
Trinity College Trinity College 

Trinity College Digital Repository Trinity College Digital Repository 

Senior Theses and Projects Student Scholarship 

Spring 5-6-2019 

FATE MAP OF THE BLASTODERM TO DETERMINE SEGMENTAL FATE MAP OF THE BLASTODERM TO DETERMINE SEGMENTAL 

FATE IN TRIBOLIUM CASTANEUM FATE IN TRIBOLIUM CASTANEUM 

Latanya Coke 
latanyacoke@gmail.com 

Follow this and additional works at: https://digitalrepository.trincoll.edu/theses 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Coke, Latanya, "FATE MAP OF THE BLASTODERM TO DETERMINE SEGMENTAL FATE IN TRIBOLIUM 
CASTANEUM". Senior Theses, Trinity College, Hartford, CT 2019. 
Trinity College Digital Repository, https://digitalrepository.trincoll.edu/theses/856 

https://digitalrepository.trincoll.edu/
https://digitalrepository.trincoll.edu/theses
https://digitalrepository.trincoll.edu/students
https://digitalrepository.trincoll.edu/theses?utm_source=digitalrepository.trincoll.edu%2Ftheses%2F856&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalrepository.trincoll.edu%2Ftheses%2F856&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.trincoll.edu/
https://www.trincoll.edu/


 

1 

 
 
 
 

TRINITY COLLEGE 
 
 
 
 

FATE MAP OF THE BLASTODERM TO DETERMINE SEGMENTAL FATE  

IN TRIBOLIUM CASTANEUM 

 

BY 

 

LATANYA N. COKE 

 

 

 
A THESIS SUBMITTED TO 

THE FACULTY OF THE DEPARTMENT OF BIOLOGY 

IN CANDIDACY FOR THE BACCALAUREATE DEGREE 

WITH HONORS IN BIOLOGY 

 

 

 

DEPARTMENT OF BIOLOGY 

 

HARTFORD, CONNECTICUT 

6 MAY 2019 

 

 
  



 

2 

 
 
 
 
 
 
 
 

FATE MAP OF THE BLASTODERM TO DETERMINE SEGMENTAL FATE 
IN TRIBOLIUM CASTANEUM 

 

 

BY 

LATANYA COKE 
 
 
 
 
Honors Thesis Committee 
 
Approved: 
 
______________________________________________ 
Terri A. Williams, Advisor  
 
______________________________________________ 
Robert J. Fleming 
 
______________________________________________ 
Hebe M. Guardiola-Diaz 
 
Date:  ________________________________________   
  



 

3 

Table of Contents 
 

 
Abstract   (4)  

Introduction   (5-14)  

Vertebrate-like Segmentation clock in Arthropods (8) 

The Tribolium segmentation clock begins patterning prior to formation of the embryo 

proper (9) 

 Generating a comprehensive fate map of the blastoderm (13) 

Materials and Methods   (15-23)  

Eos Fluorescent protein and Nuclear localization signal (15) 

Designing the Eos construct (the template for mRNA Synthesis) (16) 

Synthesizing mRNA in vitro (20) 

Study system (21) 

TcEgg lay and collection (21) 

Dechorionation (21) 

Preparing for Injections (22) 

Embryo injections and live imaging (22)  

Cloning the putative caudal promoter (23) 

Results   (24-33)  

 Creation of the Eos DNA template for later mRNA synthesis (24) 

Cloning of the putative caudal promoter region (32) 

Discussion   (34-37)  

Appendix   (38-39)  

Literature Cited   (40-42)  

 

 

 
   



 

4 

Abstract 
 

Segmentation in arthropods has been modeled on the well-defined segmentation 

patterns found in Drosophila. In Drosophila, segments form simultaneously in the 

blastoderm where morphogenic gradients spanning the AP axis provide patterning inputs. 

However, in most arthropods, segments form sequentially from a posterior growth zone. 

Sequential segmentation in arthropods has recently been demonstrated to use a vertebrate-

like segmentation clock (Sarrazin et al. 2012). The vertebrate segmentation clock is a 

molecular oscillator that regulates periodic somite formation (Gibb 2010). In the red flour 

beetle, Tribolium castaneum, the segmentation clock is coordinated by traveling waves of 

expression generated by a pair-rule gene oscillator. For this study, we aimed to identify and 

describe regulatory controls of the Tribolium clock and construct a fate map of the 

blastoderm. We particularly focus on whether the output of the clock at the blastoderm stage 

- prior to the striking rearrangements of germband formation - actually determines cell fate. 

