaike and Bayes Information Criterions
(AIC and BIC), respectively.
For model comparison via AIC, Burnham and Anderson (2002) suggest considering

	i = AICi − AICmin, where AICmin is the minimum of the model AIC values being com-
pared, thus infering that the best model has 	 = 0 and the other models have 	 > 0.
Model comparisons are thus determined via these difference measures in that “models
having 	i ≤ 2 have substantial support (evidence), those in which 4 ≤ 	i ≤ 7 have
considerably less support, and models having 	i > 10 have essentially no support" in
comparison with the best model; see p. 70-71 of Burnham and Anderson (2002). We will
apply this approach for model comparison accordingly, and can analogously apply this
method using BIC.
The sCMP class of distributions appears to offer a consistent ability to properly model

all of the simulated classical data structures. What is interesting to see is the distribution’s
resulting parameter estimations asm increases. For the binomial example (i.e. the case of
extreme under-dispersion), we see that λ decreases and ν increases form ≤ 3. While that
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Table 2 Simulated data example

Simulated data distribution

Bin(b = 3, p∗ = 0.667) Pois(μ∗ = 6) NB(n = 3, p = 0.333)

μ̂∗ (SE) 2.0000(0.1414) 6.1100(0.2472) 5.3000(0.2302)

Pois. log(L) -144.8109 -228.1811 -288.0710

AIC 291.6218 458.3623 578.1419

BIC 294.2270 460.9675 580.7471

μ̂ (SE) 1.9999(0.1419) 6.1100(0.2503) 5.3001(0.3632)

θ̂ (SE) 276.5396(394.3489) 239.7812(421.0122) 3.5599(0.8564)

NB log(L) -145.0563 -228.3236 -258.7486

AIC 294.1126 460.6472 521.4971

BIC 299.3229 465.8575 526.7075

λ̂ (SE) 18.7071(8.9855) 6.9145(2.1193) 1.5576(0.2079)

ν̂ (SE) 3.3931(0.5024) 1.0653(0.1603) 0.3150(0.0708)

CMP/sCMP(m = 1) log(L) -123.2624 -228.0950 -260.3649

AIC 250.5248 460.1900 524.7298

BIC 255.7351 465.4003 529.9402

λ̂ (SE) 4.2531(0.9494) 3.4046(0.8152) 0.9309(0.1109)

ν̂ (SE) 4.2854(0.4998) 1.0838(0.1826) 0.1674(0.0825)

sCMP(m = 2) log(L) -120.8816 -228.0722 -259.3193

AIC 245.7632 460.1444 522.6386

BIC 250.9735 465.3547 527.8489

λ̂ (SE) 2.0000(0.2450) 2.2683(0.4822) 0.6709(0.0576)

ν̂ (SE) 33.6942(12536.57) 1.1093(0.2127) 0.0392(0.0698)

sCMP(m = 3) log(L) -116.2486 -228.0418 -258.8683

AIC 236.4972 460.0836 521.7366

BIC 241.7075 465.2939 526.9469

λ̂ (SE) 1.0000(0.1000) 1.7044(0.3382) 0.5700(0.0486)

ν̂ (SE) 32.5126(12322.57) 1.1381(0.2469) 0.0000(0.0826)

sCMP(m = 4) log(L) -124.7123 -228.0175 -258.8470

AIC 253.4246 460.0350 521.6940

BIC 258.6349 465.2453 526.9043

True model parameters versus estimated parameters (and associated standard errors provided in parentheses) for various
assumed distributions. For model comparisons, the log-likelihood, Akaike and Bayes Information Criterions (AIC and BIC,
respectively) are provided

pattern does not continue for m = 4, we see that the log-likelihood value is maximized
(and the AIC and BIC values minimized) with the sCMP(m = 3) case. We see that the
sCMP(λ̂ = 2.0000, ν̂ = 33.6942, m = 3) distribution is the best model, when compared
with the other considered distributions. In fact, all other models produce a difference 	

that associates with considerably less support to essentially no support.
The binomial case can be viewed as the summation of three Bernoulli trials, thus we

expect the corresponding sCMP estimates to be λ̂ ≈ 2 and ν̂ ≥ 30; recall that the spe-
cial CMP case that corresponds with a Bernoulli distribution occurs when ν → ∞ with
probability λ

