
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Management Faculty Publications Department of Management

2008

A Decade and More of UML: An Overview of UML Semantic and A Decade and More of UML: An Overview of UML Semantic and

Structural Issues and UML Field Use Structural Issues and UML Field Use

John Erickson

Follow this and additional works at: https://digitalcommons.unomaha.edu/managementfacpub

 Part of the Business Administration, Management, and Operations Commons

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/managementfacpub
https://digitalcommons.unomaha.edu/management
https://digitalcommons.unomaha.edu/managementfacpub?utm_source=digitalcommons.unomaha.edu%2Fmanagementfacpub%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=digitalcommons.unomaha.edu%2Fmanagementfacpub%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/
http://library.unomaha.edu/

Guest Editorial Preface

A Decade and More of UML:
An Overview of UML Semantic and

Structural Issues and UML Field Use
John Erickson, University of Nebraska - Omaha, USA

i

Introduction
More than 10 years ago in 1997, three modeling
advocates brought together their own distinct
techniques to forge UML (Unified Model-
ing Language), and the world of modeling
was forever changed (Booch, Rumbaugh, &
Jacobson, 1999, 2005). The Object Manage-
ment Group (OMG) immediately adopted the
new language as the standard for their newly
expanded object-oriented (OO) modeling scope
(OMG, 2008), and the stage seemed set for a
modeling explosion with UML leading the way
into a brave new world of more accurate and
better performing systems.

The OMG quickly developed its model-
driven architecture (MDA) and began to pro-
mote the idea that models could and should
be independent of the platform that they were
created to be used on, so that the model, rather
than the platform, became the focus of the
systems analysis and design process (OMG,
2008). In some ways, this new perspective
could be seen as a precursor of the service
architectures (see Chen, Zhou, & Zhang, 2006;
Erickson & Siau, in press; Li, Huang, Yen, &
Chang, 2007) that appear to be driving many
systems development initiatives currently. At
last, it seemed that there was some agreement
on a number of the important issues revolving
around the building of information systems,

and real progress toward creating truly better
systems seemed equally possible.

However, a number of UML researchers
and users alike believe that Booch, Rumbaugh,
and Jacobson’s creation, rather than emerging
from a careful mapping of their three distinct
techniques onto a new and carefully designed
and created metamodel, included a certain ele-
ment of negotiation and concession, retaining
or discarding at least some of the components
of their old modeling techniques on a more
personal or political basis. Whether that is ac-
tually the case or not is irrelevant to the issue
of the semantic, diagrammatic, and notational
inconsistencies in UML that many different
researchers and, more importantly, practitioners
have identified as difficulties in adopting and
using UML.

This article highlights some of the impor-
tant issues plaguing UML in terms of research
and adoption, attempts to examine the current
state of affairs regarding UML, and poses
questions for the future of modeling in general
and UML in particular. In the next section, the
article will discuss research related to the se-
mantic inconsistencies of UML. Since semantic
inconsistencies can lead to comprehension dif-
ficulties, this issue is discussed in the subsequent
section, which is then followed by a section
examining the complexity of UML. Next, the
article examines some past and current usage

ii

patterns of UML and ends with conjectures on
the future of modeling and UML.

Semantic Inconsistencies of UML
UML Version 1.X was composed of nine dis-
tinct diagrammatic techniques that could be
broadly separated into three types: structural,
behavioral, and interaction (which describes
both the structure and behavior of the system).
The intent was to create a series of diagrams
that were related in terms of some information
overlap, but distinct to focus on the specific
issue that each diagramming technique was
created to address. UML 2.0, formally adopted
in 2005, expanded the number of diagramming
techniques to 13, retaining the three broad clas-
sifications of structural, behavior, and interac-
tion. Dobing and Parsons (2000) noted that
there were semantic inconsistencies in using a
behavioral technique (use cases) as a means of
capturing process information and using that
data to elicit the structure of OO constructs such
as classes, sequences, and state machines. Op-
dahl and Henderson-Sellers (2002) examined
the UML metamodel soon after and suggested
that a number of changes involving abstract
metaclasses and subclasses would improve the
semantics of the language. While at least some
of the suggestions were implemented in later
versions of UML, it remains questionable as
to whether some of the more basic semantic
issues have been completely resolved.

