
SIT Graduate Institute/SIT Study Abroad SIT Graduate Institute/SIT Study Abroad 

SIT Digital Collections SIT Digital Collections 

Independent Study Project (ISP) Collection SIT Study Abroad 

Spring 2020 

If Watersheds Spoke: A condition analysis of the Rio Tomebamba If Watersheds Spoke: A condition analysis of the Rio Tomebamba 

watershed in southern Ecuador using GIS analysis watershed in southern Ecuador using GIS analysis 

Lenka G. Doskocil 
SIT Study Abroad 

Follow this and additional works at: https://digitalcollections.sit.edu/isp_collection 

 Part of the Biodiversity Commons, Environmental Indicators and Impact Assessment Commons, 

Environmental Monitoring Commons, Fresh Water Studies Commons, Geographic Information Sciences 

Commons, and the Soil Science Commons 

Recommended Citation Recommended Citation 
Doskocil, Lenka G., "If Watersheds Spoke: A condition analysis of the Rio Tomebamba watershed in 
southern Ecuador using GIS analysis" (2020). Independent Study Project (ISP) Collection. 3323. 
https://digitalcollections.sit.edu/isp_collection/3323 

This Unpublished Paper is brought to you for free and open access by the SIT Study Abroad at SIT Digital 
Collections. It has been accepted for inclusion in Independent Study Project (ISP) Collection by an authorized 
administrator of SIT Digital Collections. For more information, please contact digitalcollections@sit.edu. 

https://digitalcollections.sit.edu/
https://digitalcollections.sit.edu/isp_collection
https://digitalcollections.sit.edu/study_abroad
https://digitalcollections.sit.edu/isp_collection?utm_source=digitalcollections.sit.edu%2Fisp_collection%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1127?utm_source=digitalcollections.sit.edu%2Fisp_collection%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1015?utm_source=digitalcollections.sit.edu%2Fisp_collection%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/931?utm_source=digitalcollections.sit.edu%2Fisp_collection%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/189?utm_source=digitalcollections.sit.edu%2Fisp_collection%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/358?utm_source=digitalcollections.sit.edu%2Fisp_collection%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/358?utm_source=digitalcollections.sit.edu%2Fisp_collection%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/163?utm_source=digitalcollections.sit.edu%2Fisp_collection%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcollections.sit.edu/isp_collection/3323?utm_source=digitalcollections.sit.edu%2Fisp_collection%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcollections@sit.edu


1 
 

 

 

 

 

If Watersheds Spoke 

A condition analysis of the Rio Tomebamba watershed in southern Ecuador using GIS analysis  

 

Doskocil, Lenka G. 

 

Academic Director: Xavier Silva Ph.D. 

Project Advisor: Lenin Villacis, M.S. 

 

Colorado State University: Watershed Science 

South America, Ecuador, Azuay Province, Rio Tomebamba watershed 

SIT: Comparative Ecology and Conservation Spring 2020 

 

Submitted in partial fulfillment of the requirements for Ecuador: Comparative Ecology and Conservation, SIT 

Study Abroad Spring 2020 

 

 
 

Erosion, habitat, land use, and riparian zone layers used in this analysis 
 

 

 

 



2 
 
Abstract 

Understanding processes and ecological threats occurring at the watershed level scale composes a critical piece of water 

resource conservation and management. This proves doubly true in areas such as the Ecuadorian highlands where water 

resources depend heavily on the hydrologic regulation capacities of páramo soils. This study examined watershed 

condition of the Rio Tomebamba watershed and existing habitat for Metallura baroni and Chibchanomys orcesi, two 

highly endemic species, within its boundaries. Watershed condition was determined based on a simple index that 

considered nine indicators of watershed health—converted land, impacted riparian zones, impermeable surfaces, water 

quality, fluvial habitat condition, riparian vegetation condition, macroinvertebrate community composition, road density, 

and erosion potential—in four analysis regions of the Rio Tomebamba watershed. Data spanning a five-year period (2015-

2019) were analyzed using ArcGIS Pro software. Cultivated pasture was the most common converted land type across all 

analysis regions, composing 5.8% of the entire Rio Tomebamba watershed. In general watershed condition was highest in 

the Llaviucu analysis region and lowest in the Lower Tomebamba analysis region. No analysis region, including the 

Llaviucu region which is protected almost entirely by the Cajas National Park boundary, received an “excellent” condition 

rating.  

The Rio Tomebamba watershed as a whole was determined to be in “acceptable” condition. The results showed 

that riparian corridor degradation posed the most concern across all analysis regions within the watershed. Conservation 

and restoration of such areas would provide critical habitat for Chibchanomys orcesi, a highly endemic water mouse, and 

serve as an effective long-term management strategy for the area’s water resources. 

Key words: watershed condition assessment, habitat, Rio Tomebamba, watershed condition index, riparian corridors, land 

use, GIS analysis 

 

Resumen 

El conocimiento de los procesos y amenazas ocurriendo al nivel de la cuenca es bastante importante para la gestión y 

conservación de los recursos de agua, especialmente en las regiones altas de Ecuador donde estos recursos dependen de la 

regulación hídrica de los suelos de páramo. Esta investigación consideró la condición de la cuenca de Rio Tomebamba y 

el hábitat que existe para Metallura baroni y Chibchanomys orcesi, dos especies endémicas, dentro de la cuenca. La 

condición de la cuenca se determinó por un índice simple, considerando nueve indicadores de la de una cuenca: tierra 

reconvertida, zonas de riberas impactadas, superficies impermeables, la calidad de agua, la condición de hábitat fluvial, la 

condición de vegetación ribereña, la composición de las comunidades de macroinvertebrados, la densidad de los caminos, 

y la potencia de erosión hídrica. Estos indicadores y el hábitat de las dos especies endémicas se analizaron sobre cuatro 

regiones dentro de la cuenca de Rio Tomebamba, usando ArcGIS Pro. Pasto cultivado fue el tipo de tierra reconvertida 

más común en todas las cuatro regiones y compuso 5.8% de la cuenca total. En general, la condición de la cuenca fue más 

alta en la región de Llaviucu y más baja en la región de Lower Tomebamba que en el resto de la cuenca. Ninguna de las 

regiones recibió una nota de condición "excelente". La cuenca de Rio Tomebamba se determinó en condición "aceptable." 

Los resultados demostraron que los corredores ribereños están en peor condición de los indicadores sobre todas las 

regiones de la cuenca. La conservación y restauración de estas áreas proveería hábitat importante para Chibchanomys 

orcesi, un ratón endémico de agua, y podría servir como una estrategia de gestión efectiva para los recursos de agua del 

área. 
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Introduction 

The very foundation of life on earth rests on the stability, productivity, and relative health of freshwater 

ecosystems. Unfortunately, they represent some of the most overused, under protected, and threatened systems in the 

world (Carpenter et al., 2011). Areas of natural hydrologic regulation—wetlands, riparian zones, páramo soils-- diminish 

daily due to human impact (Rojas, 2016; Condo-Carabajo & Julea-Palomeque, 2019; Buytaert, et al., 2006; Carpenter et 

al., 2011). Over exploitation and contamination of water resources, increases in agricultural land use, and human 
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population growth have contributed to the continual decline in aquatic ecosystem condition and extent (Roldan, 1999;  

Acosta et al., 2009; Rojas, 2016; Carrasco et al., 2010). However, protection of such resources proves challenging as 

freshwater ecosystems exhibit high degrees of connectivity from headwaters to mouth and to the landscape processes 

occurring around them (Potyondy et al., 2011). Impacts or deterioration in one area will carry over into the rest of the 

system.  

Although Ecuador’s borders contain an abundance of water resources, its freshwater ecosystems have been poorly 

studied and experience increasing pressure due to augmented demand for socio-economic and environmental services 

(Selvanayagam & Abril, 2015; Van Colen et al., 2017; Hampel et al. 2010). Although the country has instituted a number 

of water protection and management legislation, various ambiguities and deficiencies in application and management have 

severely impacted their effectiveness at the national level (Rojas, 2016; SENAGUA, 2015). In 2012, the Ecuadorian 

government began a process of decentralization created as part of the Buen Vivir program. This process has slowly been 

transferring more power to the 221 cantones, or municipalities over the past several years (United, 2016). Under the Ley 

Orgánica de Recursos Hídricos Usos y Aprovechamiento del Agua, the State has the responsibility both to manage water 

resources for multiple uses, including human consumption, ecosystem protection, and sustainability, and to protect 

watersheds’ capacities to provide good quality water in sufficient quantities at appropriate times (SENAGUA, 2015). 

