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Notations

1 N: The set of natural numbers

2 7Z: The set of integers

3 f:X — Y A mapping from set X to set Y
4 f(x): The image of x under f

5 Imgp: The image set of p

6 Fu: The family {p; : t € Imyp}

[
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7 ZX: The set of all fuzzy SuB&etS' [16f 4 hon-empty set X

8 TC: The set of all fuzzy subsets p of a group G

9 F(G): The set of all fuzzy subgroups p of a group G
10 G = H: G is isomorphic to H
11 |G|: The order of G

12 (a): The cyclic subgroup generated by a
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(a,b): The subgroup generated by a and b

D;zib = (a",a’b) = (a",a'b | (a")* = e = b*> = (ab)?): The dihedral

subgroups generated by a” and a'b, for 0 <i <r —1

x ~ y: x is related to y

UierA;: Union of sets A;, ¢ € I (indexed set)

(M(Dpng))e: The number of cyclic maximal chains of Dpn,

(M(Dpng))a: The number ofid-cyclic maximal chains of Dyng
L)y

(M(Dyeg))oa: Thel»ﬁﬁiﬁgéf %)“‘l?“‘?(@l;cyé}i%wrgéﬁﬁlal chains of Dyrg

(M(Dpng))p: The number of b-cyclic maximal chains of Dy,

F(Dpng)a: The number of distinct fuzzy subgroups from d-cyclic max-

imal chains of Dpng

F(Dpng)2q: The number of distinct fuzzy subgroups from 2d-cyclic

maximal chains of Dpng

F(Dpng)sq: The number of distinct fuzzy subgroups from 3d-cyclic

maximal chains of Dpng
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Abstract

In this dissertation, we classify distinct fuzzy subgroups of the dihedral group
Dyng, for p and ¢ distinct primes and n € N, under a natural equivalence
relation of fuzzy subgroups and a fuzzy isomorphism. We aim to present
formulae for the number of maximal chains and the number of distinct fuzzy
subgroups of this group. Our study will include some theory on non-abelian
groups since the classification of distinct fuzzy subgroups of this group relies
on the crisp characterization of maximal chains. We give the definition of
a natural equivalence relation introduced by Murali and Makamba in [67]
which we will use in this study. Based on this definition, we introduce two
counting techniques that we will use to compute the number of distinct
fuzzy subgroups of D,n4. In this dissertation, we use the criss-cut counting
technique as our primary method efenumeration, and the cross-cut method

serves as a means of verifying res‘!ts we"btain from our primary method.

To classify distinct fuzzy subgroups ofthis group, we begin by investigating
University of Fort Hare
the dihedral groups Djng, for p.and g distinct primes and specific values of

n = 2 and 3 to observe a trend. We classify the flags of these groups using the
characterization of flags introduced in [93]. From this characterization, we
then present formulae for the number of distinct fuzzy subgroups attributed
to the flags of D)2, and D,3,.

To generalise results for Dyng, for p and ¢ distinct primes and n € N, we
characterize the flags of this group and classify them as either cyclic, md-
cyclic for 1 < m < n, or b-cyclic. Finally, we establish a general formula for
the number of distinct fuzzy subgroups obtainable from these flags.

We conclude by comparing results obtained from using our general formula
to those obtained by other researchers for the same group. Based on the

results from this study, we give an outline of future research work.



Chapter 1

Introduction

In literature, most of the theorems proved about groups are a generalisation
of these groups. Even though many of them seem to be completely different