One of the criticisms of UML is that it is
not semantically articulate enough to present
unambiguous information to its users. In other
words, many UML symbols can be interpreted
in a variety of ways, leaving much subjectiv-
ity in interpretation. Jon Whittle (2000) at the
NASA Ames Research Center proposed that
the semantics of UML be standardized and that
“formal methods be used to analyze UML mod-
els.” Whittle further proposed that the reason
for what he saw as the slow progress toward
formalizing UML was that the semantics of
UML were inherently informal.

Further evidence that the semantics of
UML were inconsistent or informal, and indeed
constituted a major problem or stumbling block
when learning the language, came from Siau
and Tian (2001, 2002), Shen and Siau (2003),

and Siau and Loo (2006). Lange (2006) made a
call for modeling standards or norms for UML
in order to minimize the inconsistencies that
often arise when one person or group creates
a diagram and different people or groups try to
use it. If this type of problem is still occurring
after the release of UML 2.0, it likely means
one of two things: either people are still using
UML 1.X and encountering the same prob-
lems as in the past, or they have converted to
UML 2.0 but some semantic inconsistencies
still remain in the language. Whichever is
the case, one means developers could use to
address the issue is to try to agree up front on
diagramming and notation conventions. While
not eliminating the semantic inconsistencies of
the modeling language, UML or other, it will
at least minimize the problem for each specific
instance or case. In the long term, it would of
course be better if the industry could reach
some agreement on standards, or better still,
if the language proponents could develop such
standards themselves.

Comprehension Issues Regarding
UML
Dobing and Parsons (2000) noted that differ-
ent facets of use cases could result in different
models. For example, they found that use cases
differed by content, format, comprehensive-
ness, detail, and methodology. Add to that the
semantic issues, and people from a variety
of perspectives (from developer to user, for
example) can be severely disadvantaged when
they try to understand and employ use cases.
Dobing and Parsons ended with the conclusion
that use cases may be inadequate for eliciting
classes, and called for more research on the
topic.

Similarly, Kim, Hahn, and Hahn (2000)
studied diagrams and cognitive diagrammatic
reasoning and enforced interpretation time
limits on the participants in their experiment.
They found that if multiple diagrams were
used to convey information to users, a more
thorough comprehension of the system re-
sulted. In particular, visual cues and context
were important considerations for thorough
comprehension, and referring back once again
to the semantic inconsistencies, if the language

iii

symbols are inconsistent, this means that the
analysis (and subsequent design) will more
likely be inaccurate.

Siau and Lee (2004) found that use cases
were necessary components of UML. They
measured comprehension for both class and
use-case tasks in an experiment and found
that, for the same system, people given both
class diagrams and use-case diagrams obtained
additional information over people who were
given only one diagram or the other. However,
one of the problems the experiment encountered
was that different people interpreted the same
diagrams differently, with a wide variety of
results.

Gemino and Wand (2003) took a higher
level approach to examining the comprehen-
sion of models. They developed an evaluation
framework that was independent of technique
and concluded with recommendations that (a)
theoretical and empirical approaches should be
used to evaluate modeling techniques, (b) sim-
ply putting information on or into a model does
not guarantee comprehension or understanding,
and (c) domain expertise of the modelers is an
important element of comprehension, so the
evaluations should be comprised of problem-
solving tasks that the modelers are familiar with.
In other words, learning the domain and learning
about the modeling language simultaneously
may exacerbate comprehension problems.

