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ABSTRACT

Image segmentation is the partitioning of a digital image into small segments

such as pixels or sets of pixels. It is significant as it allows for the visualiza-

tion of structures of interest, removing unnecessary information. In addition,

image segmentation is used in many fields like, for instance healthcare for

image surgery, construction, etc. as it enables structure analysis. Segmen-

tation of images can be computationally expensive especially when a large

dataset is used, thus the importance of fast and effective segmentation algo-

rithms is realised. This method is used to locate objects and boundaries (i.e.

foreground and background) in images. The aim of this study is to provide

a comparison of clustering techniques that would allow the Grabcuts for im-

age segmentation algorithm to be effective and inexpensive. The Grabcuts

based method, which is an extension of the graph cut based method, has

been instrumental in solving many problems in computer vision i.e. image

restoration, image segmentation, object recognition, tracking and analysis.

According to Ramirez,et.al [47], the Grabcuts approach is an iterative and

minimal user interaction algorithm as it chooses a segmentation by iteratively

revising the foreground and background pixels assignments. The method uses

min-cut/ max-flow algorithm to segment digital images proposed by Boykov

and Jolly [9]. The input of this approach is a digital image with a selected
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region of interest (ROI). The ROI is selected using a rectangular bounding

box. The pixels inside the bounding box are assigned to the foreground,

while the others are assigned to the background.

In this study, the Grabcuts for image segmentation algorithm designed by

[48] with a Gaussian Mixture Model (GMM) based on the Kmeans and Kme-

doids clustering techniques are developed and compared. In addition, the al-

gorithms developed are allowed to run on the Central Processing Unit (CPU)

under two scenarios. Scenario 1 involves allowing the Kmeans and Kmedoids

clustering techniques to the Squared Euclidean distance measures to calcu-

late the similarities and dissimilarities in pixels in an image. In scenario

2, the Kmeans and Kmedoids clustering techniques will use the City Block

distance measure to calculate similarities as well as dissimilarities between

pixels in a given image. The same images from the Berkeley Segmentation

Dataset and Benchmark 500 were used as input to the algorithms and the

number of clusters, K, was varied from 2 to 5.

It was observed that the Kmeans clustering technique outperformed the Kme-

doids clustering technique under the two scenarios for all the test images with

K varied from 2 to 5, in terms of runtime required. In addition, the Kmeans

clustering technique obtained more compact and separate clusters under sce-

nario 1, than its counterpart. On the other hand, the Kmedoids obtained

more compact and separate clusters than the Kmeans clustering technique

under scenario 2. The silhouette validity index favoured the smallest number

of clusters for both clustering techniques as it suggested the optimal number

of clusters for the Kmeans and Kmedoids clustering techniques under the two

scenarios was 2. Although the Kmeans required less computation time than
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its counterpart, the generation of foreground and background took longer for

the GMM based on Kmeans than it did for the GMM based on Kmedoids

clustering technique. Furthermore, the Grabcuts for image segmentation

algorithm with a GMM based on the Kmedoids clustering technique was

computationally less expensive than the Grabcuts for image segmentation

algorithm with a GMM based on the Kmeans clustering technique. This was

observed to be true under both scenario 1 and 2. The Grabcuts for image

with the GMM based on the Kmeans clustering techniques obtained slightly

better segmentation results when the visual quality is concerned, than its

counterpart under the two scenarios considered. On the other hand, the BF-

scores showed that the Grabcuts for image segmentation algorithm with the

GMM based on Kmedoids produces images with higher BF-scores than its

counterpart when K was varied from 2 to 5 for most of the test images. In

addition, most of the images obtained the majority of their best segmenta-

tion results when K=2. This was observed to be true under scenario 1 as well

as scenario 2. Therefore, the Kmedoids clustering technique under scenario 2

with K=2 would be the best option for the segmentation of difficult images in

BSDS500. This is due to its ability to generate GMMs and segment difficult

images more efficiently (i.e. time complexity, higher BF-scores, more under

segmented rather than over segmented images, inter alia.) while producing

comparable visual segmentation results to those obtained by the Grabcuts

for image segmentation: GMM-Kmeans.
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1. INTRODUCTION

1.1 Background

Image segmentation is a solution for many computer vision problems. It is

the process of partitioning a digital image into small segments such as pixels

or sets of pixels. Image segmentation allows for the analysis of images by

enabling the visualization of structures of interest and the removal of unnec-

essary information. In addition, it leads to the extraction of different regions

with similar attributes. Image segmentation is applied in many fields which

include healthcare for image surgery and construction amongst other fields.

It also finds practical applications ranging from filtering of noisy images,

this study of anatomical structures, locating objects in satellite images, face

recognition, finger print recognition. Thus, image segmentation is considered

as the first and significant step in image analysis and it directly influences the

overall success in understanding an image. Segmentation of images may be

computationally expensive especially when large datasets are used, thus the

importance of a fast and efficient segmentation algorithm is realized. Fur-

thermore, a good segmentation is said to be one in which pixels in the same

category are allocated to a similar greyscale multivariate value and form a

connected region. Also, pixels or sets of pixels in a different category are

1



allocated different values.

1.2 Problem statement

We live in the digital era where more often than not information can be

found in images or videos. These images contain important information that

may be seen to be lost amongst the mist of insignificant aspects of these im-

ages. Thus the problem is the extraction of useful information from images.

Many users such as graphics artists as well as everyday users find themselves

having the need to cut certain objects from other images to compose new

ones. Thus, the need to find an algorithm that will assist users is realised.

Moreover, many researchers have produced image segmentation algorithms

that have catered for different image types. In particular, there has been

several graph based image segmentation algorithms developed by researchers

such as BoyKov et al. [9], etc. According to Han et al. [25], the immense

amount of information and the unpredictable complexity in images requires

that one develops an efficient and inexpensive segmentation algorithm.

1.3 Research aims and objectives

The aim of this study is to provide a comparison of clustering techniques

that can be used to generate the Gaussian Mixture Models (GMMs) for

the Grabcut-based image segmentation of colour images. Moreover, this

study aims at suggesting a clustering technique that will enable the grabcut-
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based image segmentation algorithm developed in [48] to be efficient and

inexpensive. To do this, the researcher will:

1. Review the literature on graph-based methods used for image segmen-

tation.

2. Provide a summary and survey of the graph-cut algorithms that have

been developed thus far.

3. Review the literature and provide summaries of the grabcut algorithms

described in [48] and [54].

4. Describe and explain the use of the GPU instead of CPU to run graph-

based image segmentation algorithms.

5. Conduct a review of clustering techniques.

6. Identify measures used to determine the quality of clustering solutions.

7. Analyse the performance of the Grabcuts for image segmentation algo-

rithm with a GMM based on Kmeans when the number of clusters is

varied from 2 to 5 under scenario 1 and 2.

8. Analyse the performance of the Grabcuts for image segmentation algo-

rithm with a GMM based on Kmedoids when the number of clusters is

varied from 2 to 5 under scenario 1 and 2.

9. Compare the performance of the algorithms under scenario 1 and 2.
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1.4 Contributions of this study

The novel contributions of this study are:

• An adapted Grabcut for image segmentation algorithm with a GMM

based on Kmeans and Kmedoids.

• The analysis of Kmeans and Kmedoids clustering techniques under

changing conditions.

• A comparison of the performance of the Kmeans and Kmedoids clus-

tering techniques.

• The analysis of the Grabcuts for image segmentation algorithm with

GMM based on two clustering techniques under changing conditions.

• A comparison of the performance of the Grabcuts for image segmen-

tation algorithm with a GMM based on the Kmeans and Kmedoids

clustering techniques.

1.5 Image segmentation techniques

According to Dass, Priyanka & Devi [18], there is no single method which

can be considered good for all types of images. Thus, in this section we

will discuss the different image segmentation techniques which are catego-

rized according to the image properties under two headings viz, detecting

discontinuities and similarities see Figure 1.1.

Edge based segmentation technique belongs to the image segmentation

techniques that detect discontinuities. On the other hand threshold, region,
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Fig. 1.1: Segmentation techniques

watershed and energy based image segmentation techniques are grouped un-

der techniques that detect similarities to segment images [18].

Detecting discontinuities

In this type of segmentation the partitioning of an image is done based on

the abrupt changes in intensity [18]. The following image segmentation tech-

niques are categorised under this category:

1.5.1 Edge based segmentation

This segmentation technique is carried out by detecting the edges or pixels

between different regions that have a rapid transition in intensity. These

regions are extracted and linked to form closed object boundaries. This

property is considered to be the most significant attribute of the edge de-

tection method. In this type of segmentation the values of the pixels con-

necting foreground and background are assumed to be distinct. According
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to Muthukrishnan et al. [39], this technique considers three different types

of discontinuities in gray level images namely; points, lines and edges. In

addition, edge based segmentation results in a binary image. The following

are some of the well known edge based segmentation algorithms; Roberts

edge detection, Sobel edge detection, Prewitt edge detection, Robinson edge

detection, etc [41,45,50]. Edge based segmentation has two main edge based

segmentation methods.

1. Gray histogram method

2. Gradient based method

Detecting similarities

The segmentation of an image under this method is done by grouping similar

characteristics of the image according to a set of predefined criterion [18]. The

are several image segmentation techniques categorised under this method;

including thresholding, region growing, inter alia.

1.5.2 Threshold based segmentation

According to Al-amri et al.[2], threshold based segmentation is a method

that is mostly used to discriminate foreground from the background. The

method is done by selecting an adequate threshold value T, then a gray

level image is converted to a binary image which contains all the significant

information of the image. The threshold value is chosen based on the anal-

ysis done on the histogram generated by the image. In addition, the gray

level values below the value of T will be classified as black and those above T
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as white. The following are the five threshold based segmentation techniques:

1. Mean technique

The mean technique uses the value of the mean of the pixels that con-

stitutes the image as the threshold value. This technique is used when

approximately half of the pixels of the image belong to the foreground

and the remainder of the pixels belong to the background. Although

this is the case, it is imprudent to note that this technique is rarely

used due to the fact that images in which half of the pixels belong to

the foreground with the remaining half belonging to the background

are rare.

2. P-Tile technique

According to Al-amri et al.[2], this technique is one of the earliest

threshold methods based on gray level histogram. It utilises the size of

the area occupied by the object of interest. In addition, this method

assumes that the image occupies a fixed percentage of the picture area.

This fixed percentage of the picture area is also known as P%. The

P-tile technique has a limitation as it assumes that the object is always

brighter than the background, which is not always the case.

3. Histogram Dependent technique

4. Edge Maximization technique

5. Visual technique
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1.5.3 Automatic threshold

Al-amri et al.[2], maintains that the selection of a threshold value by the sys-

tem without human intervention is known as automatic thresholding scheme.

In this type of threshold scheme, the system needs to have information about

the object such as the intensity characeristics, their size, fractions of the im-

age that are occupied by the object and the number of different objects that

appear on the image.

1.5.4 Region based segmentation

According to Saini et al.[50], region based segmentation can be further bro-

ken down into region growing and region splitting-merging segmentation.

1. Region growing segmentation

2. Region splitting-merging segmentation

1.5.5 Watershed based segmentation

Watershed based segmentation approaches transform an image into a gra-

dient image. This is due to the fact that this approach is a mathematical

morphological approach that creates its analogy from a real life flood situa-

tions [50]. The approach can be viewed as an edge based method and is said

to be susceptible to over segmentation [50].

8



1.5.6 Energy based segmentation

Energy based segmentation consists of live wire segmentation, active contour,

level sets and graph cut based segmentation.

1.5.7 Fuzzy based method

A Fuzzy based method utilise some similarity criterion which includes dis-

tance, connectivity or intensity. These approaches include the FCM (Fuzzy

C-Means), GK (Gustafson Kessel) and GMD (Gaussian Mixture Decompo-

sition) techniques amongst others [18,59].

An overview of the remainder of the thesis

This thesis consists of six chapters, in Chapter 1, we give some background

and history of image segmentation. We also give definitions of some pre-

liminary concepts and detailed descriptions of some of the prominent image

segmentation techniques. In chapter 2, we look at the descriptions of images

(i.e. colour images, gray scale images, etc.). In addition, we present some

basic terminology related to graph theory. Furthermore, the research visits

some of the first graph based algorithms for image segmentation. A detailed

description of the Grabcut algorithm proposed by [48, 54] is given in Chap-

ter 3. In addition, the proposed adaptations on the Grabcut algorithm are

outlined in this chapter. A detailed discussion of the performance measures

used in this study to determine the quality of the clustering solution and

segmentation results is given in Chapter 4. Chapter 5 gives the experimental

set-up and results as well as discussions obtained from testing the algorithm
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proposed. A suitable conclusion for this study and possible future work are

alluded to in Chapter 6.
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2. LITERATURE REVIEW

The graph cuts method has become a popular alternative for solving com-

puter vision problems such as object recognition, tracking and segmentation.

Many researchers maintain that the use of graph cuts in image segmenta-

tion is motivated by the fact that they allow for geometric interpretation of

an image. In addition, graph cuts works as powerful tool for energy mini-

mization for a wide range of binary and non-binary energies that frequently

occur in early vision [10]. They also maintain that graph cuts are sometimes

used as optimization techniques and that they are closely related to com-

binatorial algorithms. Graph cuts have been given praises for their ability

to convert image segmentation problems into energy minimisation problems,

and then finding the global optimal solution with the aid of min cut/ max

flow algorithms. In addition, Khokher et al. [30]. have alluded to the fact

that graph cuts for image segmentation is the most promising amongst the

methods mentioned in Section 1.5, as they promote perceptual grouping and

organisation using the image features and spatial information. This is due to

some of these methods being effective for some images such as the histogram

thresholding that works best for monochrome images and not colour images.

In addition some of these methods are biased to ellipsoidal structures and do

not necessarily produce closed regions, inter alia edge based methods.
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2.1 Digital images and their importance

Digital images have become very dear to our hearts since the advancement

of technology. Hence we will examine their basics as well as understand their

different types, viz. colour, black and white, and grayscale images. In our

attempt to unveil these different types of digital images, we will first examine

some basic concepts.

Definition 2.1.1. [49] A digital image is a rectangular array of pixels some-

times called a bitmap.

Binary image

As the prefix “bi”may loosely indicate, a binary image is a digital image

whose pixels have only two possible values. According to [49], binary images

are also called bi-level or two level images. In addition, the names black-

and-white, monochrome or monochromatic can be used synonymously with

binary image. Although this is the case, these names can be used inter-

changeably with gray scale images. Conway & Sloane [15], maintains that

the binary images can originate from the processing of digital images or as a

product of operations such as image segmentation, thresholding and dither-

ing.

2.1.1 Interpretation of binary images

Definition 2.1.2 (n-Dimensional integer lattice [11]). An n-dimensional in-

teger lattice L ⊆ Rn, is a lattice in the Euclidean space Rn whose lattice
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points are n-turples of integers.

According to [49], binary images can be interpreted as subsets of the two-

dimensional integer lattice Z2. This lattice is also known as the square or

grid lattice and is one of five types of two-dimensional lattices as classified by

their symmetry groups. This interpretation leads to the inspiration of a new

field called morphological image processing (i.e. theory and technique for

analysing and processing geometrical structures, based on set theory, lattice

theory, topology, etc.).

Binary images require less memory allocation due to their ability to have

small file sizes when stored in packed arrays of bits and bitmaps. For this

reason, they are an ideal image format for document management solutions.

Colour image

To understand what a colour image is, we first need to give a description

of a colour space. There are several definitions and descriptions given by

researchers for a colour space. According to [52], a colour space is a math-

ematical model that describes the way in which colours can be represented.

Sangwine & Horne [52], maintains that a colour space sometimes called colour

coordinate systems are three-dimensional groupings of colour sensations. In

addition, colour spaces are named by their primary colours. There are sev-

eral colour spaces that are of interest when it comes to image processing ,

viz. RGB, CMY(K), HSL, YIQ, YUV, YCbCr, YCC and CIE. We shall now

give a brief description of the RGB and CMY(K) colour spaces.

RGB (Red, Green and Blue)

Let us begin by providing a description of the RGB colour space. This colour
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space is based on the additive RGB colour model in which the colours red,

green and blue are added to produce a broad array of colours. According

to Sangwine & Horne [52], this colour space is used more frequently for im-

age processing as many colour cameras, printers, scanner are provided with

a direct RGB input or output signals. Moreover, this colour space may be

transformed into the other colour spaces. The RGB colour space may be

viewed pictorially as a cube since it consists of a three-dimensional coordi-

nate system. Figure 2.1 shows the RGB colour space gamut which represents

the RGB colour model where each colour is described by its RGB compo-

nents.

Fig. 2.1: RGB colour space as shown by [52]

The R,G,B axes which are on the edges of the cube represent the three

primary colours, viz. red, green and blue. All grey colours are placed on the

main diagonal of the cube from black, which is given by (R = G = B = 0),

to white (R,G,B = max) where max = 255 is the maximum value which

any colour can have. Each colour point within the cube is given by weighted
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vector sum of the primary colours using the vectors R,G, and B: C(λ) =

(r, g, b) = rR+ gG+ bB.

CMY(K)

The Cyan, Magenta, Yellow and Key (Black) colour space is said to be the

direct opposite of the RGB colour space. This is due to the fact that the

color space uses a subtractive colour model where the colours cyan, magenta

and yellow subtract brightness from white. According to [52], this colour

space is mainly used for colour printing.

Grayscale image

Grayscale images contain brightness information (i.e. intensity) only and

each pixel value in such an image corresponds to an amount of light [27].

These images are composed of exclusively shades of gray with black having

the weakest intensity to white having the strongest. In addition, grayscale

images are different from bi-level images as they contain many shades of gray

as opposed to bi-level images that are composed of black and white colours

only [49].

2.2 Basic Graph Theory

Definition 2.2.1. [58] A simple graph G is a pair (V (G), E(G)), where V (G)

is a non-empty finite set of elements called vertices (or vertices), and E(G)

is a finite set of unordered pairs of distinct elements of V (G) called edges. A

graph H is called a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). H

is a proper subgraph of G if E(H) 6= E(G).
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Fig. 2.2: A graph G with its subgraph H

Definition 2.2.2. [16] Let H be a subgraph of G such that V (H) ⊆ V (G)

and E(H) ⊆ E(G). Then G[V ] = (V (H), E(H)) is the subgraph of G induced

by the vertex set such that E(H) = {(u, v) ∈ E(G) : u, v ∈ V (H)}.

Definition 2.2.3. [20,58] In a graph G, let vi ∈ V (G) for i ∈ 1, 2, · · · , k + 1.

The sequence W = v1, v2, · · · , vk+1 is a walk of length k from v1 to vk+1 if v1

and vk+1 are adjacent for all 1 ≤ i ≤ k. We say that W is closed if v1 = vk+1.

Definition 2.2.4. [20, 58] A path is a non-empty graph P = (V,E) where

V = {x0, x1, · · · , xk} and E = {x0x1, x1x2, · · · , xk−1xk} such that the xis are

distinct. The number of edges in a path is its length. A cycle is a path with

an extra edge joining the two end vertices.

Definition 2.2.5. [20] Let G be a graph. The distance d(u, v) for all u, v ∈ V

is the length of the shortest u − v path in G. If there is no such path, then

d(u, v) :=∞.

Definition 2.2.6. [20] Let G be a graph. The diameter of G, diam(G) is the

greatest distance between any u, v ∈ G.
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Definition 2.2.7. [10] Image segmentation is the process of partitioning an

image into a set of regions that cover it.

Definition 2.2.8. [16] An algorithm is a set of steps or instructions followed

to achieve a certain goal.

Definition 2.2.9. [16, 58] A complete graph is a simple graph in which any

two distinct vertices are adjacent. A complete graph is denoted by Kn where

n is the number of vertices. The graph Kn has n(n− 1)/2 edges.

Fig. 2.3: The graphs K4 and K5

Definition 2.2.10. [16,58] Let G = (V,E) be a graph. Then G is said to be

regular if every v ∈ V has a degree r, where the degree of a vertice is given

by the cardinality of the set of edges incident to v.

Definition 2.2.11. [51] A bipartite graph is a graph G = (V,E) in which

there exists two disjoint sets L∪R = V such that each e ∈ E has one end in

L and another end in R.

Definition 2.2.12. [20] A non-empty graph G is called connected if any

u, v ∈ V are linked by a path in G. Let G[U ] be a graph induced by vertices

in U ⊆ V . If G[U ] is connected, then U is said to be connected in G.
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Proposition 2.2.13. [20] The vertices of a finite connected graph G can

always be enumerated, say as v1, · · · , vn, so that Gi := G[v1, · · · , vi] is con-

nected for every i.

Proof. Pick any vertex as v1, and assume inductively that v1, · · · , vi has been

chosen for some i ≤ |G|. Now pick a vertex v ∈ G− Gi. As G is connected

it contains a v− v1 path P . Choose the last vertex vi+1 of P in G−Gi, then

vi+1 has a neighbour in G − Gi. The connectedness of every Gi follows by

induction on i.

Definition 2.2.14. [20] Let G = (V,E) be a graph. A maximal non-empty

connected subgraph of G is called a component of G.

Definition 2.2.15. [58] Let G = (V,E) be a graph. G is called a null graph

if the set of edges is empty. A null graph on n vertices is denoted by Nn.

Definition 2.2.16. [58] A finite directed graph or digraph is a pair D =

(V,E) where V is a non-empty finite set of vertices and E is a collection of

ordered pairs of elements of V called edges.

Fig. 2.4: Examples of digraphs

Thus, a digraph is a graph whose edges have a direction which is usually

shown by an arrow. In addition, a digraph is said to be simple if all its
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edges are distinct and it has no loops [58]. Figure 2.4(a) illustrates a simple

directed graph, while Figure 2.4(b) shows a directed graph that is not simple

since it has a loop given by (v, v).

Definition 2.2.17. [58] Let D = (V,E) be a digraph. D is connected if there

are no digraphs F and G such that F ∪ G = D are digraphs. D is strongly

connected if for any u, v ∈ V there is a path from u to v.

Definition 2.2.18. [58] Let G = (V,E) be a graph. Then G is called a

weighted or edge weighted graph, if there is a weight function α : E −→ R+

on its edges.

Therefore a weighted graph, is a graph G with non-negative real numbers

called weights assigned to each edge. Hence a weighted directed graph may

be seen as a graph with both direction and weights on its edges.

Definition 2.2.19. [20] A graph G = (V,E) is said to be dense if for every

v ∈ V , degree(v) ≥ n/2, where n = |V |. A graph G is said to be sparse if it

is not dense.

Definition 2.2.20. [42] A digraph G = (V,E) is said to be cyclic if every

non-empty path in G belongs to a cycle. Otherwise, a digraph that does not

contain cycles is called acyclic.

Definition 2.2.21. [58] A forest is a graph that contains no cycles, and a

connected forest is called a tree.
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2.3 Network Flow

Definition 2.3.1. [20] A network N consists of an underlying digraph D(V,E)

and two distinct vertices s and t which are called the source and sink of N .

Definition 2.3.2. [20, 53, 58] Let G = (V,E) be a graph. A flow is a real-

valued function f : V × V −→ R that satisfies the following three properties:

Capacity constraint: for all u, v ∈ V , f(u, v) ≤ c(u, v) where c(u, v) is a

non-negative real number assigned to each (u, v) ∈ E;

Skew Symmetry: for all u, v ∈ V, f(u, v) = −f(v, u);

Flow conservation: for all u ∈ (V − {s, t}),
∑
v∈V

f(u, v) = 0.

Definition 2.3.3. [20, 58]

Let f be a flow in a Network N . The value of a flow f is defined as

|f | =
∑
v∈V

f(s, v) −
∑
v∈V

f(v, s) (the value of flow is the total flow out of the

source in the flow network, since there is no flow into the sink s).

Definition 2.3.4. [13,20] Let G = (V,E) be a graph. An edge (u, v) ∈ E is

saturated if f(u, v) = c(u, v), otherwise (u, v) is unsaturated.

Figure 2.5 shows a network and a possible flow for the network. In Figure

2.5(b) the edges yx and zx are called zero-flows and edges vz, xz, yz, xw and

zw are saturated.
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Fig. 2.5: Network and possible flow [58]

2.3.1 Residual Network

Definition 2.3.5. [16] Let f be a flow in G, and consider the pair of vertices

u, v ∈ V . The residual capacity

cf (u, v) =


c(u, v)− f(u, v), if (u, v) ∈ E;

f(v, u), if (v, u) ∈ E;

0, otherwise.

If cf (u, v) > 0, then (u, v) is a residual edge.

Definition 2.3.6. [16] Given a flow network G = (V,E) and a flow f , the

residual network of G induced by f is Gf = (V,Ef ) where

Ef = {(u, v) ∈ V × V : cf (u, v) > 0}
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2.4 Graph cuts

Definition 2.4.1. [32, 45] Let G = (V,E) be a digraph with two terminal

vertices s and t. An s− t cut C = (S, T ) is a partition of V into two disjoint

sets S and T such that s ∈ S and t ∈ T . If c(S, T ) is the cost of the cut, then

c(S, T ) is the sum of all capacities of the edges that go from S to T given by

|c(S, T )| =
∑

u∈S,v∈T,(u,v)∈E

c(u, v)

Definition 2.4.2. [16] Let G = (v, E) be a flow network with source s and

sink t, and let f be a preflow in G. A function d : V −→ N is a height

function, also known as the distance function, if;

1. d(s) = n, where s is the source vertex and n is the number of vertices

in the graph,

2. d(t) = 0, where t is the sink vertex,

3. d(u) ≤ d(v) + 1 for every residual edge (u, v).

Graph cuts have been instrumental in solving many computer vision

problems such as image restoration, image segmentation, object recognition,

tracking and analysis. This method was first proposed by Boykov and Jolly

in their work entitled “Interactive graph cuts for optimal boundary and region

segmentation of objects in N-D Images ”in 2001 [9].

In this method an image is seen as a graph G = (V,E) where labels are

assigned to the different pixels or sets of pixels. Pixels that share similar

characteristics are assigned to the same label. These characteristics include
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colour, intensity and texture of the image. The pixels of the image are seen

as the set of vertices V and E is the set of edges which are the distances

between the vertices u, v ∈ V . The vertices are grouped under two cate-

gories namely; the neighbouring vertices which correspond to the pixels and

the terminal vertices which correspond to the source and sink vertices. The

source vertex s usually represents the object and the sink vertex t represents

the background. The neighbouring vertices are connected by n-links, while

the terminal vertices are connected to the neighbouring vertices by t-links.