From preliminary studies we know that the caudal and even-skipped genes are two key genes 

of the Tribolium segmental clock. To understand how the clock is regulated, we identified 

and isolated 2 kb upstream of the caudal promoter region. We have cloned and sequenced 

this fragment to use in building reporter constructs that will be used to identify the cis-

regulatory region driving wild type caudal expression. A deletion series of those regions 

showing enhancer activity will be completed to resolve the cis-regulatory regions to smaller 

domains (~500 bp-1.5 kb). In efforts to generate a fate map of the blastoderm, we created the 

T3-Nls-Eos DNA template for later mRNA synthesis. We will perform embryo injections 

with mRNA encoding for EosFP to determine the degree to which segmental fate is 

determined at the blastoderm stage of developmental.  
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 Introduction 
 

Segmentation, the division of an organism's body into a series of repeated units, is 

widespread in the animal kingdom. The three major taxa that demonstrate segmented body 

plans - Arthropoda, Chordata, and Annelida - are highly diverse. The arthropods are the most 

speciose phylum on earth and display outstanding diversity in adult morphology (Fortey and 

Thomas 1997). There are four major classes within Arthropoda, the largest of which is the 

Insecta. The insect adult body plan is extremely well conserved. Regardless of differing 

developmental strategies, all adult insect bodies consist of a head (six segments), a thorax 

(three segments), and an abdomen (eight to 11 segments) (Liu and Kaufman 2005). Yet, 

surprisingly, where they are known, the developmental mechanisms of segmentation that 

produce that conserved adult body plan are highly variable. 

 The great diversity of early insect development has been categorized into three types: 

short, intermediate, and long germband (where germband refers to the elongated, segmented 

embryo). Traditionally, the length of the embryonic rudiment, the first visible sign of the 

developing body, is used for classifying embryos (Davis and Patel 2002). In long germband 

insects, the embryonic rudiment takes up virtually the entire length of the egg. By contrast, 

the embryonic rudiment in short germband insects occupies only a small area of the 

anteroposterior axis of the egg, while the remaining area develops into extraembryonic tissue, 

the amnion and serosal layers. The short-intermediate-long germband classifications have 

long been expected to be correlated with developmental mechanisms generating the 

segmented body (Sander 1994; Tautz et al 1994). While it is easy to measure the length of 

the embryonic rudiment, classifying an embryo as either short, intermediate, or long often 

implies combinations of other characteristics. These characteristics include segment 
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patterning on the blastoderm and degree of posterior cell proliferation, both of which are 

difficult to measure (Williams and Nagy, 2017; Nagy and Williams, in prep).  

Decades of work have been dedicated to understanding how assumptions based on 

short-intermediate-long germband categorizations relate to the cellular and molecular 

processes that govern sequential segmentation in insects (Sander 1994). Nonetheless, the 

linkage of the two remains unclear, as it is not yet known: 1) when blastoderm cells are 

committed to their segmental fates, 2) what the contributions of cell division and movement 

are to embryonic growth, and 3) how 1 and 2 are related to one another.  Short and 

intermediate germband embryos are inclusive of the more basal, hemimetamorphic orders, 

such as Ephemeroptera and Orthoptera; while long germband embryos are constrained to the 

more derived metamorphic orders, such as Diptera. Long germband developing embryos, 

modeled by Drosophila, specify all segments simultaneously on the blastoderm and require 

minimal mitotic contributions (Liu and Kaufman 2005). In contrast, short and intermediate 

germband developing embryos are assumed to only specify anterior segments on the 

blastoderm (Davis and Patel 2002, while posterior segments develop sequentially during the 

germband stage) and have been assumed to require extensive posterior cell proliferation, 

generating naïve tissue for subsequent patterning (Sander 1996; Williams and Nagy 2016). 

Unfortunately, our current understanding of the developmental mechanisms that govern 

sequential segmentation in insects is limited and mainly based on comparisons of 

segmentation patterns to the well-studied Drosophila paradigm. 

 The work of Nüsslein-Volhard and Wieschaus (1980) pioneered our understanding of 

the molecular basis of segmentation in Drosophila. In Drosophila, a hierarchy of gene 
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regulation is used to build the anterior-posterior1 body plan, specifically, the maternal effect 

genes, gap genes, pair-rule genes, and segment polarity genes (Gilbert 2000). These genes 

progressively subdivide the embryo into all 14 segments1 of the adult. The developing 

embryo is initially patterned by maternal effect genes from mRNAs differentially localized in 

the egg. Those mRNAs encode regulatory proteins used to activate or repress the expression 

of specific zygotic genes, called gap genes. Mutations in gap genes cause gaps in the 

segmentation pattern. Gap genes encode for transcription factors that regulate the 

transcription of pair-rule genes. The pair-rule genes are responsible for a transitory double 

segment organization of the embryo. There are seven pair-rule stripes expressed on the 

blastoderm (Gilbert and Barresi 2016). Transcription factors encoded by pair-rule genes 

activate the segment polarity genes, responsible for dividing the embryo into fourteen 

segments. The seven pair-rule stripes on the blastoderm corresponds to three mandibular, 

three thoracic and eight abdominal segments formed later in development (Akam 1987). In 

Drosophila, the fate of blastoderm cells support the assumptions made for long germband 

embryos. UV irradiation experiments in Drosophila demonstrated a direct relationship 

between the location of larval epidermis defects and the position of irritation on the 

blastoderm (Lohs-Schardin et al., 1979; Hartenstein and Campos-Ortega, 2014). 

Furthermore, the expression pattern of the pair-rule genes is a direct molecular marker of the 

blastoderm fate map (Tautz et al. 1994). 

 Although simultaneous morphological segmentation, germband length, and 

segmental patterning on the blastoderm correlate as expected in the Drosophila embryo, 

                                                        
1  Drosophila diverges from the conserved insect adult body plan on account of their poorly 
define gnathal (head) segments. The condensed pre-gnathal segments are counted as one 
segment (Schmidt-Ott et al. 1994). 
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there is mixed evidence to support these features being coupled in other insect species. 

