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Abstract 

Sortase A is a powerful protein engineering tool that cleaves proteins and attaches them 

to an acyl acceptor of choice. However, the most active wild type variants of sortase A only 

show high activity at a limited number of cleavage motifs, and so work is underway to create a 

variant of sortase A that shows high activity at a greater variety of cleavage sites. Additionally, 

current studies attempting to optimize the enzyme require a way to stabilize an unstructured loop 

for the crystallization, in order to collect X-ray diffraction structural data. Here, preliminary 

results from the design of an “loop-swapped” sortase A enzyme variants are discussed, as well as 

the synthesis of two different thiol-containing “trapping” peptides intended to freeze sortase A in 

its bound conformation via a covalent disulfide bond. The first peptide is a previously described 

unnatural peptide, and was discontinued before completion, and the second peptide is a natural 

peptide which was completed and purified. Future work will involve the co-crystallization of this 

peptide with “loop-swapped” sortase A variants.  
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Introduction 

Sortase A (SrtA) is a transpeptidase enzyme found in gram-positive bacteria which 

cleaves proteins at the LPXTG motif and ligates the C-terminal of the cleaved protein onto an 

acyl acceptor, lipid II (Figure 1).1,2 Other acyl acceptors such as the N-terminus of another 

protein or peptide are also able to accept the cleaved protein.3 This function has been 

successfully exploited by researchers as a protein engineering tool to modify protein sequences 

post-translationally, attach protein tags to cells, create cyclic structures, and more. 

Staphylococcus aureus sortase A (SrtAstaph) represents the most commonly used sortase A, in 

particular due to its high cleavage activity. Despite its many uses, SrtAstaph is limited by its 

specificity to the LPXTG cleavage motif. The Streptococcus pneumoniae sortase A (SrtAstrep) 

recognizes more cleavage motifs, including LPATS and LPATA3, however is less active than the 

S. aureus version, with approximately 1/3 cleavage activity when compared to SrtAstaph (Figure 

2).  

Designing a sortase variant which has the promiscuity (recognition of additional cleavage 

sites) of SrtAstrep while maintaining the high activity of SrtAstaph will be beneficial to the research 

community as a more flexible protein engineering tool. The activity and promiscuity of new 

sortase variants can be tested against peptide variants of the LPXTG motif, via fluorescence 

 

Figure 1. Graphical representation of sortase A catalyzed protein ligation. Figure obtained 

from Antos, et al., (2016). 
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2assay (Figure 2). This improvement of Sortase A is an ongoing endeavor in the Amacher and 

Antos labs, and some parts of the project will be discussed in this paper. 

Additionally, structural 

characterization of Sortase A while it 

is in its bound conformation will 

provide insight into the role of the 

unstructured β-7/β-8 loop which 

appears to play a role in substrate 

specificity and cleavage activity. The 

catalytic residues for SrtAstrep are 

C184, H118, and R192. The cysteine, 

histidine, and arginine catalytic triad 

is conserved in SrtA enzymes of other species. Our hypothesis is that a disulfide bond between 

the catalytic cysteine and the LPXTG peptide involved in crystallization will facilitate the 

collection of accurate bound-state structural data by both trapping the enzyme in its bound 

conformation and preventing peptide shifting. A previous structure of S. aureus SrtA, which 

lacked such a covalent bond, revealed a shifted LPETG peptide out of the active site, while a 

structure that did contain a covalent bond between its peptide and the active site of sortase did 

not have this issue (Figure 3A, B).4,5  

The structure PDB ID: 2KID, which is the current best structure of a bound-state sortase A 

enzyme, includes the unnatural peptide LPAT*, where T* is an unnatural, thiol-containing 

threonine analogue. The authors of Jung, et al., 2005 developed the LPAT* peptide for the 

purpose of forming a disulfide bond between sortase and a peptide ligand.1 They showed that a  

 