However, in the decentralization process, it has become unclear where this responsibility lies, contributing to the sporadic 

management at the national level. However, certain communities have developed voluntary, decentralized initiatives—

such as the world’s first environmental service payment program in the Pimampiro municipality, the Water Protection 

Fund (FONAG) in Quito, and ETAPA EP in Cuenca—which have proved successful in implementing monitoring and 

restoration programs to protect water resources (Kauffman, 2013). 

In Cuenca, a southern Ecuadorian city located in the Azuay province and the western cordillera of the northern 

Andes, a local utility company (the Empresa Pública Municipal de Telecomunicaciones, Agua Potable, Alcantarillado, y 

Saneamiento de Cuenca (ETAPA-EP)) has set up a system of 36 stations monitoring climatic, hydrological, and 

ecological variables. These stations have locations across four sub-watersheds surrounding the city of Cuenca that serve as 

the primary sources of drinking water for the city: Rio Yanuncay, Rio Tomebamba, Rio Machangara, and, to a lesser 

extent, Rio Tarqui (ETAPA EP, 2019; Van Colen et al., 2017). ETAPA EP and the city of Cuenca have designated two of 

these critical watersheds (Tomebamba and Yanuncay) as strict conservation areas and have chosen to manage the 

Machangara, Tarqui, Jadan, and Sidcay watersheds under an active conservation plan (Actualización, 2015). While 

Tomebamba and Yanuncay are the only two rivers with headwater regions inside Cajas National Park, all the rivers 

surrounding Cuenca are born in the páramo region, a unique grassland ecosystem found above 3,500 meters across the 

Andes known for both its incredible hydrologic regulation properties and its extreme climate (Buytaert et al., 2006).   

Unfortunately, rapid growth in tourism and land conversion from native vegetation to crop land and pasture land 

have placed water resources in this area at risk (González-Maldonado & Córdova-Vela, 2017; Tobón, 2009; Proano, 2004; 

Buytaert et al., 2006; Carrasco, Pineda-Lopez, & Perez-Munguia, 2010; Van Colen et al. 2017). Soils altered by land 

conversion lose considerable water storage potential and regulation capacity, thereby reducing the total water yield 

potential of the area (Rojas, 2016; Buytaert et al., 2006). In páramo regions, such impacts prove especially troubling. 

Páramo soils can hold up to twice their weight in water due to inherent structural characteristics and high organic matter 

content (Tobón, 2009; Van Colen et al., 2017). Due in part to these characteristics, these soils possess considerable 

hydrologic regulation capacities and act as the primary avenue of water storage in the mountains of Ecuador. However, 

evidence exists that such soils have a very limited ability to recuperate natural retention characteristics once impacted, 

placing land conversion as one of the foremost threats to both the páramo ecosystem and the water resources they help 

provide (Condo-Carabajo & Juela-Palomeque, 2019; Tobón, 2009). Changes in land use also threaten riparian vegetation, 

an important distribution mechanism of matter and energy in freshwater ecosystems. This vegetation type regulates water 

temperature, algal growth, contaminants, organic matter content, and sediment inputs (Carrasco, Pineda-Lopez, & Perez-

Munguia, 2010; Ceccon, 2003). 

For water resource managers, accounting for the wide variety of threats impacting resource and ecosystem 

condition proves difficult. Geomorphologic, physical, hydrologic, and climatic characteristics of the surrounding 

landscape drive the natural conditions of freshwater ecosystems (Villamarin, 2013; Carvacho, 2012; Green Sweitlik, 

2000; González-Maldonado & Córdova-Vela, 2017). As such, conducting management and analysis activities at the 

watershed level is paramount to understanding the complex ecological processes occurring within these systems 

(Potynondy et. al, 2011; Dieye et al., 1999). Considering restoration, management, and community engagement at this 

scale also proves to be more effective, as local communities often already recognize basin boundaries, presenting a more 

logical framework for conducting and explaining ecosystem analysis (Potynondy et. al, 2011). Many governments and 

management agencies have integrated this approach into their general management plans. The United State Forest Service 

(USFS) employs the Watershed Condition Framework (WCF) as a vehicle to assess watersheds and develop management 

plans (Potyondy et al., 2011). The United States Environmental Protection Agency (EPA) has developed the Integrated 
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Assessment of Healthy Watersheds (IAHW) to help provide national, regional, state, and local guidance for addressing 

and managing watershed health (United, 2018). The government of Ecuador has mandated that water resource 

management occur at the watershed level, although lack of readily available data, cooperation between various levels of 

government, and the relatively new concept of integrated adaptive watershed management have made implementation of  

this management strategy challenging (SENAGUA, 2015; Barrera et al., 2012). Unfortunately, limited literature exists on 

assessing watershed condition and watershed level dynamics, especially when compared to the wealth of studies 

addressing specific ecosystems or habitats (Sadeghi et al., 2019). 

This could prove potentially disastrous if management actions executed at the watershed scale proceed without a 

comprehensive understanding of landscape level processes, interactions, and ecological pressures occurring within river 

basin boundaries. In order to support the movement toward watershed level management, site specific investigation of 

watershed condition must move with it. This study aims to present a relatively simple analysis of the condition of the Rio 

Tomebamba watershed in southwestern Ecuador to both provide water resource and land managers with a more complete 

understanding of the processes and various ecological pressures occurring within the basin and to identify processes that 

require more exploration. Although various studies have examined specific aspects of this watershed—aquatic habitat 

condition, hydrologic behavior, land use change impacts, macroinvertebrate community composition and variation, patch 

movement of avifauna, water quality—none have taken a landscape level approach accounting for multiple watershed-

level processes. This study represents the first of its kind for this watershed.  

 

Ethics 

This study fully complies with the Research and Ethics in Field Work and Internship guidelines put forth by the School 

for International Training based on the Institutional Review Board and the American Anthropological Association 

guidelines. The author understands that she has a responsibility to the communities within the Rio Tomebamba watershed 

and to the City of Cuenca to avoid negatively impacting community members and to gear the study toward the needs of 

those communities. Due to the remote nature of this study, no human subjects or field data collection was involved, 

considerably reducing the possibility of negative impact to the field environment or to community members. Data use 

permissions were secured from both Empresa Pública Municipal de Telecomunicaciones, Agua Potable, Alcantarillado, y 

Saneamiento de Cuenca (ETAPA EP) and el Ministerio de Agricultura, Ganadería, Acuacultura, y Peces (MAGAP). Both 

were made aware that the author was a student conducting a watershed health analysis in the Rio Tomebamba watershed 

region.  

 

Methods 

1.1 Study area 

This study focused on the Rio Tomebamba watershed (79.007905, -2.900507), whose headwaters lie partially within 

Cajas National Park northwest of the city of Cuenca in the Azuay province in southern Ecuador (Figure 1). Born in the 

páramo region, this river passes through both páramo grassland, páramo shrubland, and montane forest before joining the 

rivers Yanuncay and Machangara within Cuenca’s city limits. The 328.91 km2  study area includes 45.0% (132.54 km2) of 

Cajas National Park, all of Bosque Proteger de Mazan—a private reserve dedicated to restoring the native montane forest 

ecosystem—and is dominated by herbaceous páramo vegetation (57.0% of the watershed’s area). Rock outcroppings and 

cultivated pastures compete for the second most common landcover type (5.9% and 5.9% respectively) (Convenio MAG – 

IEE – SENPLADES, 2015). Andosols with glacial or periglacial genesis represent the dominant soil type (Consorcio 

TRACASA-NIPSA, 2015a.  Well drained, low fertility soils with high organic matter content and moderate effective 

depth characterize the region (Consorcio TRACASA-NIPSA, 2015a; Van Colen et al., 2017).  Although the region has 

experienced recent and rapid growth in cattle ranching (both for dairy and meat) and fish farming, the main economic 

activities remain creation of artisan products for the city of Cuenca and small-scale farming (Rojas, 2016). Most 

landowners within the study site own property no larger than 3 hectares, although there exist a few large operations of 100 

hectares or more (Rojas 2016). Of the various converted land types within the watershed boundaries, crops account for 

40.5%, a land use type that composed 5.8% of the total study area. Monterey pine (Pinus reticula) and eucalyptus 

plantations, two species of trees introduced the late 1880s for lumber, compose 17.2% of total land use and 2.5% of the 

total watershed (Convenio MAG – IEE – SENPLADES, 2015). In 2015, Rio Tomebamba was yielding roughly 15.62 

l/s/km2 of water daily with a range of 0.13 l/s/km2 to 151.69 l/s/km2 (Condo & Juela, 2017). On average, the basin receives 

1007.49 mm of precipitation and, in 2015, 337 days were reported to have seen rain (Condo & Juela, 2017). Above 3200 

meters, this precipitation appears mainly as a light, constant drizzle or mist, although torrential rainstorms are not 

uncommon (Condo-Carabajo & Juela-Palomeque, 2019). Vegetation in this region has adapted to capture horizontal 

precipitation (mist) as droplets on its leaves, which then fall to the ground and are absorbed by the soil (Avendano, 2007). 
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In order to better pinpoint areas of concern, the study area was divided into four regions according to existing water 

quality and ecological monitoring station locations and sub-watershed boundaries: Taquiurcu analysis region (referred to 

here after as TAR) located in the northwestern most area of the watershed and including a small piece of Cajas National 

Park, Quinuas analysis region (QAR) located directly below TAR along the main stem of the river, Llaviucu analysis 

region (LAR) encompassing the western most area of the watershed and almost entirely within Cajas National Park, and 

Lower Tomebamba analysis region (LTAR) located near the watershed’s outlet (Figure 2). Due to data limitations, some 

regions contain more stations than others and vary in size. The Llaviucu region fell almost entirely within Cajas National 

Park while the lower Tomebamba region contained 6.87 km2 of the city of Cuenca (Appendix B).  