Moreover, simultaneous patterning of segments in Drosophila is a derived mode of 

segmentation (Damen 2007). In most other insects, segments are formed sequentially from a 

posterior growth zone. Because of this, Drosophila is not an ideal model for segmentation in 

all insects and whether the blastoderm patterning is a predictor of fate is unclear in most 

insects. 

 

Vertebrate-like Segmentation clock in Arthropods 

Sequential segmentation is not unique to the Insecta, most segmented animal species 

develop their segments sequentially. In vertebrates, sequential segmentation is regulated by a 

“segmentation clock” in the growth zone (Pourquie 2001). The vertebrate segmentation clock 

is a set of interacting genes whose temporal oscillations regulate periodic somite formation 

(Palmeirim et al. 1997). While well known in vertebrates, sequential segmentation in 

arthropods has only recently been hypothesized to use a segmentation clock (reviewed in 

Liao and Oates 2017), and the presence of a clock has only been experimentally 

demonstrated in the red flour beetle, Tribolium castaneum (Sarrazin et al. 2012). The genes 

that regulate sequential segmentation in arthropods have been a focus of study for molecular 

and development biologists in the last 10-15 years. In T. castaneum, the segmentation clock 

is coordinated by traveling waves of expression generated by a pair-rule gene oscillator (El-

Sherif et al. 2012). The pair-rule components of the oscillator – even-skipped (Tc-eve), odd-

skipped (Tc-odd), and runt (Tc-run) – form a three-gene circuit to regulate one another (Choe 

et al., 2006). In the proposed model of the pair-rule gene circuit, Tc-eve expression activates 

Tc-run, that, in turn, activates Tc-odd (see Figure 1). Subsequently, Tc-odd expression 
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represses Tc-eve, defining a primary Tc-eve stripe from the broad expression domain. The 

pair-rule gene circuit sets up segments sequentially with a double segment periodicity both in 

the early blastoderm stage and during germband elongation (Choe 2006, El Sherif et al., 

2012). The gene of interest, Tc-eve, activates engrailed which specifies the posterior end of 

each segment. Thus, the output of the segmentation clock, even-skipped expression, leads to 

segment specification. 

 

Figure 1: Summary of the dynamic expression and regulatory interactions of the 
primary pair-rule genes. Top bar indicates that posterior is to the right. New segments are 
added from the posterior growth zone. For each cycle of the gene regulatory circuit (Tc-eve, 
Tc-run, and Tc-odd) two segments are pre-patterned in the posterior growth zone. Tc-eve 
expression activates Tc-run, that, in turn, activates Tc-odd which represses Tc-eve, 
completing the circuit. From Choe et al 2006.  
 

The Tribolium segmentation clock begins patterning prior to formation of the embryo proper 

Segmentation in Tribolium occurs sequentially, through the specification of blocks of 

ectodermal cells within an epithelium. In the early blastoderm stage, the cells are uniform 

and basally continuous with the yolk sac. However, during embryogenesis there are dramatic 

cell movements and tissue rearrangements generating a condensed, multilayered embryo 

(Benton and Pavlopoulos 2014). Specifically, following the formation of the blastoderm (see 
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Figure 2A), dramatic cellular rearrangements condense cells towards the posterior region 

(see Figure 2B), forming the initial embryo, called the germband, which is surrounded by 

extraembryonic tissue. After the germband condenses, it continues to lengthen and add 

segments sequentially in an anterior to posterior progression (see Figure 2C). Germband 

elongation is driven by extensive cellular rearrangements and some cell division. However, 

the segmentation clock begins patterning prior to the dramatic rearrangements of the embryo 

before and during germband formation (see Figure 2B). More striking, based on examination 

of fixed embryos (El-Sherif et al. 2012), cells appear to maintain a continuous band of gene 

expression while undergoing extensive cell movements — creating a challenge in segmental 

patterning not met in vertebrate segmentation (Nagy and Williams, in prep). In both the 

blastoderm and germband stages of Tribolium development there are continuous waves of 

Tc-eve expression that propagate from posterior to anterior (El-Sherif et al. 2012) (see Figure 

3). However, it is not unequivocal whether the outputs of the segmentation clock are 

maintained between the blastoderm and germband stages of Tribolium development. 
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Figure 2: Outputs of the Tribolium Segmentation clock during the blastoderm and 
germband stages of development. A. Blastoderm stage (top). Early germband formation 
(bottom). DAPI nuclear staining in blue (left). Tc-eve staining in red (right). The 
segmentation clock begins in the blastoderm stage prior to the formation of the germband 
(Nagy lab). B. Lateral view tracking the pattern of cell movement during embryogenesis in 
wild type Tribolium embryos. Purple tracks trace the extreme cell movements that 
accompany the formation of the early germband (Benton et al., 2013). C. Developing 
Tribolium embryos stained with engrailed used to highlight the posterior of each segment. 
Segments are added sequentially with an anterior to posterior progression (Nakamoto et al 
2015).  
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Figure 3: Tc-eve expression appears continuous in fixed stages from the early 
blastoderm (B0-B9) to early germband (G1-G4) stages of development. The first Tc-eve 
strip highlighted in red, second in blue, and third in green. Waves of Tc-eve expression 
propagate up the embryo from posterior to anterior. From El Sherif 2012.  
 