Therefore the edges connecting the neighbouring vertices are called n-links,

whereas t-links are edges that connect the neighbouring vertices to the ter-

minal vertices. The edges are assigned with non-negative real numbers called

weights, these are also referred to as costs of the edges. The weight of an

edge (u, v) is denoted by w(u, v) = c(u, v).

The graph cut method seeks to find the minimal cut from the source

vertex s to the sink vertex t, which is a cut with the minimum cost value.

The minimum cut known as min-cut can be found by finding the maximum

flow, since min-cut ≡ max-flow as verified in [9, 20, 58]. The label of the

object of interest is set to 1 while that of the background is set to 0. Thus,

image segmentation is achieved by minimizing the energy function through

graph cuts.

Definition 2.4.3. [9, 32] Let L = {l1, l2, · · · , lp} be a binary vector whose

components li specify assignments to pixels i ∈ P . Each li can either belong

to the background or foreground. Then, the energy function is given by;

E(L) = αR(L) +B(L)
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where R(L) =
∑
i∈P

Ri(li) is the regional term which incorporates the regional

information into the segmentation. B(L) is the boundary term which incor-

porates the boundary constraint into the segmentation and α is the relative

importance factor between the regional and boundary term.

Thus L consists of two parts: the object labelled as 1 and the background

labelled as 0. In addition, Ri(Li) is the penalty for assigning the label li to the

pixel i, whose weight can be obtained by comparing the intensity of the pixel

p with the given histogram (intensity model) of the object and background.

Furthermore, when α = 0 the regional information is ignored and only the

boundary information is considered .

2.5 Graph cut based algorithms

According to Collins [14], graph cut algorithms can be classified under two

categories namely; Ford-Fulkerson and Push-relabel algorithm.

Theorem 2.5.1 (Integrity theorem [58]). The maximum number of edge-

disjoint paths from a vertex v to a vertex w in a digraph D is equal to the

minimum number of edges in a vw-disconnecting set.

Theorem 2.5.2 (Max-flow min-cut theorem [14,20,58]). In any network N ,

the value of any maximum flow is equal to the capacity of any minimum cut.

Proof. Suppose the capacity of every edge is an integer. In this case, the

network can be regarded as a digraph D̃ in which the capacities represent the

number of edges connecting to the various vertices. The value of a maximum
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flow then corresponds to the total number of edge-disjoint paths from v to

w in D̃, and the capacity of a minimum cut refers to the minimum number

of edges in a vw-disconnecting set of D̃. The result follows from the integrity

theorem. The extension of this proof is the consideration of networks with

rational numbers as capacities. These capacities are multiplied by a suitable

integer d to make them integers. Then have the case described above and the

result follows on by dividing by d. Finally, if some capacities are irrational,

then we approximate them as closely as we please by rationals and use the

above result. By choosing these rationals carefully, we can ensure that the

value of any maximum flow and the capacity of any minimum cut are altered

by an amount that is as small as we wish. Note that, in practical examples,

irrational capacities rarely occur since the capacities are usually given in

decimal form.

2.5.1 Minimum cut/ Maximum flow algorithms

The minimum cut problem is described as finding a cut that has the mini-

mum cost amongst all possible cuts that a network can have. This problem

has been solved by finding the maximum flow from the source vertex s to

the sink vertex t . This is due to the theorem developed by Ford and Fulker-

son (Theorem 2.5.2). According to Boykov and Veksler [10], there are many

standard polynomial time algorithms that are developed to solve the afore-

mentioned problem. These algorithms are categorised under two significant

groups, viz. Push-relabel and augmenting paths methods [10, 14]. We now

discuss the Push-relabel and Ford-Fulkerson algorithms.
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2.5.2 Push-relabel algorithm

The Push-relabel algorithm, also known as the preflow-push algorithm, was

primitively designed by Alexander V. Karzanov who published it in the Soviet

Mathematical Dokladi 15 in the year 1974. According to Cormen et al. [16],

this algorithm had three basic operations the preflow, push as well as the

relabel operations. Although this was the case, this method utilises distances

instead of a labelling system in the auxiliary network to determine where to

push the flow. Chandran and Hochbaum [13], maintains that this algorithm

was later developed by Andrew Goldberg and Robert Tarjan. It was then

published as an article in the Journal of the ACM in 1988.

Definition 2.5.3 (Preflow [16]). A preflow in a network G = (V,E, s, t, c, e)

is a function f : E −→ Z satisfying the following constraints

• For each edge (u, v), f(u, v) ≤ c(u, v).

• For each vertex v ∈ V − t,

∑
u

f(u, v)−
∑
w

f(v, w) ≥ 0.

Definition 2.5.4. [16] The excess flow e(v) =
∑

(u,v)∈E

f(u, v)−
∑

(v,w)∈E

f(v, w)

is the net flow into u. The vertex u ∈ V − {s, t} is overflowing or active if

e(u) > 0.

2.5.3 Operations of the algorithm

The push-relabel algorithm has three basic steps. These include the initiali-

sation of preflow, the push and relabel operations.
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1. Initilise Preflow() operation

This operation initialises the height and flows of all vertices. The fol-

lowing are the initialization steps;

(a) Initialise height and flow of every vertex as 0

(b) Initialise height of source vertex equal to the total number of ver-

tices in the graph

(c) Initialise flow of every edge as 0

(d) For all vertices adjacent to the source s, flow and excess flow is

equal to initial capacity

2. Push() operation

Definition 2.5.5. [13, 16] An edge (u, v) ∈ Ef is admissible if d(u) =

d(v) + 1 where d(u) and d(v) are the distances from u and v to t in G.

Ef is the set of edges in the residual graph.

This operation is used to push flow from an overflowing vertex to a

vertex that can take more flow. Thus if the vertex u has excess flow

cf (u, v) > 0 and d(u) > d(v), then flow can be pushed into the residual

edge (u, v). The amount of flow pushed through a residual edge is given

by min(e(u), cf (u, v)).

3. Relabel() operation

The relabel operation raises the height of an overflowing vertex that has

no adjacent vertices which are at a lower height. That is, the relabel(u)

applies if cf > 0 ∀ w such that (u,w) ∈ Ef , d(u) ≤ d(w). The height

d(u) is increased by 1 so that the push() operation is possible.
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Lemma 2.5.6. [16]

At every step, if a vertex v has positive excess flow, then there is a path

from v to s in the residual network.

Proof. [16] For an overflowing vertex x of G, let U = {v : there exists a

simple path from x to v in Gf}, and suppose for the sake of contradiction

that s /∈ U . Let W = V − U . We use the definition of the excess flow, sum

over all vertices in U , and note that V = U ∪W , to obtain

∑
u∈U

e(u) =
∑
u∈U

(∑
v∈V

f(v, u)−
∑
v∈V

f(u, v)

)

Because V = U ∪W and U ∩W = ∅, then the summation over V can be

split into summation over U and W to obtain;

∑
u∈U

e(u) =
∑
u∈U

((∑
v∈U

f(v, u) +
∑
v∈W

f(v, u)

)
−

(∑
v∈U

f(u, v) +
∑
v∈W

f(u, v)

))

=
∑
u∈U

∑
v∈U

f(v, u) +
∑
u∈U

∑
v∈W

f(v, u)−
∑
u∈U

∑
v∈U

f(u, v)−
∑
u∈U

∑
v∈W

f(u, v)

=
∑
u∈U

∑
v∈W

f(v, u)−
∑
u∈U

∑
v∈W

f(u, v) +

(∑
u∈U

∑
v∈U

f(v, u)−
∑
u∈U

∑
v∈U

f(u, v)

)

The two summations within the parentheses are the same, since for all

x, y ∈ V the term f(x, y) appears once in each summation. Hence, these

summations cancel, we have;

∑
u∈U

e(u) =
∑
u∈U

∑
v∈W

f(v, u)−
∑
u∈U

∑
v∈W

f(u, v) (2.1)
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We know that the quantity
∑
u∈U

e(u) must be positive because e(x) > 0, x ∈ U ,

all vertices other than s have a non-negative excess, and, by assumption,

s /∈ U . Thus, we have

∑
u∈U

∑
v∈W

f(v, u)−
∑
u∈U

∑
v∈W

f(u, v) > 0. (2.2)

By skew symmetry we have f(u, v) = −f(v, u), thus (2.2) gives

2
∑
u∈U

∑
v∈W

f(v, u) > 0⇒
∑
u∈U

∑
v∈W

f(v, u) > 0.

Hence, there must exist a pair of vertices u′ ∈ U and v′ ∈ W with f(v′, u′) >

0. The edge (u′, v′) ∈ Ef , which means that there is a simple path from x to

v′( the path x u′ −→ v′), thus contradicting the definition of U .

Lemma 2.5.7. [16] At every step, if there is an edge (u, v) that has positive

capacity c(u, v) > 0 in the residual network, then h(u) ≤ h(v) + 1.

2.5.4 Ford-Fulkerson algorithm

The Ford-Fulkerson algorithm, which in this study is called the Ford-Fulkerson

method, depends on three significant ideas, namely; residual networks, aug-

menting paths and cuts[16]. It is referred to as a method rather than an algo-

rithm because the approach of finding the augmenting paths in the residual

network is not specified, and hence there are several implementations with

different running times [16]. Since the concept of residual networks and cuts

are already defined previously, we shall now define an augmenting path.

Definition 2.5.8 (Augmenting path [16,58]). Let G = (V,E) be a graph and
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f a flow. An augmenting path p is a simple path from s to t in the residual

network. Augmenting paths consist of entirely unsaturated edges that carry

non-zero flow.

Thus any path p with available capacity may be considered an augmenting

path.

Idea behind the Ford-Fulkerson method:

1. There is path from the source s to the sink t, with available capacity

on all edges in the path.

2. We send flow along the path.

3. Then we find another path and send flow there.

The Ford-Fulkerson algorithm is a greedy algorithm that was first published

in 1956. The algorithm was further improved to be the Edmonds-Karp al-

gorithm. The analysis of this algorithm varies depending on the technique

used to find the augmenting paths. Typically this algorithm runs in polyno-

mial time if the Breath-first search method is used[16]. The runtime for this

algorithm is said to be O(E · |f ∗|) where f ∗ is the maximum flow [16].

Theorem 2.5.9. [16] Let G = (V,E) be a flow network, f be a flow in G,

and P be an augmenting path in Gf . Let

fP (u, v) =


cf (P ), if (u, v) is on P ;

0, otherwise.

(2.3)

and suppose that we augment f by fP . Then the function f ↑ fP is a flow
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in G with value |f ↑ fP | = |f | + |fP | > |f |, where f ↑ fP implies the

augmentation of the flow f by fP .

Lemma 2.5.10. [16] Let f be a flow in a flow network G with source s

and sink t, and let (S, T ) be any cut of G. Then the net flow across (S, T )

f(S, T ) = |f |.

Corollary 2.5.11. [16] The value of any flow f in a flow network G is

bounded above by the capacity of any cut of G.

Proof. [16] Let c(S, T ) be any cut of G and let f be any flow. By Lemma

2.5.11 and the capacity constraint,

|f | = f(S, T )

=
∑
u∈S

∑
v∈T

f(u, v)−
∑
u∈S

∑
v∈T

f(v, u)

≤
∑
u∈S

∑
v∈T

f(u, v)

≤
∑
u∈S

∑
v∈T

c(u, v)

= c(S, T ).

Definition 2.5.12. [16] Let f be a flow network in G with source s and

sink t, and let (S, T ) be any cut of G. Then the net flow across (S, T ) is

f(S, T ) = |f |.

Theorem 2.5.13. (Optimality conditions for maximum flow [16])

Let f be a flow in a graph G. The following are equivalent.
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1. f is a maximum flow of G;

2. There is no s − t path (with positive residual capacity) in the residual

network Gf .

3. There is an (s, t)-cut(A,B) such that the value of f equals the capacity

of (A,B);

Proof. [16]

(1) =⇒ (2): suppose for the sake of contradiction that f is a maximum flow

in G, but that Gf has an augmenting path p. Then by Theorem 2.5.10, the

flow found by augmenting f by fp, where fp is given by equation(2.2), is a

flow in G with value strictly greater than |f |, contradicting the assumption

that f is a maximum flow in G.

(2) =⇒ (3) : Suppose that Gf has no augmenting path, that is, Gf contains

no path from s to t. Define S = {v ∈ V : there exist a path from s to v in

Gf} and T = V − S. The partition (S, T ) is a cut: we have s ∈ S trivially

and t /∈ S because there is no path from s to t in Gf . Now consider a pair of

vertices, u ∈ S and v ∈ T . If (u, v) ∈ E, we must have f(u, v) = c(u, v), since

otherwise (u, v) ∈ Ef which would place v in the set S. If (v, u) ∈ E we must

have f(v, u) = 0, because otherwise cf (u, v) = f(v, u) would be positive and

we would have (u, v) ∈ Ef , which would place v in S. Of course, if neither
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(u, v) nor (v, u) is in E, then f(u, v) = f(v, u) = 0. We thus have

f(S, T ) =
∑
u∈S

∑
v∈T

f(u, v)−
∑
v∈T

∑
u∈S

f(v, u)

=
∑
u∈S

∑
v∈T

c(u, v)−
∑
v∈T

∑
u∈S

0

= c(S, T ). (2.4)

Therefore, |f | = f(S, T ) = c(S, T ).

(3) =⇒ (1) : By the definition of net flow across a cut (S, T ), |f | ≤ c(S, T )

for all cuts (S, T ). The condition |f | = c(S, T ) thus implies that f is a

maximum flow.

2.5.5 Push-Relabel versus Ford-Fulkerson algorithm: Similarities and

differences

The Push-relabel algorithm has seen many applications as it is proven to be

the more efficient algorithm in terms of time complexity as compared to its

counterpart the Ford-Fulkerson algorithm [13,34]. However, these two graph

based algorithms share a similar underlying concept. The push-relabel and

Ford-Fulkerson algorithms both work on residual graphs. Although this is

the case, there are certain differences between the two algorithms. According

to [40], the runtime of the Push-relabel algorithm depends on the number of

possible relabel operations, saturating paths and non-saturating pushes. On
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the other hand the runtime of the Ford-Fulkerson algorithm depends on the

order of choosing the augmenting paths. Figure 2.6 shows the differences of

the push-relabel algorithm as compared to the Ford-Fulkerson algorithm.

Fig. 2.6: The Push-relabel algorithm as opposed to the Ford-Fulkerson algorithm
[34].

According to Lalwani [34], the push-relabel algorithm works in a more locally

manner as it considers one vertex at a time rather than looking at the whole

residual network like the Ford-Fulkerson algorithm. In addition, the push-

relabel algorithm permits inflow to exceed outflow before the final flow is

reached. When the final flow is reached the net difference, outflow - inflow

= 0, except for the source and sink vertex. While this is the case, the Ford-

Fulkerson algorithm maintains a net difference of 0 for all vertices except

for the source and sink vertex at all times. Furthermore, the push-relabel

algorithm is more efficient than the Ford-Fulkerson algorithm [34,47].
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2.6 Advantages of Graph based segmentation

Graph based segmentation methods have been said to be one of the most

successful techniques in performing image segmentation [45]. This is due to

several benefits that these methods possess. The benefits include;

• No discretization by virtue of purely combinatorial operators being

required. Thus discretization errors are less likely, etc.

2.7 Delimitation of graph cut based segmentation

Although this is the case, graph cuts for image segmentation have had some

criticism. They include metrication artifacts, shrinking bias, multiple labels

and memory.
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3. GRABCUTS: THEORY

3.1 Energy minimisation framework

As we have seen in the previous chapter, graph based segmentation algo-

rithms aim to minimise a certain energy function, E, thus we need to look

at the different energy functions. According to [14, 53], there are two main

models used to define energy function and one is chosen depending on the

characteristics of the labelled regions. The models are described below;

• Potts Interaction Energy Model

This energy model is given by the following equation

E(I) =
∑
p∈P

|Ip − I0p |+
∑

(p,q)∈N

K(p,q)T (Ip 6= Iq).

where the unknown true labels over the set of pixels P and the observed

labels corrupted by noise are given by I = {Ip|p ∈ P} and I0 = {I0p |p ∈

P}, respectively [53]. The operator |Ip− I0p | gives the absolute value of

the difference between the unknown true labels and the labels that are

observed to be corrupted by noise over a set of pixels P . Hence it is

used to determine the number of correct classifications of pixels. The

penalties for label discontinuities between adjacent vertices or pixels
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also referred to as Potts interactions are given by K(p, q). T is an

indicator function. The Potts interaction energy model is particularly

useful when the labels are piecewise constant with discontinuities at the

boundaries. This energy can be optimally solved for binary labelling

using maximum flow, nevertheless the multiple label case is NP-Hard

[14,53].

• Linear Interaction Energy Model

E(I) =
∑
p∈P

|Ip − I0p |+
∑

(p,q)∈N

A(p,q)T (Ip 6= Iq).

The fundamental distinction between the Potts and the Linear interac-

tion energy model is the introduction of constants A(p, q), which stores

the importance of interactions between neighbouring pixels p and q [53].

The linear interaction energy produces labellings which are piecewise

smooth, but with discontinuities at the boundaries [14].

There are many methods that have been used to segment images as men-

tioned in Chapter 2. In this study the grabcut method was used.

3.2 Grabcuts for image segmentation

Definition 3.2.1. A Gaussian mixture model is a weighted sum of K com-

ponent Gaussian densities as given by the equation:

p(~x) =
K∑
i=1

wiN(~x|~µi,
∑
i

)
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,

where

N(~x|~µi,
∑
i

) =
1√

(2π)K |
∑
i

|
exp

(
−1

2
(~x− ~µi)

T
∑
i

−1
(~x− ~µi)

)
and

K∑
i=1

wi = 1

~x is a D-dimensional continuous valued data vector (i.e. measurement or

features), wi are the component weights for i = 1, · · · , K, µi are the means

and
∑
i

are the covariance matrices.

Thus, the Gaussian mixture model(GMM) is a parametric probability

density function represented as a weighted sum of Gaussian component den-

sities. In this segmentation technique the GMM is used to give the statistics

of the image. The algorithm then uses the min cut/max flow to arrive at a

segmentation of the image. Border matting and some user defined editing is

then applied in order to ensure that the segmented image is accurate [48].

Description 3.2.2. [52] A trimap is a pre-segmented image consisting of

three regions namely; the foreground, background and unknown regions.

The Grabcuts approach was introduced by Rother, Kolmogorov and Blake

in their work entitled “Grab-cut: Foreground extraction using iterated graph

cuts.”published in 2004 [48]. According to Ramirez et al [47], the grabcut

approach is an iterative and minimal user interaction algorithm as it chooses

a segmentation by iteratively revising the foreground and background pixels

assignments. The method uses min-cut/max-flow algorithm to segment dig-

ital images[47]. The input of this approach is a digital image with a selected

region of interest(ROI). The ROI is selected using a rectangular bounding
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Fig. 3.1: An image with selected ROI

box. A trimap T = {TB, TU , TF} is used to help with the segmentation. The

sets TB, TU and TF store all background, unknown and foreground pixels,

respectively. The pixels outside the bounding box are confidently assigned to

the background, while the ones inside the bounding box are seen as unknown.

The grabcut algorithm then uses these assignments to generate the Gaus-

sian mixture model(GMM) for the foreground as well as the background. The

background GMM is created by TB which has the value αn = 0, where αn is

the opacity value at each pixel and n is the index of that pixel. In addition,

a distance measure between each pixel and the foreground and background

models is defined based on the component more similar to the pixel in each

model [3]. Furthermore, the colour distances between a pixel and its neigh-

bours is calculated. The two distance measures are then used to model the

image as a directed weighted graph.

Grabcuts algorithm summary
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The grabcut algorithm works with images in the RGB colour space and uses

GMMs instead of histograms of pixels as in [9]. This is due to the practically

inadequate construction of colour space histograms [48]. We will now give a

summary of the grabcut algorithm below as described by [48,54].

1. The user draws a rectangular bounding box enclosing the region of

interest. Thus creating an initial trimap by specifying the background

pixels which are situated outside the bounding box. The pixels inside

the box are marked as unknown, while those for the foreground are set

to the empty set.

2. Hard segmentation is performed by placing the set of unknown pixels

into the foreground set and the background pixels are placed into the

background set.

3. GMMs with five Gaussian components are created based on the back-

ground and foreground sets.

4. Each pixel in the foreground set is assigned to the most likely Gaus-

sian component in the foreground GMM. Similarly, each pixel in the

background is assigned to a Gaussian component in the background

GMM.

5. A foreground and background GMM cluster is assigned to every pixel

based on the minimum distance to the respective clusters.

6. The learning of GMM parameters is conducted based on the pixel data

with the newly assigned foreground and background clusters. Thus the
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old GMMs are discarded and new GMMs are created with the newly

assigned foreground and background clusters from every pixel.

7. A graph is constructed and Graph cuts are run to estimate the new

foreground and background pixels.

8. The steps 4-7 are repeated until the label of foreground and background

pixels converges.

9. Border matting is applied.

10. Editing is performed which entails fixing pixels to be part of the correct

set of pixels and updating trimap T accordingly. Step 7 is allowed to

run again only once.

According to Rother et al.[48], the grabcut algorithm has three main

stages. These are the initialisation, iterative minimisation and user editing

stages. We will now give a description of each stage.

3.2.1 Initialisation

The initialisation stage includes steps 1-3 in the grabcut algorithm sum-

mary above. During this stage, a trimap T = {TB, TU , TF} is used to help

with the segmentation. The sets TB, TU and TF store all background, un-

known and foreground pixels, respectively. The user marks the region with

the object of interest with a bounding box. Then TB is initialised with all

the pixels outside the bounding box. The unknown pixels (pixels inside the

bounding box) are set to be TU = TB where TB is the complement of TB

and TF = ∅. The mattes for TB and TU are set to matte-background and
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matte-foreground, respectively. According to Rother et al.[48], this distinc-

tion between the trimap and matte formalises the separation between the

user input and the segmentation derived by the grabcut algorithm. Given

the mattes the K components of the GMM are created for matte-foreground

and matte-background regions. Thus a total of 2K GMM components is

created. The background and foreground regions are divided into K pixel

clusters. The Gaussian components are then initialised from the colours in

each cluster. For a given GMM component k, in the foreground for instance,

the subset of pixels F (k) = {zn : kn = k and αn = 1} where zn are the

pixels in the image, αn is the opacity value at each pixel and n is the index.

The mean µ(α, k) and the covariance
∑

(α, k) of pixel values in F (k) are

estimated as the sample mean and covariance of pixel values and weights

are given by π(α, k) = |F (k)|/
∑

k |F (k)| [48]. According to Talbot et al.

[54], a good separation between foreground and background occurs when a

low variance Gaussian component is generated. Thus, the need for tight,

well-separated clusters is realised by the grabcut algorithm.

3.2.2 Iterative minimisation

This stage consists of the steps 4-9 in the grabcut algorithm summary. The

steps 4-7 in the grabcut algorithm summary can be shown to be a minimi-

sation of the Gibbs energy [48] given by

E(α, k, θ, z) = U(α, k, θ, z) + V (α, z)
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with respect to the three sets of variables k, θ, α in turn. U is the data term

defined by

U(α, k, θ, z) =
∑

D(αn, kn, θ, zn)

where

D(αn, kn, θ, zn) = − log π(αn, kn) +
1

2
log det

∑
(αn, kn)+

1

2
[zn − µ(αn, kn)]T

∑
(αn, kn)−1[zn − µ(αn, kn)]

is a weighting function and θ = {π(α, k), µ(α, k),
∑

(α, k), α = 0, 1 and k =

1, · · · , K} are the GMM parameters[48]. In the grabcut implementation of

Talbot et al. [54], the weighting function was corrected to be computed as

D(m) = − log
K∑
i=1

πi
1√

det
∑

i

e(−
1
2
[zm−µi]T

∑−1
i [zm−µi]) (3.1)

The smoothness term V (α, z) is given by;

V (α, z) = γ
∑

(m,n)∈C

d(m,n)−1[αn 6= αm]− β(zn − zm)2

where d(.) is the Euclidean distance, γ = 50 and β = (2(zn − zm)2) are con-

stants. During this stage some pixels are moved from the matte-foreground

set to the matte-background set, and vice versa. All pixels in TU are as-

signed to a cluster based on the minimum unary weighting function D(m).

Thus pixels in the matte-foreground are assigned to the foreground GMM

component with the highest likelihood of producing the pixels colour. A

similar approach is taken for pixels in the matte-background set, where pix-
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els are assigned to the highest likely background GMM component. This

process refines the GMM distribution to better define the foreground and

background pixels. The learning step takes the newly assigned k values and

recalculates both GMMs. The old GMMs are discarded and the new GMMs

are used to calculate unary weights. A graph is built for the Graph cut step

of the grabcut algorithm. The graph consists of vertices that represent all

the pixels in the image and two terminal vertices, viz., the source and sink

vertex. The source vertex represents the foreground vertex, while the sink

vertex represents the background vertex. Each pixel is connected to eight

neighbouring pixels as well as to the source and sink vertex by two types of

edges also called links. The N-link describe the penalty for placing a segmen-

tation boundary between the neighbouring pixels and they connect pixels in

the 8-neighbourhood. According to Talbot et al. [54], N-links can be reused

since the N-links weights are always constant throughout the execution of the

grabcut algorithm. The T-links connect the pixels to the terminal vertices(i.e

the source and sink vertices) and they describe the probability that each pixel

belongs to the foreground or to the background. These probabilities change

as the GMMs are updated due to the fact that the updated GMMs change

the trimaps thus leading to a change in the T-links. Hence the T-link weights

are updated during each iteration. The N-link weight between pixel m and

a pixel in its 8-neighbourhood, p, is:

N(m, p) =
γ

d(m, p)
e−β‖zm−zp‖

2

, (3.2)
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where zm is the colour of pixel m. Rother et al. [48], set γ = 50 and

β = 1
2〈‖zm−zp‖〉 according to [9]. Talbot et al. [54] maintains that there

are two T-links for each pixel, the background and foreground T-link that

connect a pixel to the background and foreground vertices, respectively. The

weights of the T-links depend on whether the user marked a particular pixel

as a definite background or foreground pixel. This is reflected by weighting

the links such that the pixel is forced into the appropriate set. The weights

of these links are given by the labeling costs, L(m), for labeling a pixel m as

foreground or background. The probabilities acquired from the GMMs are

used to set the weights for the unknown pixels.