 

 

Figure 1. Location of Rio 

Tomebamba watershed 

study area. Elevation 

layer based on 30-meter 

DEM data from ASTER. 

 

Figure 2. Analysis regions 

used for a watershed condition 

assessment of the Rio 

Tomebamba watershed in 

southern Ecuador 
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1.2 Assessment framework development 

The method chosen to evaluate the current condition of the Rio Tomebamba watershed was based on watershed 

condition frameworks developed by the United States Forest Service (USFS) and the United States Environmental 

Protection Agency (EPA). The Integrated Assessment of Healthy Watersheds put forth by the EPA breaks watershed 

condition into six ecological attributes: landscape condition, habitat condition, water quality, hydrology, geomorphology, 

and biologic condition (United, 2018). The Watershed Condition Framework developed by the USFS echoes these ideas, 

utilizing twelve indicators divided into four categories: aquatic physical, aquatic biological, terrestrial physical, and 

terrestrial biological (Potyondy & Geier, 2011). This assessment uses nine indicators of watershed health chosen based on 

these recommendations and driven by available data and the expertise of the researcher. They included impermeable 

surfaces, converted land, road density, riparian zone impacted by roads, water quality, erosion potential, river habitat 

condition, quality of riparian vegetation, and macroinvertebrate community structure (Table 1). 

Table 1. Watershed condition indicators, associated data sources, and relation to the United States Forest Service 

Watershed Condition Framework (WCF) and the United States Environmental Protection Agency Integrated 

Assessment of Healthy Watersheds (IAHW) 

Indicator Metric IAHW WCF Data source 

Impermeable 

surfaces 

% impermeable 

surfaces 

Landscape 

condition, 

geomorphology 

Terrestrial physical OpenStreetMap, 

Ministerio de 

Agricultura y Ganadería 

Converted land % converted 

land 

Landscape condition Terrestrial physical, 

terrestrial biological 

Ministerio de 

Agricultura y Ganadería 

Road density Density Landscape 

condition, habitat 

condition 

Terrestrial physical OpenStreetMap 

Riparian zone 

impacted 

% riparian zone 

impacted by 

roads 

Habitat condition, 

hydrology, 

landscape condition 

Aquatic biological Ministerio de 

Agricultura y Ganadería, 

OpenStreetMap 

Water quality Water Quality 

Index (WQI) 

Water quality Aquatic physical ETAPA EP 

Erosion potential Erosion 

potential 

Geomorphology Terrestrial physical Ministerio de 

Agricultura y Ganadería 

River habitat 

condition 

Fluvial Habitat 

Index 

Habitat condition, 

Hydrology 

Aquatic physical ETAPA EP 

Riparian vegetation Quality of 

riparian 

vegetation 

(QBR) 

Habitat condition, 

landscape condition, 

hydrology 

Aquatic biological ETAPA EP 

Macroinvertebrate 

community 

BMWP/Col Biological condition Aquatic biological ETAPA EP 

 

Impermeable surfaces were restricted to those created by anthropogenic substances and classified as asphalt, 

concrete, urban areas, cobblestone, paved areas, paving stones, and industrial complexes. (For the purposes of analysis, 

roads were assumed to average 7 meters in width.) Such surfaces severely inhibit precipitation infiltration and are 

correlated with increased erosion and flood hazard (Shuster et al., 2005; Chithra et al., 2015). Water that the soil would 

have absorbed and retained runs off and into nearby water bodies, potentially carrying increased contaminant and 

sediment loads (National, 2011; Carpenter et al., 2011). Sedimentation poses especially dangerous impacts to aquatic 

communities as it can produce profound negative effects on water temperatures, oxygen yield, spawning bed condition, 

and insect habitat (Akay et al., 2008; Couceiro et al., 2009). Road density was considered for a similar reason as higher 

densities play a dominant role in augmentation of erosion and associated sediment yield (Potyondy et al., 2011; Reid & 

Dunne, 1984; Grace, 2002). Presence of such road density and converted land can also be considered surrogate indicators 

of habitat fragmentation (Heilman et al. 2002).  

Changes in land use, particularly deforestation, pose a concern for a similar reason. Vegetative cover plays a 

significant role in reducing erosion hazard both by reducing the velocity of incoming precipitation droplets and stabilizing 

the soil (Ceccon, 2003; Avendano 2007). The shade provided also reduces evaporation, thereby improving the water 

storage capacity of the drainage basin. However, studies have shown that non-native vegetative species can impact or 

even reduce soil water storage capacity (Gibbons et al., 2017; Farley et al., 2004). In páramo soils, areas planted with 
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Monterey pine (Pinus radiata) lose 51% of their water storage potential while soil that has been worked for agriculture or 

altered by cattle grazing lose 12% and 27% respectively (Proano, 2004). Changes in vegetative cover alter soil 

characteristics. It was for this reason that percent converted land was included as an indicator of watershed health. 

Riparian corridors play key roles as landscape connectivity agents and aquatic habitat regulators (Hawes et al., 

2008; Ceccon, 2003; Burneo & Gunkel, 2003; Crooks & Sanjayan, 2006). For the purposes of this analysis, the quality of 

the riparian vegetation was determined using QBR, the Fluvial Habitat Index, and proportion of the riparian area impacted 

by roads to quantify the condition of the riparian corridors in Rio Tomebamba. The riparian zone width was defined as a 

30-meter buffer along all sides of freshwater bodies (Brazil, 2020; Zimbres et al., 2017). The aquatic biological condition 

was determined based on the British Monitoring Working Party Columbia (BMWP/Col) index as calculated by ETAPA 

EP. This index uses the variation in macroinvertebrate family tolerances to water pollution to characterize water quality. 

Higher BMWP/Col scores reflect a higher abundance of tolerant families (Selvanayagam & Abril, 2015). For the purpose 

of this analysis, the presence of more tolerant macroinvertebrate families was assumed to correlate with higher stability at 

the base of the aquatic food chain. Climatic variables, such as precipitation, were intentionally excluded as indicators. 

Although such variables represent important metrics of watershed exposure (or vulnerability), they are considered 

background conditions to watershed health and are not altered by disturbances within the watershed area (Furniss et al. 

2013).  

 Each indicator was divided into five numerical categories, each corresponding to a condition rating (Table 2). 

Mean indicator results were calculated for each year in each analysis region, for each region across the five-year period, 

and across all regions and years. Mean indicator results were also calculated for the Rio Tomebamba watershed, using 

mean values of WQI, BMWP/Col, IHF, and QBR across the four analysis regions for each year and raw data from the 

landcover, road, and erosion data sets (Appendix A). 