 In Drosophila, the blastoderm fate map represents the complete future body plan. By 

contrast, the blastoderm is expected to define anterior segments in Tribolium. Nakamoto et 

al. (2015) conducted a study comparing the segmental fates of marked Tc blastoderm cells 

along the anterior/posterior egg axis. The results from that study revealed ambiguities in Tc 
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segment formation. For example, cells at 60% egg length in the early blastoderm produced 

the second and third thoracic segments, which should be derived from the third pair-rule 

stripe. Yet, the first appearance of the third pair-rule stripe occurs only at the very posterior 

end of the embryo, at the formation of the posterior amniotic fold (i.e., quite posterior to 60% 

egg length). The discrepancies highlighted in Nakamoto et al. (2015) emphasize the rapid 

posterior movements undergone by blastoderm cells and dynamic nature of the blastoderm. 

In addition, Nakamoto et al. (2015), demonstrated that in Tribolium blastoderm cells at the 

same egg length ended up in a range of different segments.  Finally, they showed that the rate 

of segment addition varies between early and late segmentation, raising the question of how 

the clock is differentially regulated at those times. This differential timing of segmentation 

prompts us to examine the promoters of caudal and eve for candidate regulators that might 

account for this change in tempo. 

 

Generating a comprehensive fate map of the blastoderm  

As discussed earlier, it is unclear whether the Tc-eve stripes seen in the early 

blastoderm correspond to the germband segments. Do cells on the blastoderm acquire their 

fate or does that occur after germband formation?  Fortunately, a more extensive fate map of 

the blastoderm could help us to determine to what degree the initial output of the 

segmentation clock is stably maintained through cell rearrangements. Cell lineage and fate 

map analysis are fundamental tools for understanding development in animal systems 

(Brown et al. 2009). The dynamic gene expression patterns of Tc-eve detailed above are 

currently inferred from immunohistochemical preparations of fixed Tribolium embryos (see 

Figure 3). However, those expression patterns have yet to be followed in the live rearranging 
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embryo. The use of a fluorescent photoconvertible protein will allow us to overcome this 

shortcoming. By photoconverting and tracing cells from the first Tc-eve band, we aim to 

answer: If the first eve band on the blastoderm corresponds with the first pair of segments in 

the germband; or, in general, whether early outputs of the segmentation clock, during the 

blastoderm stage, specify later germband segments. Moreover, this general fate mapping will 

be very informative about which cells end up where and to what degree fate is determined at 

the blastoderm stage.  
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Materials & Methods 

Eos Fluorescent protein and Nuclear localization signal  

  A gene encoding a fluorescent protein (FP) from Lobophyllia hemprichii was cloned 

in Escherichia coli and characterized by biophysical and biochemical methods (Wiedenmann 

et al. 2004). The protein, EosFP, emits robust green fluorescence (516 nm) and is converted 

to red fluorescence (581 nm) upon near-ultraviolet irradiation at ≈390 nm. In this study, 

EosFP is used as tool for in vivo monitoring of cell movement during embryogenesis to 

reveal the fate of the cells from the first segment in the early blastoderm.  Our goal was to 

design an Eos for injection in Tribolium embryos and given our starting plasmid, we tested a 

variety of strategies to meet that goal (see Figure 4). 
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Designing the Eos construct (the template for mRNA Synthesis) 

 

Figure 4: Schematic of the different experimental strategies used to design the Eos construct. 
The original (mEos3.2) plasmid contains a cytomegalovirus (CMV) promoter used to drive 
the expression of the EosFP. The multiple cloning site is useful for inserting foreign DNA 
(Utrophin) into the original plasmid because it contains many unique restriction enzymes 
sites. The SV40 poly (A) signals the end of transcription. The addition of the T7 (or T3) 
promoter is required for in vitro mRNA synthesis. Utrophin, an actin binding protein, was 
added to the original plasmid to localize Eos expression to the cell membrane. A nuclear 
localization signal, Nls, was added to the original plasmid to localize Eos to the nucleus. The 
product was later transformed into a workable T7&T3 promoter vector.  

 

Strategy 1: Adding the T7 promoter to the original (mEos3.2) plasmid to permit in vitro 

mRNA synthesis  

The mEos3.2 plasmid (appendix, image 1) was acquired from the Nagy Lab, Tucson 

AZ. The mEos3.2 plasmid was equipped with a CMVd1 promoter, EosFP and SV40 poly (A) 

tail, but it unfortunately lacked both T3 and T7 promoter sites2; either of which can be used 

                                                        
2 The RNA polymerase promoter sites (T7, T3, or SP6) must be upstream of the template 
DNA sequence to be transcribed.  
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for capped mRNA synthesis using the mMessage mMachine kit (Thermofisher). Our first 

strategy was to design T7 and T7-long 3 primers to add T7 promoter to the mEos3.2 by PCR 

overhang (Table 1). 

 

Strategy 2: Adding the T7 promoter to the Utrophin (mEos3.2-Utr-C1) plasmid to grant 

mRNA synthesis 

 The mEos3.2-Utr-C1 plasmid was also acquired from the Nagy lab, Tucson Az. The 

mEos3.2-Utr-C1 plasmid was constructed from a mEos3.2-C1 plasmid and Utrophin from a 

RFP-Utr plasmid. Utrophin is an actin binding protein, and thereby attaching Utrophin to the 

Eos would allow us to visualize cell outlines. By similar methods, we added T7 promoter 

binding sites to the mEos3.2-Utr-C1 plasmid (Table 1).  