Figure 2. Heat map of relative cleavage by sortase A 

variants as measured by fluorescent activity. The 

single letter labels represent the amino acid in the X 

position of the fluorescent peptide Abz-LPATXG-

K(DNP). Figure created by Izzi Piper. 
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disulfide bond did indeed form between the two when the unnatural peptide was added in 

excess.1 The goal of the disulfide bond was to allow for the collection of structural data on the 

bound enzyme. They had previously synthesized other versions of this threonine analogue 

towards the same goal, and found that the resulting bound enzyme was not optimal for structural 

studies.1 While their original synthesis of T* began with L-threonine and required nine synthetic 

steps, involving the use of highly toxic hydrogen sulfide gas (H2S), the authors designed a new 

route in 2012 that was both shorter, requiring only four synthetic steps, and did not require the 

use of H2S.1,6 I initially set out to recreate this unnatural peptide following the 2012 synthetic 

route, with the ultimate goal of co-crystallizing it with our “loop-swapped” sortase variants in 

order to solve X-ray crystallography structures of the bound enzymes. When the synthesis 

proved to be unreasonable to complete with the resources available, I created a similar natural 

peptide to use towards the same goal. 

 

A 

 

B 

 
Figure 3. A. X-ray crystallography structure of SrtAstaph complexed with shifted LPETG 

peptide, PDB 1T2W. B. NMR structure of SrtAstaph complexed with (PHQ)LPA(B27) peptide, 

PDB 2KID.  
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Activity of the β-7/β-8 Loop 

 Previous computational work identified the β-7/β-8 unstructured loop near the active site 

of sortase A as quite variable amongst SrtA enzymes, therefore, we hypothesized that it may 

affect substrate recognition. The loop is structurally conserved across class A sortases, but varies 

greatly in sequence, and sometimes in length. Based on this data, several “loop-swapped” sortase 

variants were designed with the body of SrtAstrep and the β-7/β-8 loop from other sortase A 

enzymes (Figure 4). The recombinant proteins were expressed using standard protein expression 

protocols (Methods).  

 Fluorescent peptides were used to mimic the cleavage recognition site of sortase A. Each 

peptide followed the sequence Abz-LPAT’XGK(DNP), where Abz is aminobenzoic acid, X 

represents any amino acid, and DNP is the chromophore 2,4-dinitrophenol (Figure 5). Abz 

fluoresces at 420 nm, and DNP quenches its fluorescence when in close proximity. The peptides 

    

S. pneumoniae SPS
Faecalis

 SPS
Lactis

 SPS
Monocytogenes

 

    

SPS
Oralis

 SPS
Aureus

 SPS
Suis

 SPS
Anthracis

 

Figure 4. “Loop Swapped” Sortase A variants with β-7/β-8 Loop in Stick Configuration. 

As an example of the naming format, SPS
Faecalis stands for ‘S. pneumoniae swap faecalis’, 

and indicates that the mutant has the body of S. pneumoniae sortase A and the β-7/β-8 loop 

of S. faecalis sortase A. Figure created by Alex Johnson. 
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were subjected to excitation at 320 nm while in solution with active sortase A variants. Due to 

the change in proximity of DNP to Abz during cleavage, fluorescence was quenched in whole 

peptides but not in cleaved peptides, and fluorescence signal increased with cleavage activity 

(Figure 2). 

 Our fluorescence data revealed that the cleavage activity and promiscuity of sortase 

varied greatly in our different loop-swapped variants, despite all containing the SrtAstrep scaffold. 

The activity of the “loop-swapped” variants appears to follow that of the sortase from which the 

β-7/β-8 loop came, rather than mimicking the activity of the SrtAstrep base. Multiple “loop-

swapped” variants showed the high levels of activity at multiple recognition sites, indicating 

successful design of a more active and promiscuous enzyme (Figure 2). Work in this area is 

ongoing and these results are preliminary. 

 

Fluorescent Peptides 

Chromophore-containing peptides for use in the fluorescent sortase A activity assay were 

synthesized via solid phase peptide synthesis (SPPS) (Methods). The Abz-LPATAGK(DNP) 

peptide was successfully completed and purified (Figure 5A). Due to the presence of the 

DNP chromophore, this peptide appears faintly yellow in otherwise transparent solution and 

light yellow in powdered form. The mass of this peptide was calculated to be 943.33 Da. 