Tab. 3.1: T-link weights for pixel m [54].

Pixel type Background T-link Foreground T-link
m ∈ TB L(m) 0
m ∈ TF 0 L(m)
m ∈ TU Dfore(m) Dback(m)

Table 3.1 shows the T-link weights for pixelm, where L(m) >
∑

pN(m, p)

is chosen to force m to be a member of either the foreground or background.

The sum is over all pixels neighbouringm. When Equation (3.2) is maximised

γ ≥ N(m, p) is observed [54]. Thus for an 8-neighbourhood L(m) = 8γ +

1. Dfore(m) and Dback(m) are computed using the Equation (3.1), where

the summation is over the foreground Gaussian components for Dfore and

background Gaussian components for Dback. Once the graph structure has

been initialised with all the weights, the min-cut algorithm by Boykov and

Jolly [9] is performed on the graph to estimate segmentation.
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3.2.3 User editing

According to Rother et al. [48], the initial incomplete user labelling is often

sufficient to allow the entire segmentation to be completed automatically,

but this is not always the case. In cases where additional user input is

required to complete the segmentation, foreground and background pixel

brushes are used to constrain pixels as firm foreground or background. Then

the minimisation step 6 in the grabcut algorithm summary above is run

once more. In this study we shall limit the analysis and comparison of the

Grabcuts for image segmentation algorithm to initial segmentation, even

though the function of the user editing will be included in the algorithm.

3.3 Grabcuts based algorithms

The grabcut technique for image segmentation has become popular over the

years to many researchers in various fields. Since its introduction by Rother

et al. in 2004, there are several algorithms developed. In this section we will

review some of these grabcuts based algorithms. The algorithm introduced

a technique that made it possible for the segmentation of colour images as

opposed to the Graph cuts algorithms that segmented grayscale images (i.e.

graph cuts based algorithm developed by BoyKov & Jolly)[48]. Although

this was the case, the algorithm had some challenges which include difficulty

segmenting noisy images and camouflaged images. Moreover, the original

grabcut algorithm had a difficulty in understanding the intentions of the

user in different scenarios [59]. This inspired the development of several al-

gorithms that used the grabcut based image segmentation method. These

46



algorithms solved problems ranging from, but not limited to image segmen-

tation for face & clothing recognition to the reduction of noise in images

[28,35]. Ramirez et al. [47], introduced some changes to the original grabcut

algorithm. The changes enabled the new algorithm to segment 3D images

and it was allowed to run on both the CPU and GPU. The results of this

algorithm were impressive, but the algorithm faced similar challenges when it

came to the colour distribution of the foreground and background of an image

as the original grabcut algorithm [47]. This algorithm led to the deduction

that the GPU is superior to the CPU in terms of execution times of the al-

gorithm. In addition to the observations made by the researchers mentioned

above, it has also been observed that the grabcut algorithm outperforms the

graph cut algorithm in terms of runtime speed and segmentation accuracy

[48]. In 2005, a graph cut based algorithm was introduced by Lombaert et

al[36]. This algorithm adopted the use of multilevel banded graph cuts to

segment images. This algorithm was inspired by the multilevel graph parti-

tion method in the work of Karypis and Kumar [29] and the narrow banded

algorithm in the level sets method in the work of Adalsteinsson & Sethian [1].

This algorithm was proven to be fast, memory and time efficient as compared

with the conventional graph cuts algorithm of Boykov and Jolly [36].

3.4 Advantages of using Grabcuts method

The grabcut approach extends graph cuts to colour images and incomplete

trimaps [25]. Due to the iterative minimisation characteristics of the grab-

cut method, it can substantially reduce the amount of user interaction to
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complete the segmentation task [48].

3.5 Disadvantages of using Grabcuts method

The grabcut method has many advantages as mentioned above. Although

this is the case, [46] maintains that this method lacks the ability to completely

segment an image by itself and that it further requires the user to select the

foreground and background seeds. In addition, the grabcut method is only

meant for colour images [3].

3.6 Clustering Techniques

According to Gandhi and Srivastava (2014), clustering is the process of find-

ing meaningful patterns in a set of data that is of interest in order to partition

that data into sub classes called clusters. Clustering is known as a form of

unsupervised learning as it has no predefined classes [23]. There are a variety

of clustering techniques categorised under the following sub headings;

• Partitioning Techniques

• Hierarchical Techniques

• Grid-based Techniques

• Density-based Techniques

• Model-Based Techniques

Partitioning techniques

Partitioning techniques divide the dataset of interest into multiple partitions,
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where a single partition constitutes a cluster [6, 23]. The data within a

single cluster have similar characteristics, whilst data in different clusters

have dissimilar characteristics.

Hierarchical techniques

In this method a hieracrhical structure is imposed on the dataset and their

step-wise clusters, for instance, one extreme of the clustering structure is

only one cluster containing all the data in the dataset [26]. This technique is

said to be rigid as it prohibits re-organisation of clusters established in the

previous steps. Hierarchical techniques can be further sub divided into those

that use a top-bottom or bottom-up approaches.

Grid-based techniques

This technique utilises a multiresolution grid data structure for partitioning

the dataset. It quantises the space occupied by the dataset into a finite

number of cells that form a grid structure where all the clustering operations

are performed.

Density-based techniques

Density-based techniques discover arbitrary- shaped clusters. These clusters

are regarded as regions in which the density of data in the dataset exceeds

a certain threshold. The DBSCAN and SSIV algorithms are some examples

of density-based techniques.

Model-based techniques

This approach uses a mathematical model as a benchmark for clustering

and are based on the assumption that the dataset is generated by a mixture
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of underlying probability distributions. They attempt to optimise the fit

between the dataset and the model. These techniques can be further sub

divided into Statistical approaches and Neural network approaches.

In this study we will make use of a combination of clustering techniques,

a GMM with Kmeans as well as a GMM with Kmedoids. The GMM is

categorised under Model-based techniques while Kmeans and Kmedoids are

classified under partitioning techniques.

Kmeans algorithm

The Kmeans algorithm is one of the simplest unsupervised learning algo-

rithms that are known to solve clustering problems [26]. It is a centroid

based technique , i.e. finds clusters in a dataset such that the distance mea-

sure is minimised [5, 23]. The distance measure chosen in most cases is the

Euclidean distance, given by;

d(xi, vj) =

√√√√ n∑
k=1

(xik − v
j
k)

2

where n is the number of dimensions of each data point, xik is the value of

the k-th dimension of xi and vjk is the value of the k-th dimension of vj. The

algorithm partitions the dataset into K clusters (C1, C2, · · · , CK), represented

by their means or centers. The center of each cluster is calculated as the mean

of all the data points that belong to that cluster and it is a point to which

the sum of distances from all data points in that cluster is minimised [23].

The Kmeans algorithm takes the number of clusters to be formed, K, and

X the dataset on which the clustering is to be performed on as inputs. The
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algorithm returns a set of K clusters.

Kmeans algorithm uses the following steps:

1. Initialise the cluster centers Ci = {C1, C2, · · · , CK} by randomly se-

lecting K points from the dataset X.

2. Assign each data point in X to the cluster with the closest centroid

Ci. The partitioned groups are defined by a c× n binary membership

matrix U .

3. When all the data points have been assigned, recalculate the positions

of the K centroids.

4. Repeat steps 2-3 until no new centroids can be found.

Tab. 3.2: Advantages and disadvantages of Kmeans

Advantages Drawbacks
Kmeans works well with ill-separated clusters Suffers when dealing with large

datasets due to the predefinition
of number of clusters

Works well with natural images Has difficulties with clusters of
different sizes, densities and
shapes

Is easy to implement Outliers affect the Kmeans
algorithm

Time complexity is O(n), where n is the number
of data points

Kmedoids algorithm

The Kmedoids algorithm is another techniques that is classified under the

partitioning clustering techniques. It attempts to minimise the Sum of

Squared Error(SSE). This algorithm finds a medoid in a cluster, which is
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a centrally located point in a cluster. According to Arora et. al.(2016),

Kmedoids is more robust as compared to Kmeans as the Kmeans algorithm

is sensitive to outliers. This algorithm reduces the disadvantages experienced

by the Kmeans algorithm as it is based on data point representative methods

[6, 23]. In the Kmedoids algorithm, each cluster is represented by the most

central data point in the cluster, rather than the implicit mean that may not

belong to the cluster. The algorithm partitions the dataset into K clusters

by first finding a representative data point for each cluster. It then assigns

the remaining data points to the cluster with the medoid to which they are

most similar to. The Kmedoids algorithm takes the number of clusters to

be formed, K, and X the dataset. The output of the algorithm is a set of K

cluster.

Kmedoids follows the steps described below:

1. Initialise the cluster representatives by randomly selecting K data points

as medoids.

2. Associate the remaining data points to the nearest medoid by calculat-

ing the distance between data points and the medoid of each cluster.

This is done by;

• Performing element by element binary operations to compute A=

X- mean(X,2).

• Computing S= A2, then convert the sparse matrix S to a full

matrix (S).

• Computing D = −2×(AT )A, where AT is the transpose of matrix

A.
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• Computing D = D + ST where ST is the transpose of matrix S.

• Selecting the minimum from D.

3. For each data point p associated with the medoid K, swap p and K

then compute the total cost.

4. Compute minimum cost c from the total cost.

5. Add c to final cost.

6. Repeat steps 2-5 until there are no new medoids found.

Tab. 3.3: Advantages and disadvantages of Kmedoids

Advantages Drawbacks
Kmedoids is immune to noise and outliers Kmedoids is computationally

costlier than Kmeans
It is computationally more intensive Applied only when dealing with

categorical data
Can work with any distance measure Does not scale well to for

large datasets

3.7 Distance measures and metrics

According to Pandit et al.(2014), distance measures are used to calculate

similarity or dissimilarity between two data objects within a given dataset.

They reflect the degree of separation among data points within a dataset

and distinguish the clusters embedded in the dataset [44]. Distance mea-

sures include Manhattan, Minkowski, Hamming, Jaccard, Cosine, Euclidean

and Squared Euclidean distance amongst others. Some of the distance mea-

sures are also referred to as distance metrics. For a distance measure to be

considered a metric, it has to satisfy the following conditions [44];
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1. The distance between any two data points must be non- negative, i.e.,

d(xi, xj) ≥ 0 for all xi and xj.

2. The distance between two data points must be equal to zero if and only

if the data points are the same, i.e., d(xi, xj) = 0 if and only if xi = xj.

3. The distance from xi to xj is the same as the distance from xj to xi,

i.e., d(xi, xj) = d(xj, xi).

4. The triangle inequality is satisfied, i.e., d(xi, xj) + d(xj, xk) ≥ d(xi, xk)

for all xi, xj and xk.

The City block, Minkowski, Hamming and Euclidean distance satisfy the

conditions of a distance metric and thus are distance metrics. Kumar et al.

[33], maintains that there is no single distance measure that best suits all

clustering problems. In this study a comparison of the Grabcuts for image

segmentation algorithm with a GMM based on Kmeans and Kmedoids is

performed with three distance measures. These are the Squared Euclidean,

Cosine and Manhattan distance measures. We shall now give the descriptions

of these distance measures.

Euclidean distance

The Euclidean distance measure refers to the straight line distance between

two data points [33]. It is given by the formula, [33,44]

de(xi, xj) =

√√√√ n∑
k=1

|xik − xjk|2

where xik and xjk represent the k-th dimension of xi and xj, respectively.

The strength of this distance measure is in its ability to form clusters that

are invariant to translation and rotation in the feature space [33].
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Squared Euclidean distance

The squared Euclidean distance is given by the sum of squared differences

between corresponding data point values. It is defined as,

dSe(xi, xj) =
n∑
k=1

|xik − xjk|2

City block distance

This distance measure is also known as the Manhattan distance. The City

block distance between two data points is defined as the absolute difference

of the coordinates of the data points [33]. It is Known as the Manhattan

distance as it is similar to the walking distance between two points in a city

like Manhattan, where one has to walk around the buildings instead of going

through them. That is, the distance between two data points is measured

along the axes at right angles. The formula for the Manhattan distance is

given by,

dM(xi, xj) =
n∑
k=1

|xik − xjk|

The City block distance is said to have an advantage over the Euclidean

distance as it has reduced computation time [8, 33, 60]. Although this is

the case, this distance measure depends upon the rotation of the coordinate

system which is seen as its limitation [33].

Cosine distance

The Cosine distance is a measure of similarity or dissimilarity between two

vectors of n dimensions. This measure is determined by the cosine of the
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angle between the two vectors of interest [8]. the Cosine distance is given by,

dcos(xi, xj) = 1− xTi xj
‖xi‖‖xj‖

where xTi is the transpose of xi. The Cosine distance is used to measure cohe-

sion within clusters and lies between 0 and 1. This distance measure violates

the triangle inequality and thus is not a distance metric [33]. Furthermore,

it is invariant to scaling and not invariant to shifts.
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4. PERFORMANCE MEASURES

4.1 Evaluation metrics

Many researchers [12, 56, 60], in the field of image processing have been fre-

quently pointing out the need for a standard quality measure for both the

evaluation and comparison of image segmentation algorithms. These re-

searchers maintain that few efforts have been made on the evaluation of seg-

mentation algorithms, regardless of the realised significance of performance

evaluation. According to Zhang [60], segmentation algorithms can be eval-

uated using either analytical or empirical methods. The analytical method

directly investigates and assesses the segmentation algorithms themselves by

analysing their principles and properties. Udupa et al. [56], maintains that

the analytical method has major drawbacks as some of the characteristics of a

segmentation cannot be obtained and described analytically. In addition, the

analytical method avoids the implementation of the algorithms, thus making

it difficult to compare algorithms entirely by analytical studies [60].

On the other hand, empirical methods indirectly criticise the image seg-

mentation algorithms by measuring the quality of segmentation results after

the algorithm has been applied to the test images. The empirical method

can further be classified under two categories, viz. the goodness method and
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discrepancy method [60]. The empirical goodness method measures some

desirable traits of segmented images that are often established according to

human intuition using goodness parameters. The value of goodness measure

is used to judge the performance of the segmentation algorithms. According

to Cardoso et al. [12], the empirical goodness method does not seek a prior

knowledge of the reference segmentation as it evaluates and rates the different

algorithms by computing goodness measures based on the segmented image.

There are different types of goodness measures, including Colour uniformity

[57], Entropy [43], intraregion uniformity [60], inter-region uniformity[60] and

the region shape [60] amongst others.

The empirical discrepancy method is based on the availability of a ref-

erence segmentation, sometimes called a ground truth, which is an ideal or

expected segmentation result. The image segmentation algorithm’s perfor-

mance is assessed using the disparity between the actual segmented image

and the ground truth. Both the actual segmented image and the ground

truth are obtained from the same input image [12]. The method aims to de-

termine how far the actually segmented image is from the reference image. In

this method, the performance of the applied image segmentation algorithm

is assessed using discrepancy measures, where a high value of discrepancy

measure implies a bigger error in the segmented image in relation to the

ground truth [60]. This leads to a low performance in the image segmenta-

tion algorithm. The different types of discrepancy measures include those

based on; the number of mis-segmented pixels, position of mis-segmented

pixels, number of objects in the image, feature values of segmented objects
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and miscellaneous quantities, amongst others [60].

4.2 Intra-cluster distance

The Intra-cluster distance evaluates the compactness of a clustering solution.

This is achieved by measuring the average distance between the centroid and

data points of a cluster [5, 24]. The intra-cluster distance is given by;

Iintra =

K∑
k=1

∑
∀x∈Ck

d(xp, ck)

|P |
, (4.1)

where ck is a centroid of cluster Ck, xP is a data point and |P | is the total

number of data points in a dataset.

4.3 Inter-cluster distance

The inter-cluster distance assesses the separation of the clusters formed by

a clustering technique. This is done by determining the average distance

between different clusters which is calculated as the difference between the

centers of different clusters [5, 24]. The inter-cluster distance is defined as;

Iinter =
2

K(K − 1)

K−1∑
k=1

K∑
k2=k+1

d(ck, ck2), (4.2)

where d(ck, ck2) is the Euclidean distance between the centroids ck and ck2

and K is the number of clusters formed.
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4.4 Validity Indices

According to Ansai et al., Validity indices are quantitative measures used to

assess the solutions of clustering techniques. Due to the fact that clustering

techniques can form different clusters, the need of quality measures to eval-

uate these clusters is realised. There are various validity indices that exist,

we shall present a few examples below.

4.4.1 Dunn’s validity index

The Dunn’s validity index is used to describe how compact and separated

clusters formed by a clustering technique are [4, 24]. The larger the value of

the index, the better the clustering solution. The following formula is used

to give the Dunn’s validity index;

D = min
1≤i≤k

(
min

i+1≤j≤k

( d(ci, cj)

max
i+1≤j≤k

diam(c1)

))
, (4.3)

Where d(ci, cj) is the distance between cluster ci and cj; d(ci, cj) = min
xi∈ci
xj∈cj

d(xi, xj)

and d(xi, xj) is the distance between data points xi ∈ ci and xj ∈ cj. The

diameter of cluster cl is given by diam(cl) = max
xl1 ,xl2∈cl

d(xl1 , xl2).

4.4.2 Davies-Bouldin validity index

The Davies-Bouldin validity index gives the average similarity between each

cluster and the one that is most similar to it [24]. The best clustering solution

under this index is one in which the value of the index is minimised. The
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Davies-Bouldin validity index is defined as;

DB =
1

k

k∑
i=1

max
1≤j≤k,j 6=i

(diam(ci) + diam(cj)

d(ci, cj)

)
. (4.4)

4.4.3 Silhouette validity index

The silhouette validity index is the silhouette width for each cluster and over-

all average silhouette width for the total dataset [4]. The index is computed

using the formula;

Si =
bi − ai

max(ai, bi)

,

where ai is the average dissimilarity of the i-th data point to all other

points within the same cluster and bi is the minimum average dissimilarity

from the i-th data point to a data point in a different cluster. The dissim-

ilarity can be measured using any of the distance measures mentioned in

Section 3.7. The index values range from -1 to 1, where 1 is said to be the

highest value which implies that a data point i is well-matched to its own

cluster. On the other hand, a low or negative silhouette value indicates that

the clustering solution may either have too few or too many clusters. Table

4.1 shows the silhouette values and their interpretation.

4.4.4 Rand validity index

This validity index measures the number of pairwise similarity between the

set of discovered clusters and set of class labels. The Rand index is defined

61



Tab. 4.1: Silhouette validity index values and their interpretation [24]

Silhouette Value Interpretation
0.71-1.00 A strong clustering structure has been found
0.51-0.70 A reasonable clustering structure has been found
0.26-0.50 A weak clustering structure has been found
≤ 0.25 No adequate clustering structure has been found

as;

R =
a+ d

a+ b+ c+ d
(4.5)

where a is the number of pairs of data points that have the same label C

and are assigned to the same cluster, b denotes the number of pairs with the

same label, but are assigned to different clusters. The number of pairs of

data points in the same cluster, but have different class labels are denoted

by c, and d denotes the number of pairs of data points that have different

class labels that are assigned to different clusters. The Rand index values

range from 0 to 1, where a high Rand index value indicates a high level of

agreement between the class and natural labels.

4.4.5 Jaccard validity index

This index assesses the agreement between different clusters formed for a

given dataset. The similarity between the class labels and clustering solution

is determined by the number of pairs of data points assigned to the same

cluster in both the class labels as well as in the clustering solution. The

Jaccard validity index is given by;

J =
a

a+ b+ c
(4.6)
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where a, b,and c denote the same number of pairs of data points as in the

Rand validity index. The index value ranges from 0 to 1, where an index

value of 1 indicates that the class labels and clusters discovered are identical.

4.5 Precision

The Precision, or Positive Predictive Value (PPV) is used to measure how

accurate of the boundaries of the segmentation results are [19]. This is done

by calculating the rate of true positives among the segmentation result and

the ground-truth. Precision is calculated as follows;

P =
TP

TP + FP

Precision values range from 0 to 1. The true positive, true negatives, false

positives and false negatives are described in Table 4.2.

Tab. 4.2: Confusion matrix notation

Ground-truth
Segmented image True positive (TP) False negative (FN)

False positive (FP) True negative (TN)

4.6 Recall

The recall, True Positive Value (TPV) or sensitivity measures how good a

test or algorithm is at detecting the true positives between the segmented

image and the ground-truth [22]. Recall refers to is the relation between true
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positives and all positive elements and is given by the equation;

R =
TP

TP + FN
.

Recall vales range from 0 to 1, where a value of 1 indicates a perfect match

of between the segmentation result and the ground-truth.

4.7 BF-score

The BF-score is the harmonic mean of the precision and recall with a distance

error tolerance to decide whether a point on the segmented image’s boundary

has a match on the ground-truth boundary or not.[22]. It is used to measure

efficiency and success of segmentation based on the values of precision and

recall. The BF-score is given by the formula,

BF =
2 ∗ Precision ∗Recall
Recall + Precision

.

The value of the BF-score ranges from 0 to 1, where a score of 1 means that

the contours of objects in the corresponding class in the segmented image

and ground-truth are a perfect match.

An evaluation metric is desired to take into consideration over segmentation,

under segmentation, inaccurate boundary localization and different num-

ber of segments. The precision, recall and BF-score are used to determine

whether the segmented image falls under any of the categories mentioned

above. In addition, these evaluation measures are controlled by a threshold,

distance of tolerance θ which determines whether a boundary point has a
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match or not. According to Prabha et al. [19], over segmentation occurs

when the value of the precision is low. On the other hand, under segmenta-

tion occurs when the recall is low. This study utilises an empirical method

to measure the performance of the algorithms. This is due to the fact that

the analytical method for evaluation of image segmentation algorithms is

not sufficient as it cannot describe all the qualities of the algorithm quanti-

tatively [60]. Thus this study uses the empirical discrepancy method. This

method exempts the influence of human factors and provides consistency and

non-biased results [60]. In addition, the quality measures used to assess the

image segmentation algorithm can be numerically computed [60]. Thus, the

empirical discrepancy method is the most suitable evaluation method for the

proposed algorithm as it is both objective and quantitative.

The separability and compactness of the clusters generated by the cluster-

ing techniques was measured. This was done by computing the intra cluster

distance and inter cluster distance. According to Arbin et al. [5], the in-

tra cluster distance refers to the mean distance between data points within

a cluster and inter cluster distance is mean distance between centroids of

the clusters in a given dataset. In addition, the Silhouette validity index

was computed for all algorithms. Furthermore, the segmentation results for

the algorithms are also presented. The precision, recall and BF-score with

θ = 0.5 for the segmentation results are also provided.
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5. EXPERIMENTATION AND RESULTS

Since the development of the grabcut algorithm of Rother, Kolmogorov and

Blake [48], many researchers have come up with ways of improving the al-

gorithm, i.e. running time, efficiency, etc [28, 35, 54]. This study aims at

providing a comparison between a Grabcuts algorithm with GMM based on

Kmeans and that with a GMM based on Kmedoids. The Grabcuts algorithm

considered in this study is that which is based on the work in [48] and [9].

The algorithm will be allowed to run with a GMM based on Kmeans and also

with a GMM based on Kmedoids. The algorithms mentioned above will be

executed under two scenarios. In addition, these algorithms utilised the same

colour images obtained from BSDS500 database. Furthermore, the number

of clusters have been varied from 2 to 5 for all algorithms. In this chap-

ter we will look at the performance of the Grabcuts for image segmentation

algorithm with a GMM based on Kmeans developed in [48] as well as the

performance of the Grabcuts algorithm with a GMM based on the Kmedoids

clustering technique. We consider two scenarios in the experiment. In the

first scenario, GMM’s based on Kmeans and Kmedoids clustering techniques

that use the Squared Euclidean distance measure are considered. In the

second scenario the Kmeans and Kmedoids clustering techniques utilise the

City block distance measure. In the works of [6,48], the number of clusters is
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chosen arbitrary to be 5. Although this is the case some researchers [5], have

varied K from 2 to 5. In this study the number of clusters, K, is varied from

2 to 5 for all the algorithms so as to observe if the number of clusters chosen

has an effect on the segmentation results. The same colour images obtained

from the BSDS500 database were used to test all algorithms under the two

scenarios. Images and their ground-truth annotations from the Berkeley Seg-

mentation Dataset and Benchmark 500(BSDS500) [37] database are used to

evaluate the algorithms.

Figure 5.1 shows the images used to test the algorithms in this study.

The images in Figure 5.1 (a)-(l) will be referred to as Butterfly, Insect, Sol-

dier, Kids, Swimmer, Car, Aeroplane, Flower, Swan, Statues, Star-fish, and

Horses. These images were deliberately chosen as they are considered diffi-

cult images as they contain regions of low contrast at transition areas from

background to foreground [48, 54]. In addition, these images have regions

which partially overlap in colour space between foreground and background

regions. The researchers selected these image to investigate the effect these

images have on tested algorithms running time and segmentation results.

67



(a) (b)

(c)

(d) (e) (f)

(g) (h) (i)

(j)

(k) (l)

Fig. 5.1: Images from BSDS500 database
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5.1 Experimental setup

The algorithms executed in this study are modified algorithms developed

from the algorithms provided in [48], [9] and [17]. All experimental tests of

the algorithms were conducted on the Matrix Laboratory ( MATLAB) soft-

ware version , R2016a. This software allows the user to perform data ma-

nipulation and visualisation, image analysis and calculations amongst others

operations. The machine used is a Fujitsu computer with Intelr CoreTM

i5-4300M CPU @ 2.60 GHz processor and 8.00 GB RAM running on a Win-

dows 7 operating system. When the MATLAB codec is executed for the

algorithms, a Graphics User Interface (GUI) will open, Figure 5.2 shows its

image;

Fig. 5.2: Grabcuts for image segmentation: A comparative study of clustering
techniques GUI
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The working order of the GUI is from left to right. The following are

steps on how the GUI works;

• The user is required to press the “Select image”button to select an

image from any folder in the computer.