Finally, theories and experiments originat-
ing in cognitive psychology are finding their
way into use by MIS (management information
system) researchers (e.g., Siau & Tan, 2005,
2006a, 2006b, 2006c; Siau & Wang 2007). Yu-
suf, Kagdi, and Maletic (2007) used eye-motion
tracking equipment to learn how participants
used the information provided in class diagrams
to comprehend the diagram, noting that other
contextual information (domain) and semantic
information (class stereotypes) enhanced the
comprehension process. Research such as
this can help analysts create better diagrams
that are easier for developers and clients to
understand. As with the semantic and notational
inconsistencies, if the language proponents and
industry could put more work into the constructs
of UML, perhaps some of the comprehension
issues would be reduced.

Modeling-Language
Complexity Issues
There is probably little doubt, even among the
most expert UML analysts and experts, that the
modeling language is indeed complex. Worse,
UML’s complexity along with its semantic
inconsistencies can easily and negatively affect
developers’, users’, and others’ comprehen-
sion of not only the diagrams and models, but
also the systems themselves, resulting often in
substandard systems.

Some of the first work on measuring model-
ing-method complexity was that of Rossi and
Brinkkemper (1996). They developed a set of
metrical instruments that were created to be
independent of modeling technique or language,
and measured the structural complexity of each
diagramming technique. Siau and Cao (2001)
used the metric set to analyze UML and 36 other
diagramming techniques from 14 modeling
languages (or techniques), both in aggregate
and individually. They found that UML was 2
to 11 times more complex than any of the other
modeling languages.

More work on the issue of complexity was
done by Siau, Erickson, and Lee (2002, 2005).
They attempted to separate complexity into
subcomponents, which they called practical
complexity and theoretical complexity. Ac-
cording to their research, theoretical complexity
should be assessed by including all possible
(metamodel) constructs in the metrical analysis,
while practical complexity should be seen as
comprising only those constructs that users
actually were familiar with and regularly used.
The research findings did indicate that using
all possible constructs as a simple measure
of complexity was not really an adequate
explanatory vehicle for the complexity that
UML users commonly face. Another result was
that the most used constructs formed a core or
kernel of UML; this will be an important issue
discussed later.

Further investigation along this line of
research involved examining the use of UML
constructs in specific domain areas. Erickson
and Siau (2004, 2007a, 2007b) studied the
use of UML in real-time enterprise and Web-
based systems. The general findings indicated

that there was a relatively stable core of UML
that the research participants agreed upon via
a Delphi study. This stability provided some
support for the idea that a small core of UML
could be used to assess the complexity of the
language and also to suggest means of educat-
ing users as well as actually using the language
in practice.

The research indicated that UML 1.X
was structurally quite complex, and UML 2.0
introduced four new diagramming techniques,
so there seems to be little doubt that additional
structural complexity is a companion of the
new diagrams individually and the language
as a whole. At this point, little can be directly
done to ameliorate the complexity built into
the language itself, so short-term efforts should
focus on means to deal with the complexity
from a behavioral perspective.

Use of UML in the Field
Many case studies and experience reports on the
use of UML in various domains and in many
industries dating from early in its life until the
present have been reported in a huge number
of outlets. For example, Field, Heim, and Sinha
(2004) created a UML-based process model
for management and assessment of electronic
service quality. Specifically, they used use-case
diagrams to develop the process model and as
such their effort used only one of the possible
UML diagramming techniques. Mammar and
Laleau (2006) used UML to develop UB2SQL,
which is a tool for designing and developing da-
tabase applications. Another example involved
a large online securities trading company. The
company indicated that it used UML in its
IT development processes (Erickson, 2008).
Through interviews with the company’s IT
employees actually doing the work, it was found
that they were using UML to simply document
the as-built systems; the company had created a
systems development plan that the employees
used each time they built a system, and that
plan was not necessarily UML based. While
the research there is on going, the company
declines to be directly identified because of
what they consider to be the proprietary nature
of their systems structures and development
processes. Nevertheless, the company insists

that it makes only documentary use of UML
component or deployment diagrams.