Purification was not performed on the entire crude sample, due to time constraints and the 

higher priority of the crystallization peptide. The purified peptide and remaining crude 

peptide were not quantified after lyophilization, but the purified peptide was a notably large 

amount. 
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The Abz-LPATGGK(DNP) peptide, which mimics sortase A’s natural cleavage motif 

without any altered residues, was completed (Figure 5B). A large fraction of the resin was 

lost through the filter during the TFA cleavage step of synthesis, meaning that the purified 

peptide yield will be decreased. However, it was not purified before the SARS-CoV-2 

pandemic halted lab work, and its identity has not been confirmed via MS. Its mass is 

calculated to be 929.42 Da. 

The Abz-LPATSGK(DNP) peptide was completed (Figure 5C). However, it was not 

purified before the SARS-CoV-2 pandemic halted lab work, and its identity has not been 

confirmed via MS. Its mass is calculated to be 959.43 Da. 

Several times during purification set up, the HPLC showed signs of spiking pressure. 

This was troubleshooted by reducing the flow rate, and increasing the flow rate more slowly. 

In cases where bubbles entered the line, the system was purged. 
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A 

 

B 

 

C 

 
Figure 5. Fluorescent peptides used to mimic the sortase A cleavage 

motif. Differences between the peptides are highlighted in green. A. The 

structure of Abz-LPATAGK(DNP). B. The structure of Abz-

LPATGGK(DNP). C. The structure of Abz-LPATSGK(DNP). 
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Synthesis of a Trapping Peptide: Two Routes 

 

Unnatural Peptide 

Following the successful results of the “loop-swapped” variants, bound-state structural data 

became important to further understand the interaction of the β-7/β-8 loop with the peptide. 

Therefore, synthesis of the unnatural trapping peptide LPAT* was attempted following the 

improved 2012 synthesis scheme developed by Jung and Yi (Figure 6A).6 

The first synthetic step, reduction of the cysteine’s C-terminal carboxylic acid, was attempted 

three times. In the first attempt, borane tetrahydrofuran complex (referred to as ‘borane’) was 

allowed to react with the bis-protected cysteine for 80 minutes total, as described in Methods.  

A 

 

B 

 

C 

 
Figure 6. A. Synthetic route for unnatural peptide LPAT*. Figure obtained from Jung and Yi, 

(2012). B. Structure of the bis-protected cysteine starting material (compound 13). C. 

Structure of the unnatural peptide product (compound 6). The blue rectangle highlights the 

part of the starting material conserved, and the green rectangle highlights the reduction of the 

starting material’s carboxylic acid. 
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This was shorter than the four total hours (1 hour at 0 °C, 3 hours at room temperature) 

suggested by Jung and Yi in their 2012 paper.6 The resulting crude product was purified via flash 

column chromatography. During purification, thin layer chromatography (TLC) monitoring 

showed that the cysteine eluted off the silica gel column in fractions 4 through 7. However, the 

TLC did not show a difference between the starting material control sample and the crude 

product control sample, and no product was able to be isolated when fractions 4 through 7 were 

concentrated. It was determined that the product had been lost. 

In the second attempt, the procedure used for synthesis in the first attempt was repeated with 

a smaller molar excess of borane, and the crude product was not purified. To determine whether 

the reduction reaction had been successful, NMR spectroscopy was performed on both the crude 

product and a sample of the starting material. No peak for a carboxylic acid (10 to 12 ppm) was 

observed in either spectra, which was unexpected (Figure 7A, B). NMR analysis of the crude 

product showed no presence of primary alcohol, indicating that the reduction of the carboxylic 

acid failed (Figure 7B).  It was then concluded that the first attempt had also failed, and that the 

product had not been lost as it was nonexistent. In consultation with mentors, it was determined 

that in both cases, the borane had not been allowed to react with the bis-protected cysteine for 

long enough.  

Following this conclusion, the procedure was repeated and the reaction was allowed to 

proceed for one hour at 0 °C and overnight (approximately 17 hours) at room temperature. NMR 

spectroscopy was performed on both the crude product and on a new sample of the starting 

material, and again no peak for a carboxylic acid (10 to 12 ppm) was observed in either the 

starting material or the crude product NMR spectra (Figure 8A, B). The continued absence of the 

carboxylic acid peak is unusual and requires further investigation. The NMR spectra of the crude  
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product showed some presence of primary alcohol at 3.41-3.44 ppm and 3.62-3.69 ppm, 

indicating that the reduction was at least partially successful (Figure 8B). However, the starting 

material was clearly still present in the crude product, indicating that conditions for the reduction 

need to be improved in order to increase the reaction efficiency. 