• Then the “Select ROI ”button is pressed to mark the background pixels

on the original image, which is located on the left most axis.

Fig. 5.3: Selection of ROI from image loaded in the GUI

• “Run Grabcut”button is pressed to run the algorithm. The Grabcuts

algorithm with GMM based on Kmeans will run first followed by the

algorithm with GMM based on Kmedoids. When the algorithms finish

running, the segmented images appear on the first axes under the words
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Kmeans and Kmedoids, respectively. There is also an option to enhance

the result obtained in this step.

• There are two sections for the enhancement of the segmentation, one is

for marking the foreground and the other for marking the background.

To mark a foreground region for the Kmeans based algorithm, the “Se-

lect foreground”button is pressed and “Select background”button to

mark a background region. After selecting the preferred region one can

proceed to press the “Run enhance Kmeans”button, the enhanced im-

age will appear on the axis below the segmented image. On the other

hand, for the Kmedoids the buttons “Select foreground KM”, “Select

background KM”and “Run enhance-Kmedoids”to mark foreground re-

gion, background region and to enhance segmentation result.

5.2 Experimental results

5.2.1 Performance of Grabcuts for image segmentation algorithm under

Scenario 1

The results obtained from the running of the Grabcuts image segmentation

algorithms with a GMM based on Kmeans and Kmedoids clustering tech-

niques that utilised the Squared Euclidean distance are presented in this

section. These algorithms were implemented on the images provided in Fig-

ure 5.1 and the number of clusters, K, was varied from 2 to 5.

One of the important aspects that is considered to be a deciding factor in

choosing one of the two clustering techniques is their runtime. Table 5.1

presents the average runtime for the Kmeans clustering techniques as com-
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pared to the that of the Kmedoids clustering technique.

Tab. 5.1: Average runtime: Kmeans versus Kmedoids

Image K Average runtime in seconds (s)

Kmeans Kmedoids

Butterfly 2 0.480 6.27

3 0.0447 1.65

4 0.122 4.16

5 0.349 5.69

Insect 2 0.147 2.09

3 0.207 3.57

4 0.524 4.13

5 0.343 5.26

Soldier 2 0.160 4.25

3 0.259 5.38

4 0.398 8.82

5 0.845 12.19

Kids 2 0.0950 3.49

3 0.161 4.26

4 0.328 4.82

5 0.403 4.78

Swimmer 2 0.0981 2.24

3 0.247 3.79

4 0.217 4.61

5 0.235 4.88
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Car 2 0.0761 1.31

3 0.147 2.22

4 0.202 1.98

5 0.192 2.59

Aeroplane 2 0.0654 2.00

3 0.126 1.91

4 0.353 3.41

5 0.316 3.59

Flower 2 0.154 2.26

3 0.206 3.74

4 0.213 4.67

5 0.321 5.06

Swan 2 0.0573 1.15

3 0.177 3.09

4 0.177 6.07

5 0.400 5.99

Statues 2 0.249 2.41

3 0.321 3.30

4 0.304 3.95

5 0.361 4.27

Star-fish 2 0.135 2.51

3 0.208 5.29

4 0.265 5.66

5 0.354 6.39
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Horses 2 0.231 3.20

3 0.186 3.36

4 0.323 4.23

5 0.498 6.84

It is observed from Table 5.1 that the Kmeans clustering technique outper-

forms the Kmedoids techniques for all the images. In addition, the Kmeans

clustering technique achieved the lowest and highest runtimes of 0.0447 and

0.845 seconds, respectively. On the other hand, the Kmedoids clustering

technique achieved the lowest and highest runtimes of 1.15 and 12.19 sec-

onds. The highest runtimes for both clustering techniques were achieved

when the Grabcuts for image segmentation algorithm was executed on the

Soldier image with K= 5. In addition, most images achieved lowest and

highest runtimes when K=2 and K=5 for both the Kmeans and Kmedoids

clustering techniques.

The number of iterations taken by the Kmeans and Kmedoids clustering

techniques to reach convergence are shown in Figure 5.4. These are the num-

ber of iterations required in order for the algorithms to create K Gaussian

components which are required for assignment of both foreground and back-

ground pixels. A similar trend as that of the runtime achieved by both the

Kmeans and Kmedoids clustering techniques is observed from the number of

iterations required for convergence by the two techniques, where the num-

ber of iterations required by the Kmeans is less than that required by the
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Fig. 5.4: Number of iterations: Kmeans versus Kmedoids clustering technique

Kmedoids clustering technique. The Kmeans clustering technique converged

rapidly with the lowest and highest observed number of iterations of 5 and

66, respectively. On the other hand, the Kmedoids technique manages to

converge at the lowest and highest number of iterations of 13 and 85, respec-

tively. In addition, the lowest number of iterations is achieved when K=2

for both clustering techniques in all images. Furthermore, when K=5 most

images required the highest number of iterations.

To determine the separability and compactness of the clustering tech-

niques used in this study, two measures were computed. These are the intra

and inter-cluster distance. The main aim of any clustering technique is to

minimise the intra-cluster distances which is the sum of dissimilarities of

data points within a cluster [6]. This is because the desired outcome of the

clustering technique is to have groupings of data points such that all the

similar points are grouped together and hence have close to no overlapping

clusters. Table 5.2 presents the average intra-cluster distances and standard
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deviations obtained when the Grabcuts for image segmentation algorithm

was executed with GMM-Kmeans and GMM-Kmedoids.

Tab. 5.2: Averages and Standard deviations of Intra-cluster distance

Image K Average intra-cluster distance

(1× 107)

Kmeans Kmedoids

Butterfly 2 4.457 ± 1.877 4.390± 2.027

3 15.16 ± 8.446 15.09± 8.623

4 8.792 ± 4.554 8.518 ± 4.885

5 5.756 ± 2.663 5.659 ± 2.924

Insect 2 4.879 ± 2.429 4.936 ± 2.557

3 3.426 ± 1.794 3.405 ± 1.890

4 2.689 ± 1.283 2.665 ± 1.241

5 2.178 ± 1.222 2.219 ± 1.240

Soldier 2 18.37 ± 6.578 18.41 ± 6.590

3 10.92 ± 5.040 10.94 ± 5.050

4 7.303 ± 3.601 7.331 ± 3.747

5 5.657 ± 2.904 5.652 ± 2.687

Kids 2 10.26 ± 3.528 10.27 ± 3.532

3 5.507 ± 1.785 5.523 ± 1.799

4 3.592 ± 1.081 3.612 ± 1.065

5 2.544 ± 0.7083 2.567 ± 0.7235

Swimmer 2 20.23 ± 11.54 20.41 ± 11.40

3 13.89 ± 7.313 13.96 ± 7.458
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4 9.400 ± 5.396 9.541 ± 5.570

5 6.615 ± 3.874 6.637 ± 3.883

Car 2 15.35 ± 6.478 15.58 ± 6.468

3 8.001 ± 3.763 7.566 ± 2.942

4 5.865 ± 3.615 5.876 ± 3.724

5 4.239 ± 3.182 3.946 ± 2.349

Aeroplane 2 5.420 ± 2.853 5.396 ± 2.802

3 3.529 ± 1.662 3.533 ± 1.641

4 2.536 ± 1.118 2.538 ± 1.206

5 1.843 ± 0.7982 1.601 ± 0.9408

Flowers 2 15.74 ± 8.876 15.62 ± 8.787

3 8.794 ± 4.760 8.392 ± 4.281

4 6.163 ± 3.981 6.037 ± 3.751

5 4.494 ± 2.804 4.528 ± 2.918

Swan 2 8.460 ± 3.884 8.412 ± 3.874

3 4.890 ± 1.260 4.673 ± 1.460

4 2.697 ± 0.6939 2.729 ± 0.6974

5 2.009 ± 0.5253 2.077 ± 0.5860

Statues 2 20.31 ± 10.67 20.00 ± 11.07

3 11.38 ± 4.948 10.34 ± 6.013

4 6.152 ± 3.298 6.245 ± 3.426

5 4.481 ± 2.011 4.505 ± 2.010

Star-fish 2 16.83 ± 7.183 16.86 ± 7.189

3 9.834 ± 4.315 9.845 ± 4.326
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4 6.865 ± 3.120 7.138 ± 3.319

5 5.356 ± 2.517 5.359 ± 2.371

Horses 2 13.73 ± 4.642 13.58 ± 4.383

3 7.633 ± 2.856 7.640 ± 2.861

4 5.478 ± 2.125 5.444 ± 2.012

5 4.259 ± 1.473 4.281 ± 1.468

The lowest and highest intra-cluster distances observed were obtained

when K=2 for the Insect and Butterfly images, respectively, for both clus-

tering techniques. The Kmeans clustering technique obtained the lowest and

highest intra-cluster distance of 1.843× 107 and 20.31× 107. The Kmedoids

technique, on the other hand, obtained the lowest intra-cluster distance of

1.601 × 107 and a highest intra-cluster distance of 20.41 × 107. In addition,

the Kmeans clustering technique obtained the lowest intra-cluster distance

for most images than the Kmedoids technique. Although this is the case,

the Kmedoids clustering technique obtained the lowest intra-cluster distance

across all images for K=2 to 5.

The separability of the clustering solution was measured using the inter-

cluster distance. The aim of a clustering technique is to ensure that the

clusters formed are dissimilar. This implies that the clustering technique

aims to maximise the inter-cluster distance. Table 5.3 shows the average

inter-cluster distance and standard deviations for the clustering solution ob-

tained by the Kmeans clustering technique as compared to that obtained by

the Kmedoids clustering technique.
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Tab. 5.3: Averages and Standard deviations of Inter-cluster distance

Image K Inter-cluster distance

(1× 109)

Butterfly 2 9.918 ± 3.464 9.609 ± 4.141

3 3.648 ± 1.588 3.651 ± 1.607

4 5.413 ± 2.402 5.335 ± 2.520

5 7.614 ± 2.837 7.343 ± 3.305

Insect 2 0.4382 ± 0.1634 0.4351 ± 0.1741

3 0.8126 ± 0.2591 0.7674 ± 0.2513

4 1.191 ± 0.2710 1.189 ± 0.2194

5 1.437 ± 0.3323 1.428 ± 0.3375

Soldier 2 1.644 ± 0.2285 1.640 ± 0.2327

3 2.941 ± 0.6128 2.935 ± 0.6087

4 5.199 ± 1.996 5.077 ± 1.992

5 6.780 ± 2.687 5.384 ± 2.223

Kids 2 2.303 ± 1.045 2.308 ± 1.053

3 3.420 ± 1.474 3.413 ± 1.493

4 4.411 ± 1.774 4.398 ± 1.711

5 5.853 ± 2.332 5.963 ± 2.371

Swimmer 2 2.101 ± 1.498 2.122 ± 1.490

3 3.771 ± 2.618 3.831 ± 2.755

4 5.701 ± 4.327 5.658 ± 4.288

5 7.036 ± 5.212 7.069 ± 5.231

Car 2 1.691 ± 0.4661 1.669 ± 0.5040
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3 2.777 ± 0.5362 2.796 ± 0.4966

4 3.856 ± 0.8225 3.863 ± 0.8944

5 4.978 ± 1.833 4.858 ± 1.047

Aeroplane 2 0.9817 ± 0.5094 0.9850 ± 0.5258

3 1.637 ± 0.5464 1.623 ± 0.5405

4 2.314 ± 0.7165 2.127 ± 0.7409

5 2.672 ± 0.3327 2.717 ± 0.2996

Flowers 2 2.022 ± 0.9244 1.970 ± 0.8586

3 3.239 ± 1.370 2.979 ± 0.9976

4 5.030 ± 2.255 4.737 ± 1.965

5 7.780 ± 2.603 7.182 ± 2.236

Swan 2 2.474 ± 1.631 2.458 ± 1.643

3 3.942 ± 2.186 3.335 ± 1.586

4 5.600 ± 2.384 5.458 ± 2.415

5 7.411 ± 2.451 7.187 ± 2.496

Statues 2 1.936 ± 1.312 1.845 ± 1.276

3 5.072 ± 1.456 3.678 ± 2.234

4 5.027 ± 3.300 5.103 ± 3.246

5 8.921 ± 2.504 8.972 ± 2.577

Star-fish 2 1.699 ± 0.5582 1.702 ± 0.5493

3 2.820 ± 0.9481 2.822 ± 0.9478

4 4.864 ± 1.777 4.892 ± 1.795

5 6.157 ± 2.229 6.179 ± 2.087

Horses 2 1.035 ± 0.3470 1.034 ± 0.3393
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3 1.952 ± 0.5179 1.945 ± 0.5154

4 2.741 ± 0.5835 2.753 ± 0.6039

5 3.738 ± 0.8266 3.722 ± 0.8195

The lowest and highest inter-cluster distances observed was obtained

when K=2 for the Insect and Butterfly images, respectively, for both cluster-

ing techniques. The Kmeans and Kmedoids clustering techniques obtained

lowest inter-cluster distances of 0.4382× 109 and 0.4351× 109, respectively.

On the other hand, the highest inter-cluster distance obtained by the two

techniques were 9.918× 109 and 9.609× 109, respectively. The Kmeans clus-

tering technique obtained a higher inter-cluster distance for most images with

K=2 to 5 than the Kmedoids clustering technique. In addition, the technique

obtained the highest inter- cluster distance across all images for K=2 to 5.
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5.2.2 Optimal number of clusters

The silhouette validity index was calculated for all the clustering solutions

found by both the Kmeans and Kmedoids clustering techniques. The sil-

houette value of the clusters discovered by clustering techniques indicates

whether the data points are appropriately clustered or not. The best cluster-

ing solution is observed when the silhouette value is very close to 1 and the

worst clustering solution is observed when the silhouette value is very close

to -1. This means that the data points were misclassified and lie somewhere

in between clusters. In addition the number of clusters with the largest av-

erage silhouette value is taken to be the optimal number of clusters [4]. The

average silhouette values and their standard deviations are given in Table 5.4

and graphical comparisons of these value are provided in Figure 5.5 to 5.16.

Tab. 5.4: Averages and Standard deviations of Silhouette validity index

Image K Silhouette value

Kmeans Kmedoids

Butterfly 2 0.702 ± 0.056 0.676 ± 0.064

3 0.895 ± 0.021 0.896 ± 0.021

4 0.808 ± 0.044 0.811 ± 0.045

5 0.755 ± 0.061 0.735 ± 0.045

Insect 2 0.720 ± 0.140 0.719 ± 0.142

3 0.631 ± 0.123 0.631 ± 0.123

4 0.590 ± 0.125 0.592 ± 0.120

5 0.604 ± 0.088 0.614 ± 0.078

Soldier 2 0.727 ± 0.047 0.726 ± 0.048
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3 0.641 ± 0.070 0.641 ± 0.070

4 0.636 ± 0.043 0.635 ± 0.045

5 0.590 ± 0.058 0.594 ± 0.059

Kids 2 0.867 ± 0.020 0.867 ± 0.020

3 0.787 ± 0.028 0.785 ± 0.028

4 0.684 ± 0.030 0.682 ± 0.032

5 0.664 ± 0.014 0.665 ± 0.015

Swimmer 2 0.707 ± 0.074 0.709 ± 0.074

3 0.625 ± 0.078 0.622 ± 0.085

4 0.674 ± 0.043 0.663 ± 0.043

5 0.645 ± 0.027 0.645 ± 0.027

Car 2 0.765 ± 0.021 0.760 ± 0.020

3 0.711 ± 0.048 0.724 ± 0.030

4 0.726 ± 0.048 0.736 ± 0.028

5 0.719 ± 0.013 0.714 ± 0.024

Aeroplane 2 0.800 ± 0.166 0.800 ± 0.166

3 0.660 ± 0.104 0.660 ± 0.104

4 0.587 ± 0.050 0.640 ± 0.044

5 0.628 ± 0.060 0.629 ± 0.053

Flowers 2 0.814 ± 0.029 0.814 ± 0.030

3 0.726 ± 0.038 0.714 ± 0.029

4 0.722 ± 0.022 0.722 ± 0.023

5 0.702 ± 0.057 0.692 ± 0.060

Swan 2 0.903 ± 0.019 0.902 ± 0.021
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3 0.789 ± 0.094 0.745 ± 0.092

4 0.741 ± 0.063 0.737 ± 0.063

5 0.719 ± 0.072 0.714 ± 0.070

Statues 2 0.700 ± 0.059 0.690 ± 0.055

3 0.687 ± 0.010 0.678 ± 0.010

4 0.663 ± 0.006 0.664 ± 0.004

5 0.659 ± 0.012 0.659 ± 0.012

Star-fish 2 0.743 ± 0.037 0.743 ± 0.037

3 0.671 ± 0.036 0.671 ± 0.036

4 0.668 ± 0.037 0.661 ± 0.038

5 0.651 ± 0.024 0.646 ± 0.024

Horses 2 0.673 ± 0.037 0.675 ± 0.037

3 0.662 ± 0.037 0.661 ± 0.037

4 0.582 ± 0.019 0.588 ± 0.020

5 0.557 ± 0.023 0.556 ± 0.024

The average silhouette values obtained by the clustering techniques range

from 0.50 to 0.90. This implies that the clustering solutions obtained in this

study are appropriate.

Figure 5.5 shows that both the Kmeans and Kmedoids clustering tech-

niques follow a similar trend, where the lowest average silhouette value is

attained when K=2 and the maximum value is obtained at K=3. Thus, the

optimal number of clusters for the Butterfly image is 3 for both clustering

techniques.
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Fig. 5.5: Silhouette validity index versus Number of clusters for the Butterfly im-
age

Fig. 5.6: Silhouette validity index versus Number of clusters for the Insect image

The average silhouette values obtained for the Insect image by the Kmeans

and Kmedoids clustering techniques suggested that the best clustering solu-

tion is observed when K=2 as the maximum silhouette values of 0.720 and

0.719 were obtained for the Kmeans and Kmedoids clustering techniques,

respectively.
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Fig. 5.7: Silhouette validity index versus Number of clusters for the Soldier image

The Kmeans and Kmedoids clustering techniques obtained similar silhou-

ette values for all the number of clusters the experiments were run for. The

highest and lowest silhouette values were obtained when K=2 and 5 for both

the clustering techniques. The Kmeans technique obtained the lowest aver-

age silhouette value of 0.587 and highest average silhouette value of 0.727,

while the Kmedoids technique obtained the lowest average silhouette value of

0.588 and the average silhouette value of 0.726. Thus, the average silhouette

value obtained indicates that the optimal number of clusters for the Soldier

image is 2.

Figure 5.8 shows that the lowest average silhouette values obtained by

the Kmeans and Kmedoids clustering techniques were 0.664 and 0.665, re-

spectively. The clustering techniques obtained an equivalent highest average

silhouette value of 0.867 each. The Kmeans and Kmedoids clustering tech-

niques obtained the highest average silhouette value when the number of

clusters, K, was 2.
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Fig. 5.8: Silhouette validity index versus Number of clusters for the Kids image

Fig. 5.9: Silhouette validity index versus Number of clusters for the Swimmer im-
age

It was observed from Figure 5.9 that both clustering techniques obtained

lowest and highest average silhouette values when K=3 and K=2 for the

Swimmer image. This suggests that the suitable number of clusters that

obtained the best clustering solution for the image is 2.

The Kmeans and Kmediods clustering techniques obtained their highest

average silhouette values of 0.765 and 0.760, respectively when K=2, while

the lowest average silhouette values of 0.711 and 0.714 when K=2 and K=5
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Fig. 5.10: Silhouette validity index versus Number of clusters for the Car image

were obtained for the Kmeans and Kmedoids techniques, respectively. In

addition, Figure 5.10 shows that the Kmedoids clustering technique found

better clustering solutions than the Kmeans technique for all the other num-

ber of clusters except when K=2 and K=5.

Fig. 5.11: Silhouette validity index versus Number of clusters for the Aeroplane
image

Figure 5.11 shows that the Kmedoids clustering technique performed bet-

ter than the Kmeans clustering technique as the average silhouette values ob-

tained by the Kmedoids technique are greater than or equal those obtained
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by the Kmeans technique. In addition, both clustering techniques obtained

an equivalent highest average silhouette value of 0.800 when K=2. Although

this is the case, the Kmeans clustering technique obtained its lowest average

silhouette value of 0.587 when K=4. On the other hand, the Kmedoids clus-

tering technique obtained its lowest average silhouette value of 0.629 when

K=5.

Fig. 5.12: Silhouette validity index versus Number of clusters for the Flowers image

It was observed from Figure 5.12, that the Kmeans clustering technique

found a more suitable clustering solution than the Kmedoids technique. In

addition, both clustering techniques arrived at the best and worst clustering

solutions when K=2 and K=5, respectively. Furthermore, their highest av-

erage silhouette value was 0.814 which implies that they both found a strong

clustering structure.

The average silhouette values obtained for the Swan image by the Kmeans

and Kmedoids clustering techniques suggested that the best clustering solu-

tion is observed when K=2 as the highest average silhouette values of 0.903

and 0.902 were obtained for the Kmeans and Kmedoids clustering techniques,

89



Fig. 5.13: Silhouette validity index versus Number of clusters for the Swan image

respectively. In addition, both clustering techniques obtained their lowest av-

erage silhouette values when K=5. The Kmeans clustering technique is seen

to perform better than the Kmedoids technique as all of its average silhouette

values are greater than those of the Kmedoids clustering technique.

Fig. 5.14: Silhouette validity index versus Number of clusters for the Statues image

The Kmeans and kmediods clustering techniques obtained their highest

average silhouette values of 0.700 and 0.690, respectively when K=2. While

the lowest average silhouette values of 0.663 and 0.664 for the Kmeans and

Kmedoids techniques, respectively when K=4. In addition, Figure 5.14 shows
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that the Kmeans clustering technique found better clustering solutions than

the Kmedoids technique for all the other number of clusters except for when

K=4 and K=5.

Fig. 5.15: Silhouette validity index versus Number of clusters for the Star-fish im-
age

It is observed from Figure 5.15 that the Kmeans and Kmedoids cluster-

ing techniques obtained equivalent highest average silhouette values of 0.743

when K=2. This implies that the both clustering techniques found strong

clustering structures for the Star-fish image. The techniques both obtained

their lowest average silhouette values of 0.651 for Kmeans and 0.646 for Kme-

doids clustering technique when K=5.

It is observed from Figure 5.16 that the Kmedoids clustering technique

found more suitable clustering solutions than the Kmeans technique as it

obtained higher average silhouette values. In addition, both clustering tech-

niques arrived at the best and worst clustering solutions when K=2 and K=5,

respectively. Their highest average silhouette values were 0.673 and 0.675 for

the Kmeans and Kmedoids clustering technique, respectively.
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Fig. 5.16: Silhouette validity index versus Number of clusters for the Horses image

It was observed from the average silhouette values obtained by the Kmeans

and Kmedoids clustering techniques for the test images that all the images

obtained their best clustering solutions when K=2. The exception is the

Butterfly image whose highest Silhouette value is acquired when K=3. In

addition, it was seen that the lowest average silhouette values were obtained

when K=5 for most images. The Swan image obtained the highest average

silhouette value for both the Kmeans and Kmedoids clustering techniques

amongst all the other images. On the other hand, the Horses image obtained

the lowest average silhouette values for both clustering techniques amongst

the test images. Furthermore, all the average silhouette values obtained are

above 0.5. This implies that reasonable to strong clustering structure were

found when the Kmeans and Kmedoids clustering techniques were used on

the test images.

The Kmeans and Kmedoids clustering techniques are executed as part

of the model used to generate both background and foreground GMMs as
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described in the Initialisation stage provided in the Grabcuts algorithm sum-

mary in Chapter 3. Thus the researchers measured the runtimes for creation

of GMMs and assignment of pixels to both the foreground and background

GMMs based on Kmeans (GMM-Kmeans) and those based on Kmedoids

(GMM-Kmedoids). Figure 5.17 shows the average runtimes used to generate

the background and foreground GMMs for GMM-Kmeans as compared to

the ones generated by GMM-Kmedoids.

Fig. 5.17: Average runtime GMM-Kmeans versus GMM-Kmedoids

Figure 5.17 shows that although the Kmeans clustering technique out-

performed the Kmedoids in terms of runtimes, the time taken to generate

the GMMs by GMM-Kmedoids is comparable smaller than the time taken

by GMM-Kmeans for most of the images. It is also observed that in some

instances the GMM-Kmeans performed equivalently to the GMM-Kmedoids,

for instance, for the Insect, Swimmer and Star-fish images when K= 2. In

addition, the results obtained show an upward trend between the average run-

time and number of clusters in all images for both the GMM-Kmeans and
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GMM-Kmedoids. This implies that as the number of clusters is increased, the

more computational time is required by the algorithms to generate GMMs.

This is due to the more initial points being randomly selected as centers or

medians by the Kmeans or Kmedoids algorithms as described in the steps

followed by the two clustering techniques. Furthermore, the runtimes range

from 0,020-0,104 seconds for GMM-Kmeans and 0.019-0.0801 seconds for

GMM-Kmedoids, respectively.

5.2.3 Segmentation results

Fig. 5.18: Average runtimes for Grabcuts for image segmentation algorithm:
GMM-Kmeans versus GMM-Kmedoids

Figure 5.18 shows that the Grabcuts for segmentation algorithm with

the GMM-Kmedoids clustering heuristic outperformed its counterpart. The

Grabcuts for image segmentation algorithm with the GMM-Kmeans cluster-

ing heuristic obtained the lowest average runtime of 0.08 seconds when K

was varied from 2 to 4, whereas it obtained a highest average runtime of 0.12

seconds when K=5. On the other hand, it obtained highest runtimes of 0.13
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seconds for K=2 and 3, 0.14 seconds for K=4 and 0.15 seconds for K=5.

The Soldier image was observed to require the least running time when K

was varied from 2 to 3, while the Car, Aeroplane and Horses images required

the highest runtimes amongst all the other images when K=5. Most test

images obtained runtimes of 0.12 when K= 2 and 4 for the Grabcuts for

image segmentation algorithm with the GMM-Kmeans clustering heuristic.

The runtimes of 0.11 and 0.13 seconds were obtained by most test images

when K= 3 and K= 5, respectively.