1+λ
, where empirical evidence shows that dispersion parameter estimation is

sufficiently achieved when ν̂ ≈ 30 or more (see Sellers et al. (2016) and Sellers and Raim
(2016) for examples). In fact, for the simulated Binomial dataset, we obtain λ̂ = 2.0000,
ν̂ = 33.6942; the obtained estimate for ν implies extreme under-dispersion, thus we have
sufficient evidence implying that the estimates approximate a Bernoulli distribution with
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success probability, p̂∗ = 2.0000
1+2.0000 = 0.6667. The sCMP(m = 3) distribution best mod-

els the binomial data, producing the largest log-likelihood (log(L) = −116.2486), and the
smallest AIC and BIC (236.4972 and 241.7075, respectively). In comparison, the Poisson
and negative binomial models produce comparable log-likelihoods (both that are con-
siderably less than those from the sCMP class) because they are unable to effectively
model the under-dispersion present in this dataset. The large negative binomial param-
eter (θ̂ = 276.5396) shows that the model is converging to a Poisson model (i.e. towards
data equi-dispersion) to estimate this data. While the CMPmodel is able to recognize the
dataset as being under-dispersed (ν̂ = 3.3931 > 1), the form of the distribution still limits
the amount of model flexibility it can address.
For the Poisson example, we see that all of the considered models perform comparably

well. While the best model is naturally Poisson, this is true moreso because the distri-
bution only requires estimating one parameter. All of the models considered produced
log-likelihoods equalling approximately − 228, thus the associated difference measures
imply that the other models (in particular, the sCMP class of distributions) show sub-
stantial support for model consideration. The negative binomial estimates (θ̂ = 239.7812
and μ̂ = 6.1100) demonstrate the convergence of the negative binomial distribution
to the Poisson model as θ → ∞ in order to address the limiting case of analyzing
equi-dispersed data.
Because the simulation reflects a Poisson(6) dataset, we expect to obtain sCMP param-

eter estimates λ̂ ≈ 6/m and ν̂ ≈ 1 for allm = 1, 2, 3, 4. The obtained estimates for λ and ν

are consistently larger than their projected values where ν̂ increases slightly with m. The
corresponding parameter standard errors, however, suggest that none of these estimates
is statistically significantly different from their hypothesized values.
For the negative binomial example, we see that the sCMP class of distributions again

performs well in estimating the form of the simulated dataset. The true parameter val-
ues associated with the negative binomial model imply that μ = n(1−p)

p = 6 and θ = 3.
The negative binomial distribution(θ̂ = 3.5599, μ̂ = 5.3001) is the best model among
the distributions considered (AIC = 521.4971), however, the sCMP class of distribu-
tions performs more optimally as m increases (among those values for m considered).
Larger values for m were not considered here because the sCMP models for m = 3, 4
produce approximately equal log-likelihood values, thus likewise producing compara-
ble AIC and BIC values; this makes sense because the negative binomial estimate is
3 < θ̂ = 3.5599 < 4. Meanwhile, even for the sCMP models where m = 1, 2, the dif-
ference in AIC when compared with the best model still implies that these models show
considerable support.
With the sCMP class of distributions, we see that ν̂ decreases as m increases. Inter-

estingly here, because we know the data are simulated from a negative binomial(n =
3, p = 0.333) distribution, we expect the sCMP(m = 3) distribution to produce estimates
λ̂ = 0.667 and ν ≈ 0. In fact, the observed estimates (λ̂ = 0.6709 and ν̂ = 0.0392) are
within one standard error of the projected estimates. The CMP (i.e. the sCMP(m = 1))
model does reasonably well, as evidenced by the resulting log-likelihood and AIC val-
ues (−260.3649 and 524.7298, respectively); the CMP estimated dispersion parameter,
ν̂ = 0.3150, indicates recognized over-dispersion in the dataset. The Poisson model is the
worst performer (with log(L) = −288.0710) because of its constraining equi-dispersion
requirement.
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5.2 Under-dispersed real data example: word count