Table 2. Indicator scoring matrix for a watershed condition assessment of the Rio Tomebamba watershed in southern 

Ecuador   
Poor 

   
Excellent 

Indicator Metric 1 2 3 4 5 

Impermeable surfaces % impermeable 

surfaces 

>25% 15-25% 5-14.9% 2.5-4.9% <2.5% 

Converted land % converted land >70% 40-

69.9% 

20-39.9% 10-19.9% <10% 

Road density Density <0.621 0.62 to 

1.55 

1.55 to 2.49 2.49 to 3.11 >3.11 

Riparian zone 

impacted 

% riparian zone 

impacted by 

roads 

>20% 10-20% 5-9.9% 0-4.9% 0% 

Water quality Water Quality 

Index (WQI) 

Very poor  

(0-25) 

Poor 

(25-50) 

OK  

(50-70) 

Good 

(70-90) 

Excellent 

(90-100) 

Erosion potential Erosion potential Very high High -- Medium Low 

River habitat condition Fluvial Habitat 

Index 

Con 

limitacion 

(0-40) 

-- Limitacion 

moderada  

(40-73) 

-- Sin 

limitacion 

(73-100) 

Riparian vegetation Quality of 

riparian 

vegetation 

(QBR) 

Con 

limitacion 

(0-51) 

-- Limitacion 

moderada  

(51-97) 

-- Sin 

limitacion 

(97-100) 

Macroinvertebrate 

community 

BMWP/Col Very critical 

(<16) 

Critical 

(16-35) 

Problematic 

(36-60) 

Acceptable 

(61-100) 

Good 

(>100) 

 

Although habitat connectivity was not included as part of the index scoring matrix, a separate, simple analysis of 

existing woodland habitat was conducted using the landcover data set from the Ministerio de Agricultura, Ganadería, 

Acuacultura, y Pesca (MAGAP). Páramo woodland habitat patches were characterized as any native forest or bushy 

vegetation occurring at elevations greater than 3,500 meters and in patches greater than 5 hectares. Montane woodland 

habitat patches included montane forest and montane shrubby vegetation occurring below 3,500 meters. Five-hectares was 

also used as the lower patch size limit. Should a patch occur with 150 meters of another in either habitat type, they were 

considered one patch as per the methods of Tinoco et al. 2003.  Woodland habitat was chosen for three reasons. The 
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Violet-throated Metal-tail (Metallura baroni), a critically endangered and hyper-endemic species of hummingbird, 

depends on Polylepis sp., shrubby páramo vegetation, and the upper elevation edge of montane forests for its habitat 

(Tinoco, 2009; Astudillo et al., 2015). The Cajas water mouse (Chibchanomys orcesi), a second highly endemic species 

found near small, rapidly flowing streams and still lakes in shrubby and herbaceous páramo habitat, depends on the 

maintenance of this type of woodland, as do other bird and mammal species throughout the páramo region (Barnett, 1999; 

Boada & Vallejo, 2018). Managing for habitat conservation often proves more effective when targeting one or two species 

or when focusing on preventing further fragmentation in areas where connectivity is critically threatened. The two species 

Metallura baroni and Chibchanomys orcesi were chosen for this simple habitat assessment for their hyper endemism, 

critically endangered status at the national and global level, and their occupancy of fragmented páramo woodland and 

montane woodland habitat. Assessing existing habitat for these species helps to determine the watershed’s biotic integrity, 

a critical aspect of a healthy watershed as the United States Forest Service defines it (Potyondy et al., 2011).  

 

1.3 Data sources 

Data was compiled from OpenStreetMap, the Ministerio de Agricultura, Ganadería, Acuacultura, y Pesca of Ecuador 

(MAGAP), and la Empresa de Telecomunicaciones, Agua Potable, Alcantarillado, y Saneamiento de Cuenca (ETAPA 

EP). All spatial data were analyzed using ArcGIS Pro 10.7.1 software with UTM projection PSAD 58 Zone 17N (see 

Appendix A from data layer maps). Water quality data came from the five water quality monitoring stations maintained 

by ETAPA EP within the watershed boundaries (Table 3) and included the water quality index (WQI) rating, the 

Biological Monitoring Working Party Index (BMWP/Col), a fluvial habitat index (IHF), and an index quantifying the 

condition of the riparian vegetation (QBR) for the years 2015, 2016, 2017, 2018 and 2019. The riparian vegetation index 

scores streams based on the inclusion, limitations, and composition of substrates; rapid frequency; velocity and depth 

regimes; channel shading; habitat heterogeneity; and aquatic vegetation cover. QBR falls into two sub-indices based on 

ecosystem. QBR-B (vegetación de ribera de bosque) was developed for riparian habitats within montane forests and 

evaluates riparian habitat based on the quality, structure, and grade of vegetation within the riparian zone. QBR-P 

(vegetación de ribera de páramo) is used in páramo landscapes and assesses riparian areas based on the grade and quality 

of vegetation and the grade of the naturalness of the channel. Both QBR and IHF were proposed and developed by Acosta 

et al. 2009 and 2014 (see Appendix D for example score cards). 

Table 3. Location of analysis regions and stations within the Rio Tomebamba watershed used during a watershed 

condition assessment 

Name Analysis 

area 

Sub-watershed Latitude Longitude UTM X UTM Y 

Taquiurcu 

(Salida Laguna) 

Taquiurcu Matadero alto -2.7778 -79.1967 700457.948 9692814.279 

Quinuas 1  

despues de 

piscicolas Reina 

del Cisne 

Quinuas Matadero alto -2.80386 -79.1569 704882.080 9689925.297 

Quinuas 2 

despues de 

Chirimachay 

Quinuas Matadero alto -2.81518 -79.1497 705758.245 9688710.388 

Llaviucu A.J. 

Quinuas 

Llaviucu Matadero bajo -2.8433 -79.1257 708349.241 9685558.676 

Tomebamba 

D.J. Q. Sacay 

Lower 

Tomebamba 

Tomebamba -2.88976 -79.0362 718285.790 9680403.632 

 

For the purposes of this analysis, only those summary indices recorded at ETAPA EP stations (WQI, BMWP/Col, 

IHF, and QBR) were used. Specific water quality data were not considered. Erosion and soil data originated from a data 

set detailing soil properties, classifications, and erosion potential developed by SIGTIERRAS and downloaded from the 

MAGAP geoportal (Appendix A, Figure 1). The erosion potential classifications within this data set were determined by 

SIGTIERRAS based on slope, landcover, effective depth, texture, rainfall intensity, and land use (Consorcio, 2015b).  The 

data set also included information on soil type, soil origin, fertility, salinity, toxicity, cation exchange capacity, drainage 

characteristics, organic matter content, effective depth, humidity and temperature regimes, base saturation, and infiltration 

speed. The landcover data was also obtained from MAGAP and developed by SENPLADES over a six-year period (2006 

to 2015) (Appendix A, Figure 3). Landscape imagery made public more recently than 2015 that was sufficiently detailed 
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for landcover type analysis could not be found. Therefore, the 2015 data set was considered sufficient. Road and 

waterway data were downloaded as vector shapefiles from the Humanitarian OpenStreetMap Team website.  

 

Results 

2.1 Analysis regions 

2.1.1 Taquiurcu Analysis Region (TAR) 

The Taquiurcu analysis region (53.46 km2) was dominated by herbaceous páramo vegetation and rock outcroppings 

(66.3% and 13.3% respectively). The dominant converted land cover type was cultivated pasture closely followed by 

Pinus reticula (Monterey pine) plantations. Each made up 1.9% and 1.4% of total landcover respectively, contributing to 

1.75 km2 of converted land (3.3% of the total area). The only impermeable surface introduced by human activity was 

asphalt, attributed to 13.62 km of road that covered 0.2% of the region. Road density appeared to be relatively low with 

52.90 km of roads occurring in the region, corresponding to a density of 0.98 km/km2. The area contained roughly 28 

lakes and 7 moderately sized streams, 5.4% of whose riparian area was impacted by road development (Table 4). Water 

quality as measured by WQI appears to have generally declined over the past 5 years, although not until 2019 did the 

rating drop from “excellent” to “good.” The British Monitoring Working Party Columbia index (BMWP/Col) follows a 

similar pattern, although only in 2018 did it drop below an “acceptable” rating to a “problematic” rating. In 2019, 

BMWP/Col increased to “acceptable” with a value comparable to 2016. The condition of the fluvial habitat appears to 

have increased over the five-year period, with the lowest score occurring in 2015. QBR-P appears to have generally 

decreased, with a significant low point occurring in 2016 (Appendix C). Areas with no data characterizing erosion 

potential composed 43.2% of the region, followed by areas with high erosion potential covering 35.2% of the total area. 

No part of the analysis region was considered to have a low or very high erosion potential. 