The Grabcuts for image segmentation algorithm with the GMM-Kmedoids

clustering heuristic obtained the lowest average runtime of 0.07 seconds when

K was varied from 2 to 5 for all test images. A highest average runtime 0.26

seconds was obtained for this algorithm across all test images with K varied.

The lowest and highest runtimes were obtained when the algorithm was exe-

cuted with the Soldier image with K=2 and K=4, respectively. In addition,

most of the test images required runtimes of 0.10, 0.11,0.12 and 0.13 when

K=2,3,4 and 5 respectively.

The segmentation results of the Grabcuts for segmentation algorithm are

presented in Figure 5.36. The segmentation results for the Grabcuts for im-

age segmentation with the GMM-Kmeans and GMM-Kmedoids clustering

heuristic are presented in two consecutive rows for each test image. The

first row shows results for the Grabcuts for image segmentation with the

GMM-Kmeans clustering heuristic and the second row shows results for the

Grabcuts for image segmentation with the GMM-Kmedoids clustering heuris-

tic. The number of clusters increases from left to right, which implies the left

most and right most results are obtained when K=2 and K=5, respectively.
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Fig. 5.19: Segmentation results for Grabcuts for image segmentation: GMM-
Kmeans versus GMM-Kmedoids
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Fig. 5.19: Segmentation results for Grabcuts for image segmentation: GMM-
Kmeans versus GMM-Kmedoids
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Fig. 5.19: Segmentation results for Grabcuts for image segmentation: GMM-
Kmeans versus GMM-Kmedoids
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Fig. 5.19: Segmentation results for Grabcuts for image segmentation: GMM-
Kmeans versus GMM-Kmedoids
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The Grabcuts for image segmentation algorithm based on the GMM-

Kmeans and GMM-Kmedoids clustering heuristic obtained segmentation re-

sults in which some pixels that were supposed to be in the foreground were

classified as background. This was accredited to the low contrast regions

seen between the transition areas from background and foreground. The al-

gorithms obtained similar segmentation results when K was varied from 2 to

4 for the Butterfly image. This was not the case when K=5, as the Grabcuts

for image segmentation algorithm based on the GMM-Kmedoids obtained

better segmentation results than its counterpart.

The Grabcuts for image segmentation algorithm based on the GMM-

Kmeans and GMM-Kmedoids clustering heuristic obtained similar segmen-

tation results for the Insect image. The misclassification of some background

pixels around the body of the insect was observed for all the segmentation

results obtained. The algorithms performed worst when K=4, as some of the

leaf that was supposed to be classified as background ended up being part of

the foreground.

The soldier’s helmet and parts of his boots were taken to mistakenly be-

long to the background on all segmentation results obtained. This is due

to the overlap in colour space of the foreground and background colour dis-

tributions [48]. The Grabcuts for image segmentation algorithm based on

the GMM-Kmeans obtained better results as more foreground pixels were

misclassified by the Grabcuts for image segmentation algorithm based on

the GMM-Kmedoids cluster heuristic, for instance, segmentation results ob-

tained when K=4.
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The Grabcuts for image segmentation algorithm based on the GMM-

Kmeans and GMM-Kmedoids clustering heuristic obtained similar segmenta-

tion results for the Kids image. The results showed misclassified background

pixels on top of the second boy’s clay pot.

The Swimmer image obtained segmentation results in which more back-

ground pixels around the swimmer were taken to belong to the set of fore-

ground pixels. This is as a result of the selected ROI’s background material

not being competently represented by the set of pixels belonging to the back-

ground region. The Grabcuts for image segmentation algorithm based on the

GMM-Kmeans and GMM-Kmedoids clustering heuristic obtained their best

segmentation results when K=5.

The tyres and windows of the car were mistaken to belong to the set

of background pixels. This was as a result of them sharing a similar colour

distribution with the background pixels. In addition, some of the background

pixels were observed to have been misclassified as seen around the transition

areas from background to foreground regions, around the car. For the Car

image, the Grabcuts for image segmentation algorithm with a GMM based on

the Kmeans clustering technique obtained better segmentation results than

the algorithm with a GMM based on the Kmedoids clustering technique.

The Aeroplane image obtained similar segmentation results for all algo-

rithms. This result is with a few exceptions where the Grabcuts for image

segmentation algorithm with a GMM based on the Kmeans clustering tech-

nique obtained better segmentation results when K=2,3 and 5. On the other

hand, the Grabcuts for image segmentation algorithm with a GMM based on
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the Kmedoids clustering technique obtained is better when K=4. It was also

observed that all algorithms considered got their worst segmentation results

when K=5.

The Grabcuts for image segmentation algorithm with a GMM based on

the Kmeans and Kmedoids clustering techniques obtained identical segmen-

tation results when K was varied from 2 to 4 for the Flowers image. The

segmentation results showed a misclassification of background pixels around

the flowers which share similar colour distribution as some of the pixels in the

foreground region of the flowers. In addition, the Grabcuts for image segmen-

tation algorithm with a GMM based on the Kmedoids clustering technique

obtained better segmentation results, than its counterpart when K=5.

The Swan image obtained the best segmentation results when K=2,3 and

5 for the Grabcuts for image segmentation algorithm with a GMM based on

the Kmeans clustering technique. On the other hand, it obtained the best

segmentation result only when K=5 for the Grabcuts for image segmentation

algorithm with a GMM based on the Kmedoids clustering technique.

The Grabcuts for image segmentation algorithm with a GMM based

on the Kmedoids clustering technique obtained better segmentation results

when K=2,3 and 4, than its counterpart for the Statues image. On the other

hand, the Grabcuts for image segmentation algorithm with a GMM based on

the Kmeans clustering technique obtained better segmentation results when

K=5, than the Grabcuts for image segmentation algorithm with a GMM

based on the Kmedoids clustering technique.
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The Star-fish image segmentation results obtained for the Grabcuts for

image segmentation algorithm with a GMM based on the Kmeans and Kme-

doids clustering techniques are identical. In addition, the segmentation re-

sults obtained by this image for all algorithms considered with the variation

of K, showed minimal pixel misclassification amongst all the test images

considered.

The segmentation results obtained by the Horses image are identical for

all algorithms considered, where background pixels are seen to be misclassi-

fied around the tail of the horse. This misclassification of pixels is accredited

to the overlap of colour distributions around hairy objects.

The precision, recall and BF-score, with θ = 0.5, of the segmentation

results obtained from running the Grabcuts image segmentation algorithms:

GMM-Kmeans and GMM-Kmedoids clustering techniques that utilised the

Squared Euclidean distance are presented in this section.

Tab. 5.5: Average Precision and recall values: Grabcuts: GMM-Kmeans versus
Grabcuts: GMM-Kmedoids

Image K Grabcuts: GMM-Kmeans Grabcuts: GMM-Kmediods

Precision Recall Precision Recall

Butterfly 2 0.824 0.588 0.824 0.588

3 0.823 0.587 0.823 0.586

4 0.824 0.621 0.824 0.624

5 0.825 0.625 0.825 0.651

Insect 2 0.496 0.805 0.501 0.814

3 0.483 0.804 0.483 0.804
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4 0.484 0.802 0.484 0.802

5 0.495 0.802 0.493 0.805

Soldier 2 0.691 0.949 0.691 0.949

3 0.692 0.949 0.692 0.949

4 0.691 0.949 0.691 0.949

5 0.691 0.949 0.691 0.949

Kids 2 0.790 0.830 0.790 0.858

3 0.789 0.634 0.790 0.691

4 0.789 0.634 0.789 0.634

5 0.789 0.634 0.791 0.832

Swimmer 2 0.697 0.580 0.712 0.611

3 0.689 0.364 0.689 0.364

4 0.699 0.584 0.698 0.586

5 0.699 0.638 0.699 0.638

Car 2 0.667 0.683 0.650 0.683

3 0.659 0.656 0.659 0.656

4 0.658 0.683 0.652 0.683

5 0.662 0.683 0.664 0.683

Aeroplane 2 0.731 0.669 0.700 0.638

3 0.724 0.669 0.695 0.638

4 0.730 0.698 0.691 0.669

5 0.724 0.770 0.692 0.722

Flower 2 0.711 0.602 0.709 0.466

3 0.712 0.602 0.712 0.602
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4 0.709 0.557 0.709 0.466

5 0.729 0.939 0.731 0.941

Swan 2 0.475 0.630 0.473 0.630

3 0.475 0.630 0.473 0.634

4 0.473 0.630 0.473 0.630

5 0.475 0.623 0.475 0.630

Statues 2 1.00 0.707 1.00 0.707

3 1.00 0.831 1.00 0.707

4 1.00 0.707 1.00 0.707

5 1.00 0.848 1.00 0.848

Star-fish 2 0.892 0.591 0.892 0.591

3 0.892 0.591 0.892 0.591

4 0.892 0.591 0.892 0.591

5 0.892 0.591 0.892 0.591

Horses 2 0.707 0.579 0.707 0.579

3 0.707 0.579 0.707 0.579

4 0.707 0.579 0.707 0.579

5 0.707 0.579 0.707 0.579

Table 5.5 shows that the segmented Butterfly images obtained similar

precision values for both Grabcuts: GMM-Kmeans and Grabcuts: GMM-

Kmediods. On the other hand, the recall values obtained when the Grabcuts:

GMM-Kmediods was used for the Butterfly image were slightly higher than

those obtained by its counterpart when K=4 and 5.
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The Grabcuts: GMM-Kmediods was observed to have obtained a segmented

Insect image with higher precision and recall values than the Grabcuts:

GMM-Kmeans when K=2. On the other hand, when K=5 a higher pre-

cision value is obtained by the Grabcuts: GMM-Kmeans segmented Insect

image, while the Grabcuts: GMM-Kmediods achieves a higher recall value.

The segmented Soldier image obtained similar precision and recall values for

both segmentation algorithms considered. The recall values were observed

to be much higher than the precision values when K was varied for both

the Grabcuts: GMM-Kmeans and Grabcuts: GMM-Kmediods segmentation

results. This implies that the segmented Soldier images suffered from over

segmentation, which is as a result of misclassification of some foreground

pixels as background pixels.

The precision values obtained from the segmented Kids images are higher

than the recall values when K is varied from 3 to 5 for Grabcuts: GMM-

Kmeans and when K is varied from 3 to 4 for Grabcuts: GMM-Kmediods.

In addition, both image segmentation algorithms obtain segmentation results

with highest precision and recall values when K=2.

The segmented Swimmer image obtained by the Grabcuts: GMM-Kmeans

achieved its highest precision and recall values when K=5. On the other

hand, it was observed that the segmented Swimmer image obtained by the

Grabcuts: GMM-Kmediods achieved its highest precision and recall values

when K=2 and K=5, respectively. The segmentation algorithms considered

obtained similar precision and recall values when K=3 and 5.

106



The segmented Car images were observed to have obtained similar recall val-

ues for both segmentation algorithms considered under scenario 1 when K

is varied from 2 to 5. Although this was the case, the segmentation algo-

rithms obtained a similar precision value only when K=3. In addition, it was

observed that the recall values obtained for the segmented Car images were

higher than the precision values. This implies that the Car images were over

segmented.

The highest precision and recall values for the segmented Aeroplane images

for both segmentation algorithms considered under scenario 1 was obtained

when K=2 and K=5, respectively. Although this was the case, the Grabcuts:

GMM-Kmeans obtained segmented images that had slightly higher precision

and recall values than its counterpart.

The segmented Flower images obtained their highest precision and recall val-

ues for the Grabcuts: GMM-Kmeans and Grabcuts: GMM-Kmediods when

K= 5. In addition, when K= 3 similar precision and recall values were ob-

tained for the segmented images for both segmentation algorithms.

The segmented Swan images obtained by the Grabcuts: GMM-Kmeans achieved

their highest precision value when K=2, 3 and 5. The highest recall value

was achieved when K=2,3 and 4. On the other hand, the segmented Swan

images obtained by the Grabcuts: GMM-Kmediods achieved their highest

precision and recall values when K=5 and K=3.

The segmented Statues images obtained similar precision and recall values

when K was varied for 2 to 5 under both segmentation algorithms considered.
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This is with the exception of the segmented images obtained when K=3 for

both segmentation algorithms, which achieved different recall values of 0.831

and 0.707.

The segmented images for the Star-fish obtained similar precision and re-

call values when K was varied from 2 to 5 for both segmentation algorithm

considered. The same trend was observed from Table 5.5 for the segmented

Horses images. In addition, it was observed that the precision values were

much larger than the recall values. This implies that these segmented images

suffer from under segmentation.

Fig. 5.20: Average BF-scores for Grabcuts for image segmentation algorithm:
GMM-Kmeans versus GMM-Kmedoids

Figure 5.20 shows the BF-scores for the segmented images. All these

results indicate that the quantitative evaluation measure chosen matches the

relative visual quality well. The segmented Statues images is observed to

have the highest BF-scores when K is varied for both the Grabcuts: GMM-

Kmeans as well as the Grabcuts: GMM-Kmediods. On the other hand, the
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segmented Swan images obtain the lowest scores when K is varied for both

the Grabcuts: GMM-Kmeans and Grabcuts: GMM-Kmediods, except for

when K=3. Figure 5.20 shows that the Grabcuts: GMM-Kmedoids produces

images with slightly higher BF-scores than its counterpart when K was varied

from 2 to 5 for most of the test images.

5.2.4 Performance of Grabcuts for image segmentation algorithm under

Scenario 2

The researchers in this section present the results obtained after the exe-

cution of the Grabcuts image segmentation algorithms with a GMM based

on Kmeans and Kmedoids clustering techniques that utilised the City block

distance. These algorithms were implemented on the images provided in Fig-

ure 5.1 and the number of clusters, K, was varied from 2 to 5. The results

of the average runtimes obtained by the Kmeans and Kmedoids clustering

techniques are shown in Table 5.6.

Tab. 5.6: Average runtime: Kmeans versus Kmedoids

Image K Average runtime in seconds (s)

Kmeans Kmedoids

Butterfly 2 0.0529 1.55

3 0.116 2.67

4 0.221 3.39

5 0.254 4.65

Insect 2 0.131 1.61

3 0.207 3.17
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4 0.162 2.82

5 0.218 2.75

Soldier 2 0.136 2.08

3 0.181 2.80

4 0.230 4.05

5 0.224 4.38

Kids 2 0.0868 2.22

3 0.187 2.63

4 0.218 3.18

5 0.296 3.47

Swimmer 2 0.0887 1.39

3 0.163 2.56

4 0.212 3.09

5 0.204 3.43

Car 2 0.0955 0.723

3 0.146 1.26

4 0.207 1.67

5 0.231 2.22

Aeroplane 2 0.0729 1.33

3 0.124 1.72

4 0.174 1.94

5 0.115 2.76

Flower 2 0.0973 0.863

3 0.156 1.96
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4 0.165 2.37

5 0.248 3.45

Swan 2 0.0710 1.15

3 0.121 1.13

4 0.139 2.16

5 0.158 2.36

Statues 2 0.152 1.36

3 0.217 2.23

4 0.232 3.09

5 0.248 3.91

Star-fish 2 0.111 2.00

3 0.155 2.74

4 0.234 3.57

5 0.283 4.79

Horses 2 0.167 2.16

3 0.199 3.44

4 0.203 3.41

5 0.262 4.26

Table 5.6 shows that the Kmeans clustering technique outperforms the

Kmedoids techniques for all the images. In addition, the Kmeans clustering

technique achieved the lowest and highest average runtimes of 0.0529 and

0.269 seconds, respectively. On the other hand, the Kmedoids clustering

technique achieved the lowest and highest average runtimes of 1.13 and 4.79

seconds. The highest average runtimes for both clustering techniques were
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achieved when the Grabcuts for image segmentation algorithms was executed

on the Kids and Star-fish images with K= 5 for the Kmeans and Kmedoids

clustering techniques, respectively. In addition, most images achieved lowest

and highest average runtimes when K=2 and K=5 for both the Kmeans and

Kmedoids clustering techniques. The average number of iterations taken by

the Kmeans and Kmedoids clustering techniques to reach convergence are

shown in Figure 5.21. These are the average number of iterations required

in order for the algorithms to create K Gaussian components which are re-

quired for the assignment of both foreground and background pixels to an

appropriate GMM. The Kmeans clustering technique on average required

Fig. 5.21: Number of iterations: Kmeans versus Kmedoids clustering technique

less iterations to reach convergence than the Kmedoids clustering technique.

The lowest and highest observed number of iterations required by the Kmeans

clustering technique to reach convergence were 4 and 38 iterations, respec-

tively. On the other hand, the Kmedoids technique managed to converge at

the lowest and highest number of iterations of 12 and 68 iterations, respec-

112



tively. In addition, the lowest number of iterations is achieved when K=2

for both clustering techniques in all images. Furthermore, when K=5 most

images required the highest number of iterations.

The compactness of the clustering solution obtained by the Kmeans and

Kmedoids techniques was measured using the intra-cluster distance. Ta-

ble 5.7 presents a comparison of the average intra-cluster distance and the

standard deviations obtained by the Kmeans and Kmedoids clustering tech-

niques.

Tab. 5.7: Averages and Standard deviations of Intra-cluster distance

Image K Average intra-cluster distance

(1× 106)

Kmeans Kmedoids

Butterfly 2 4.428 ± 2.255 4.432± 2.260

3 3.333 ± 1.498 3.312 ± 1.536

4 2.786 ± 1.241 2.729 ± 1.269

5 2.416 ± 1.023 2.420 ± 1.029

Insect 2 54.59 ± 28.67 53.58± 26.39

3 37.75 ± 22.61 35.81 ± 19.53

4 1.818 ± 1.286 1.815 ± 1.285

5 1.645 ± 1.109 1.640 ± 1.109

Soldier 2 4.948 ± 1.943 4.949 ± 1.945

3 3.853 ± 1.697 3.855± 1.699

4 3.257 ± 1.607 3.259 ± 1.609

5 2.884 ± 1.510 2.869 ± 1.491
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Kids 2 3.518 ± 1.392 3.544 ± 1.351

3 2.628 ± 0.8999 2.586 ± 1.031

4 2.085 ± 0.7815 2.084 ± 0.8152

5 1.784± 0.6738 1.812 ± 0.6586

Swimmer 2 5.264 ± 3.556 5.238 ± 3.684

3 4.193 ± 2.807 4.163 ± 2.792

4 3.490 ± 2.383 3.421 ± 2.125

5 2.950 ± 2.078 2.965 ± 1.891

Car 2 4.489 ± 1.192 4.424 ± 1.299

3 3.155 ± 0.8706 3.107 ± 0.8783

4 2.660 ± 0.9744 2.464 ± 0.6749

5 2.179 ± 0.6490 2.101 ± 0.3234

Aeroplane 2 2.178 ± 0.2116 2.189 ± 0.2060

3 1.703 ± 0.2365 1.666 ± 0.2112

4 1.420 ± 0.1408 1.436 ± 0.1387

5 1.264 ± 0.1540 1.263 ± 0.2099

Flowers 2 3.985 ± 0.8132 3.914 ± 0.7777

3 2.929 ± 1.136 2.874 ± 0.9503

4 2.380 ± 0.7788 2.263 ± 0.7417

5 2.050 ± 0.4879 2.050 ± 0.5044

Swan 2 3.067 ± 1.094 3.076 ± 1.102

3 2.131 ± 0.7834 2.222 ± 0.7471

4 1.816 ± 0.7567 1.759 ± 0.7114

5 1.480 ± 0.6320 1.494 ± 0.5853
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Statues 2 5.005 ± 2.032 4.977 ± 1.980

3 3.727 ± 1.344 3.714 ± 1.390

4 2.880 ± 0.9251 2.922 ± 0.9124

5 2.401 ± 0.8553 2.393 ± 0.8094

Star-fish 2 4.665 ± 1.764 4.666 ± 1.765

3 3.415 ± 1.432 3.486 ± 1.390

4 2.879 ± 1.185 2.860 ± 1.162

5 2.469 ± 1.063 2.467 ± 1.045

Horses 2 4.085 ± 1.017 4.075 ± 0.9983

3 3.187 ± 0.8655 3.188 ± 0.8667

4 2.655 ± 0.7303 2.669 ± 0.7339

5 2.348 ± 0.6521 2.360 ± 0.6540

It is observed from Table 5.7 that the intra-cluster distance is a de-

creasing function of K for both clustering techniques. The Kmeans clus-

tering technique obtained lowest and highest average intra-cluster distances

of 1.264×106 and 54.59 ×106, respectively. On the other hand, the Kme-

doids clustering technique obtained lowest and highest average intra-cluster

distances of 1.263×106 and 53.58 ×106, respectively. In addition, both clus-

tering techniques obtained their lowest and highest average intra-cluster dis-

tances when K=5 for the Aeroplane image and K=2 for the Insect image,

respectively.

The separability of the clustering solution was measured using the inter-

cluster distance. Table 5.8 shows the average inter-cluster distance and stan-

dard deviations for the clustering solution obtained by the Kmeans clus-
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tering technique as compared to that obtained by the Kmedoids clustering

technique.

Tab. 5.8: Averages and Standard deviations of Inter-cluster distance

Image K Inter-cluster distance

(1× 107)

Kmeans Kmedoids

Butterfly 2 3.201 ± 1.331 3.198 ± 1.339

3 4.686 ± 1.928 4.685 ± 1.974

4 6.417 ± 2.768 6.467± 2.846

5 8.299 ± 3.177 8.374 ± 3.236

Insect 2 98.00 ± 51.56 99.45 ± 51.96

3 148.7 ± 33.74 156.1 ± 22.44

4 2.189 ± 1.160 2.141 ± 1.189

5 2.815 ± 1.413 2.818 ± 1.355

Soldier 2 1.954 ± 0.5090 1.955 ± 0.5108

3 3.214 ± 1.006 3.214 ± 1.012

4 4.560 ± 1.603 4.565 ± 1.589

5 6.017 ± 2.463 6.019 ± 2.208

Kids 2 2.460 ± 1.177 2.475 ± 1.133

3 3.631 ± 1.536 3.522 ± 1.713

4 4.773 ± 2.016 4.768 ± 2.094

5 5.949 ± 2.328 6.130 ± 2.746

Swimmer 2 2.411 ± 1.745 2.401 ± 1.791

3 3.896 ± 2.848 3.249 ± 2.677
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4 5.446 ± 4.079 5.091 ± 3.618

5 7.009 ± 5.358 7.023 ± 4.980

Car 2 2.195 ± 0.4970 2.168 ± 0.5065

3 3.488 ± 0.8039 3.466 ± 0.7781

4 4.807 ± 1.135 4.748 ± 0.9954

5 5.904 ± 1.062 5.884 ± 0.8173

Aeroplane 2 1.579 ± 0.7658 1.579 ± 0.7517

3 2.156 ± 0.8170 2.107 ± 0.9856

4 2.676 ± 0.8998 2.727 ± 0.8537

5 3.321 ± 0.8907 4.002 ± 1.862

Flowers 2 1.649 ± 0.3625 1.886 ± 0.3854

3 2.920 ± 0.4559 2.995 ± 0.6421

4 4.245 ± 0.6518 4.181 ± 0.5048

5 5.323 ± 0.8184 5.126 ± 0.7896

Swan 2 2.399 ± 1.079 2.362 ± 1.059

3 3.247 ± 1.416 3.439 ± 1.531

4 4.602 ± 1.867 4.974 ± 2.069

5 5.753 ± 2.148 6.442 ± 2.284

Statues 2 2.023 ± 1.130 1.982 ± 1.062

3 3.514 ± 1.378 3.408 ± 1.392

4 5.280 ± 1.772 5.910 ± 1.469

5 7.427 ± 2.312 7.376 ± 2.081

Star-fish 2 2.128 ± 0.6895 2.129 ± 0.6926

3 3.302 ± 1.156 3.364 ± 1.136
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4 4.540 ± 1.528 4.448 ± 1.505

5 5.792 ± 2.299 5.674 ± 2.118

Horses 2 1.409 ± 0.3310 1.404 ± 0.3136

3 2.683 ± 0.7336 2.689 ± 0.7374

4 3.689 ± 0.8743 3.730 ± 0.9090

5 4.650 ± 0.9936 4.664 ± 1.037

Table 5.8 shows a positive relationship between the inter-cluster distance

and K for both clustering techniques. The Kmedoids clustering technique

found more separated clusters than the Kmeans technique across all test im-

ages with K varied. This is due to the highest average inter-cluster distances

obtained by the Kmedoids and Kmeans clustering techniques of 156.1 ×107

and 148.7 ×107, respectively.

5.2.5 Optimal number of clusters

The silhouette validity index is used as an internal validity index to measure

the goodness of the clustering solutions found by the Kmeans and Kmedoids

clustering techniques. Table 5.9 presents the comparison of the average sil-

houette values and their standard deviations for the Kmeans and Kmedoids

clustering techniques. A graphical comparison of the average silhouette val-

ues is also provided in Figures 5.22 to 5.33.
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Tab. 5.9: Averages and Standard deviations of Silhouette validity index

Image K Silhouette value

Kmeans Kmedoids

Butterfly 2 0.895 ± 0.022 0.895 ± 0.022

3 0.793 ± 0.051 0.797 ± 0.050

4 0.678 ± 0.035 0.696 ± 0.026

5 0.644 ± 0.082 0.640 ± 0.080

Insect 2 0.789 ± 0.178 0.798 ± 0.163

3 0.636 ± 0.046 0.649 ± 0.029

4 0.519 ± 0.107 0.493 ± 0.106

5 0.461 ± 0.088 0.473 ± 0.070

Soldier 2 0.691 ± 0.084 0.691 ± 0.084

3 0.616 ± 0.083 0.615 ± 0.083

4 0.582 ± 0.089 0.582 ± 0.089

5 0.559 ± 0.090 0.558 ± 0.091

Kids 2 0.859 ± 0.023 0.860 ± 0.022

3 0.742 ± 0.068 0.717 ± 0.084

4 0.672 ± 0.020 0.670 ± 0.018

5 0.638 ± 0.027 0.615 ± 0.062

Swimmer 2 0.699 ± 0.061 0.705 ± 0.050

3 0.587 ± 0.067 0.569 ± 0.054

4 0.534 ± 0.087 0.524 ± 0.079

5 0.537 ± 0.100 0.576 ± 0.088

Car 2 0.765 ± 0.019 0.767 ± 0.031
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3 0.710 ± 0.049 0.713 ± 0.046

4 0.711 ± 0.063 0.710 ± 0.051

5 0.691 ± 0.058 0.690 ± 0.052

Aeroplane 2 0.767 ± 0.202 0.770 ± 0.199

3 0.580 ± 0.113 0.544 ± 0.110

4 0.527 ± 0.051 0.505 ± 0.065

5 0.527 ± 0.101 0.516 ± 0.074

Flowers 2 0.561 ± 0.236 0.693 ± 0.218

3 0.657 ± 0.115 0.686 ± 0.011

4 0.673 ± 0.067 0.665 ± 0.070

5 0.618 ± 0.055 0.618 ± 0.048

Swan 2 0.890 ± 0.037 0.889 ± 0.036

3 0.709 ± 0.087 0.703 ± 0.125

4 0.653 ± 0.070 0.691 ± 0.076

5 0.651 ± 0.093 0.683 ± 0.080

Statues 2 0.668 ± 0.069 0.664 ± 0.068

3 0.641 ± 0.048 0.621 ± 0.072

4 0.631 ± 0.054 0.654 ± 0.022

5 0.633 ± 0.013 0.626 ± 0.016

Star-fish 2 0.739 ± 0.036 0.740 ± 0.036

3 0.660 ± 0.049 0.656 ± 0.048

4 0.609 ± 0.049 0.585 ± 0.043

5 0.577 ± 0.055 0.566 ± 0.056

Horses 2 0.590 ± 0.058 0.589 ± 0.060
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3 0.636 ± 0.053 0.635 ± 0.053

4 0.549 ± 0.016 0.554 ± 0.019

5 0.500 ± 0.048 0.495 ± 0.051

The average silhouette values obtained by the clustering techniques range

from 0.50 to 0.90 for both clustering techniques. This implies that reasonable

to strong clusters are found by the clustering techniques considered in this

study.