Bailey (1990) studies the frequency of articles in 10-word samples fromMacaulay’s “Essay
on Milton”, counting the number of occurrences of articles ‘the’, ‘a’, and ‘an’ as a means to
infer the author’s style. The provided dataset contains 100 observations where the number
of occurrences of these articles in the 10-word samples range from 0 to 3; see Fig. 3.
We consider the Poisson, negative binomial, and sCMP(m) models wherem = 1, 2, 3, 4

to describe the data distribution; Bailey (1990) previously considered a binomial model
to describe the data. Table 3 provides the sCMP parameter estimates and standard errors
(in parentheses), along with the log-likelihood, AIC, and BIC values for model compari-
son. The sCMP(m = 2) model is the optimal choice, producing a log-likelihood equaling
−117.327, and AIC and BIC equaling 238.6546 and 243.8649, respectively. Because this
dataset is under-dispersed (with a sample mean and sample variance equaling 1.05 and
0.654, respectively), all models considered from the sCMP family outperform the Pois-
son and negative binomial models. The Poisson model produces an estimated sample
mean and standard error, 1.0500 (0.1025), with log-likelihood − 123.2741. The negative

Fig. 3 Word count distribution comparison. Empirical versus estimated count distributions for word count
example from Bailey (1990). Estimated count distributions determined from corresponding model parameter
estimates provided in Table 3
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Table 3Word count model comparisons

CMP/sCMP(m = 1) sCMP(m = 2) sCMP(m = 3) sCMP(m = 4)

λ̂ (SE) 1.8897 (0.4219) 0.9120 (0.1511) 0.5385 (0.0652) 0.3559 (0.0404)

ν̂ (SE) 2.1033 (0.3858) 3.7750 (1.0049) 3.0900 (15045) 29.7650 (13118)

log(L) -118.319 -117.327 -117.331 -118.521

AIC 240.638 238.655 238.662 241.041

BIC 245.848 243.865 243.873 246.252

Model comparison for the word count data from Bailey (1990), where sCMP withm = 1, 2, 3, 4 distributions are considered. For
model comparisons, the log-likelihood, Akaike and Bayes Information Criterions (AIC and BIC, respectively) are provided. All sCMP
family distributions outperform the Poisson model which produces an estimated sample mean, μ∗ = 1.0500 (0.1025), with
log-likelihood − 123.2741. The negative binomial model likewise converges to a Poisson model with estimates, θ̂ = 269.9607
(702.1046), μ̂ = 1.0500 (0.1027), log(L) = −123.3487)

binomial model meanwhile produces estimates (θ̂ = 269.9607 (702.1046), μ̂ = 1.0500
(0.1027), log(L) = −123.3487) comparable to the Poisson. Because the data are under-
dispersed, the negative binomial model can only perform as well as the Poisson model. As
demonstrated, the estimated size parameter is large and the estimated mean equals that
from the Poisson model.
Figure 3 provides the empirical and estimated distributions for this data based on

the various considered models, including the estimated binomial frequencies provided
in Bailey (1990). This figure confirms the results provided in Table 3, namely that the
sCMP(m = 2) best represents the shape of the observed distribution for the num-
ber of occurrences of an article in 10-word samples from Macaulay’s ‘Essay on Milton’.
In particular, we see the small estimated sCMP(m = 2) frequency associated with
more than 3 articles; recall that the observed number of articles is zero. Meanwhile, the
number of occurrences as determined via the Poisson and negative binomial are visi-
bly over- or under-estimated, including a sizable estimated frequency associated with
more than 3 articles. The estimated frequencies determined by the binomial distri-
bution, while better than those from the Poisson and negative binomial models, still
deviate considerably in comparison to the sCMP class. Finally, while Table 3 shows
that the sCMP(m = 3) distribution performs comparably well, we nonetheless deter-
mine the sCMP(λ̂ = 0.9120, ν̂ = 3.7750,m = 2) model to be the best choice to
estimate the observed distribution, based on the resulting estimated frequencies shown
in Fig. 3.