It is clear that the borane reduction reaction in synthetic step 1 is not optimized for maximum 

product yield. In order to understand and improve on these limitations, further investigation is 

necessary. Increased length of reaction time did allow the reaction to be successful; however, 17 

hours is a very long reaction time and other steps, such as altering the ratio of reaction time at 0 

°C versus at room temperature, altering the “room temperature”, altering the molar ratio of bis- 

 

A 

 

B 

Figure 7. A. NMR spectrum of bis-protected cysteine starting material, taken at 500 MHz. B. 

NMR spectrum of the crude product from synthetic step 1, attempt 2. This spectrum was taken 

at 300 MHz on the same day as Figure 7A. Peaks highlighted in red are not present on the 

starting material spectrum and are consistent with known chemical shifts of solvent peaks for 

MeOH (3.49) and THF (1.85, 3.76).11 
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protected cysteine to borane complex, and altering reaction vessel volume, all may lead to 

better yields. Further investigation is required to determine how changing these factors affects 

the reaction. Additionally, investigation is required into the lack of signal for the carboxylic acid 

across all spectra taken. One possible route is confirmation of the bis-protected cysteine’s 

formula via mass spectrometry. The synthesis of an unnatural cysteine-containing trapping 

peptide was discontinued after the third attempt at synthetic step number one, due to time and 

budgetary constraints.  

 

A 

 

B 

Figure 8. A. NMR spectrum of bis-protected cysteine starting material, taken at 500 MHz. B. 

NMR spectrum of the crude product from synthetic step 1, attempt 3. This spectrum was taken 

at 500 MHz on the same day as Figure 8A. Peaks highlighted in red are not present on the 

starting material spectrum and are consistent with known chemical shifts of solvent peaks for 

MeOH (3.49) and THF (1.85, 3.76).11 Peaks highlighted in green are not present on the 

starting material spectrum and are not consistent with solvent peaks. These green peaks are at 

chemical shifts (3.41-3.44 and 3.62-3.69), which are consistent with expected peaks from a 

primary alcohol on a bis-protected cysteine. 
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Natural Peptide 

Following termination of synthesis of the unnatural peptide, synthesis of a natural sulfur-

containing peptide was pursued. The natural peptide Bz-GLPACGG-NH2, where Bz is 

benzoic acid which does not fluoresce, was synthesized in the same way as the fluorescent 

peptides, using SPPS (Methods) (Figure 9A). This “crystallization peptide” was successfully 

completed and purified. As it does not contain any chromophores, this peptide appeared clear 

in solution, and white in powered form, which is unlike the fluorescent peptides described 

earlier in this paper. The mass of this peptide was calculated to be 676.30 Da. Because the 

peptide contains a cysteine residue, it has the potential to form self-dimers via disulfide bond 

(Figure 9B). The mass of this dimer was calculated to be 1350.58 Da. The monomer and 

dimer were both determined, via mass spectrometry, to elute at the same time, and were 

collected in the same screw-cap vial. Immediately before the peptide-containing peak, eluted 

another high-intensity peak, which was determined to not contain any monomer or dimer of 

the desired peptide. It was nonetheless curious due to its high intensity signal and similar 

elution time to the peptide. The entire crude peptide solution was purified and lyophilized, 

but the resulting powdered peptide was not quantified. 