The OMG, while no doubt grinding its own
ax, lists a number of companies or organizations
that have been successful at a UML-based sys-
tems development process (OMG, 2008). They
include ARINC Inc., Armstrong Consulting,
EMC, the Trane Company, Xerox, a unit of
Sony, and Charles Schwab, among many oth-
ers. Information is not provided on how UML
was used in those cases, although since they
appear as success stories, the assumption must
be that they make more comprehensive use of
UML than some of the other more casual-use
companies or organizations.

Research on how UML is actually used in
the field is a bit more limited than the success
stories and case studies previously mentioned.
Erickson and Siau (2004, 2007a) conducted a
Delphi study to try to determine how people
actually use UML in the field. They found that
the four most commonly used UML diagrams
were, in order of importance and disregarding
specific domains, class, use case, sequence,
and state chart. If domain was included, in
this case real time, Web based, and enterprise,
three of the four diagrams remained the same
in terms of perceived user importance: class,
use case, and sequence. Dobing and Parsons
(2008) conducted an industry study surveying
system developers regarding their UML usage
and found that the overall patterns were quite
similar to those found by Erickson and Siau
(2007a). Dobing and Parsons’ 2008 study was
endorsed by the OMG, making it a quite robust
effort in terms of the number and variety of
respondents.

Combine these two studies’ results with
the general usage described previously (Erick-
son, 2008; Field et al., 2004), and a relatively
consistent theme emerges. Unless a company
or organization is committed to fully using all
the components and features of UML they are
capable of using, they will likely in practical
situations use a relatively small and usually
fairly well-defined subset of the UML dia-
gramming components, consisting of use-case
and class diagrams, and sequence and state-
chart diagrams as domain and circumstances
dictate.

iv

A second theme is more conjecture at this
point, but could be included relatively easily
in future research agendas. Companies more
committed to fully using a majority of the com-
ponents of UML will tend to be larger and have
more experience in larger development projects.
A reason for this might be that to create a fully
expressive UML model, it is necessary to use
the IBM/Rational Rose development tool. At
more than $8,000 per user license, the cost of a
full UML model in a model-driven architecture
would limit the corporate and organizational
users to those who can afford such develop-
ment tool cost. Of course, other less expensive
modeling tools exist, such as Microsoft Visio,
but many, if not most of them, cannot be used
to create models expressive enough for use in
an MDA project.

Possibilities for Future
of Modeling and UML
Some will no doubt insist that in a world of Web
services and service-oriented architectures,
soon we will no longer have any need to model
systems. The pieces of future systems will all
exist independently in component libraries and
repositories, and when companies compose
their new systems, they will simply select and
arrange the necessary modules or components
and bind them to their own needs. Some pre-
dicted a similar fate for programmers when the
OO paradigm was first embraced by the soft-
ware engineering community. Once modular
software code was written and deposited into
code libraries, programmers would no longer
be necessary.

As it has developed, programmers appear to
be in as much demand now as they were before
the OO explosion; they have simply shifted into
Web development and other areas not thought
of previously. Similarly, it seems quite likely
that the need for systems analysis and design,
and by necessity of analysis and design, model-
ing will remain quite high for the foreseeable
future. Service-oriented architectures and Web
services cannot compose, arrange, and deploy
themselves, nor can they react to changing
conditions or plan proactively. In the same way,
not every company or organization configures

an enterprise resource planning system exactly
the same way—even close competitors in the
same industry.

While the need for modeling in the future
seems to be a fairly safe bet, UML and all other
modeling languages for that matter should not
assume that they are in the same situation.
Certainly there will be need for modeling in
the future, but will there be a need for UML
or other specific modeling techniques? The
modeling languages and techniques must adapt
to the needs of their users as spoken human
languages change in response to the needs of
their speakers. It has been said that a language
that does not change is a dead language.

Change for the sake of change itself is
not usually considered to be a wise course of
action, so directed change might be an appro-
priate venue. The primary problems regarding
UML appear to manifest in four areas, at least
in this exposition. First, some effort should be
expended toward alleviating, to the extent pos-
sible, the inconsistent semantics and notational
vagueness that have plagued users for the last
10 years. This is not meant to downplay the
efforts that have been made in this area, but to
suggest that continuing work is needed.