5.3 Over-dispersed real data example: fetal lambmovement

Guttorp (1995) provides data on the number of movements by a fetal lamb observed
by ultrasound and counted in successive 5-second intervals. The dataset contains 225
observations ranging in value from 0 to 7, and are over-dispersed with dispersion index
̂Var(Y )/̂E(Y ) = 0.693/0.382 = 1.8119; summary information regarding the distribution
is provided in Table 4(a). Assuming no knowledge of the data dispersion type, we consider
various count data model parameter estimations to describe this real data distribution:
Poisson, negative binomial, and sCMP at various levels of m = 1, 2, 3, 4. Table 5 provides
the resulting estimation output (including the corresponding log-likelihood, AIC, and
BIC) associated with the various distributions considered to model the original 5-second
movement data summarized in Table 4(a).
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Table 4 Fetal lamb summary statistic information

(a) (b)

5-second 15-second

Summary statistic Data value Data value

No. of obs. 225 75

Minimum 0.000 0.000

1st Quartile 0.000 0.000

Median 0.000 1.000

Mean 0.382 1.147

3rd Quartile 1.000 2.000

Maximum 7.000 12.000

Variance 0.693 3.694

Std. Deviation 0.832 1.922

Summary statistics associated with fetal lamb data set: (a) based on original data, where fetal lamb are observed by ultrasound
and counted in successive 5-second intervals, and (b) based on reconstructed (from original) data, where fetal lamb are observed
by ultrasound and counted in successive 15-second intervals. Full original data are contained in Guttorp (1995)

The sCMP class consistently recognizes this real count distribution to be extremely
over-dispersed (ν̂ = 0.000 and λ < 1), implying that the sCMP class interprets the data
as being represented as sums of size m from geometrically distributed data with some
success probability, 1 − λ̂. In fact, the estimates for λ decrease asm increases yet the cor-
responding log-likelihood value decreases, thus providing a sense of the contour of the
larger log-likelihood space that is determined by λ, ν, andm. Becausem is a natural num-
ber, we find that the optimal sCMP(m) class for modeling the 5-second fetal lamb dataset
occurs for m = 1, i.e. the CMP distribution with λ̂ = 0.277 and ν̂ = 0.000. Continuing
with this logic, however, we recognize then that one should thus consider the special case
of a geometric (i.e. the CMP distribution where ν = 0) distribution with approximate
success probability, p̂ = 1−0.277 = 0.723). Indeed, estimating the observed count distri-
bution via a geometric model produces the estimated success probability, p̂ = 0.723 (with
standard error, 0.025). While this estimation procedure determines a geometric model to
be the best model within the sCMP class, the negative binomial distribution is another
viable model, as determined by Burnham and Anderson (2002); see Table 5.

Table 5 5-second fetal lamb data model comparisons

Est. SE log(L) AIC BIC

Poisson μ̂∗ = 0.382 (0.041) -195.4933 394.9866 401.8188

Geom p̂ = 0.723 (0.025) -183.3791 368.7583 372.1744

NB μ̂ = 0.382 (0.053)
θ̂ = 0.587 (0.200) -182.3702 368.7404 375.5726

CMP/sCMP(m = 1) λ̂∗ = 0.277 (0.040)
ν̂∗ = 0.000 (0.264) -183.3791 370.7582 377.5904

sCMP(m = 2) λ̂ = 0.160 (0.019)
ν̂ = 0.000 (0.263) -186.3873 376.7746 383.6068

sCMP(m = 3) λ̂ = 0.113 (0.013)
ν̂ = 0.000 (0.294) -188.3006 380.6012 387.4334

sCMP(m = 4) λ̂ = 0.087 (0.009)
ν̂ = 0.000 (0.213) -189.5569 383.1138 389.9460

Model comparison for the fetal lamb 5-second movement data, where Poisson, negative binomial, CMP, and sCMP distributions
are considered. For model comparisons, the log-likelihood, Akaike and Bayes Information Criterions (AIC and BIC, respectively) are
provided
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Figure 4 provides a comparison of the empirical versus estimated count distributions
associated with the different models. While the negative binomial best fits the observed
count distribution, we see that the geometric (p̂ = 0.723) (i.e. the sCMP(m = 1)/CMP
model with λ̂ = 0.277 and ν̂ = 0.000) model likewise performs reasonably. More gener-
ally, as m increases, the sCMP class appears to underestimate the number of zeroes and
overestimate the number of ones. The estimated frequencies for counts greater than or
equal to two, however, appear comparable for all distributions.
To further illustrate the utility of the sCMP family, we consider a condensed represen-