The purification of this peptide encountered the same difficulties involving pressure 

spikes that were described earlier in this paper, and approached troubleshooting in the same 

way. 
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A 

 

B 

 
Figure 9. A. The structure of monomeric Bz-GLPACGG-NH2. B. The structure of dimeric Bz-

GLPACGG-NH2, showing expected atom connectivity with an exaggerated disulfide bond. 
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Future directions 

 Co-crystallization of the Bz-GLPACGG-NH2 peptide with sortase A variants will be 

pursued in future work. Co-crystallization is not anticipated to be attempted with SrtAstrep-based 

“loop-swapped” variants, due to the difficulty of crystallizing SrtAstrep in a biological monomer.7  

Instead, co-crystallization will be attempted with wild type and potentially also with “loop-swap” 

variants of sortase A homologues that have already been shown to crystallize well. The sortase A 

homologues of S. agalactiae and of S. mutans have both been shown to crystallize in simple 

conditions and are candidates for this future work.8–10 
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Methods 

Protein expression and purification. Kanamycin-resistant plasmids (Genscript) containing the 

hexahistidine-tagged sortase variant genes were expressed in E. coli cells. Cells were grown in 

10 ml of LB or 2XYT media with Kanamycin (Kan) (“overnight” culture) for 16 to 18 hours at 

37 °C, with shaking, then grown in 1 L of the same media, also with Kan and also at 37 °C, with 

shaking, until OD600 readings were between 0.6 and 0.8. Cultures were then induced for 

overexpression with isopropylthio-β-D-galactoside (IPTG) and the temperature was lowered to 

18 °C. After overexpressing for 18-20 hours, the growth was pelleted via centrifugation, and the 

pellet was frozen in liquid nitrogen and stored in -80 °C. The cell pellet was thawed in a room-

temperature water bath, then resuspended in 30 mL of lysis buffer via vortexing. The resulting 

cell suspension was lysed via sonication for 30 seconds, two times. This cell lysate was pelleted 

via centrifugation. A simplified workflow of this process is presented in Figure 10A. 

The supernatant was then run through a nickel column and washed with low imidazole 

buffer, then eluted with high imidazole buffer. In some cases, before further purification, the 

hexahistidine tag was cleaved using tobacco etch virus protease (TEV protease), and the cleaved-

sortase containing eluent was run through a second nickel column. Then, the cleaved-sortase 

containing wash was further purified via size exclusion chromatography on an ÄKTA prime plus 

FPLC, and the monomer-containing fractions were assessed for impurities and preliminary 

presence of desired protein via tricine gel electrophoresis. A simplified workflow of this process 

is presented in Figure 10B. 
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Solid State Peptide Synthesis (SPPS). All natural peptides were synthesized using solid state 

peptide synthesis (Figure 11).  Each peptide was synthesized in a batch size of 0.1 mmol, using 

~0.1724g Rink Amide Resin (resin) as the solid support, with each peptide in its own plastic 

synthesis vessel with a 20 μm filter (Resprep) to prevent the evacuation of resin during vacuum-

draining. The resin was swollen in excess 1-methyl-2-pyrrolidinone (NMP) before addition of 

the first amino acid.  

Each amino acid, as well as the resin, contained an N-terminal 

Fluorenylmethyloxycarbonyl (Fmoc) protecting group. Prior to each conjugation, the Fmoc 

group was cleaved off of the N-terminus of the resin or the most recent amino acid addition 

(Figure 11). The resin and attached peptide were washed with an excess of 20% piperidine in 

NMP, with rocking at ~65 rpm for 10-20 minutes, two times. The solution was then washed with 

NMP with rocking at ~65 rpm for 5 minutes, three times, to remove the free Fmoc group from 

solution (Figure 12A). Between each wash, the vessel was vacuum-drained, in order to remove 

unwanted chemical debris such as the free Fmoc group and unreacted piperidine.  

 In a separate vial, the C-terminal amino acid, which was added in 3x molar excess, was 

primed using 3x molar excess HBTU and Diisopropylethylamine (DIPEA) (Figure 11).  The 

amino acid mixture was vortexed to mix, then decanted into the synthesis vessel (Figure 12B, C). 

The amino acid vial was washed with NMP to ensure the transfer of all reagents. The resulting 

conjugation solution was rocked at ~65 rpm for a minimum of 2 hours. After the conjugation 

time was complete, the solution was vacuum-evacuated to remove the byproducts of the 

conjugation reaction the solution, then washed with NMP with rocking at ~65 rpm for 10 

minutes, three times. Vacuum-draining was also performed between these washes. Abz and Bz 

were conjugated using the same method. 
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 After each addition, a Kaiser assay was performed, described below. In the event of a 

successful result, the conjugation reaction was considered complete, and the process of 

conjugating the next amino acid, using the same procedure, was started. 