 
Table 1: T7 and T7-long overhang primers designed to add T7 promoter sites to the 
mEos3.2 plasmid and mEos3.2-Utr-C1by PCR.  
 Forward primer  Reverse primer  

T7 5’-
taatacgactcactatagggtagtgaaccgtcagat
cc-3’ 

5’-tttgccgatttcggcctattgg-3’ 

T7-long 5’-
gaatttaatacgactcactatagggtagtgaaccgtc
agatcc-3’ 

5’-tttgccgatttcggcctattgg-3’ 

Forward and reverse sequences of the T7 and T7 long overhang primers. The addition 
T7 promoter is required for mRNA synthesis.  
 
 
 

                                                        
3 The T7-long primers were later included as it was shown that increasing A-T sequences 
upstream of the promoter increased the binding affinity of the RNA polymerase-promoter 
complex (Tang et al. 2005). 
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Strategy 3: Adding a nuclear localization signal to the original (mEos3.2) and transferring 

the product into a workable T7&T3 promoter vector 

Using sequencing based on a putative Tribolium Nls (5’-PQKRSRN-3’ (Wang et al. 

2008)), Nls primers were designed to add a nuclear localization signal (Nls) to the mEos3.2 

by overhang (Table 2). The Eos-Nls PCR product was cloned into the pSC-A vector (see 

Figure 3) using TA cloning (Strataclone, Agilent Technologies). The pSC-A vector was 

chosen specifically because it contained both T3 and T7 promoter binding sites. The 

transformed Strataclone cells were plated onto amp/kan agar plates. Three strategies were 

used to confirm that we had the correct product insert: 1) for the correct size prediction, we 

conducted a colony PCR, using M13 forward and reverse primers 2) for the correct insert 

orientation, we conducted restriction enzyme digests using EcoRV (see Figure 5 and 3) for 

the final product verification, samples were sent out to Genewiz for Sanger sequencing.   

 

Table 2: Nls overhang primers designed to add the nuclear localization signal to the 
mEos3.2 

 Forward primer  Reverse primer  

Nls 5’-ccaaagaagaagcgtaaggtaatgagtgcgattaagccag-3’ 5’-tttcgctttcttcccttcct-3’ 

Forward and reverse primer sequences for the nuclear localization signal. Addition of 
the Nls localizes Eos expression in the cell nucleus.  
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Figure 5: Generic map of the StrataClone PCR cloning vector pSC-A-amp/kan. The 
pSC-A-amp/kan vector contains both T3 and T7 primer binding sites. PCR product insert site 
highlighted by grey box. (StrataClone Manual)  
 

 

Figure 6: Eos inserted as a PCR product into pSC-A-amp/kan vector. Sequence map of 
1641 bp putative Nls-Eos- SV40 poly(A) tail oriented in line with the M13 reverse primer 
and suitable for T3 promoter. Our PCR product inserted in the other direction could use the 
T7 promoter.  
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Figure 7: EcoRV digest prediction on 1641 bp product amplified by M13 forward and 
reverse primers from colony PCR. Depending on orientation, there is a distinct 200 or 300 
bp band corresponding to the T7-Nls-Eos and T3-Nls-Eos (lanes 1 and 2 respectively). The 
desired orientation was T7-Nls-Eos.  
 

 

Synthesizing mRNA in vitro  

Strategy 1: Synthesizing mRNA using the T7-Eos DNA templates  

 The T7/T7-long and SV40 primers were used to generate linear T7-Eos PCR 

products. With those pieces of DNA, we attempted to synthesize T7-Eos mRNA using the 

mMessage mMachine transcription T7 RNA polymerase kit (Thermofisher Scientific). 
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Strategy 2: Synthesizing mRNA using the T7-Eos-Utr DNA template  

 The T7/T7-long and SV40 primers were used to generate linear T7-Eos-Utr PCR 

products. We attempted to synthesize Eos-Utr mRNA using the mMessage mMachine 

transcription T7 RNA polymerase kit (Thermofisher Scientific). 

 

Study system  

We maintain a stock of Tribolium castaneum (GA-1 strain, originating from Kansas 

Stock Center in 2010) in jars of whole wheat flour supplemented with 5% brewer’s yeast at 

30° C (30-50% humidity). In addition to a fully sequenced genome, T. castaneum facilitates 

genetic analyses with its high fecundity, short life cycle, and ease of culture (Wang et al 

2007). 

 

TcEgg lay and collection  

  To collect eggs for embryo injections, 20 ml of adult beetles were placed into jars 

containing 200 ml of sieved white flour (number of eggs rely greater on the amount of flour 

used than number of the female beetles). The adult beetle jars were incubated at 37° C for 1 

h. To separate the eggs from adult beetles, clean 700 µm and 300 µm mesh sieves were 

stacked to allow the 700 µm to catch the adults and the 300 µm to catch the eggs (Beetle 

book). The eggs were collected into a petri dish and raised at 37° C for an additional 4 h.  