tation of the Guttorp (1995) data by summing successive triples of data, thus representing
fetal lamb data observed by ultrasound and counted in successive 15-second intervals.
Table 4(b) provides the resulting summary information – 75 observations now range in
value from 0 to 12, where the dispersion index is now 3.694/1.147 = 3.221, maintaining
apparent data over-dispersion. Again, assuming no knowledge regarding the type of the
data dispersion, we consider the Poisson, negative binomial, and sCMP distributions at
m = 1, 2, 3, 4 and estimate the corresponding model parameters via maximum likelihood

Fig. 4 5-second fetal lamb distribution comparison. Empirical versus estimated count distributions for
5-second fetal lamb data example from Guttorp (1995). Estimated count distributions determined from
corresponding model parameter estimates provided in Table 5
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estimation. Table 6 provides the resulting estimation output (including the corresponding
log-likelihood, AIC, and BIC) associated with the various distributions considered to
model the 15-second movement data summarized in Table 4(b).
Table 6 again displays an interesting trend with respect to the sCMP class estimators.

Again, the estimations for λ decrease as m increases, while the dispersion parameter
consistently estimates to be ν̂ = 0 (indicating consideration of an appropriate nega-
tive binomial model structure). Further, asm increases, the corresponding log-likelihood
associated with each of the models decreases. Hence, the optimal sCMP model is again
the CMP model (i.e. sCMP when m = 1). Meanwhile, the CMP model with estimated
dispersion parameter, ν̂ = 0, again suggests to consider a geometric model with success
probability 1 − λ̂ = 0.466. In fact, the estimated success probability for the geometric
model is p̂ = 0.466 (0.039). The negative binomial model slightly outperforms the CMP
model, although both models perform comparably well, based on their respective AIC
values (Burnham and Anderson 2002). The slight outperformance in the negative bino-
mial model relative to the CMP/geometric model (based on log-likelihood comparisons)
stems from the negative binomial estimation procedure’s allowance for real θ , thus obtain-
ing a more precise estimation of the data over-dispersion. However, because we recognize
that this special case of the sCMP class where m = 1 and ν = 0 corresponds to a geo-
metric model, the geometric model is deemed better than the negative binomial model,
given the reduction in the number of estimated parameters and thus the reduced AIC and
BIC (224.441 and 226.759 for the geometric model, versus 225.819 and 230.454 for the
negative binomial model); see Table 6.
Figure 5 provides a comparison of the empirical versus estimated count distributions

for the different models associated with the 15-second fetal lamb data. Here, we can see
that the geometric(p̂ = 0.466) distribution (i.e. the sCMP(m = 1)/CMP model where
λ̂ = 0.534, ν̂ = 0.000) best estimates the observed count distribution, given that the geo-
metric model requires only one parameter. Meanwhile, the negative binomial distribution
performs comparably well to the geometric/CMP(ν̂ = 0). This makes sense, given the
relationship between the geometric and negative binomial distributions. The estimated
geometric and negative binomial distributions are so close because the negative binomial

Table 6 15-s fetal lamb data model comparisons

Est. SE log(L) AIC BIC

Poisson μ̂∗ = 1.147 (0.124) -131.3450 264.690 267.010

Geom p̂ = 0.466 (0.039) -111.2206 224.441 226.759

NB μ̂ = 1.147 (0.195)
θ̂ = 0.767 (0.251) -110.9094 225.819 230.454

CMP/sCMP(m = 1) λ̂∗ = 0.534 (0.093)
ν̂∗ = 0.000 (0.161) -111.2206 226.442 231.076