Once all residues and Abz or Bz in a peptide had been conjugated, the completed peptide 

was washed with NMP with rocking at ~65 rpm for 10 minutes, three times, to remove chemical 

debris from conjugation. Then, the peptide solution was washed with excess DCM with rocking 

at ~65 rpm for 10 minutes, three times. Next, the peptide solution was washed in trifluoracetic 

acid (TFA), for 30 minutes, two times, in order to cleave the peptide off of the resin. The TFA 

washes were performed without rocking, and without a synthesis vessel lid to prevent pressure 

buildup. The TFA was then removed from solution via rotovap, and the peptide was added 

dropwise to ice cold ether. The ether-peptide solution was centrifuges at 4500 rpm for 5 minutes 

at 4 ℃, and the ether supernatant was decanted off. The crude peptide-containing pellet was 

vacuum-dried, then stored at 4 ℃ (Figure 12D).  

 

Kaiser Assay. The Kaiser assay is a colorimetric assay that detects the presence of free primary 

amines in solution. In the presence of these amines, the solution will turn a distinctive musky 

blue color.  

 The Kaiser test kit consists of three reagents. In order to test each conjugation, 10 μL of 

each reagent were pipetted into a clean, labelled microcentrifuge tube, and additionally one tube 

for a positive control and one tube for a negative control. These tubes were centrifuged for a few 

seconds to ensure that no reagents were on the sides of the tubes. Then, vacuum-dried resin from 

the conjugation solution, positive ninhydrin powder, and negative ninhydrin powder, were placed 
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into their appropriate tubes, via pipette tip. These tubes were capped, then incubated at 95 ℃ for 

5 minutes. A successful result was indicated by no color change in the conjugated resin solution, 

which was either clear, or faintly yellow for peptides containing the chromophore DNP. An 

unsuccessful result was indicated by a musky blue color. 

 

Mass Spectrometry. Electron Spray Ionization Mass Spectrometry (ESI-MS) was performed on 

an Advion Expression Mass Spectrometer. ESI-MS was used to positively identify the presence 

of the desired peptide in the initial spectrum collection peaks. The mass found in each collected 

peak was compared to the calculated mass of the peptide (ChemDraw). 

 

High Performance Liquid Chromatography Peptide Purification. Peptide purification was 

performed on a Dionex UltiMate 3000 UHPLC with Diode Array detector. The crude peptide 

was dissolved in just enough 1:1 acetonitrile: sterile H2O, and 10 μL was added to either a 

microcentrifuge tube or an HPLC vial. Each type of vessel required a base liquid volume, to 

ensure that the HPLC injection needle could remove the full volume of injection without taking 

up any bubbles. If a microcentrifuge tube was used, then 30 μL of sterile H20 was used. If an 

HPLC vial was used, 25 μL of sterile H20 was used.  

First, 5 μL of sample was injected onto a semi-prep column (Phenomenex Luna 5 μM 

C18(2) 100Å LC 250 x 10 mm column) and eluted using a gradient (beginning at 20% buffer B 

(0.1% formic acid in acetonitrile), 80% buffer A (0.1% formic acid in 95% nanopure H2O, 5% 

acetonitrile)). A UV-Vis spectrum of the elution profile was collected (“initial spectrum”). Data 

was collected for every wavelength between 200 nm – 700 nm, and was visualized at whichever 
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wavelength provided clearest visualization of peaks. Then, another 5 μL was injected, and eluted 

using the same method, and the peak(s) most likely to be the peptide of interest were collected in 

clean, labelled screw-cap vials. Peaks were judged based on their size, and to a lesser extent, 

their elution time. 

 A 5 μL aliquot of each peak collection was added to a new microcentrifuge tube or 

HPLC vial with the proper base of sterile H2O, and 5 μL of each diluted sample was injected 

onto the analytical column (Phenomenex Aeris 3.6 μM WIDEPORE C4 200Å LC 150 x 21 mm 

column), which was eluted onto the mass spectrometer to confirm presence of the desired 

peptide in that peak. 