Fig. 5.22: Silhouette validity index versus Number of clusters for the Butterfly
image

Figure 5.22 shows that the Kmedoids clustering techniques obtained higher

silhouette values than the Kmeans technique for all the number of clusters

the experiments were run for, except when K=2. The highest and lowest

average silhouette values were obtained when K=2 and 5 for both cluster-

ing techniques. The Kmeans and Kmedoids clustering techniques obtained

the lowest average silhouette values of 0.644 and 0.640, respectively. The

clustering techniques obtained equivalent highest average silhouette value of
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0.895 each. Thus, the average silhouette values obtained indicates that the

optimal number of clusters for the Butterfly image is 2.

Fig. 5.23: Silhouette validity index versus Number of clusters for the Insect image

It was observed from Figure 5.23 that the highest and lowest silhouette

values were obtained when K=2 and 5 for both the clustering techniques. The

Kmeans technique obtained the lowest average silhouette value of 0.461 and

the highest average silhouette value of 0.789, while the Kmedoids technique

obtained the lowest average silhouette value of 0.473 and highest average sil-

houette value of 0.798. Thus, the average silhouette value obtained suggests

that strongest clustering structures were found when K=2.

Figure 5.24 shows that the lowest average silhouette values obtained by

the Kmeans and Kmedoids clustering techniques were 0.559 and 0.558, re-

spectively. The clustering techniques obtained an equivalent highest average

silhouette value of 0.691. The Kmeans and Kmedoids clustering techniques

obtained the highest average silhouette value when the number of clusters,

K, was 2.
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Fig. 5.24: Silhouette validity index versus Number of clusters for the Soldier image

Fig. 5.25: Silhouette validity index versus Number of clusters for the Kids image

The average silhouette values obtained for the Kids image indicate that

the optimal number of clusters for both clustering techniques is 2. This is due

to the highest average silhouette values of 0.859 and 0.860 obtained by the

Kmeans and Kmedoids clustering techniques. In addition, both clustering

techniques obtained the least average silhouette values when K=5.

The average silhouette values obtained for the Swimmer image by the

Kmeans and Kmedoids clustering techniques suggested that the best clus-

tering solution is observed when K=2 as the maximum silhouette values of
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Fig. 5.26: Silhouette validity index versus Number of clusters for the Swimmer
image

0.699 and 0.705 were obtained for the Kmeans and Kmedoids clustering tech-

niques, respectively. In addition, the lowest averages silhouette values were

obtained when K=4 where the Kmeans technique obtained a value of 0.534

and the Kmedoids technique obtained 0.524.

Fig. 5.27: Silhouette validity index versus Number of clusters for the Car image

Figure 5.27 shows that the Kmeans and Kmedoids clustering techniques

obtained similar average silhouette values. The techniques obtained their

highest and lowest average silhouette value when K=2 and 5. Therefore, ac-
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cording to the average silhouette values obtained, the best clustering struc-

tures are found when K=2.

Fig. 5.28: Silhouette validity index versus Number of clusters for the Aeroplane
image

The Kmeans clustering technique finds better clustering structures than

the Kmedoids technique for the Aeroplane image. This is as a result of

the average silhouette values of the Kmeans technique being greater than to

those obtained by the Kmedoids technique, except when K=2. The Kmeans

technique obtained the lowest average silhouette value of 0.527 and highest

average silhouette value of 0.767, while the Kmedoids technique obtained the

lowest average silhouette value of 0.505 and highest average silhouette value

of 0.770. In addition, the highest and lowest average silhouette values are

obtained when K=2 and 4, respectively.

It was observed from Figure 5.29 that the Kmeans clustering technique

obtains the lowest and highest average silhouette values of 0.561 when K=2

and 0.673 when K=4, respectively. On the other hand, the Kmedoids clus-

tering techniques obtained the lowest and highest average silhouette values
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Fig. 5.29: Silhouette validity index versus Number of clusters for the Flowers image

of 0.618 when K=5 and 0.693 when K=2, respectively. Thus, the best clus-

tering structures are found when K=4 for the Kmeans clustering technique

and when K=2 for the Kmedoids technique.

Fig. 5.30: Silhouette validity index versus Number of clusters for the Swan image

The average silhouette values obtained for the Swan image indicate that

the optimal number of clusters for both clustering techniques is 2. This is due

to the highest average silhouette values of 0.890 and 0.889 obtained by the

Kmeans and Kmedoids clustering techniques. In addition, both clustering

techniques obtained the least average silhouette values when K=5.
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Fig. 5.31: Silhouette validity index versus Number of clusters for the Statues image

It was observed from Figure 5.31 that the highest and lowest silhouette

values were obtained when K=2 for both the clustering techniques. The

Kmeans clustering technique obtained its lowest silhouette value when K=4,

while the Kmedoids technique obtained it when K=3. The Kmeans clus-

tering technique obtained the lowest average silhouette value of 0.631 and

the highest average silhouette value of 0.668, while the Kmedoids technique

obtained the lowest average silhouette value of 0.621 and highest average

silhouette value of 0.664.

Figure 5.32 shows that the Kmeans and Kmedoids clustering techniques

obtained their highest and lowest average silhouette values when K=2 and

5. The Kmeans clustering technique obtained the lowest average silhouette

value of 0.577 and the highest average silhouette value of 0.739, while the

Kmedoids technique obtained the lowest average silhouette value of 0.566

and highest average silhouette value of 0.740. Therefore, according to the

average silhouette values obtained, the best clustering structures are found

when K=2.
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Fig. 5.32: Silhouette validity index versus Number of clusters for the Star-fish im-
age

Fig. 5.33: Silhouette validity index versus Number of clusters for the Horses image

Figure 5.33 shows that the Kmedoids and Kmedoids clustering techniques

obtained similar average silhouette values. The techniques obtained their

highest and lowest average silhouette value when K=3 and 5. The Kmeans

clustering technique obtained the lowest average silhouette value of 0.500 and

the highest average silhouette value of 0.636, while the Kmedoids technique

obtained the lowest average silhouette value of 0.495 and highest average

silhouette value of 0.635. Therefore, the best clustering structures are found
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when K=3.

It was observed from the average silhouette values obtained by the Kmeans

and Kmedoids clustering techniques for the test images that most of the im-

ages obtained their best clustering solutions when K=2. This is with the

exception of the Flowers image whose highest average silhouette value was

acquired when K=4 by the Kmeans clustering technique. In addition, it was

seen that the lowest average silhouette values were obtained when K=5 for

most images. The Butterfly image obtained the highest average silhouette

value for both the Kmeans and Kmedoids clustering techniques amongst all

the other images. On the other hand, the Insect image obtained the lowest

average silhouette values for both clustering techniques amongst the test im-

ages. Furthermore, all the average silhouette values obtained ranged from

0.26-1.00. This implies that a few weak clustering structures were found by

the Kmeans and Kmedoids clustering techniques in some test images.

The runtimes for GMMs based on Kmeans (GMM-Kmeans) and those

based on Kmedoids (GMM-Kmedoids) were monitored. The average run-

times used to generate the background and foreground GMMs for the GMM

based on the Kmeans clustering technique as compared to the ones generated

by the GMM based on the Kmedoids clustering technique are presented in

Figure 5.34.
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Fig. 5.34: Average runtime GMM-Kmeans versus GMM-Kmedoids

Figure 5.34 shows that the time taken by the Kmeans clustering technique

to generate GMMs is slightly higher than the time taken to generate GMM-

Kmedoids for most of the images. It is also observed that in some instances

the GMM-Kmeans utilised runtimes that are equal to those used by GMM-

Kmedoids, for instance, for the Insect image when K= 2. In addition,the

results obtained show a positive relationship between the average runtime

and number of clusters in all images for both the GMM-Kmeans and GMM-

Kmedoids. This implies that as the number of clusters is increased the more

computational time is required by the algorithms to generate GMMs. Fur-

thermore, the runtimes ranged from 0,0205-0,0536 seconds for GMM-Kmeans

and 0.0193-0.0447 seconds for GMM-Kmedoids, respectively.

5.2.6 Segmentation results

Figure 5.35 shows that the Grabcuts for segmentation algorithm with the

GMM-Kmedoids clustering heuristic outperformed its counterpart. The Grab-
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Fig. 5.35: Average runtimes for Grabcuts for image segmentation algorithm:
GMM-Kmeans versus GMM-Kmedoids

cuts for image segmentation algorithm with the GMM-Kmeans clustering

heuristic obtained the lowest average runtime of 0.08 seconds when K was

varied from 2 to 5 across all images. On the other hand, it obtained the high-

est average runtime of 0.26 seconds when K was varied from 2 to 5 across all

test images. Most images required runtimes of 0.10 seconds when K=2, 0.12

seconds when K=3 and 0.13 seconds when K=4 and 5. The Soldier image

was observed to require the least runtime when K=2, whereas the Star-fish

image required the least runtimes when K was varied from 3 to 4.

The Grabcuts for image segmentation algorithm with the GMM-Kmedoids

clustering heuristic obtained the lowest runtime of 0.10 seconds when K was

varied from 2 to 5 for all test images. A highest runtime of 0.15 seconds was

obtained for this algorithm across test images with K varied. The lowest and

highest runtimes were obtained when the algorithm was executed on the Car

and Aeroplane images with K=2 and K=5, respectively. In addition, most

of the test images required average runtimes of 0.10 seconds when K was 2
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and 0.12 seconds when K was varied from 3 to 5. In addition, the Insect,

Swan and Star-fish images required the least average runtimes for all K=2 to

5 as compared to the rest of the test images. On the other hand, the Kids,

Soldier and Butterfly images required more average runtimes.

The segmentation results of the Grabcuts for segmentation algorithm are

presented in Figure 5.36. The segmentation results for the Grabcuts for im-

age segmentation with the GMM-Kmeans and GMM-Kmedoids clustering

heuristic are presented in two consecutive rows for each test image. The

first row shows results for the Grabcuts for image segmentation with the

GMM-Kmeans clustering heuristic and the second row shows results for the

Grabcuts for image segmentation with the GMM-Kmedoids clustering heuris-

tic. The number of clusters increases from left to right, which implies the left

most and right most results are obtained when K=2 and K=5, respectively.



Fig. 5.36: Segmentation results for Grabcuts for image segmentation: GMM-
Kmeans versus GMM-Kmedoids
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Fig. 5.36: Segmentation results for Grabcuts for image segmentation: GMM-
Kmeans versus GMM-Kmedoids
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Fig. 5.36: Segmentation results for Grabcuts for image segmentation: GMM-
Kmeans versus GMM-Kmedoids
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Fig. 5.36: Segmentation results for Grabcuts for image segmentation: GMM-
Kmeans versus GMM-Kmedoids
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The Grabcuts for image segmentation algorithm based on the GMM-

Kmeans and GMM-Kmedoids clustering heuristic obtained segmentation re-

sults in which some pixels that were supposed to be in the foreground were

classified as background. This was accredited to the low contrast regions

seen between the transition areas from background and foreground. The algo-

rithms obtained identical segmentation results when K was varied from 2 to 3

for the Butterfly image. This was not the case when K=4 and 5, as the Grab-

cuts for image segmentation algorithm based on the GMM-Kmeans obtained

better segmentation results when K=4 than its counterpart. While, the

Grabcuts for image segmentation algorithm based on the GMM-Kmedoids

obtained better segmentation results when K=5 than its counterpart.

The Grabcuts for image segmentation algorithm based on the GMM-

Kmeans and GMM-Kmedoids clustering heuristic obtained similar segmen-

tation results for the Insect image. The misclassification of some background

pixels around the body of the insect was observed for all the segmentation re-

sults obtained. The Grabcuts for image segmentation algorithm based on the

GMM-Kmedoids clustering heuristic performed worst when K=4, as some of

the leaf that was supposed to be classified as background ended up being

part of the foreground.

The soldier’s helmet and parts of his boots were taken to mistakenly be-

long to the background on all segmentation results obtained. This is due

to the overlap in colour space of the foreground and background colour dis-

tributions [48]. The Grabcuts for image segmentation algorithm based on

the GMM-Kmeans and GMM-Kmedoids cluster heuristic obtained identical
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segmentation results with K varied from 2 to 5.

The Grabcuts for image segmentation algorithm based on the GMM-

Kmeans and GMM-Kmedoids clustering heuristic obtained similar segmen-

tation results for the Kids image. The results showed misclassified back-

ground pixels on top of the second boy’s clay pot. In addition, when K=2

some pixels belonging to the first boy’s clay pot and face are misclassified for

the Grabcuts for image segmentation algorithm based on the GMM-Kmeans

clustering heuristic, whereas this occurred when K=2 and 3 for the Grabcuts

for image segmentation algorithm based on the GMM-Kmedoids clustering

heuristic.

The Swimmer image obtained segmentation results in which more back-

ground pixels around the swimmer were taken to belong to the set of fore-

ground pixels. Also, some foreground pixels on the eyes and left shoulder of

the swimmer were taken to belong to the set of background pixels. This is as a

result of the selected ROI’s background material not being adequately repre-

sented by the set of pixels belonging to the background region. The Grabcuts

for image segmentation algorithm based on the GMM-Kmeans and GMM-

Kmedoids clustering heuristic obtained their best segmentation results when

K=5.

The tyres and windows of the car were mistaken to belong to the set

of background pixels. This was as a result of them sharing a similar colour

distribution with the background pixels. In addition, some of the background

pixels were observed to have been misclassified as seen around the transition

areas from background to foreground regions, around the car. For the Car
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image, the Grabcuts for image segmentation algorithm with a GMM based

on the Kmeans clustering technique obtained identical segmentation results

with the algorithm with a GMM based on the Kmedoids clustering technique

when K=2 and 3. It obtained better and inferior segmentation results than

the algorithm with a GMM based on the Kmedoids clustering technique when

K=4 and when K=5, respectively.

The Aeroplane image obtained similar segmentation results for all algo-

rithms. This result is with a few exceptions where the Grabcuts for image

segmentation algorithm with a GMM based on the Kmedoids clustering tech-

nique obtained better segmentation results when K=5. It was also observed

that all algorithms considered got their worst segmentation results when

K=2.

The Grabcuts for image segmentation algorithm with a GMM based on

the Kmeans and Kmedoids clustering techniques obtained identical segmen-

tation results when K was varied from 3 to 5 for the Flowers image. The

segmentation results showed a misclassification of background pixels around

the flowers which share similar colour distribution as some of the pixels in

the foreground region of the flowers. In addition, the Grabcuts for image seg-

mentation algorithm with a GMM based on the Kmeans clustering technique

obtained better segmentation results, than its counterpart when K=2.

The Swan image obtained the best segmentation results when K=3, 4 and

5 for the Grabcuts for image segmentation algorithm with a GMM based on

the Kmeans and Kmedoids clustering techniques. On the other hand, the

algorithms obtained their worst segmentation results when K=2.
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The Grabcuts for image segmentation algorithm with a GMM based on

the Kmeans clustering technique obtained better segmentation results when

K=2 and 3, than its counterpart for the Statues image. On the other hand,

the Grabcuts for image segmentation algorithm with a GMM based on the

Kmedoids clustering technique obtained better segmentation results when

K=2, than the Grabcuts for image segmentation algorithm with a GMM

based on the Kmedoids clustering technique. The algorithms obtain identical

segmentation results when K=5.

The Star-fish image segmentation results obtained for the Grabcuts for

image segmentation algorithm with a GMM based on the Kmeans and Kme-

doids clustering techniques are identical. In addition, the segmentation re-

sults obtained by this image for all algorithms considered with the variation

of K, showed minimal pixel misclassification amongst all the test images

considered.

The segmentation results obtained by the Horses image are identical for

all algorithms considered, where background pixels are seen to be misclassi-

fied around the tail of the horse. This misclassification of pixels is accredited

to the overlap of colour distributions around hairy objects.

Tab. 5.10: Average Precision and recall: Grabcuts: GMM-Kmeans versus Grab-
cuts: GMM-Kmedoids

Image K Grabcuts: GMM-Kmeans Grabcuts: GMM-Kmediods

Precision Recall Precision Recall

Butterfly 2 0.824 0.588 0.824 0.588

3 0.823 0.586 0.823 0.586
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4 0.824 0.624 0.825 0.650

5 0.825 0.625 0.826 0.651

Insect 2 0.496 0.805 0.501 0.814

3 0.483 0.804 0.483 0.804

4 0.499 0.845 0.483 0.802

5 0.498 0.845 0.497 0.803

Soldier 2 0.691 0.949 0.691 0.949

3 0.691 0.949 0.691 0.949

4 0.691 0.949 0.692 0.949

5 0.691 0.949 0.691 0.949

Kids 2 0.789 0.807 0.789 0.634

3 0.789 0.634 0.789 0.634

4 0.789 0.634 0.789 0.700

5 0.789 0.634 0.789 0.634

Swimmer 2 0.690 0.464 0.698 0.601

3 0.689 0.380 0.691 0.518

4 0.692 0.384 0.691 0.518

5 0.701 0.565 0.700 0.573

Car 2 0.659 0.656 0.659 0.656

3 0.659 0.656 0.659 0.656

4 0.660 0.683 0.662 0.832

5 0.647 0.683 0.660 0.683

Aeroplane 2 0.695 0.626 0.696 0.629

3 0.693 0.651 0.693 0.649
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4 0.664 0.654 0.694 0.636

5 0.694 0.652 0.696 0.703

Flower 2 0.734 0.954 0.711 0.602

3 0.711 0.602 0.711 0.602

4 0.712 0.670 0.709 0.557

5 0.721 0.895 0.722 0.899

Swan 2 0.473 0.630 0.473 0.630

3 0.475 0.630 0.475 0.630

4 0.475 0.630 0.475 0.630

5 0.473 0.630 0.472 0.569

Statues 2 1 0.707 1 0.707

3 1 0.707 1 0.707

4 1 0.707 1 0.833

5 1 0.848 1 0.848

Star-fish 2 0.892 0.591 0.892 0.591

3 0.892 0.591 0.892 0.591

4 0.892 0.591 0.892 0.591

5 0.892 0.591 0.892 0.591

Horses 2 0.707 0.579 0.707 0.579

3 0.707 0.579 0.707 0.579

4 0.707 0.579 0.707 0.579

5 0.707 0.579 0.708 0.634

Table 5.10 shows that the segmented Butterfly images obtained similar

precision values for both Grabcuts: GMM-Kmeans and Grabcuts: GMM-
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Kmediods,except for when K=5. On the other hand, the recall values ob-

tained when the Grabcuts: GMM-Kmediods was used for the Butterfly image

were slightly higher than those obtained by its counterpart when K=4 and

5. In addition, it is observed that the precision values are higher than the

recall values for all the segmented Butterfly images. This implies that these

image have been under segmented.

The Grabcuts: GMM-Kmediods was observed to have obtained a segmented

Insect image with higher precision and recall values than the Grabcuts:

GMM-Kmeans when K=2. On the other hand, when K= 4 and 5 a higher

recall value is obtained by the Grabcuts: GMM-Kmeans segmented Insect

image, while the Grabcuts: GMM-Kmediods achieves a higher recall and

precision values when K=2. In addition, the precision values of all the seg-

mented Insect values are lower than their recall values. This imples that

these results suffer from over segmentation.

The segmented Soldier image obtained similar precision and recall values for

both segmentation algorithms considered. The recall values were observed

to be much higher than the precision values when K was varied for both

the Grabcuts: GMM-Kmeans and Grabcuts: GMM-Kmediods segmentation

results. This implies that the segmented Soldier images suffered from over

segmentation, which is as a result of misclassification of some foreground

pixels as background pixels.

It is observed that the precision values obtained from the segmented Kids

images are higher than the recall values when K is varied from 3 to 5 for

Grabcuts: GMM-Kmeans and when K is varied from 2 to 4 for Grabcuts:
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GMM-Kmediods. In addition, both image segmentation algorithms obtain

similar precision values when K is varied from 2 to 5. Furthermore, it ws

observed that the similar recall values were obtained by the segmented Kids

images, except for when K=2 for the Kids image segmented by the Grabcuts:

GMM-Kmeans and when K=4 the Kids image segmented by the Grabcuts:

GMM-Kmediods.

The segmented Swimmer image obtained by the Grabcuts: GMM-Kmeans

achieved its highest precision and recall values when K=5. On the other

hand, it was observed that the segmented Swimmer image obtained by the

Grabcuts: GMM-Kmediods achieved its highest precision and recall values

when K=5 and K=2, respectively. It was observed that the segmented Swim-

mer images had obtained higher precision values for both segmentation al-

gorithms considered.

The segmented Car images were observed to have obtained similar precision

and recall values for both segmentation algorithms considered under scenario

2 when K from 2 to 3. In addition, the segmentation algorithms obtained im-

ages with higher precision values the recall values when K=2 and only when

K=3. On the other hand, it was observed that the recall values were higher

than the precision values when K= 4 and 5 for the segmented Car images

obtained by both segmentation algorithms. This implies that the Car images

were under segmented when K was varied from 2 to 3 and over segmented

when K was varied from 4 to 5.

The highest precision and recall values for the segmented Aeroplane images

obtained by the Grabcuts: GMM-Kmeans achieves their highest precision
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and recall values when K=2 and K=4, respectively. On the other hand, the

Grabcuts: GMM-Kmediods obtained segmented images that achieve their

highest precision when K= 2 and 5. The highest recall value for segmented

images obtained by the Grabcuts: GMM-Kmediods is observed when K=5.

The segmented Flower images obtained their highest precision and recall val-

ues for the Grabcuts: GMM-Kmeans and Grabcuts: GMM-Kmediods when

K= 2 and K=5, respectively. In addition, it can be observed that under

segmented Flower images are obtained when K is varied from 3 to 4 by the

Grabcuts: GMM-Kmeans and when K is varied from 2 to 4 by the Grabcuts:

GMM-Kmediods.

The segmented Swan images are observed to have obtained similar precision

and recall values when K was varied for 2 to 4 under both segmentation algo-

rithms considered. The segmented Swan images obtained higher recall values

then precision values, thus implying that the segmentation results produced

are over segmented.

The segmented Statues images obtained similar precision and recall values

when K was varied for 2 to 5 under both segmentation algorithms considered.

This is with the exception of the segmented images obtained when K=4 for

both segmentation algorithms, which achieved different recall values of 0.707

and 0.833. The precision values are observed to be at their maximum value

for all the segmented Statues images.

The segmented images for the Star-fish obtained similar precision and recall

values when K was varied from 2 to 5 for both segmentation algorithm con-
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sidered. The same trend was observed from Table 5.10 for the segmented

Horses images, except for when K=5. In addition, it was observed that the

precision values were much larger than the recall values. This implies that

these segmented images suffer from under segmentation.

Fig. 5.37: Average BF-scores for Grabcuts for image segmentation algorithm:
GMM-Kmeans versus GMM-Kmedoids

Figure 5.37 shows the BF-scores for the segmented images. All these

results indicate that the quantitative evaluation measure chosen matches the

relative visual quality well. The segmented Statues images is observed to

have the highest BF-scores when K is varied for both the Grabcuts: GMM-

Kmeans as well as the Grabcuts: GMM-Kmediods. On the other hand, the

segmented Swan images obtain the lowest scores when K= 2 and 5 for both

the Grabcuts: GMM-Kmeans and Grabcuts: GMM-Kmediods, except for

when K=3 and 4. Figure 5.37 shows that the Grabcuts: GMM-Kmedoids

produces images with higher BF-scores than its counterpart when K was
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varied from 2 to 5 for most of the test images.

5.3 Discussions

The development of a computationally inexpensive and efficient algorithm

to perform image segmentation has been highlighted by many researchers

[25,36,47,48]. Thus the need to explore option of clustering techniques that

could make the Grabcuts for image segmentation algorithm less computa-

tional expensive was realised. This study compared the performance of the

Grabcuts for image segmentation algorithm developed by [48] when GMM

Kmeans and Kmedoids were used to cluster pixels in an image. This com-

parison was done under two scenarios where the distance measures used to

calculate the similarities and dissimilarities between the pixels of an image

were varied from the Squared Euclidean to the City block distance measure.

The average runtimes for the Kmeans and Kmedoids clustering techniques

were measured. The average runtimes for the GMM-Kmeans and GMM-

Kmedoids were also measured. Ultimately, the average runtimes required

for running the Grabcuts for image segmentation with a GMM-Kmeans and

GMM-Kmedoids were measured and reported. Additionally, the clustering

structures found by the Kmeans and Kmedoids clustering techniques were

evaluated using the average intra- and inter- cluster distances. These clus-

tering structures were further evaluated using the silhouette validity index

to check their goodness.