sCMP(m = 2) λ̂ = 0.364 (0.065)
ν̂ = 0.000 (0.259) -114.2996 232.599 237.234

sCMP(m = 3) λ̂ = 0.277 (0.071)
ν̂ = 0.000 (0.554) -116.9413 237.882 242.518

sCMP(m = 4) λ̂ = 0.223 (0.071)
ν̂ = 0.000 (0.554) -118.9119 241.824 246.459

Model comparison for the fetal lamb 15-second movement data, where Poisson, negative binomial, CMP, and sCMP (with
variable values form) distributions are considered. For model comparisons, the log-likelihood, Akaike and Bayes Information
Criterions (AIC and BIC, respectively) are provided
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Fig. 5 15-second fetal lamb distribution comparison. Empirical versus estimated count distributions for
15-second fetal lamb data example as described in Section 5.3. Estimated count distributions determined
from corresponding model parameter estimates provided in Table 6

size estimate, θ̂ = 0.767, is close to one, while the corresponding probability estimate,
p̂ = 0.401, is close to that from the geometric model (p̂ = 0.466).
Notice that sCMP(m = 3) parameter estimates associated with the 15-second fetal

lamb data equal the sCMP(m = 1)/CMP parameter estimates for the 5-second fetal lamb
example. This result is logically sound, given the means by which the sCMP distribution
is derived; conducting estimations over an interval that is three times its original period
is akin to “summing" the three CMP random variables to consider the sCMP model.
This example demonstrates the suitability of the sCMP class to serve as an exploratory

tool for count data modeling. For over-dispersed data examples, the negative binomial
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distribution is generally expected to be a good model to describe the distribution. The
sCMP class of distributions contains the negative binomial (and geometric) distribution
as a special case; accordingly, it is not necessarily expected for the sCMP distribution to
outperform simpler distributions but rather to demonstrate that the sCMP distribution
offers insights regardingmodel considerations. Indeed, applying the sCMPmodel to these
over-dispersed examples motivated consideration of the geometric distribution, which
turned out to be an optimal model. Accordingly, while one may not consider the geomet-
ric distribution to be a viable model a priori, the sCMP showed why the geometric model
is viable.

6 Discussion
The sum-of-Conway-Maxwell-Poissons (sCMP) class of distributions is a flexible con-
struct for modeling count data that captures several well-known distributions as special
cases: the Poisson, negative binomial, binomial, geometric, Bernoulli, and Conway-
Maxwell-Poisson (CMP). Just as the CMP distribution bridges the gap between the
Poisson, geometric, and Bernoulli distributions through the addition of a dispersion
parameter, the sCMP distribution sums over m CMP random variables, producing an
encompassing distributional form that has an even greater containment of numerous
count distributions.
The provided examples illustrate the flexibility of the sCMP class for handling over-

or under-dispersed data. These examples, however, consider only the marginal distribu-
tion through unconditional means and variances (and hence unconditional dispersion),
thus the true significance of the sCMP class is subdued. In actuality, it is not necessarily
straightforward to determine if observed dispersion is true or “apparent". In a regres-
sion setting, for example, dispersion is measured via conditional means and variances,
and exploratory data analysis may not detect the true complexity of the data (Sellers
and Shmueli 2013). Under such circumstances, the sCMP class can aid with detecting
dispersion when a more sophisticated approach is required.
As noted in the over-dispersed data example, we are limited in our ability to esti-

mate m because it is a natural number. We opt for this formulation as it holds true to
the form that generalizes the construction of the three special case models (negative
binomial, Poisson, and binomial) as sums of their respective special case distributions
associated with the CMP distribution (namely, the geometric, Poisson, and Bernoulli
models). For example, the negative binomial pmf is often described as the probability
of observing y failures before the nth success in a series of Bernoulli trials, or as a sum
of n geometric random variables. Yet, the negative binomial distribution can alterna-
tively be derived via a Poisson-gamma mixture, in which case the parameter n is a real
number. As Hilbe (2008) notes, “there is no compelling mathematical reason to limit
this parameter to integers." (page 82). Future work considers broadening the sCMP for-
mulation to likewise allow for real-valued m and any associated implications from such
a definition.
While we estimate the standard errors of the parameter estimates via the approximate

information matrix as described in Section 4, the sampling distributions associated with
λ and ν are known to possess skewness (Sellers and Shmueli 2013). Thus, an alternative
approach is non-parametric bootstrapping. To compute parameter estimates and associ-
ated variation in this manner, one can (for example) randomly draw 1000 samples with
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replacement from the data using the boot package (Canty and Ripley 2015) in R (R Core
Team 2017).
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