Then, enough crude peptide solution for several injections was added to the original 

microcentrifuge tube or HPLC vial. Depending on the estimated concentration of the crude 

peptide solution, several injections of volume 5 μL -100 μL were run in series, and the 

appropriate peaks were collected in the appropriate screw-cap vials. This was repeated until no 

crude peptide solution remained. Once the sample in the microcentrifuge tube or HPLC vial was 

at the base liquid volume, additional 1:1 acetonitrile: sterile H20 was added to the sample to 

dilute the peptide and allow for further injections. This was repeated until the UV-Vis signal was 

at sufficiently low intensity, indicating that most of the peptide had been collected (Figure 12D). 

Peptide Storage. Following purification, or in the case that purification could not be completed, 

the acetonitrile was removed from each purified or crude peptide solution via vacuum 

evaporation (Figure 12D). Then, the solution was frozen in dry ice at an angle, in order to 

maximize exposed surface area within the labelled screw-cap vial. The cap of the vial was then 

replaced with a porous Kim Wipe, which was secured with a rubber band, and the water was 
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removed via lyophilization. After lyophilization, the caps were replaced on the screw-cap vials 

and powdered peptides were stored at 4 ℃. 

 

Synthesis of the unnatural amino acid T*. N-Boc-S-Trityl-(D)-Cysteine (Bis-protected Cysteine) 

was used as a starting material (Figure 6B). The planned synthetic scheme was four steps: First, 

reduction of the carboxylic acid C-terminus to a primary alcohol. Second, the oxidation of that 

primary alcohol to an aldehyde. Third, the nucleophilic alkylation of the aldehyde, to mimic the 

side chain of threonine. Fourth, deprotection of the N-Boc group. The synthesis would be 

followed by deprotection of the S-Trityl group, and finally, the addition of the resultant unnatural 

amino acid (T*) to the C-terminus of an LPA peptide, using solid phase peptide synthesis. The 

structure of the LPAT* peptide is shown in Figure 6C. 

 

Synthetic step one for T*. Bis-protected Cysteine (1 g, or 0.002157 mol) was dissolved in 5 mL 

of anhydrous THF in anhydrous conditions under argon gas. Molar excess of BH3-THF complex 

was added, slowly, via syringe, at 0 °C. The mixture was allowed to react, with stirring, for 20 

minutes at 0 °C. It was then allowed to react for 1 hour, with stirring, at room temperature 

(approximately 25 °C). Then, the reaction was quenched with molar excess methanol and 

concentrated. The quenching step was performed twice to ensure full deactivation of the BH3. 

 

Purification of T* intermediate. A small portion of the crude product was saved as a control for 

thin layer chromatography (TLC) monitoring of the purification. A flash-column 

chromatography column was used to purify the crude product. The column was packed with 
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SiliaFlash P60, 40-63 μm irregular silica gel (SiliCycle) as the stationary media, and run in a 

glass column with a 1 L bulb. Laboratory-grade sand (Macron Fine Chemicals) was used as a 

filter at the top and bottom of the silica layer, and cotton was used as a porous plug at the bottom 

of the column. A 1:1 Methane: Hexanes solution was used as the mobile media to elute the 

reduced cysteine product off the column. Fractions of approximate volume 36 mL were collected 

in borosilicate glass disposable culture tubes.  

 

Nuclear Magnetic Resonance (NMR) Spectroscopy. NMR spectra were collected on either a 

Varian MercuryPlus 300 MHz FT-NMR instrument or a Bruker Avance III 500 MHz FT-NMR 

instrument, at Western Washington University. All NMR samples were in Chloroform-D 

solvent. 
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Supporting Information 
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Figure S1. A. Workflow of protein expression and retrieval from bacterial cells B. Workflow 

of protein purification. 
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Figure S2. Simplified scheme of one round of the amino acid addition in solid phase 

peptide synthesis. 
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D 

 
Figure S3. Workflow of laboratory procedure for solid phase peptide synthesis A. Workflow 

of Fmoc deprotection. B. Workflow of amino acid preparation for conjugation. C. Workflow 

of resin/peptide and amino acid conjugation. D. Workflow of peptide cleavage from resin, and 

purification. 
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