It was observed that the Kmeans clustering technique took less time to

find a clustering structure for all the test images with K varied from 2 to 5,
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than the Kmedoids clustering technique. In addition, the runtimes obtained

under scenario 2 for both the Kmeans and Kmedoids clustering technique

were less than those obtained under scenario 1. This implies that the use of

the Squared Euclidean distance is computationally expensive than the use of

the City block distance measure as observed in [8,33]. This is due to the fact

that the City block distance weakens the effect of outliers, while the Squared

Euclidean distance progressively strengthens the effect of outliers by squar-

ing them. The average intra-cluster distances obtained for the test images

under scenario 2 are ×10 smaller than those obtained under scenario 1 for

both the Kmeans and Kmedoids clustering techniques. This implies that the

City block distance aided the Kmeans and Kmedoids clustering techniques

in finding more compact clusters than the Squared Euclidean distance. The

Kmeans clustering technique found more compact clusters than the Kme-

doids clustering technique when the Squared Euclidean distance was used

for calculating similarities and dissimilarities between pixels. Although this

was the case, the Kmedoids clustering technique obtained the smallest av-

erage intra-cluster distance when considering all the results obtained under

scenario 1. The Kmedoids clustering technique found more compact clus-

ters than the Kmeans clustering technique when the City block distance was

used. The Kmedoids clustering technique obtained the minimum average

intra-cluster distance when all intra-cluster distances results were obtained

under scenario 2. In addition, the lowest and highest average intra-cluster

distances were obtained when K=2 for the Insect and Butterfly images by

both clustering techniques when the Squared Euclidean distance was used.
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On the contrary, both clustering techniques obtained their lowest and high-

est intra-cluster distances when K=5 for the Aeroplane image and K=2 for

Insect when the City block distance was used.

It was observed that the average inter-cluster distances obtained under

scenario 2 were ×102 smaller than those obtained under scenario 1. This im-

plies that the Squared Euclidean distance aided the Kmeans and Kmedoids

clustering techniques in finding more separate clusters than the City block

distance. The Kmeans clustering techniques obtained the most separate

clusters under scenario 1, while the Kmedoids clustering obtained the most

separate clusters under scenario 2. In addition, the Kmeans clustering tech-

nique obtained the highest average inter-cluster distance among all results

obtained under scenario 1. Although this is the case, the Kmedoids clus-

tering technique obtained the highest average inter-cluster distance among

all results obtained under scenario 2. Furthermore, the lowest and highest

average inter-cluster distances were obtained when K=2 for the Insect and

Butterfly images by both clustering techniques when the Squared Euclidean

distance was used. Similarly, both clustering techniques obtained their low-

est inter-cluster distances when K=2 for the Horses image, whereas they

obtained their highest inter-cluster distances when K=3 for the Insect image

when the City block distance was used.

It was observed from the average silhouette values obtained by the Kmeans

and Kmedoids clustering techniques for the test images that all the images

obtained their best clustering solutions when K=2. This is with the excep-

tion of the Butterfly image whose highest Silhouette value is acquired when
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K=3. In addition, it was seen that the lowest average silhouette values were

obtained when K=5 for most images. The Swan image obtained the high-

est average silhouette value for both the Kmeans and Kmedoids clustering

techniques amongst all the other images, while the Horses image obtained

the lowest average silhouette values for both clustering techniques amongst

the test images. Furthermore, all the average silhouette values obtained are

above 0.5. This implies that reasonable to strong clustering structure were

found when the Kmeans and Kmedoids clustering techniques were used on

the test images.

(a) Number of average silhouette values
between 0.71-1.00 versus K

(b) Number of average silhouette values
between 0.51-0.70 versus K

Fig. 5.38: Average Silhouette values for Kmeans and Kmedoids clustering tech-
niques across all test images
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(a) Number of average silhouette values
between 0.71-1.00 versus K

(b) Number of average silhouette values
between 0.51-0.70 versus K

Fig. 5.39: Average Silhouette values for Kmeans clustering techniques across all
test images

(a) Number of average silhouette values
between 0.71-1.00 versus K

(b) Number of average silhouette values
between 0.51-0.70 versus K

Fig. 5.40: Average Silhouette values for Kmedoids clustering techniques across all
test images

The Kmeans and Kmedoids clustering techniques obtained equivalent

number of average silhouette values for K=2 to 5. Hence we present the

number of average silhouette values between 0.51-0.70 and those between

0.71-1.00 on the same chart for both the Kmeans and Kmedoids clustering

technique. It is observed from Figure 5.38(a) that the when K is increased,

the number of images that obtain a strong clustering structure decreases.

This is due to the fact that the majority of the test image’s average silhou-

ette values favoured the lowest number of clusters for both the kmeans and
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Kmedoids clustering technique. Figure 5.38(b) further supports the notion

of the average silhouette values favouring the smallest number of clusters, by

showing the inverse trend of what is observed in Figure 5.38(a).

The time taken to generate the GMMs by GMM-Kmedoids was compara-

bly smaller than the time taken by GMM-Kmeans for most of the images un-

der the two scenarios. In addition, it was observed that in some instances the

GMM-Kmeans performed equivalently to the GMM-Kmedoids under both

scenarios. Furthermore,the results obtained showed an upward trend be-

tween the average runtime and number of clusters in all images for both the

GMM-Kmeans and GMM-Kmedoids. This implies that as the number of

clusters is increased the more computational time is required by the algo-

rithms to generate GMMs. The average runtimes ranged from 0,020-0,104

seconds for GMM-Kmeans and 0.019-0.0801 for GMM-Kmedoids under sce-

nario 1, while they ranged from 0,0205-0,0536 seconds for GMM-Kmeans and

0.0193-0.0447 for GMM-Kmedoids under scenario 2. This shows less com-

putation time was required to generate foreground and Background GMMs

under scenario 2 than in scenario 1.

The average runtimes for the Grabcuts for image segmentation algorithm

with a GMM-Kmeans and GMM-Kmedoids clustering heuristic were mea-

sured and reported. It was observed that the Grabcuts for image segmenta-

tion algorithm with the GMM-Kmeans obtained the lowest average runtimes

of 0.08 seconds amongst all results obtained under scenario 1 and 2. On

the other hand, the highest average runtime of 0.15 and 0.26 seconds were

obtained by the Grabcuts for image segmentation algorithm with the GMM-
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Kmeans clustering heuristic amongst all results obtained under scenario 1

and 2, respectively. The Grabcuts for image segmentation algorithm with

the GMM-Kmedoids clustering heuristic obtained the lowest average run-

times of 0.07 and 0.10 seconds amongst all results obtained under scenario

1 and 2, respectively, whereas it obtained the highest average runtimes of

0.26 and 0.15 seconds amongst all results obtained under scenario 1 and 2,

respectively. Table 5.11 and 5.12 present a comparison in the average run-

time required by the Grabcuts for image segmentation algorithms based on

the GMM-Kmeans and GMM-Kmedoids clustering heuristic.

Tab. 5.11: Average runtime required by Grabcuts: GMM-Kmeans Scenario 1 ver-
sus Scenario 2

K Average runtime required in seconds (s)
Scenario 1 Scenario 2

2 0.12 0.10
3 0.11 0.12
4 0.12 0.13
5 0.13 0.13

Tab. 5.12: Average runtime required by Grabcuts: GMM-Kmedoids Scenario 1
versus Scenario 2

K Average runtime required in seconds (s)
Scenario 1 Scenario 2

2 0.10 0.10
3 0.11 0.12
4 0.12 0.12
5 0.13 0.12

The images tested in this study are considered to be difficult images

[48,54], thus most segmentation results obtained included misclassified pixels

either in the foreground or background of the images. This is supported by
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the visual quality of the segmented images as well as the precision, recall

and BF-scores obtained for the segmented images when K was varied from

2 to 5. It was observed that under scenario 1 38% of the segmentation

results suffered with over segmentation, meanwhile 62% of the segmented

images were under segmented for both segmentation algorithm considered. In

scenario 2, 33% of the segmentation results suffered with over segmentation,

meanwhile 67% of the segmented images were under segmented for both

segmentation algorithm considered. The researchers limited this study to the

initial segmentation, thus the user editing and border matting stages were

not considered. The Grabcuts for image with the GMM based on the Kmeans

clustering techniques obtained slightly better segmentation results when the

visual quality is concerned, than its counterpart under the two scenarios

considered. On the other hand, the BF-scores showed that the Grabcuts for

image segmentation algorithm with the GMM based on Kmedoids produces

images with higher BF-scores than its counterpart when K was varied from 2

to 5 for most of the test images. In addition, most of the images obtained the

majority of their best segmentation results when K=2. This was observed

to be true under scenario 1 as well as scenario 2. Therefore, the Kmedoids

clustering technique with K=2 would be the best option for the segmentation

of difficult images in BSDS500. This is due to its ability to generate GMMs

and segment difficult images more efficiently (i.e. time complexity, higher

BF-scores, more under segmented rather than over segmented images, inter

alia.) while producing comparable segmentation results to those obtained by

the Grabcuts for image segmentation: GMM-Kmeans.
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6. CONCLUSION

This chapter summarises the research presented in this thesis by giving a

summary of the work with major observations seen from the experiments

conducted as well as provide possible future work.

6.1 Summary

Image segmentation is the partitioning of a digital image into small segments

such as pixels or sets of pixels. It is significant as it allows for the visual-

ization of structures of interest, removing unnecessary information. Image

segmentation has seen many applications in different fields such as health-

care, construction amongst other fields. There are many image segmentation

techniques used depending on the given problem at hand. In this study, the

Grabcuts for image segmentation technique was used. This technique is an

extension of the graph cut approach. In addition, the Grabcuts for image

segmentation technique chooses a segmentation by iteratively revising the

set of foreground and background pixels. This approach uses GMMs for the

set of foreground and background pixels to determine the statistics of the

image and thus model the digital image as a directed weighted graph. The

min-cut/max-flow algorithm is then used to arrive at a segmentation of the

digital image. The aim of this study is to provide a comparison of cluster-
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ing techniques that can be used in generating the GMMs for the Grabcuts

for image segmentation algorithm as well as to suggest which of these clus-

tering techniques will yield an efficient and inexpensive Grabcuts for image

segmentation algorithm.

The Kmeans and Kmedoids clustering techniques were chosen as the tech-

niques which were used to generate the foreground and background GMMs.

In addition, the algorithms developed in this study were run on the CPU

with the same test images obtained from the BSDS500 database. The num-

ber of clusters used for all the algorithms was varied from 2 to 5 for all

test images under the two scenarios considered in this study. It was found

that the Kmeans clustering technique outperformed the Kmedoids cluster-

ing technique in terms of runtime under the two scenarios considered. In

addition, the Kmeans clustering technique found more compact and sepa-

rate clustering structures for most of the test images than its counterpart

under scenario 1, whereas the Kmedoids clustering technique found more

compact and separate clustering structures for most of the test images than

the Kmeans clustering technique under scenario 2. The silhouette validity

index was used to assess the solutions of clustering techniques. The silhou-

ette validity index was seen to favour the smaller number of clusters for most

experiments that were run. As a result, most images obtained reasonable to

strong clustering structures when K=2 under scenario 1 and 2.

Although the Kmeans clustering technique required less computation time

for all the experiments that were run, the Grabcuts for image segmenta-

tion algorithm with a GMM based on the Kmedoids clustering technique
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and GMM-Kmedoids required less computation time for most test images

than their counterparts under the two scenarios considered. In addition,

the Grabcuts for image segmentation with the GMM based on the Kmeans

clustering techniques obtained slightly better segmentation results when the

visual quality is concerned, than its counterpart under the two scenarios

considered. On the other hand, the BF-scores showed that the Grabcuts for

image segmentation algorithm with the GMM based on Kmedoids produces

images with higher BF-scores than its counterpart when K was varied from 2

to 5 for most of the test images. In addition, most of the images obtained the

majority of their best segmentation results when K=2. This was observed

to be true under scenario 1 as well as scenario 2. Therefore, the Kmedoids

clustering technique under scenario 2 with K=2 would be the best option for

the segmentation of difficult images in BSDS500. This is due to its ability to

generate GMMs and segment difficult images more efficiently (i.e. time com-

plexity, higher BF-scores, more under segmented rather than over segmented

images, inter alia.) while producing comparable visual segmentation results

to those obtained by the Grabcuts for image segmentation: GMM-Kmeans.

6.2 Future work

This study has used several test images from BSDS500 image database to

perform experiments. In addition, the number of clusters was varied from 2

to 5 in order to make conclusive suggestions as to which clustering technique

ought to be used when performing Grabcuts image segmentation on difficult

images. To that effect this study could benefit from testing the algorithms on
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the Grabcut database [48]. Furthermore, two distance measures were used

to test the algorithms which has shown that changing a distance measure

can lead to a change in the clustering solution obtained and hence to differ-

ent segmentation results. These distance measures can be further extended

to include the Jaccard, Hamming and Correlation distance measures. The

Grabcut algorithm developed by Rother et al. [48], had a border matting

implementation which was not explored in this study, in the future work con-

sideration will be given to the inclusion of border matting implementation.

Although the segmentation of videos is not straight forward, the researchers

would like to extend the comparison of the Grabcuts for image segmentation

with GMM-Kmeans and GMM-Kmedoids to video segmentation. Image seg-

mentation is a very vital process that is used in many fields and thus requires

a computationally efficient algorithm. Therefore a reduced runtime of such

an algorithm is of paramount importance. The Grabcuts for image segmen-

tation algorithms tested in this study could be improved through the use of

the GPU instead of the CPU. Thus, a GPU implementation of the algorithms

will be considered.
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APPENDIX



A. CENTRAL PROCESSING UNIT VERSUS THE

GRAPHICS PROCESSING UNIT

We now look at the central processing and graphics processing units so that

we can better understand the environment in which the algorithms are ex-

ecuted. In this chapter we will give definitions of a Graphics Processing

Unit(GPU) and Central Processing Unit(CPU). In addition, we shall make

a comparison between the GPU and CPU.

A.1 The central processing unit

Definition A.1.1. [55] The central processing unit is a component in the

computer that is responsible for interpreting computer program instructions

and processing data.

Thus the CPU is seen as the brains of the computer and it is said to be

the most expensive component of the computer. The CPU is located in a

single silicon chip called the microprocessor.

CPUs are rated based on several attributes such as clock rate, computer

word size, main memory size, cache memory size, instruction set complexity,

bus speed and the number of processing units. In addition, the speed of the

CPU is a significant factor that determines the usefulness of a computer.
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This speed is determined by the clock frequency as well as the cache memory

available.

In order to understand in depth how the speed of the CPU speaks to the

usefulness of the computer, let us investigate the core components of a CPU

according to Thompson [55].

• Transistors:

These are the fundamental building block of the circuitry that governs

the operation of a computer and all other modern electronics. The

number of transistors in a CPU has an immense effect on the CPU. In

addition, they bring about the possibilities of more powerful multipli-

ers capable of single-cycle speeds. Furthermore, more transistors in a

CPU enable a technology called pipelining. Pipelining is the process

of overlapping of instruction execution. That is, the execution of the

next instruction starts before the end of the execution of the previous

instruction.

• Registers

These are the small amount of very fast computer memory which are

found inside a CPU. Registers are not part of the main memory as the

CPU implements them on-chip.

Definition A.1.2. Registers are small holding areas on the proces-

sor chip that work much like Random Access Memory(RAM). Regis-

ters hold counters, data, instructions and addresses that the Arithmetic

Logic Unit(ALU) is currently processing.
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Thus, registers are special memory locations that are internal to the

CPU. In addition, registers provide the fastest way for a CPU to access

data and are used to speed the execution of computer programs. Reg-

isters can be categorized according to their functions. Table A.1 shows

a list of registers that are used to perform specific functions discussed

in [55].

Tab. A.1: Types of registers and their functions

Register Functions
Accumulator Used for arithmetic, logic, or other similar operations
Data register Used for temporary storage of data
Address register Stores the addresses of specific memory locations
General purpose register Can be used as either address or data registers
Control register Used to control some aspect of processor operation
Program counter Points to the next executable instruction’s memory

location

• Clock

The clock speed sometimes referred to as the clock rate is the speed at

which the CPU executes instructions and is rated in megahertz (MHz).

Every computer has an internal clock that is responsible for regulat-

ing the rate at which instructions are executed and synchronizing all

the various computer components. In addition, the CPU requires a

fixed number of clock cycles to execute each instruction. Furthermore,

a CPU with a faster clock executes more instructions per second as

opposed to one with a slower clock.

Now, before we can start to give a comparison between the CPU and

GPU we need to understand the way CPU’s work. We will do this by detail-
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ing the four operations of the CPU.

Fig. A.1: Machine cycle of a CPU [38].

Figure A.1 shows the machine cycle as described by Morley et al. [38]. The

machine cycle consists of four steps, and we shall describe each step below.

Fetch:

This step involves the retrieval of instructions from memory. This memory

can either be RAM or cache memory. The Control Unit (CU) requests the

memory to provide it with the instruction stored in the memory location

specified by the program counter. This instruction is then stored in the In-

struction Register(IR).

Decode:

The instruction stored in the IR is then translated into chains of computer

commands. This process is also done in the CU. In addition, the CU inter-

prets the chains of commands and decides what is to be done.

Execution:
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The appropriate circuitry is then activated so as to perform the task required.

This is due to the CU sending signals to the Arithmetic Logic Unit(ALU)

that enable the carrying out of the correct tasks.

Storing:

This step involves storing of the data or results from the execution that are

stored in the registers or RAM. This data or results can be used as input for

another computer program.

A.2 The graphics processing unit

According to Barlas [7], the GPU is a dedicated parallel processor optimized

for accelerating graphical computations. It is produced in vast numbers

for computer graphics and is a single-chip processor like the CPU. It is in-

creasingly being used for computer games, video, audio, medical field and

multimedia amongst other. A GPU can have up to 512 cores on single chip

[7]. Thus, they have simplified logic since much more of the chip is devoted

to floating- point computation. GPU’s may be arranged as multiple units

with each unit being effectively a vector unit, all cores doing the same thing

at the same time. In addition, they have very high bandwidths of up to 190

GB/s and graphics memory of up to 6GB.
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A.2.1 Parallelism in GPU and GPU architecture

Kirk et al. [31], maintains that massively parallel programming is motivated

by the increased demand for high running speeds in applications. The re-

searchers also argue that a good implementation on a GPU can achieve more

than 100 times speedup over its sequential execution. According to Kirk et al.

[31], there are two types of parallelism, viz. data and task parallelism. Data

parallelism is the ability of a program to execute many arithmetic operations

on data structures simultaneously. on the other hand, task parallelism also

known as function parallelism refers to the ability of a program to execute

different operations in parallel to fully utilize the available processors and

memory.

A.2.2 Influences on evolution of the CPU and GPU

There are several factors that influence the evolution or development of CPUs

and GPUs. These include the following;

1. Technology

2. Theory and design ingenuity

3. User demand

4. Economics and commercial pressure

A.3 CPU versus GPU

There are many researchers that have done a comparison between the CPU

and GPU [7, 31, 38, 47]. They allude to the fact that GPU is the best in
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terms of large data parallel processing. Although this is the case, some say

that these researchers have compared general CPUs with developed GPUs.

According to Kirk et al. [31], the semiconductor industry has settled on two

categories of designing microprocessors namely; the multicore and many-

core microprocessor designs. The multicore design focuses on maintaining

the execution speed of sequential programs while moving into multiple cores,

whereas the many-cores design seeks to maintain the execution throughput

of parallel applications. The Intel R© Core
TM

i7 microprocessor which has

four processor cores is an example of a multicore microprocessor, while the

NVidia R© GeForce GTX280 GPU with 240 cores is an example of many-cores

microprocessor. Kirk et al. [31] maintains that, the performance of many-

core GPUs has improved significantly as compared to that of multicore CPUs.

This can be accredited to the fundamental design philosophies between the

two types of processors. The CPU design is optimized for sequential code

performance and it uses a sophisticated control logic to allow instructions

from a single thread of execution to execute in parallel or even out of their

sequential order while maintaining the appearance of sequential execution.

In addition, large cache memories are provided to minimize the instruction

and data access latencies of large complex applications.

The attributes that make GPU processing a more suitable candidate for

executing complex programs are shown in Table A.2. According to [38], the

CPU can have up to eight cores, for instance, dual-core or quad-core, whilst,

the GPU can have up to 512 cores. In addition, the GPU has been said to be
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Tab. A.2: CPU versus GPU.

CPU GPU
Can have up to 8 cores Can have up to 512 cores
Executes programs serially Highly parallel execution
Has fewer execution units Has many execution units

Has faster memory interfaces

a parallel processor while the CPU commands serial execution of programs

[31]. Moreover, the GPU experiences higher memory bandwidths than the

CPU due to fewer legacy constraints [31]. Hence GPUs have faster memory

interfaces.

The knowledge of the CPU and GPU underpins the understanding of some

of the observations made by several researchers in terms of time and memory

efficiencies experienced when running image segmentation algorithms [9, 10,

21, 47, 48]. Now that we have learnt about some of the grabcut algorithms,

the CPU and GPU, let us consider the approach presented in this study.
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B. GRABCUTS FOR IMAGE SEGMENTATION MATLAB

CODE

B.1 Grabcuts for image segmentation: GUI

1 f unc t i on varargout = Grabcut gui ( vara rg in )

2 % GRABCUT GUI M− f i l e f o r Grabcut gui . f i g

3 % GRABCUT GUI, by i t s e l f , c r e a t e s a new GRABCUT GUI or

r a i s e s the e x i s t i n g

4 % s i n g l e t o n ∗ .

5 %

6 % H = GRABCUT GUI re tu rn s the handle to a new GRABCUT GUI

or the handle to

7 % the e x i s t i n g s i n g l e t o n ∗ .

8 %

9 % GRABCUT GUI( ’CALLBACK’ , hObject , eventData , handles , . . . )

c a l l s the l o c a l

10 % func t i on named CALLBACK in GRABCUT GUI.M with the g iven

input arguments .

11 %

12 % GRABCUT GUI( ’ Property ’ , ’ Value ’ , . . . ) c r e a t e s a new

GRABCUT GUI or r a i s e s the

13 % e x i s t i n g s i n g l e t o n ∗ . S t a r t i ng from the l e f t , property

value p a i r s are
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14 % appl i ed to the GUI be f o r e Grabcut gui OpeningFunction

ge t s c a l l e d . An

15 % unrecognized property name or i n v a l i d value makes

property a p p l i c a t i o n

16 % stop . Al l inputs are passed to Grabcut gui OpeningFcn

v ia vararg in .

17 %

18 % ∗See GUI Options on GUIDE’ s Tools menu . Choose ”GUI

a l l ows only one

19 % ins tance to run ( s i n g l e t o n ) ” .

20 %mn

21 % See a l s o : GUIDE, GUIDATA, GUIHANDLES

22

23 % Copyright 2002−2003 The MathWorks , Inc .

24

25 % Edit the above text to modify the response to he lp Grabcut gui

26

27 % Last M o d i f i e d r e g r e s s i o n by GUIDE v2 . 5 25−Mar−2018 1 2 : 0 7 : 07

28

29 % Begin i n i t i a l i z a t i o n code − DO NOT EDIT

30 g u i S i n g l e t o n = 1 ;

31 g u i S t a t e = s t r u c t ( ’ gui Name ’ , mfilename , . . .

32 ’ g u i S i n g l e t o n ’ , gu i S ing l e t on , . . .

33 ’ gui OpeningFcn ’ , @Grabcut gui OpeningFcn ,

. . .

34 ’ gui OutputFcn ’ , @Grabcut gui OutputFcn , . . .

35 ’ gui LayoutFcn ’ , [ ] , . . .

36 ’ gu i Ca l lback ’ , [ ] ) ;

37 i f narg in && i s c h a r ( vararg in {1})

38 g u i S t a t e . gu i Ca l lback = s t r 2 f u n c ( vararg in {1}) ;
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39 end

40

41 i f nargout

42 [ varargout {1 : nargout } ] = gui main fcn ( gu i S ta te , vara rg in { :} )

;

43 e l s e

44 gui main fcn ( gu i S ta te , vara rg in { :} ) ;

45 end

46 % End i n i t i a l i z a t i o n code − DO NOT EDIT

47

48 % −−− Executes j u s t be f o r e Grabcut gui i s made v i s i b l e .

49 f unc t i on Grabcut gui OpeningFcn ( hObject , eventdata , handles ,

va ra rg in )

50 % This func t i on has no output args , s e e OutputFcn .

51 % hObject handle to f i g u r e

52 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

53 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

54 % vararg in command l i n e arguments to Grabcut gui ( s ee VARARGIN

)

55

56 % Choose d e f a u l t command l i n e output f o r Grabcut gui

57 handles . output = hObject ;

58

59 % Update handles s t r u c t u r e

60 guidata ( hObject , handles ) ;

61

62 % UIWAIT makes Grabcut gui wait f o r user re sponse ( s ee UIRESUME)

63 % uiwa i t ( handles . f i g u r e 1 ) ;

64
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65

66 % −−− Outputs from t h i s func t i on are returned to the command

l i n e .

67 f unc t i on varargout = Grabcut gui OutputFcn ( hObject , eventdata ,

handles )

68 % varargout c e l l array f o r r e tu rn ing output args ( s ee VARARGOUT

) ;

69 % hObject handle to f i g u r e

70 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

71 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

72

73 % Get d e f a u l t command l i n e output from handles s t r u c t u r e

74 varargout {1} = handles . output ;

75 image=imread ( ’ 2 . png ’ ) ;

76 axes ( handles . axes4 ) ;

77 imshow ( image ) ;

78

79

80 % −−− Executes on button pr e s s in s l i m .

81 f unc t i on s l i m C a l l b a c k ( hObject , eventdata , handles )

82 % hObject handle to s l i m ( see GCBO)

83 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

84 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

85 g l o b a l im bw L enMap dc sc vC hC L1 enMap1 dc3 sc1 vC1 hC1 ;

86 axes ( handles . axes1 ) ;

87 im = i m g e t f i l e ( ) ;

88 im = imread ( im) ;

89 image ( im) ;
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90

91

92

93 % −−− Executes on button pr e s s in s e l e c t r o i .