Table 4. Index results for the Taquiurcu analysis region of the Rio Tomebamba watershed in southern Ecuador as part 

of a watershed condition assessment based on data from el Ministerio de Agricultura, Ganaderia, Acuacultura, y Peces 

de Ecuador and OpenStreetMap 

Indicator 2015 2016 2017 2018 2019 

% converted land 3.28% 3.28% 3.28% 3.28% 3.28% 

% riparian zone impacted by roads 5% 5% 5% 5% 5% 

WQI 97.159 91.851 95.688 95.62 89.683 

BMWP/Col 132 123 105 93 122 

IHF 49 70 68 71 73 

QBR 75 30 60 60 60 

Erosion potential Alta Alta Alta Alta Alta 

Road density (km/km2) 0.989 0.989 0.989 0.989 0.989 

% anthropogenic impermeable surfaces 0.18% 0.18% 0.18% 0.18% 0.18% 

 

The mean index value for TAR across the five-year period was 3.8 (s=0.10), placing it in the upper region of an 

“acceptable” condition rating. Only the index value for 2016 (3.7) differed from the mean by more than one standard 

deviation. All index values within the five-year period fell within the “acceptable” rating, although the maximum 

condition rating occurred in 2015 and 2017 (Table 5). The TAR mean was within one standard deviation of the population 

mean across all analysis regions and all years (μ=3.4, σ=0.4). Index values for 2015 and 2017 varied from the population 

mean by more than one standard deviation, both with an index value of 3.9. 

Table 5. Index rating results for the Taquiurcu analysis region of the Rio Tomebamba watershed in southern Ecuador 

as part of a watershed condition assessment 

Indicator 2015 2016 2017 2018 2019 

% converted land 5 5 5 5 5 

% riparian zone impacted by roads 3 3 3 3 3 

WQI 5 5 5 5 4 

BMWP/Col 5 5 5 4 5 

IHF 3 3 3 3 3 

QBR 3 1 3 3 3 

Erosion potential 2 2 2 2 2 
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Road density (km/km2) 4 4 4 4 4 

% anthropogenic impermeable surfaces 5 5 5 5 5 

Mean 3.9 3.7 3.9 3.8 3.8 

Median 4 4 4 4 4 

2.1.2 Quinuas Analysis Region (QAR) 

The Quinuas analysis region (39.56 km2) was the smallest of the four regions and was dominated by the same two 

land cover types found to be abundant in TAR: herbaceous páramo vegetation (59.5% of the area) and rock outcroppings 

(11.3%). The most common converted land type was cultivated pasture (8.9% of the total watershed area) followed by 

Pinus reticula plantations (2.3%) and pisciculture areas (0.5%), contributing to 4.78 km2 (12.1%) of converted land. 

Impermeable surfaces accounted for 0.07 km2 or 0.2% of the total region area, comparable to TAR, and were composed 

primarily by asphalt with some contribution from a small town. Road density was the lowest of the four regions at 0.34 

km/km2 (13.64 km of road). Impacted riparian areas were also lowest in QAR with 3.8% of the zone impacted (Table 6). 

Water quality did not appear to change significantly over the five-year period, remaining between 85.4 and 87.3, a range 

that fits comfortably within the “good” rating. BMWP/Col decreased greatly between 2015 and 2018, dropping to a lower 

category each year before increasing to a maximum for the five-year period in 2019. The fluvial habitat condition 

decreased from 2015 to 2017 before increasing to a maximum in 2018, although it remained within the “limitacion 

moderada” category. Excepting 2016, QBR generally increased over the five-year period from a “con limitacion” rating to 

a “limitacion moderada” rating (Appendix C). Just over 21.0% of the erosion potential in the area was unknown, 

dominated by a high erosion potential in 36.4% of the region. Medium erosion potential followed closely at 20.6%. No 

areas were reported to have very high erosion potential.  

Table 6. Index results for the Quinuas analysis region of the Rio Tomebamba watershed in southern Ecuador as part of 

a watershed condition assessment based on data from el Ministerio de Agricultura, Ganaderia, Acuacultura, y Peces de 

Ecuador and OpenStreetMap 

Indicator 2015 2016 2017 2018 2019 

% converted land 12.07% 12.07% 12.07% 12.07% 12.07% 

% riparian zone impacted by roads 4% 4% 4% 4% 4% 

WQI 86.6145 87.443 85.3515 86.563 87.368 

BMWP/Col 106.5 99.5 51.5 75.5 114.5 

IHF 61 57.5 57 69.5 67.75 

QBR 30 10 30 37.5 52.5 

Erosion potential Alta Alta Alta Alta Alta 

Road density (km/km2) 0.345 0.345 0.345 0.345 0.345 

% anthropogenic impermeable surfaces 0.18% 0.18% 0.18% 0.18% 0.18% 

 

The mean index value for QAR was 3.6 (s=0.2) across the five-year study period, equating to an “acceptable” 

watershed condition rating. Index values for both 2017 and 2019 varied from the mean by more than one standard 

deviation (3.4 and 3.9 respectively). Index values across all years fell within the “acceptable” rating. The maximum and 

minimum watershed condition ratings occurred in 2019 and 2017 respectively (Table 7). The QAR mean was within one 

standard deviation of the mean across all analysis regions and all years (μ=3.4, σ=0.4). The index value for 2019 (3.9) 

varied by more than one standard deviation from the population mean. 

Table 7. Index rating results for the Quinuas analysis region of the Rio Tomebamba watershed in southern Ecuador 

as part of a watershed condition assessment 

Indicator 2015 2016 2017 2018 2019 

% converted land 4 4 4 4 4 

% riparian zone impacted by roads 4 4 4 4 4 

WQI 4 4 4 4 4 

BMWP/Col 5 4 3 4 5 

IHF 3 3 3 3 3 

QBR 1 1 1 1 3 

Erosion potential 2 2 2 2 2 

Road density (km/km2) 5 5 5 5 5 
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% anthropogenic impermeable surfaces 5 5 5 5 5 

Mean 3.7 3.6 3.4 3.6 3.9 

Median 4 4 4 4 4 

2.1.3 Llaviucu Analysis Region (LAR) 

The 51.83 km2 Llaviucu analysis region lay nearly entirely within Cajas National Park and was dominated by 

herbaceous páramo vegetation (72.6% of total area) followed by wasteland (9.4%) and montane forest (9.1%). The only 

converted land type appears to be cultivated pasture, composing 1.5% of the total area. No impermeable surfaces 

introduced by human activity were found. However, 49 km of dirt roads were present, impacting 7.7% of the riparian zone 

and resulting in a density of 0.95 km/km2 (Table 8). Water quality appeared to generally increase over the five-year 

period, although it oscillated between higher and lower values within the “good” rating category before arriving at a 

“excellent” rating in 2019. BMWP/Col appears to generally decrease from a maximum in 2015 to a minimum in 2017 and 

2018 before increasing again. However, only scores reported in 2015 and 2016 were high enough to warrant a “good” 

rating. All other years were labeled “acceptable.” In general, the fluvial habitat condition remained constant and within 

the “sin limitacion” category, excepting a minimum in 2016 that dropped into the “limitacion moderada” category. QBR 

experienced the opposite effect, remaining constant excepting a spike in 2016. All years retained a “limitacion moderada” 

rating (Appendix C). Over 93.0% of LAR was reported to have unknown erosion potential. In this instance, a medium 

erosion potential was assigned for a variety of reasons. Firstly, converted land made up a small portion of the region’s 

area, suggesting that native vegetation dominated LAR land cover. Such vegetation decreases erosion potential 

(Consorcio, 2015b), decreasing the likelihood that high erosion potential would dominate the area. However, the average 

slope was comparable to slope angles in TAR that reported a high erosion potential, severely diminishing the likely 

likelihood that LAR was characterized by low erosion potential. As such, the region was assigned a medium erosion 

potential, the same rating that characterized 7.0% of the region.  

Table 8. Index results for the Llaviucu analysis region of the Rio Tomebamba watershed in southern Ecuador as part 

of a watershed condition assessment based on data from el Ministerio de Agricultura, Ganaderia, Acuacultura, y 

Peces de Ecuador and OpenStreetMap 

Indicator 2015 2016 2017 2018 2019 

% converted land 1.45% 1.45% 1.45% 1.45% 1.45% 

% riparian zone impacted by roads 8% 8% 8% 8% 8% 

WQI 88.824 85.089 87.242 86.288 90.95 

BMWP/Col 105 105 70 71 99 

IHF 75 58 75 77 75 

QBR 60 80 60 60 60 

Erosion potential Media Media Media Media Media 

Road density (km/km2) 0.946 0.946 0.946 0.946 0.946 

% anthropogenic impermeable surfaces 0% 0% 0% 0% 0% 

 

The mean index value for LAR across the five-year study period was 4.1 (s=0.1), corresponding to a “good” rating. 

One index value varied from the mean by more than one standard deviation (2015, 4.2). All years achieved “good” 

condition ratings. The maximum condition rating was achieved in 2015 before dropping slightly for three years and then 

increasing slightly in 2019 (Table 9). The mean for LAR varied from the population mean (μ=3.4, σ=0.4) by more than 

one standard deviation, as did all index values across all years.   