 

Dechorionation 

  The 4-5 h old eggs were transferred into 0.10 mm mesh egg basket. To remove excess 

flour, eggs were rinsed with embryo wash (0.7% NaCl, 0.03% Triton) and water. To 
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dechorionate the embryos, eggs were placed into 5% bleach with agitation for 2 min. 

Subsequently, eggs were rinsed thoroughly with deionized water until the bleach smell was 

no longer detectable.     

 

Preparing for Injections 

The embryos were transferred with a paintbrush and water to an agar plate with a 100 

um mesh placed on top. The embryos were arranged in a line; the posterior pole (pointy-end) 

oriented to the left. Glass capillary tubes (1.0 outside diameter and 0.75 inside diameter) 

were used to pull embryo injection needles (Program: heat = 320, pull = 244, velocity = 244, 

delay = 10).  

 

Embryo injections and live imaging  

  To optimize our injection conditions, we microinjected capped mRNA encoding for 

RFP-Utr into pre-blastoderm embryos. To fill the injection needles, the unsharpened ends 

were dipped into an mRNA, fast green solution (2 ul mRNA, 0.5 ul of 5% fast green). The 

filled needles were inserted perpendicular to the lateral side of the eggs. A pico spitzer was 

used to deliver <1 ul of the solution into the embryos (World Precision Instruments 

pneumatic picopump). Following injections at room temperature, embryos were incubated at 

37° C to allow the RFP signal to develop (~2 h). At the uniform blastoderm stage we began 

long-term confocal live imaging and continued throughout the period of germband extension.   
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Cloning the putative caudal promoter 

As part of our larger goal to understand how the segmentation clock is regulated at 

different stages of segmentation in Tribolium, we characterized the promoter regions of 

caudal. An ensembl search of the Tribolium genome was conducted for the caudal gene. To 

identify the possible promoter region of the caudal gene, primers were designed to target a 

sequence 2 kb upstream from the start codon (Table 3). Dodecyl trimethylammonium 

bromide (DTAP) DNA precipitation protocol was used to extract genomic DNA from a 

sample of 10 larvae. To amplify the desired promoter region, we conducted a PCR on the 

genomic DNA using previously designed forward and reverse primers. Gel electrophoresis 

was used to confirm the band size of desired PCR product. StrataClone Cloning Kit was used 

to clone the PCR product. To ensure that the vectors contained the correct product, sequence 

analysis and colony PCR were conducted. 

 
Table 3: Caudal primers designed to target 2 kb portion of the caudal promoter  

 Forward primer  Reverse primer  

caudal 
TR 

5’-agacctcttcgaagctgaaaca-3’ 5’-cccggactcgacatttcact-3’ 

caudal 
BR 

5’-agacctcttcgaagctgaaaca-3’ 5’-cacttgcgtctgaatctgcg-3 

caudal 
LR 

5’-agacctcttcgaagctgaaaca-3’ 5’-tctgcggcgataaattccca-3’ 

Forward and reverse primer putative caudal promoter sequences. The caudal TR, BR 
and LR share a common forward primer. Differing reverse primers amplify different ~2kb 
regions.  
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Results  

Creation of the Eos DNA template for later mRNA synthesis 

Beginning with a vertebrate plasmid containing the EosFP (mEos3.2), we attempted 

to engineer template DNA to synthesize mRNA in vitro that would be injected into embryos. 

For successful mRNA synthesis, our template needed either T7 or T3 promoter sites. We 

either inserted Utrophin coding regions or added the Nls coding regions to localize the EosFP 

expressed protein in the cell membrane or nucleus respectively.  

 
Strategy 1&2 

We successfully added the T7 promoter to the original mEos3.2 plasmid (see Figure 

8) generating 1011 bp (T7-Eos) and 1016 bp (T7-long-Eos) products. We also added the T7 

promoter to the mEos3.2-Utr-C1 plasmid (not shown) generating 1926 bp (T7-Eos-Utr) and 

1931 bp (T7-long-Eos-Utr) products.  After sequencing results confirmed the presence of the 

T7 promoter, we continued by attempting to generate mRNA from the constructs. We failed 

to synthesize mRNA from either the T7-Eos, T7-long-Eos, T7-Eos-Utr, or T7-long-Eos-Utr 

DNA templates (see Figure 9, Table 4). We were able to synthesize mRNA using the 

positive control template included in the kit (Xenopus elongation factor 1α, pTRI Xef). But, 

in a mixing experiment (see Figure 9) synthesis of the positive control was inhibited by the 

presence of the EosFP containing templates; no mRNA was synthesized. 
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Figure 8: PCR analysis to confirm the addition of T7 primer binding sites to the 
mEos3.2 plasmid using forward T7 and T7-long overhang and reverse SV40 primers. 
The expected product size for the T7 was 1011 bp. The expected product size for the T7-long 
was 1016 bp. The expected sizes were approximately recovered in lanes 2-9. No positive or 
negative control. Gel conditions: miniOne 1% TBE green kit 40 minutes.  