94 f unc t i on s e l e c t r o i C a l l b a c k ( hObject , eventdata , handles )

95 % hObject handle to s e l e c t r o i ( s e e GCBO)

96 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

97 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

98 g l o b a l im bw L enMap dc sc vC hC L1 enMap1 dc3 sc1 vC1 hC1 ;

99

100 axes ( handles . axes1 ) ;

101 h = imfreehand ( gca ) ;

102 p o s i t i o n = wait (h) ;

103 bw= h . createMask ( ) ;

104 bw = bw −1;

105

106 % −−− Executes on button pr e s s in rub grabcut .

107 f unc t i on rub grabcut Ca l lback ( hObject , eventdata , handles )

108 % hObject handle to rub grabcut ( s ee GCBO)

109 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

110 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

111 g l o b a l im bw L enMap dc sc vC hC L1 enMap1 dc3 sc1 vC1 hC1 ;

112

113 imd = im ;

114 imd = double ( imd ) ;

115

116 t i c ;

117 [ L , dc , sc , vC , hC ] = GrabCut ( imd , bw) ;
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118 toc ;

119

120 t i c ;

121 [ L1 , dc3 , sc1 , vC1 , hC1 ] = GrabCut med ( imd , bw) ;

122 toc ;

123

124 Ld = double (L) ; Ld1=double (L1) ;

125 Ld = L + 1 ; Ld1=L1+1;

126 Ld = double (Ld /2) ; Ld1=double (Ld1/2) ;

127 enMap = ze ro s ( s i z e (Ld) ) ; enMap1=ze ro s ( s i z e (Ld1 ) ) ;

128 resIm = imd ; resIm1=imd ;

129 resIm ( : , : , 1 ) = imd ( : , : , 1 ) .∗ Ld ; resIm1= imd ( : , : , 1 ) .∗ Ld1 ;

130 resIm ( : , : , 2 ) = imd ( : , : , 2 ) .∗ Ld ; resIm1 ( : , : , 2 ) = imd ( : , : , 2 ) .∗

Ld1 ;%resIm2 ( : , : , 2 ) = imd ( : , : , 2 ) .∗ Ld2 ;

131 resIm ( : , : , 3 ) = imd ( : , : , 3 ) .∗ Ld ; resIm1 ( : , : , 3 ) = imd ( : , : , 3 ) .∗

Ld1 ;%resIm2 ( : , : , 3 ) = imd ( : , : , 3 ) .∗ Ld2 ;

132 axes ( handles . axes3 ) ;

133 image ( u int8 ( resIm ) ) ;

134 imwrite ( ( u int8 ( resIm ) ) , ’Me. png ’ ) ;

135 axes ( handles . axes5 ) ;

136 image ( u int8 ( resIm1 ) ) ;

137 imwrite ( ( u int8 ( resIm1 ) ) , ’ME1. png ’ ) ;

138

139 % −−− Executes on button pr e s s in run enhance .

140 f unc t i on run enhance Cal lback ( hObject , eventdata , handles )

141 % hObject handle to run enhance ( s ee GCBO)

142 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

143 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

144 g l o b a l im bw L enMap dc sc vC hC L1 enMap1 dc3 sc1 vC1 hC1 ;
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145

146 indxs = f i n d (enMap) ;

147 L( indxs ) = enMap( indxs ) ;

148 dc1 = dc ( : , : , 1) ;

149 dc2 = dc ( : , : , 2) ;

150 f i n d x s = f i n d (enMap > 0) ;

151 dc1 ( f i n d x s ) = 1000 ;

152 bindxs = f i n d (enMap < 0) ;

153 dc2 ( bindxs ) = 1000 ;

154 dc = cat (3 , dc1 , dc2 ) ;

155 gch = GraphCut ( ’ open ’ , dc , sc , vC , hC) ;

156 gch = GraphCut ( ’ s e t ’ , gch , in t32 (L==1)) ; % i n i t i a l guess −

prev ious r e s u l t

157 [ gch L ] = GraphCut ( ’ expand ’ , gch ) ;

158 L = (2∗L−1) ; % convert {0 ,1} to {−1 ,1} l a b e l i n g

159 gch = GraphCut ( ’ c l o s e ’ , gch ) ;

160 Ld = double (L) ;

161 Ld = L + 1 ;

162 Ld = double (Ld /2) ;

163 resIm = double ( im) ;

164 resIm ( : , : , 1 ) = resIm ( : , : , 1 ) .∗ Ld ;

165 resIm ( : , : , 2 ) = resIm ( : , : , 2 ) .∗ Ld ;

166 resIm ( : , : , 3 ) = resIm ( : , : , 3 ) .∗ Ld ;

167 axes ( handles . axes2 ) ;

168 image ( u int8 ( resIm ) ) ;

169 imwrite ( ( u int8 ( resIm ) ) , ’EnKmeans . png ’ ) ;

170

171 % −−− Executes on button pr e s s in s l b g .

172 f unc t i on s l b g C a l l b a c k ( hObject , eventdata , handles )

173 % hObject handle to s l b g ( s ee GCBO)
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174 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

175 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

176 g l o b a l im bw L enMap dc sc vC hC L1 dc3 sc1 vC1 hC1 enMap1 ;

177 axes ( handles . axes3 ) ;

178 bg bw = −1 ∗ r o i p o l y ( ) ;

179 enMap = −1∗((enMap + bg bw ) < 0) + (enMap > 0) ;

180 tempRes = s e l e c t e n h a n c e ( im , enMap) ;

181 axes ( handles . axes1 ) ;

182 image ( u int8 ( tempRes ) ) ;

183

184

185 % −−− Executes on button pr e s s in s l f g .

186 f unc t i on s l f g C a l l b a c k ( hObject , eventdata , handles )

187 % hObject handle to s l f g ( s ee GCBO)

188 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

189 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

190 g l o b a l im bw L enMap dc sc hC L1 dc3 sc1 vC1 hC1 enMap1 ;

191 axes ( handles . axes3 ) ;

192 fg bw = r o i p o l y ( ) ;

193 enMap = ( ( enMap + fg bw ) > 0) − (enMap < 0) ;

194 tempRes = s e l e c t e n h a n c e ( im , enMap) ;

195 axes ( handles . axes1 ) ;

196 image ( u int8 ( tempRes ) ) ;

197

198

199

200 % −−− Executes on button pr e s s in pushbutton7 .

201 f unc t i on pushbutton7 Cal lback ( hObject , eventdata , handles )
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202 % hObject handle to pushbutton7 ( see GCBO)

203 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

204 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

205

206

207 % −−− Executes on button pr e s s in e x i t b t n .

208 f unc t i on e x i t b t n C a l l b a c k ( hObject , eventdata , handles )

209 % hObject handle to e x i t b t n ( see GCBO)

210 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

211 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

212

213 c l o s e a l l ;

214

215 f unc t i on enIm = s e l e c t e n h a n c e ( im , map)

216 tempRes = im ;

217 f i n d x s = f i n d (map>0) ;

218 red = tempRes ( : , : , 1) ;

219 red ( f i n d x s ) = 255 ;

220 green = tempRes ( : , : , 2) ;

221 green ( f i n d x s ) = 0 ;

222 blue = tempRes ( : , : , 3) ;

223 blue ( f i n d x s ) = 0 ;

224

225 bindxs = f i n d (map<0) ;

226 red ( bindxs ) = 0 ;

227 green ( bindxs ) = 0 ;

228 blue ( bindxs ) = 255 ;

229
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230 tempRes ( : , : , 1) = red ;

231 tempRes ( : , : , 2) = green ;

232 tempRes ( : , : , 3) = blue ;

233 enIm = tempRes ;

234

235

236 % −−− Executes on button pr e s s in S e l e c t f .

237 f unc t i on S e l e c t f C a l l b a c k ( hObject , eventdata , handles )

238 % hObject handle to S e l e c t f ( s e e GCBO)

239 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

240 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

241 g l o b a l im bw L enMap dc sc vC hC L1 dc3 sc1 vC1 hC1 enMap1 ;

242 axes ( handles . axes5 ) ;

243 fg bw1 = r o i p o l y ( ) ;

244 enMap1 = ( ( enMap1 + fg bw1 ) > 0) − (enMap1 < 0) ;

245 tempRes1 = s e l e c t e n h a n c e ( im , enMap1) ;

246 axes ( handles . axes1 ) ;

247 image ( u int8 ( tempRes1 ) ) ;

248

249 % −−− Executes on button pr e s s in S e l e c t b .

250 f unc t i on S e l e c t b C a l l b a c k ( hObject , eventdata , handles )

251 % hObject handle to S e l e c t b ( s ee GCBO)

252 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

253 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

254 g l o b a l im bw L enMap dc sc vC hC L1 dc3 sc1 vC1 hC1 enMap1 ;

255 axes ( handles . axes5 ) ;

256 bg bw1 = −1 ∗ r o i p o l y ( ) ;

257 enMap1 = −1∗((enMap1 + bg bw1 ) < 0) + (enMap1 > 0) ;
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258 tempRes1 = s e l e c t e n h a n c e ( im , enMap1) ;

259 axes ( handles . axes1 ) ;

260 image ( u int8 ( tempRes1 ) ) ;

261

262 % −−− Executes on button pr e s s in Enhance Kmed .

263 f unc t i on Enhance Kmed Callback ( hObject , eventdata , handles )

264 % hObject handle to Enhance Kmed ( see GCBO)

265 % eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

266 % handles s t r u c t u r e with handles and user data ( s ee GUIDATA)

267 g l o b a l im bw L enMap dc sc vC hC L1 enMap1 dc3 sc1 vC1 hC1 ;

268

269 indxs1 = f i n d (enMap1) ;

270 L1( indxs1 ) = enMap1( indxs1 ) ;

271 dc4 = dc3 ( : , : , 1) ;

272 dc5 = dc3 ( : , : , 2) ;

273 f i ndxs1 = f i n d (enMap1 > 0) ;

274 dc4 ( f i ndxs1 ) = 1000 ;

275 bindxs1= f i n d (enMap1 < 0) ;

276 dc5 ( bindxs1 ) = 1000 ;

277 dc3 = cat (3 , dc4 , dc5 ) ;

278 gch1 = GraphCut ( ’ open ’ , dc3 , sc1 , vC1 , hC1) ;

279 gch1 = GraphCut ( ’ s e t ’ , gch1 , in t32 (L1==1)) ; % i n i t i a l guess

− prev ious r e s u l t

280 [ gch1 L1 ] = GraphCut ( ’ expand ’ , gch1 ) ;

281 L1 = (2∗L1−1) ; % convert {0 ,1} to {−1 ,1} l a b e l i n g

282 gch1 = GraphCut ( ’ c l o s e ’ , gch1 ) ;

283 Ld1 = double (L1) ;

284 Ld1 = L1 + 1 ;

285 Ld1 = double (Ld1 /2) ;
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286 resIm1 = double ( im) ;

287 resIm1 ( : , : , 1 ) = resIm1 ( : , : , 1 ) .∗ Ld1 ;

288 resIm1 ( : , : , 2 ) = resIm1 ( : , : , 2 ) .∗ Ld1 ;

289 resIm1 ( : , : , 3 ) = resIm1 ( : , : , 3 ) .∗ Ld1 ;

290 axes ( handles . axes6 ) ;

291 image ( u int8 ( resIm1 ) ) ;

292 imwrite ( ( u int8 ( resIm1 ) ) , ’ EnKmedoids . png ’ ) ;

B.2 Grabcuts based on GMM-Kmeans algorithm

1 f unc t i on [ L , dc , sc , vC , hC ] = GrabCut ( im , initMap )

2 %

3 % Performs segmentat ion o f image in to foreground /background

4 % r e g i o n s

5 %

6 % Usage :

7 % L = GrabCut ( im , initMap )

8 %

9 % Inputs :

10 % im − c o l o r image to be segmented

11 % initMap − i n i t i a l l a b e l i n g o f which we are c e r t a i n o f :

12 % 1 − FG

13 % −1 − BG

14 % 0 − uncer ta in

15 %

16 % Output :

17 % L − a segmentat ion ( i . e . , {0 ,1} l a b e l i n g ) o f the g ive image .

18 %

19 % This implementation f o l l o w s the paper

20 % Rother C. , Kolmogorov V. and Blake A. ”GrabCut”− I n t e r a c t i v e
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21 % Foreground Extract ion us ing i t e r a t e d Graph Cuts . SIGGRAPH

2004 .

22 %

23

24 % constant s :

25 Gamma = 50 ;

26 MaxItr = 100 ;

27 K = 6 ; % number o f components in each mixture model

28 INF = 1000 ;

29

30

31 % working in Lab space

32 labim = im ; % RGB2Lab( im) ;

33

34 [ hC vC ] = SmoothnessTerm ( labim ) ;

35 sc = Gamma. ∗ [ 0 1 ; 1 0 ] ;

36

37 c e r t a i n f g = initMap == 1 ;

38 c e r t a i n b g = initMap == −1;

39

40 oL = initMap ;

41

42 % how to l a b e l a l l the unce r ta in p i x e l s ?

43 i f (sum(sum( abs ( c e r t a i n f g ) ) ) == 0)

44 oL( initMap==0) = 1 ;

45 e l s e

46 oL( initMap==0) = −1;

47 end

48

49 done suc = f a l s e ;
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50

51 f o r i t r =1:MaxItr ,

52

53 % GMM f o r foreground and background − g l o b a l model

54 t i c ;

55 logpFG = LocalColorModel ( labim , K, oL==1) ;

56 logpBG = LocalColorModel ( labim , K, oL==−1) ;

57 toc ;

58

59 % f o r c e l a b e l i n g o f c e r t a i n l a b e l i n g

60 logpBG ( c e r t a i n f g ) = INF ;

61 logpFG ( c e r t a i n b g ) = INF ;

62

63 dc = cat (3 , logpBG , logpFG ) ;

64 gch = GraphCut ( ’ open ’ , dc , sc , vC , hC) ;

65 gch = GraphCut ( ’ s e t ’ , gch , in t32 (oL==1)) ; % i n i t i a l guess −

prev ious r e s u l t

66 [ gch L ] = GraphCut ( ’ expand ’ , gch ) ;

67 L = (2∗L−1) ; % convert {0 ,1} to {−1 ,1} l a b e l i n g

68 gch = GraphCut ( ’ c l o s e ’ , gch ) ;

69

70 % stop i f converged

71 i f sum(oL ( : ) ˜=L ( : ) ) < . 001∗ numel (L)

72 done suc = true ;

73 break ;

74 end

75

76 oL = L ;

77

78 end
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79

80 i f ˜ done suc

81 warning ( ’ GrabCut : GrabCut ’ , ’ Fa i l ed to converge a f t e r %d

i t e r a t i o n s ’ , i t r ) ;

82 end

B.3 Local colour model generated by GMM-Kmeans

1 f unc t i on logp = LocalColorModel ( labim , K, s e l e c t )

2 % est imate g l o b a l c o l o r model

3 % labim − image patch in Lab space

4 % K − number o f component in mixture model

5 % s e l e c t − what p i x e l s in patch be longs to r eg i on

6

7 ims i z = s i z e ( labim ) ;

8

9 imR = labim ( : , : , 1 ) ;

10 imG = labim ( : , : , 2 ) ;

11 imB = labim ( : , : , 3 ) ;

12

13 f u l l S i z e = prod ( ims i z ( 1 : 2 ) ) ;

14

15 vectIm = [ reshape (imR , [ 1 f u l l S i z e ] ) ; reshape (imG, [ 1 f u l l S i z e ] )

; reshape (imB , [ 1 f u l l S i z e ] ) ] ;

16

17 s e l e c t e d = f i n d ( s e l e c t ) ;

18 imR = imR( s e l e c t e d ) ;

19 imG = imG( s e l e c t e d ) ;

20 imB = imB( s e l e c t e d ) ;

21 f g = [ imR , imG, imB ] ;
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22

23 rng ( ’ d e f a u l t ’ ) ;

24 t i c ;

25 [ idx , mu ,Sumd,D] = kmeans ( fg , K, ’ d i s t ance ’ , ’ c i t y b l o c k ’ , ’ Display

’ , ’ i t e r ’ ) ;

26 toc ;

27 di sp ( ’ In t ra c l u s t e r mean d i s t ance kmeans ’ ) ;

28 di sp (sum(Sumd) ) ;

29 di sp ( ’ I n t e r c l u s t e r mean d i s t anc e kmeans ’ ) ;

30 di sp (sum(D( : ) ) ) ;

31

32 x= fg ( : , 1 ) ;

33 y=fg ( : , 2 ) ;

34

35

36 f i g u r e ;

37 c l a ;

38 gca ;

39 hold on

40 c o l o r s=’ rgckym ’ ;

41

42 f o r num=1:K

43 p lo t ( x ( idx==num) , y ( idx==num) , [ c o l o r s (num) ’ . ’ ] ) ;

44

45 end

46 p lo t (mu( : , 1 ) ,mu( : , 2 ) , ’ bx ’ , . . .

47 ’ MarkerSize ’ ,15 , ’ LineWidth ’ , 3 ) ;

48 l egend ( ’ C lus te r 1 ’ , ’ C lus t e r 2 ’ , ’ Centro ids ’ , . . .

49 ’ Locat ion ’ , ’NW’ )

50 t i t l e ’ C lus t e r Assignments and Centro ids f o r kmeans ’
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51 hold o f f

52

53 t i c ;

54 s i=s i l h o u e t t e ( fg , idx , ’ s q euc l i d ean ’ ) ;

55 mean si= mean( s i ) ;

56 toc ;

57 di sp ( ’mean ’ ) ;

58 di sp ( mean si ) ;

59 % mu − mean

60 % cvr − covar iance

61 % wi − component weight

62

63 % compute data co s t accord ing to model

64

65 logp = ze ro s ( prod ( ims i z ( 1 : 2 ) ) ,K) ;

66 f o r k i =1:K

67 cvr = cov ( fg ( idx==ki , : ) ) ;

68 i f rank ( cvr ) < ims i z (3 )

69 logp ( : , k i ) = i n f ;

70 cont inue ;

71 end

72 wi = sum( idx==ki ) . / s i z e ( fg , 1 ) ;

73

74 df = vectIm ’ ;

75 df ( : , 1) = df ( : , 1) − mu( ki , 1 ) ;

76 df ( : , 2) = df ( : , 2) − mu( ki , 2 ) ;

77 df ( : , 3) = df ( : , 3) − mu( ki , 3 ) ;

78

79 logp ( : , k i ) = −l og ( wi ) +.5∗ l og ( det ( cvr ) ) + . . .

80 . 5∗ sum( df ∗ inv ( cvr ) .∗ df , 2 ) ;
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81 end

82

83 logp = min ( logp , [ ] , 2) ;

84 logp = reshape ( logp , ims i z ( 1 : 2 ) ) ;

B.4 Grabcuts based on GMM-Kmedoids algorithm

1 f unc t i on [ L , dc , sc , vC , hC ] = GrabCut ( im , initMap )

2 %

3 % Performs segmentat ion o f image in to foreground /background

4 % r e g i o n s

5 %

6 % Usage :

7 % L = GrabCut ( im , initMap )

8 %

9 % Inputs :

10 % im − c o l o r image to be segmented

11 % initMap − i n i t i a l l a b e l i n g o f which we are c e r t a i n o f :

12 % 1 − FG

13 % −1 − BG

14 % 0 − uncer ta in

15 %

16 % Output :

17 % L − a segmentat ion ( i . e . , {0 ,1} l a b e l i n g ) o f the g ive image .

18 %

19 % This implementation f o l l o w s the paper

20 % Rother C. , Kolmogorov V. and Blake A. ”GrabCut”− I n t e r a c t i v e

21 % Foreground Extract ion us ing i t e r a t e d Graph Cuts . SIGGRAPH

2004 .

22 %
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23

24 % constant s :

25 Gamma = 50 ;

26 MaxItr = 100 ;

27 K = 6 ; % number o f components in each mixture model

28 INF = 1000 ;

29

30

31 % working in Lab space

32 labim = im ; % RGB2Lab( im) ;

33

34 [ hC vC ] = SmoothnessTerm ( labim ) ;

35 sc = Gamma. ∗ [ 0 1 ; 1 0 ] ;

36

37 c e r t a i n f g = initMap == 1 ;

38 c e r t a i n b g = initMap == −1;

39

40 oL = initMap ;

41

42 % how to l a b e l a l l the unce r ta in p i x e l s ?

43 i f (sum(sum( abs ( c e r t a i n f g ) ) ) == 0)

44 oL( initMap==0) = 1 ;

45 e l s e

46 oL( initMap==0) = −1;

47 end

48

49 done suc = f a l s e ;

50

51 f o r i t r =1:MaxItr ,

52
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53 % GMM f o r foreground and background − g l o b a l model

54 t i c ;

55 logpFG = LocalColorModel medoids ( labim , K, oL==1) ;

56 logpBG = LocalColorModel medoids ( labim , K, oL==−1) ;

57 toc ;

58

59 % f o r c e l a b e l i n g o f c e r t a i n l a b e l i n g

60 logpBG ( c e r t a i n f g ) = INF ;

61 logpFG ( c e r t a i n b g ) = INF ;

62

63 dc = cat (3 , logpBG , logpFG ) ;

64

65 gch = GraphCut ( ’ open ’ , dc , sc , vC , hC) ;

66 gch = GraphCut ( ’ s e t ’ , gch , in t32 (oL==1)) ; % i n i t i a l guess −

prev ious r e s u l t

67 [ gch L ] = GraphCut ( ’ expand ’ , gch ) ;

68 L = (2∗L−1) ; % convert {0 ,1} to {−1 ,1} l a b e l i n g

69 gch = GraphCut ( ’ c l o s e ’ , gch ) ;

70

71 % stop i f converged

72 i f sum(oL ( : ) ˜=L ( : ) ) < . 001∗ numel (L)

73 done suc = true ;

74 break ;

75 end

76

77 oL = L ;

78 end

79

80 i f ˜ done suc

81 warning ( ’ GrabCut : GrabCut ’ , ’ Fa i l ed to converge a f t e r %d
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i t e r a t i o n s ’ , i t r ) ;

82 end

B.5 Local colour model generated by GMM-Kmedoids

1 f unc t i on logp = LocalColorModel medoids ( labim , K, s e l e c t )

2 % est imate g l o b a l c o l o r model

3 % labim − image patch in Lab space

4 % K − number o f component in mixture model

5 % s e l e c t − what p i x e l s in patch be longs to r eg i on

6

7 ims i z = s i z e ( labim ) ;

8

9 imR = labim ( : , : , 1 ) ;

10 imG = labim ( : , : , 2 ) ;

11 imB = labim ( : , : , 3 ) ;

12

13 f u l l S i z e = prod ( ims i z ( 1 : 2 ) ) ;

14

15 vectIm = [ reshape (imR , [ 1 f u l l S i z e ] ) ; reshape (imG, [ 1 f u l l S i z e ] )

; reshape (imB , [ 1 f u l l S i z e ] ) ] ;

16

17 s e l e c t e d = f i n d ( s e l e c t ) ;

18 imR = imR( s e l e c t e d ) ;

19 imG = imG( s e l e c t e d ) ;

20 imB = imB( s e l e c t e d ) ;

21 f g = [ imR , imG, imB ] ;

22

23

24 opt ions= s t a t s e t ( ’ Display ’ , ’ i t e r ’ ) ;
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25 rng ( ’ d e f a u l t ’ ) ; %For r e p r o d u c i b i l i t y

26 t i c ;

27 [ idx ,C, sumd , D d ] = kmedoids ( fg , K, ’ d i s t ance ’ , ’ c i t y b l o c k ’ , ’

Options ’ , opt ions ) ;

28 toc ;

29

30 di sp ( ’ In t ra c l u s t e r mean d i s t anc e ’ ) ;

31 di sp (sum(sumd) ) ;

32 di sp ( ’ I n t e r c l u s t e r mean d i s t anc e ’ ) ;

33 di sp (sum(D d ( : ) ) ) ;

34

35 x= fg ( : , 1 ) ;

36 y=fg ( : , 2 ) ;

37

38 f i g u r e ;

39 c l a ;

40 gca ;

41 hold on

42 g r id on

43 c o l o r s=’ rgbcym ’ ;

44

45 f o r num=1:K

46 p lo t ( x ( idx==num) , y ( idx==num) , [ c o l o r s (num) ’ . ’ ] ) ;

47 end

48 p lo t (C( : , 1 ) ,C( : , 2 ) , ’ kx ’ , . . .

49 ’ MarkerSize ’ ,15 , ’ LineWidth ’ , 3 ) ;

50

51 l egend ( ’ C lus te r 1 ’ , ’ C lus t e r 2 ’ , ’ Medoids ’ , . . .

52 ’ Locat ion ’ , ’NW’ )

53 t i t l e ’ C lus t e r Assignments and Medoids f o r kmedoids ’ ;
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54 hold o f f

55 t i c ;

56 s=s i l h o u e t t e ( fg , idx , ’ s q euc l i d ean ’ ) ;

57 mean s= mean( s ) ;

58 toc ;

59

60 di sp ( ’mean ’ ) ;

61 di sp ( mean s ) ;

62

63 % C − medoid

64 % cvr − covar iance

65 % wi − component weight

66

67 % compute data co s t accord ing to model

68 logp = ze ro s ( prod ( ims i z ( 1 : 2 ) ) ,K) ;

69 f o r k i =1:K

70 cvr = cov ( fg ( idx==ki , : ) ) ;

71 i f rank ( cvr ) < ims i z (3 )

72 logp ( : , k i ) = i n f ;

73 cont inue ;

74 end

75 wi = sum( idx==ki ) . / s i z e ( fg , 1 ) ;

76

77 df = vectIm ’ ;

78 df ( : , 1) = df ( : , 1) − C( ki , 1 ) ;

79 df ( : , 2) = df ( : , 2) − C( ki , 2 ) ;

80 df ( : , 3) = df ( : , 3) − C( ki , 3 ) ;

81

82 logp ( : , k i ) = −l og ( wi ) +.5∗ l og ( det ( cvr ) ) + . . .

83 . 5∗ sum( df ∗ inv ( cvr ) .∗ df , 2 ) ;
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84 end

85

86 logp = min ( logp , [ ] , 2) ;

87 logp = reshape ( logp , ims i z ( 1 : 2 ) ) ;
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