Table 9. Index rating results for the Llaviucu analysis region of the Rio Tomebamba watershed in southern Ecuador 

as part of a watershed condition assessment 

Indicator 2015 2016 2017 2018 2019 

% converted land 5 5 5 5 5 

% riparian zone impacted by roads 3 3 3 3 3 

WQI 4 4 4 4 5 

BMWP/Col 5 5 4 4 4 

IHF 5 3 4 4 4 

QBR 3 3 3 3 3 

Erosion potential 4 4 4 4 4 
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Road density (km/km2) 4 4 4 4 4 

% anthropogenic impermeable surfaces 5 5 5 5 5 

Mean 4.2 4.0 4.0 4.0 4.1 

Median 4 4 4 4 4 

2.1.4 Lower Tomebamba Analysis Region (LTAR) 

The Lower Tomebamba analysis region was the largest of the four at 184.06 km2 and composing 56.0% of the 

total watershed. Herbaceous páramo vegetation dominated here as well and although the boundaries contained the largest 

amount of this landcover type by area, it made up the smallest percentage of any analysis region at 49.6%. The second 

most dominant cover type was cultivated pasture, also the dominant converted land type, at 7.5% followed by montane 

shrub vegetation and páramo bushy vegetation at 5.5% and 5.3% respectively. This analysis region contained the only 

eucalyptus plantations in the watershed at a total area of 5.19 km2 and composing 2.8% of LTAR and 1.6% of the Rio 

Tomebamba watershed. The largest area of Pinus reticula plantations was found in this analysis region (1.30 km2) 

although they composed barely 0.7% of the total area of the region. The dominant converted land cover types were 

cultivated pasture, suburban areas, and urban areas at 7.5%, 4.3% and 3.7% respectively. Road density here was the 

highest across all four analysis regions and higher than the watershed value (2.51 km/km2 compared to 1.56 km/km2). 

Riparian areas impacted by roads were also more abundant in LTAR at 9.0% (Table 10). Water quality generally 

increased through 2017, after which it decreased to a minimum for the five-year period in 2019. Excepting the minimum 

in 2019, all years received a “good” quality rating. BMWP/Col decreased drastically from a rating of “excellent” in 2015 

to “critical” in 2018. In 2019, the score rose to “acceptable.” After an initial decrease from 2015 to 2016, the fluvial 

habitat condition increased to a maximum in 2019. Excepting a “con limitacion” rating in 2016, all years received a 

“limitacion moderada” rating. QBR followed the opposite pattern. After an initial increase to a maximum in 2016, scores 

dropped considerably to a minimum. However, all years remained with the “con limitacion” category (Appendix C). 

Medium erosion potential characterized 40.7% of the watershed. Impermeable surface introduced by human activity were 

highest in both area and percentage within LTAR, making up 11.0% of the watershed and were due mainly to suburban 

and urban areas.   

Table 10. Index results for the Lower Tomebamba analysis region of the Rio Tomebamba watershed in southern 

Ecuador as part of a watershed condition assessment based on data from el Ministerio de Agricultura, Ganaderia, 

Acuacultura, y Peces de Ecuador and OpenStreetMap 

Indicator 2015 2016 2017 2018 2019 

% converted land 21.72% 21.72% 21.72% 21.72% 21.72% 

% riparian zone impacted by roads 9% 9% 9% 9% 9% 

WQI 73.548 71.6405 78.6655 76.632 65.389 

BMWP/Col 166.5 45 48 38.5 65 

IHF 41 36 49.5 52 56.5 

QBR 25 45 17.5 17.5 17.5 

Erosion potential Media Media Media Media Media 

Road density (km/km2) 2.157 2.157 2.157 2.157 2.157 

% anthropogenic impermeable surfaces 10.96% 10.96% 10.96% 10.96% 10.96% 

 

 The mean index value for LTAR for the five-year period was 3.0 (s=0.2), corresponding to the lowest numerical 

rating across all four analysis regions, although LTAR was still within the “acceptable” range. Index values for 2015 and 

2016 varied from the sample mean by more than one standard deviation (3.2 and 2.8 respectively). The year 2016 was the 

only year in the study period to dip down to a “problematic” rating. Maximum and minimum watershed condition ratings 

occurred in 2015 and 2016 respectively (Table 11). The mean LTAR condition rating varied by more than one standard 

deviation from the population mean (μ=3.4, σ=0.4) as did index values for 2016, 2017, 2018, and 2019. 

Table 11. Index rating results for the Lower Tomebamba analysis region of the Rio Tomebamba watershed in 

southern Ecuador as part of a watershed condition assessment 

Indicator 2015 2016 2017 2018 2019 

% converted land 3 3 3 3 3 

% riparian zone impacted by roads 3 3 3 3 3 

WQI 4 4 4 4 3 
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BMWP/Col 5 3 3 3 4 

IHF 3 1 3 3 3 

QBR 1 1 1 1 1 

Erosion potential 4 4 4 4 4 

Road density (km/km2) 3 3 3 3 3 

% anthropogenic impermeable surfaces 3 3 3 3 3 

Mean 3.2 2.8 3.0 3.0 3.0 

Median 3 3 3 3 3 

 

2.2 Rio Tomebamba watershed condition 

Across all five years, LTAR and LAR represented the minimum and maximum watershed condition ratings. In all 

years except 2019, TAR had the second highest condition rating. QAR was the only analysis region to have a maximum at 

the end of the five-year study period (2019). LTAR and LAR reached maximums in 2015 while TAR reached its 

maximum twice, once in 2015 and again in 2017. TAR and LTAR reached their respective minimum ratings in 2016, 

followed QAR in 2017. The minimum value for LAR occurred in 2016, 2017, and 2018 (Figure 3).  

 
Figure 3. Watershed condition index results for four analysis regions—Taquiurcu  analysis region (TAR), Quinuas 

analysis region (QAR), Llaviucu analysis region (LAR), and Lower Tomebamba analysis region—and the Rio 

Tomebamba watershed (RTW) in southern Ecuador based on data from the Ministerio de Agricultura, Ganaderia, 

Acuacultura, y Peces de Ecuador, OpenStreetMap, and ETAPA EP 

 

The mean value for the Rio Tomebamba watershed across the five-year study period was 3.3 (s=0.1), equating to an 

“acceptable” condition rating. Index values for 2015 and 2019 varied from the sample mean by more than one standard 

deviation, both with values of 3.3. The watershed across all five years was in “acceptable” condition. Index values 

reached a slight maximum in 2015 and 2019 (Table 13).  

Table 12. Index results for the Rio Tomebamba watershed in southern Ecuador as part of a watershed condition 

assessment based on data from el Ministerio de Agricultura, Ganaderia, Acuacultura, y Peces de Ecuador, 

OpenStreetMap, and ETAPA EP 
Indicator 2015 2016 2017 2018 2019 

% converted land 14.37% 14.37% 14.37% 14.37% 14.37% 

% riparian zone impacted by roads 7.46% 7.46% 7.46% 7.46% 7.46% 

WQI 86.536375 84.005875 86.73675 86.27575 83.3475 

BMWP/Col 127.5 93.125 68.625 69.5 100.125 

IHF 56.5 55.375 62.375 67.375 68.0625 

QBR 47.5 41.25 41.875 43.75 47.5 

Erosion potential Media Media Media Media Media 

Road density (km/km2) 1.558 1.558 1.558 1.558 1.558 
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% anthropogenic impermeable surfaces 6.19% 6.19% 6.19% 6.19% 6.19% 

Table 13. Watershed condition index rating results for the Rio Tomebamba watershed in southern Ecuador 

Indicator 2015 2016 2017 2018 2019 

% converted land 4 4 4 4 4 

% riparian zone impacted by roads 3 3 3 3 3 

WQI 4 4 4 4 4 

BMWP/Col 5 4 4 4 5 

IHF 3 3 3 3 3 

QBR 1 1 1 1 1 

Erosion potential 4 4 4 4 4 

Road density (km/km2) 3 3 3 3 3 

% anthropogenic impermeable surfaces 3 3 3 3 3 

Mean 3.3 3.2 3.2 3.2 3.3 

Median 3 3 3 3 3 

 

2.3 Woodland habitat  

In the Rio Tomebamba watershed, 62 existing páramo woodland patches were identified with a total area of 902.0 

hectares (9.020 km2). LTAR contained 30 of those patches and 542.2 hectares (5.422 km2), followed by QAR with 14 

patches and 180.8 hectares (1.808 km2) and TAR with 11 patches and 98.1 hectares (0.981 km2). The Llaviucu analysis 

region had the least at 7 patches and 80.9 hectares (0.809 km2). Patch number was less significant than area for lower 

elevation woodland habitat as the 150-meter consideration combined 3350.5 hectares of habitat into just 9 patches across 

the Rio Tomebamba watershed. Of the analysis regions, QAR had the highest number of patches (5) but the second lowest 

area (342.8 hectares). LTAR had the highest area of low elevation woodland habitat (2516.1 hectares) distributed across 3 

distinct patches. Llaviucu analysis region had 477.7 hectares of montane woodland habitat, although that area was part of 

a large patch in LTAR that crossed the sub-watershed boundary. TAR had the lowest area at 13.9 hectares (0.130 km2) 

(Figure 4).  