 

26 

 
Figure 9: mMessage mMachine T7 transcription of EosFP, mixing experiment. Lane 2 = 
control template DNA. Lanes 3&4 = experimental template DNA. Lane 5&6 = control and 
experimental template DNA. Control template DNA is inhibited by the presence of 
experimental template. 100 ng of template per lane.  
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Table 4: Summary of the results of the different experimental strategies used to design 
the EosFP construct for embryo injections 

Strategy  Gel verification Sequence verification mRNA synthesis  

Original Plasmid No No No 

Add T7 to original 
Plasmid 

Yes: Figure 8 Yes Unsuccessful 

Add T7 to original + 
Utrophin plasmid 

Yes Yes Unsuccessful 

Add Nls to original 
plasmids, use 
StrataClone to add T3 

Yes: Figure 10, 12 Yes Not yet 

Successfully added T7 promoter to the mEos3.2 and mEos3.2-Utr plasmids. Failed to 
synthesize mRNA from either the T7-Eos or T7-Eos-Utr template DNA. Successfully added 
Nls to mEos3.2 and transformed Nls-Eos product into a StrataClone vector generating T3-
Nls-Eos.  
 

Strategy 3 

After failing to synthesize mRNA from the constructs generated from strategies 1&2 

and failure to confirm that we had the correct Utrophin insert, we designed a new construct. 

We added the nuclear localization signal to the mEos3.2 plasmid by PCR overhang thereby 

generating a 1381 bp (Nls-Eos) product. Figure 10 shows the gel verification that the Nls 

was added. As a positive control, we used the forward T7 primer and reverse S4V0 to 

amplify a known 1000 bp (T7-Eos) product. Although a weak band appears in the negative 

control (T7 and SV40 primers only) it doesn't appear in our other samples and was ignored as 

an artifact. Proceeding, we transformed the Nls-Eos PCR product into a pSC-A vector. As 

seen in Figure 11, colony PCR gel verification confirmed that the insert was a 1641 bp 

product. Restriction enzyme digestion analysis predicted that all of our clones were in the T3 

orientation. Sequencing analysis verified that our product was in the T3 orientation and not 

our initially desired T7 orientation (Table 4). 
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Figure 10: PCR analysis to confirm the addition of Nls overhang to the mEos3.2 plasmid 
using Nls-overhang primers. Both samples, plasmid DNA and miniprep, produce an 
expected band at 1381bp. Forward T7 and Reverse SV40 primers used as positive control. 
Gel conditions: ran miniOne 1% TBE green kit for 35 minutes. 
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Figure 11: Colony PCR gel verification using M13 forward and reverse primers. A) 
Ligation 1 = Eos Dam- plasmid B) Ligation 2 = Eos Dam- miniprep. The insert, Nls-Eos 
product, produce an expected band at 1641bp. Gel conditions: ran miniOne 1% TBE green 
kit for 20 minutes. 
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Figure 12: Restriction enzyme digests using EcoRV to confirm insert orientation on 1641 
bp product amplified by M13 forward and reverse primers from colony PCR.  A and C) 
Ligation 1 (Eos Dam- plasmid); B and D) Ligation 2 (Eos Dam- miniprep). Circled clones in 
red correspond to prediction 2 (see appendix, image 2) that is indicative of the T3 orientation.  
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Cloning of the putative caudal promoter region  
 

To investigate the differential regulation of the segmentation clock, we successfully 

cloned a 2 kb portion of the putative caudal promoter. Figure 13 shows the amplification of 

genomic DNA using our designed caudal promoter primers. The caudal TR and caudal BR 

samples were observed at the expected 2 kb and therefore were chosen for colony PCR gel 

verification. Figure 14 shows the colony PCR gel verification which supports that we have 

the correct vector insert correct size for: TR caudal 2-7 and BR caudal 1-4, 6-8. Sequence 

analysis confirmed the correct sequence for: TR caudal 6, BR caudal 3, BR caudal 7.  

 

 
 

Figure 13:  PCR analysis of extracted genomic DNA using caudal TR, caudal LR caudal 
BR primers. Cyclin TW and cyclin LC primers used as negative control. Expected 2 kb 
band observed for caudal TR and caudal BR primers.  
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Figure 14: A) caudal TR colony PCR gel verification using M13 forward and reverse 
primers. All samples, with the exception of TR caudal 1 and TR caudal 8 were observed at 
the expected 2 kb band size. B)  caudal BR colony PCR gel verification using M13 
forward and reverse primers. With the exception of BR caudal 6, all samples were 
observed at the expected 2 kb band size.  
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Discussion  
 

For this study, we attempted to generate a comprehensive fate map of the blastoderm, 

using intracellular injection of a fluorescent photoconvertible protein in combination with 

live cell imaging, to investigate whether the early gene expression patterns of a cell 

represented its later segmental fates. Assuming that the initial length of germband is strongly 

coupled with the number of segments specified on the blastoderm, we expected the 

segmental fate maps of sequentially segmenting insects, short and intermediate germband, 

would differ from the segmental fate map of Drosophila, a long germband insect. From 

previous studies, we assumed that cells in the posterior of the blastoderm would give rise to 

more segments than those more anterior (Nakamoto et al 2015). Ultimately, by generating a 

fate map of the blastoderm, we hoped to learn more about of the roles of cell and tissue 

rearrangement in shaping the embryo and patterns of genes expression at specific times 

during embryo development. 

 As detailed below, the creation of our fate map was slowed by unsuccessful attempts 

to synthesize mRNA encoding for the Eos fluorescent photoconvertible protein. However, 

we have produced a Nls-Eos with a T3 promoter that will be tested for this purpose moving 

forward. 