Second, comprehension of UML diagrams
has been a problem for most of the 10 (or 11)
years of UML’s existence. Comprehension is
related to the semantic and notational problems,
but also to the UML users’ experience, as well
as the complexity inherent in the language. User
experience is important not only in domains,
but also in terms of UML experience. Neither
are problems that UML itself can be changed
to address. Rather, the issue is one of education
and marketing. UML needs to continue to sell
itself to its users and to motivate them to learn
the language or risk being outsold by competing
modeling techniques.

Third, UML is extremely complex, and
in the short term, is not likely to become less
complex. This means that user training and
experience with UML is doubly important
because it addresses two areas of concern. How-
ever, some thought should be given in the long
term to finding ways to allow UML to appear
less complex, if not actually be less complex.
While this may be a pipe dream, the perceived

v

complexity of UML might very well represent
a major stumbling block to adoption of UML
by developers and others intimately involved
in the systems development process.

Finally, UML is used by many developers
and organizations as a way to document the
systems analysis and design of various hardware
and software components. The models are typi-
cally used for informational and documentation
purposes and are not developed to the point
where they are complete or expressive enough
to comprise a model-driven architecture. While
this is not necessarily a problem inherent in the
UML metamodel, semantics, or notation, and
may not even be a problem at all, the OMG
and other interested parties should be aware
that UML is probably not used fully by the
majority of its users. In spite of this, UML has
become a much used and useful tool for many
organizations and people, and in some ways is
now the lingua franca of modeling.

References
Booch, G., Rumbaugh, J., & Jacobson, I. (1999).
The unified modeling language user guide. MA:
Addison-Wesley.

Booch, G., Rumbaugh, J., & Jacobson, I. (2005).
The unified modeling language user guide (2nd ed.).
MA: Addison-Wesley.

Chen, Y., Zhou, L., & Zhang, D. (2006). Ontology-
supported Web service composition: An approach
to service-oriented knowledge management in
corporate services. Journal of Database Manage-
ment, 17(1), 67-84.

Dobing, B., & Parsons, J. (2000). Understanding
the role of use cases in UML: A review and research
agenda. Journal of Database Management, 11(4),
28-36.

Dobing, B., & Parsons, J. (2008). Dimensions of
UML diagram use: A survey of practitioners. Journal
of Database Management, 19(1), 1-18.

Erickson, J. (2008). Use of UML at an on-line se-
curities trading company [Working paper]. Omaha,
NE: University of Nebraska-Omaha.

Erickson, J., & Siau, K. (2004). Toward practical
measures of complexity in real-time modeling meth-
ods. Paper presented at the Americas Conference on
Information Systems.

Erickson, J., & Siau, K. (2007a). Can UML be simpli-
fied? Practitioner use of UML in separate domains.
Paper presented at Exploring Modeling Methods
in Systems Analysis and Design (EMMSAD) 2007
Workshop, Trondheim, Norway.

Erickson, J., & Siau, K. (2007b). Theoretical and
practical complexity of modeling methods. Com-
munications of the ACM, 50(8), 46-51.

Erickson, J., & Siau, K. (2008). Web services,
service oriented computing, and service oriented
architecture: Separating hype from reality. Journal
of Database Management, 19(3), 42-54.

Field, J., Heim, G., & Sinha, K. (2004). Managing
quality in the e-service system: Development and
application of a process model. Production and
Operations Management, 13(4), 291-306.

Gemino, A., & Wand, Y. (2003). Evaluating modeling
techniques based on models of learning. Communi-
cations of the ACM, 46(10), 79-84.

Kim, J., Hahn, J., & Hahn, H. (2000). How do we
understand a system with (so) many diagrams?
Cognitive integration processes in diagrammatic
reasoning. Information Systems Research, 11(3),
284-303.

Lange, C. (2006). Improving the quality of UML
models in practice. International Conference on
Software Engineering, pp. 993-996.