 

 

Figure 4. Existing páramo 

and lower elevation 

(montane) woodland habitat 

in the Rio Tomebamba 

watershed based on 

landcover data from el 

Ministerio de Agricultura, 

Ganaderia, Acuacultura, y 

Peces de Ecuador and 

methodology based on 

methodology from Tinoco 

et al. 2013. 
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Discussion 

The Rio Tomebamba watershed provides vital water resources, cultural services, and ecological benefits to 

members of the surrounding population. Part of the traditional cultural practices of communities in the Quinuas region 

involves rituals associated with Rio Tomebamba (Rojas, 2016). Cuenca, too, depends on the discharge from this 

watershed—it is the city’s oldest water source and provides over 60% of the urban area’s water supply (Carrasco et al., 

2010). Rio Tomebamba also lies inside one of the most economically important watersheds in the country—the Paute 

river watershed, which contains the Daniel Palacios hydroelectric plant which supplies roughly 40% of the country’s 

energy supply (CONELEC,2011; Carrasco et al., 2010; Padron-Pesantez, 2019).  The watershed also contains 132.5 km2 

(45%) of Cajas National Park, a RAMSAR site significant as a repository for highly endangered or endemic species, one 

of two formal conservation sites protecting south-western Ecuadorian high-elevation ecosystems, and as an area of 

hydrologic regulation (Astudillo et al., 2014; Van Colen et al., 2017). Although the Llaviucu analysis region demonstrated 

the highest rating for watershed condition and the Lower Tomebamba region the lowest, few clear trends emerged 

regarding either individual indicators or analysis regions. 

 

3.1 Riparian corridors 

Although Cajas National Park protects 93.0% of the Llaviucu analysis region, that area still only achieved a 

“good” condition rating based on the indicators used. The riparian zones within this area, as well as across the watershed, 

seem to be the most prominent point of concern. In all analysis regions, indicators related to riparian corridor condition—

riparian zones impacted by roads, quality of riparian vegetation, and fluvial habitat condition—appear impaired.  As is 

common in mountainous regions, human settlement, roads, and cultivated land occur in or near riparian areas, impacting 

both system health and water quality. Riparian corridors and the vegetation that compose them act as the principal source 

of organic matter and energy in freshwater systems, there-by driving both biological and physical interactions within them 

(Ceccon, 2003; Zimbres et al., 2017). Fish, macroinvertebrates, and other aquatic species depend on intact and highly 

functioning riparian ecosystems to maintain health and community structure (Burneo & Gunkel, 2003; Carrasco, 2010). 

This type of vegetation also serves as a filter for sediment and water contaminates, slowing or halting their entrance into 

the freshwater system (Carrasco, 2010; Ceccon, 2003). In short, riparian zones act as the interface between in-channel 

freshwater aquatic ecosystems and the landscape in which they reside, serving vital roles in the maintenance of water 

quality and habitat condition. Water contaminates rarely originate within the stream or river channel itself; rather, they are 

produced in the surrounding landscape and transported to stream channels (Anbumozhi et al., 2005). As such, riparian 

buffer zones prove vital for reducing contaminant input and maintaining water quality and ecosystem health. 

Riparian corridors also play essential roles in maintaining both biodiversity and landscape connectivity, even in 

cases where they fail to completely connect forest patches (Hawes et al., 2006; Crooks & Sanjayan, 2006; Hilty et al., 

2006). In highly deforested landscapes, such as those common throughout Ecuador and to some extent within the Rio 

Tomebamba watershed, they present the best available opportunity for preserving terrestrial mammal diversity (Zimbres 

et al., 2017). The quality of riparian vegetation within the four regions of the Rio Tomebamba watershed, the degree of 

road impact within riparian zones, and poor fluvial habitat condition in some areas all indicate severely impacted riparian 

areas. Indeed, in 2010, Carrasco et al. 2010 reported that riparian corridor widths in the Rio Tomebamba watershed were 

no greater than six meters in any of the sampled areas. No indication in either the data gathered for this investigation or in 

the literature surrounding the Rio Tomebamba watershed suggests that this statistic has improved. On the contrary, 

increases in landscape conversion for pastures and crops as well as increases in cattle ranching have most likely led to the 

continued decline of such areas (González-Maldonado & Córdova-Vela, 2017). As far back as 1991, Armour et al. 

identified significant impacts to riparian areas produced by cattle activity near waterways. Understory structure and 

geomorphology were altered by overgrazing below the browse line and bank collapse caused by excessive trampling of 

stream banks (Armour et al., 1991).  

Riparian corridor maintenance has been a widespread landscape management strategy and could prove 

particularly effective within the Rio Tomebamba watershed (Bier & Noss 1998). Restoring sections of the riparian 

corridor and potentially rerouting lesser used dirt roads away from the riparian zone could prove effective in improving 

the overall health of the watershed as well as the water resources and habitat condition within it.  

 

3.2 Converted land 

Converted land within the watershed amounted to just over 14.0% with a greater extent in the Lower Tomebamba 

watershed region and minimal extent within the Llaviucu analysis region. This relatively positive result suggests that a 

vast majority of the watershed retains intact native vegetation. However, this assumption represents a heavily simplified 

rendering of a much more complex reality. Historically, the páramo region was considered communal land and 

community members shared responsibility for maintenance of the area (moving livestock frequently, keeping 

development to a minimum, etc.). However, when property rights were transferred to non-family members, rights to this 
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vast communal area did not accompany them. Over time, the páramo areas that utilized this management strategy became 

areas sin propietario conocido, or areas with no known owner, and were appropriated by others. The practice of 

maintaining small beef cattle herds on this landscape became common as a demonstration of that claim to land ownership 

(Rojas, 2016). Consequently, there exist a rather large number of unrestrained livestock in the páramo areas. This 

ecosystem evolved without large mammals and the presence of cattle has a profound impact on the water retention and 

regulation capacities of this ecosystem’s soil and vegetation (Hofstede, 1995; Buytaert et al., 2006). Although quantifying 

and assessing this metric was outside the scope of this study due to the lack of data and available methodology, future 

analyses of watershed health in these areas ought to consider livestock management and impact on páramo hydrology 

when addressing terrestrial ecosystem components.  

 

3.3 Water quality 

 Across all regions, BMWP/Col (British Monitoring Working Party Columbia index) appeared to decrease from 

2015 to 2018 before increasing, in some cases considerably, in 2019. The water quality index did not follow the same 

trend, suggesting that the changes in macroinvertebrate community structure were driven by factors other than those 

included within WQI (water quality index). One study has shown that macroinvertebrate community structure in the 

Andean páramo changes drastically depending on the season (rainy vs. dry), suggesting the importance of maintaining 

consistent sampling timing from year to year (Jerves-Cobo et al., 2020). However, BMWP/Col data from ETAPA-EP 

stations was collected within the same two-week period year to year. One potential explanation is that changes in land use 

impacted the taxa present, as seen in the Pesquieria River in Mexico, although this variable would not account for the 

increase in 2019 (Castro-López et al., 2019). Oxygen saturation and dissolved oxygen content drive macroinvertebrate 

presence in the Ecuadorian Andes, but those variables do not depict either an upward or downward trend during the study 

period (Jacobsen & Marin, 2004; ETAPA EP, 2020). Another possibility is that BMWP/Col does not characterize the 

water quality of the region as well as other macroinvertebrates indices might. In a 2017 study developing a multi-metric 

index assessing the ecological state of southern Ecuadorian Andean rivers, González-Maldonado and Córdova-Vela 

compared the water quality results reported by the British Monitoring Working Party Columbia index, the Andean Biotic 

Index, the IMEERA index, and the index developed in the study (IMRASE). The study found that, of the four, 

BMWP/Col was the least reliable descriptor of actual ecological status (González -Maldonado & Cordova-Vela, 2017). 

Although BMWP/Col was adapted for Columbian ecosystems, it may not completely represent the sensitivity of some 

taxa in the Andean region of Ecuador (Rios-Touma et al., 2014). While this does not entirely explain the observed trend, it 

presents one potential component. A change in climatic or geomorphologic characteristics that fell outside the scope of 

this study may also explain the sudden shift from decline to increase.  