 

Strategy 1&2: Adding T7 promoter to mEos3.2 or mEos3.2-Utr 

Although the Eos fluorescent photoconvertible protein has no specific localization in 

the cell, we thought it would be quickest method to add the T7 promoter to the mEos3.2 

vector upstream of the Eos sequence to be transcribed. In adding the T7 promoter we 
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followed Tang et al., (2005) who found that having a longer T7 region increased 

transcription. But we found that having a longer T7 region had no effect on transcription.  

Our mEos3.2-Utr was designed based on a RFP-Utr that had been used previously to 

successfully synthesize mRNA.  Including the Utrophin would allow us to localize Eos 

protein expression in the cell membrane. We successfully added the T7 promoter to both 

mEos3.2 and mEos3.2-Utr vectors, generating T7-mEos3.2 and T7-mEos3.2-Utr products. 

However, neither product successfully synthesized mRNA. A mixing experiment, of control 

and experimental templates, suggested that there were inhibitors present in the DNA template 

preventing transcription.  

 

Strategy 3: Put Nls-mEos3.2 into a T7 Vector 

Because our T7-mEos3.2 and T7-mEos3.2-Utr constructs failed to make mRNA, we 

decided instead to add a nuclear location localization signal to the Eos sequences before 

using cloning to add the T7 or T3 promoter. By doing so we could localize Eos expression to 

the nucleus which is best for filming. We transformed the Nls-mEos3.2 into a pSC-A vector 

specifically because it contained both T3 and T7 promoters. Because TA cloning is not 

directional, we expected our product from our initial transformation to be inserted in the 

sense and antisense directions with equal probability. Surprisingly, we found most of our 

inserts were oriented in the antisense direction. The sense orientation, with the T7 promoter 

upstream of the sequence, was our preferred orientation and thus, we dedicated our efforts to 

finding T7 clones. We originally chose the T7 polymerase over the T3 on account of its 

greater efficiency and higher yield (we needed 2-3 ug/ul of mRNA for embryo injections; 

Golomb and Chamberlin 1977; Klement et al. 1990). Restriction enzyme digestion was a 
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helpful tool to differentiate the insert orientation. Using EcoRV we could distinguish T7 from 

T3 clones by looking at different the expected band patterns. In the interest of time, we 

ordered the T3 polymerase kit to move forward with our sequenced, confirmed T3-Nls-Eos 

products.  

With our T3-Nls-Eos products, our next steps are to synthesize mRNA and perform 

embryo injections. We have already optimized the embryo injection needles and 

injection/post-injection survival conditions. Embryos were injected with mRNA encoding for 

RFP-Utr and survived live confocal imaging from the blastoderm stage to germband stage of 

development. However, before we can proceed to generating a fate map, we must first 

determine how long it takes for Eos expression to develop and how to uniformly 

photoconvert cells.  

In general, the output of the segmentation clock regulates the timing of segment 

formation. Whereas the vertebrate segmentation clock has species-specific rates of segment 

addition, the Tribolium segmentation clock has variable phases of segment addition 

(Nakamoto et al 2015). Our 2kb caudal promoter fragment is being used to investigate the 

regulatory control of differential timing. We successfully cloned 2kb of the putative promoter 

region of the caudal gene. Our next steps include using pieces of our promoter region to 

create a series of reporter constructs to examine which regions of the promoter drive wild-

type expression of caudal (Eckert et al 2004). Our collaborators are repeating this process for 

the even-skipped gene. These experiments are part of a larger project to characterize the 

promoter regions of caudal and even-skipped in order to understand how the segmentation 

clock is regulated at different stages of segmentation in Tribolium. In future experiments, we 

will utilize comparative RNA sequencing in staged Tribolium in order to identify possible 
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transcription factors for the caudal and even-skipped genes. This is the first attempt to define 

promoter regions in Tribolium and as such is a crucial step in dissecting regulatory inputs of 

the first model of a segmentation clock in arthropods. 

The differences in the rate of the clock are correlated to diffences in the degree of cell 

movement: during the (18–20 hr) period of rapid segment addition germband elongation is 

driven by extensive cell rearrangements (Nakamoto et al. 2015). However, cells must 

maintain a continuous band of gene expression while undergoing extensive rearrangements. 

With a fate map of the blastoderm, we also hoped to address whether the initial clock output 

was stably maintained through cell rearrangements or the degree to which individual cells 

gained and lost eve expression.  

The implications of this study go beyond merely predicting the segmental fates of 

sequentially segmenting insects. With a fate map of the blastoderm in Tribolium we can draw 

larger predictions about sequentially segmenting in arthropods, the most specious phylum, 

potentially revealing how much diversity in developmental mechanisms might be masked by 

our short-intermediate-long characterization.  
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Appendix  
 

 
Image 1: mEos3.2-C1 plasmid. Plasmid has a CMVd1 promoter, EosFP and SV40 poly (A) 
tail. Eos is a photoconvertible dye. SV40 poly (A) tail is required for mRNA synthesis.  
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Image 2: EcoRV digest prediction. Lane 1 corresponds to the T7-Nls-Eos and Lane 2 
corresponds to T3-Nls-Eos.   
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