Li, S., Huang, S., Yen, D. C., & Chang, C. (2007).
Migrating legacy information systems to Web
services architecture. Journal of Database Manage-
ment, 18(4), 1-25.

Mammar, A., & Laleau, R. (2006). UB2SQL: A tool
for building database applications using UML and B
formal method. Journal of Database Management,
17(4), 70-89.

Object Management Group (OMG). (2008). Re-
trieved from http://www.omg.org/mda/faq_mda.
htm, on 1-14-2008

Opdahl, A., & Henderson-Sellers, B. (2002).
Ontological evaluation of the UML using the
Bunge-Wand-Weber model. Software and Systems
Modeling, 1(1), 43-67.

Rossi, M., & Brinkkemper, S. (1996). Complexity
metrics for systems development methods and tech-
niques. Information Systems, 21(2), 209-227.

Shen, Z., & Siau, K. (2003). An empirical evalu-
ation of UML notational elements using concept

vi

mapping approach. Proceedings of the International
Conference on Information Systems (ICIS), Seattle,
WA (pp. 194-206).

Siau, K., & Cao, Q. (2001). Unified modeling lan-
guage (UML): A complexity analysis. Journal of
Database Management, 12(1), 26-34.

Siau, K., Erickson, J., & Lee, L. (2002). Complexity
of UML: Theoretical versus practical complexity.
Workshop on Information Technology and Systems
(WITS), Barcelona, Spain (pp. 7-12).

Siau, K., Erickson, J., & Lee, L. (2005). Theoretical
vs practical complexity: The case of UML. Journal
of Database Management, 16(3), 40-57.

Siau, K., & Lee, L. (2004). Are use case and class
diagrams complementary in requirements analysis?
An experimental study on use case and class dia-
grams in UML. Requirements Engineering, 9(4),
229-237.

Siau, K., & Loo, P. (2006). Identifying difficulties in
learning UML. Information Systems Management,
23(3), 43-51.

Siau, K., & Tan, X. (2005). Improving the quality
of conceptual modeling using cognitive mapping
techniques. Data and Knowledge Engineering,
55(3), 343-365.

Siau, K., & Tan, X. (2006a). Cognitive mapping
techniques for user-database interaction. IEEE
Transactions on Professional Communications,
49(2), 96-108.

Siau, K., & Tan, X. (2006b). Use of cognitive map-
ping techniques in information systems. Journal of
Database Management, 17(3), i-iv.

Siau, K., & Tan, X. (2006c). Using cognitive map-
ping techniques to supplement UML and UP in
information requirements determination. Journal of
Computer Information Systems, 46(5), 59-66.

Siau, K., & Tian, Y. (2001, December 16-19). The
complexity of unified modeling language: A GOMS
analysis. In Fourteenth International Conference
on Information Systems (ICIS 01), New Orleans,
LA (pp. 443-448).

Siau, K., & Tian, Y. (2002, December 14-15). Ana-
lyzing unified modeling language using GOMS. In
Twelfth Workshop on Information Technology and
Systems (WITS 02), Barcelona, Spain (pp. 7-12).

Siau, K., & Wang, Y. (2007). Cognitive evaluation
of information modeling methods. Information and
Software Technology, 49(5), 455-474.

Whittle, J. (2000). Formal approaches to systems
analysis using UML: An overview. Journal of Da-
tabase Management, 11(4), 4-13.

Yusuf, Kagdi, & Maletic. (2007). Assessing the
comprehension of UML class diagrams via eye
tracking. In Fifteenth IEEE International Confer-
ence on Program Comprehension (ICPC ’07) (pp.
113-122).

John Erickson is an assistant professor in the College of Business Administration at the University of
Nebraska at Omaha. His research interests include UML, software complexity and Systems Analysis and
design issues. He has published in journals such as the CACM, JDM, and in conferences such as AMICIS,
ICIS WITS, EMMSAD, and CAiSE. He has also co-authored several book chapters.

vii

	A Decade and More of UML: An Overview of UML Semantic and Structural Issues and UML Field Use
	tmp.1589998840.pdf.N6oiR