The Quinuas analysis region fell directly downstream of the Taquiurcu analysis region, but contrary to what was 

expected, did not follow stream channel related trends depicted by WQI, IHF, and QBR. In most cases, it experienced the 

inverse of what was occurring in its upstream counterpart. Where both QBR (quality of riparian vegetation) and WQI 

(water quality index) declined slightly over the five-year period in TAR, those two variables increased in QAR. Where the 

IHF (Fluvial Habitat Index) increased over time in TAR, it decreased in QAR. The relationship between IHF and QBR 

showed a similar pattern across all analysis regions. In the case that IHF showed an increase over the five-year period, 

QBR declined over the study period in that same analysis region. Although the fluvial habitat index focuses primarily on 

physical aspects of the river channel (velocity regimes, substrate composition, etc.), it also addresses channel shading and 

leaf litter contributions. Under this index, complete channel shading represents an undesirable condition while shade with 

some windows appears to contribute to a preferred situation. It is possible that, in montane forest areas, some removal of 

woody riparian vegetation may have reduced channel shading and improved the fluvial habitat. However, this does not 

explain the same trend in páramo areas such as the Taquiurcu analysis region. A more likely explanation is that the 

aspects of the QBR index that do not overlap with aspects of the IHF index, such as introduced species and naturalness of 

the channel grade, drove the decline in riparian vegetation quality. A study targeting the relationship, if any, between 

these two indices could prove insightful and may further explain the ecological dynamics of riparian ecosystems in 

Ecuadorian páramo and montane forest areas.  

  

3.4 Habitat 

 In a study addressing the avifauna response to different patch characteristics in Polylepis forests, Metallura 

baroni was the third most abundant species in the sites sampled (Tinoco et al., 2013). Their primary diet appears to be 

composed of arthropods and nectar from a variety of native flowers found within páramo woodlands (Tonoco et al., 

2009). Results from the 2013 study suggest that this species prefers smaller, more connected patches of mature Polylepis 

stands and páramo bushy vegetation (Tinoco et al., 2013 & 2009). Although the scope of this study did not include 

páramo woodland patch connectivity, the patches distributed in the Rio Tomebamba watershed appear to fit the needs of 

the Violet-throated Metal-tail quite well. The watershed contained 902.0 hectares occurring in 62 patches distributed 
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across the páramo area of the watershed, 7 of which (80.9 hectares) occurred within Cajas National Park. Many of the 

patches appear close to the montane forest edge, a habitat the hummingbird in known to frequent during the latter half of 

the year (Tinoco et al., 2009). This habitat matrix may reflect good habitat conservation potential for this species within 

the Rio Tomebamba watershed, so long as efforts to prevent further fragmentation continue. Tourism may pose a helpful 

mechanism to promote habitat for Metallura baroni, as Cajas National Park and the surrounding area are popular with 

birders, particularly those interested in endemic species. 

 Although Chibchanomys orcesi does not exhibit the same dependency on páramo woodland as M. baroni, 

conservation of this habitat type invariably benefits this species (Boada & Vallejo, 2018). When the species was identified 

in 1997, it was found at only four lakes, at least two of which fall within the Rio Tomebamba watershed boundaries 

(Jenkins & Banett, 1997). More recently, studies and land managers have found the species near other páramo aquatic 

areas in the Cajas National Park region and in central Peru (Boada & Vallejo, 2018). Its diet appears to be entirely 

composed of aquatic insects and the occasional small fish, making it particularly susceptible to changes in water quality 

that may impact the specie’s food source (Barnett, 1999). Such a dependence on aquatic invertebrates may make C. orcesi 

a candidate as an indicator species for aquatic and riparian ecosystem health in the páramo, should more information 

about its distribution, habitats, and detectability come to light. As this species frequents rapidly flowing streams and still 

lakes, maintaining and restoring riparian areas within the Rio Tomebamba watershed could prove an important step in its 

conservation (Jenkins & Barnett, 1997; Barnett, 1999). The results of this study pinpoint riparian corridor deterioration as 

a critical issue in the context of this watershed’s health. Managing those corridors as a conservation method for 

Chibchanomys orcesi could prove an effective approach. 

 

3.5 Index and analysis regions 

The area with the lowest reported condition within the watershed was the Lower Tomebamba analysis region. In 

general, water quality and erosion potential were the only indicators registered to reflect “good” condition and only 

BMWP/Col in 2015 reflected an excellent condition. This analysis region contained the bulk of urban and suburban 

development as well as a greater quantity of roads. Cultivated lands were more common in this region as well. However, 

due to the size of this analysis region compared to the other three (LTAR accounted for 56.0% of the total watershed 

area), it was difficult to pinpoint areas or indicators of concern. The greatest quantity (by area) of páramo ecosystem was 

found within LTAR’s boundaries but made up a lower percentage of the region’s area than in other analysis regions. 

Evaluating condition of the two sub-watersheds contained within LTAR’s boundaries would likely have proved more 

informative. However, due to the location of the water quality monitoring stations, this proved impossible. An on-the-

ground study could distribute water quality and riparian habitat sampling efforts more evenly across the watershed, 

specifically targeting the sub-watersheds within LTAR, the upper regions of the Llaviucu analysis region, and the sub-

watershed located within Taquiurcu analysis region.  

Although the limits of a remote study prevented this, assessment of areas currently experiencing erosion could be 

combined with potential erosion hazard to develop a better understanding of where that indicator proves most 

problematic. Sediment introduced by erosion into stream and river channels has a profound negative impact on the aquatic 

habitat as well as the water quality (Akay et al., 2008; Couceiro et al., 2009). Erosion itself is also detrimental to the 

terrestrial habitat and landscape in which it occurs. Although the erosion data set used for this analysis was sufficient, 

future analyses of watershed or resource condition should consider more detailed erosion information. It may also prove 

informative to examine changes to the Rio Tomebamba watershed area fire regime. More frequent fire, wood extraction, 

and cattle grazing can all impact páramo vegetation as well as the spatial distribution of Polylepis sp. stands, thereby 

affected both habitat and hydrologic regulation properties (Renison et al., 2006; Cierjacks et al., 2008).   

 

Conclusion 

Although the Rio Tomebamba watershed appears to exhibit generally acceptable condition, this study represents 

only the first step in developing a full understanding of the watershed’s vulnerability and resiliency capabilities. Riparian 

corridors within its boundaries exhibit poor health and continue to experience considerable pressure from land use 

changes and road impacts. Maintaining and restoring these corridors would not only improve the overall watershed 

condition, but would also increase landscape connectivity, water quality, and refuge areas for fauna (Ceccon, 2003; 

Zimbres et al., 2017; Burneo and Gunkel, 2003; Carrasco, 2010; Anbumozhi et al., 2005). Such action could also prove 

an effective conservation strategy for Chibchanomys orcesi, a highly endemic water mouse considered endangered by the 

country of Ecuador. The Rio Tomebamba watershed also exhibited potential for Metallura baroni habitat conservation. 

Although the connectivity of woodland habitat within the watershed needs further investigation, the number and 

distribution of patches within its boundaries appears promising.  

Thus, this study presents two potential avenues for improving watershed health: managing the area for M. baroni 

and C. orcesi habitat, thereby protecting the native ecosystem and the hydrologic regulation that it provides and/or 
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focusing on riparian area restoration. Both benefit the watershed and the water resources it provides. However, a more 

developed understanding of the various processes occurring within high elevation freshwater ecosystems in this region is 

necessary to ensure that such actions are informed and will produce effective results. The relationship between the quality 

of riparian vegetation as reported by QBR and fluvial habitat condition reported by the Index of Fluvial Habitat could 

prove especially interesting. Results from this study appear to suggest an inverse relationship exists between the two, but 

finer-scale research should investigate the finding.  

Although this study established that the Rio Tomebamba watershed provides for moderate biotic integrity, 

exhibits moderate connectivity between stream channels and to the surrounding landscape, and can produce most 

ecosystem services, the watershed’s resiliency and recovery abilities still need assessment. Often this information proves 

the more useful, as it helps inform future management decisions. The United States Forest Service has developed a 

Watershed Vulnerability Framework that targets watershed exposure and resiliency. A modified version of this framework 

should be applied to the Rio Tomebamba watershed to complete the findings of this study.  

Remote watershed assessments depend on current available data and so seldom completely reflect the actual on 

the ground condition. Therefore, more site-specific field-based assessments ought to be conducted to plan for future 

management actions and restoration projects. 
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