from one another, they sometimesgpeossess certain properties which might

studying a specific group alone, which is

I

not be immediately evident from

why groups are classified acc_ording toithe structure of their subgroup lattices
and maximal chains. Co[urll]tln\a(g [t\hg\m(l)rlnlgér”cl)f ]}l;;[);(ilrnal chains of subgroups
of a finite group is considered as one of the most important problems of com-
binatorial group theory, and exists as a significant combinatorial method of
finding the number of distinct fuzzy subgroups of a particular finite group.
The fascinating and appealing nature of groups of regular polygons facili-
tated the characterisation of the dihedral groups in the crisp case by Rotman
[106] as well as Malone and Lyons in [64], who used the theory of successive
decomposition generated by idempotence to establish the form of the endo-
morphism near-ring of the dihedral group of order 2n. Zazkis and Dubinsky
[42] studied the dihedral group D,, with n an odd number, while Cavior [32]
presented the formula for counting the total number of subgroups of the
dihedral group D,, as 7(n) + a(n) where 7(n) is the number of divisors of n
and a(n) is the sum of the divisors of n. Calhoun [29] extended this notion

to the class of groups formed as cyclic extensions of cyclic groups, which in-



clude the dihedral groups, the Z-meta-cyclic groups, and the abelian groups
of the form Z,,, X Z,,.

In the real physical world, however, human beings encounter objects which
may not precisely constitute “classes” or sets as described mathematically
in the crisp case; yet human thinking relies on these imprecisely defined
classes, particularly in the areas of pattern recognition, communication of
information and abstraction. The need for a conceptual framework that
could address the issue of imprecision and uncertainty led to the develop-
ment of fuzzy logic which dates back to Plato, and in the 1920s Lukasiewicz
proposed the concept of many-valued logic. The notion of fuzzy sets de-
veloped by Zadeh [131] in the 1960s, emphasised the gap existing between
perceptual depictions and the usual mathematical representations of reality.
Fuzzy logic is a broad term that encompasses areas such as fuzzy arithmetic,
tuzzy topology, fuzzy mathematical programming, fuzzy data analysis, and
fuzzy graph theory, to name a fer of these are referred to as fuzzy
set theory. The theory &f fuzzy sdts gavemisefo aenumber of applications,
one of which is the notion of fuzzy groups déveloped by Rosenfeld [105] in
1971. This inspired the development of fuzzy abstract algebra. The clas-
sification of fuzzy subgroups stands on its own, and rests mainly on the
combinatorial analysis of the lattice of subgroups. This implies that it can-
not be determined from the classification of crisp subgroups alone, a fact
which has facilitated the study of classification of fuzzy subgroups.

The development of other notions pertaining to the characterisation of fuzzy
subgroups, was studied by, among others, Bhattacharya [25] and Das [39],
who used the notion of level subgroups to characterise fuzzy subgroups of
finite cyclic groups. Murali and Makamba [67] introduced the idea of an
equivalence relation of fuzzy subgroups which we will use in this study. Other
researchers who discussed the notion of equivalence of fuzzy subgroups in-

clude, Ajmal and Thomas [10], Bentea and Tarnauceanu [20], Degang et al.



[34], Murali [85], Seselja and Tepavcevic [113], Tarnauceanu [123] and Zhang
and Zou [136]. The generalised definition of an equivalence relation closely
relates to the notion of level subgroups as studied by Bhattacharya [25] and
Das [39]. Volf [128] concludes that two fuzzy subgroups p and v of G are
equivalent if they have the same set of level subgroups. Thus the equality of
level subgroups in relation to this equivalence is the necessary and sufficient
condition for equivalence of two fuzzy subgroups.

The study of fuzzy groups extends to other related concepts such as, product
fuzzy subgroups introduced by Foster [49] in 1979 using Rosenfeld’s defini-
tion and in [98], Osman redefined the product fuzzy subgroups according
to the definition by Sherwood [114]. Makamba [65] established the concept
of internal and external direct products of fuzzy subgroups, showing that
the internal direct product of two fuzzy subgroups of a group is isomor-

phic to their external direct produet. In [26], Bhatacharya and Mukherjee

introduced the notion of fuzzy neg The following researchers also

studied the concept of fthZY}i\ndrxﬁla\lif{ Agmial {9]rcAjmal and Thomas [10],
Akgul [11], Anthony and Shervi)ébé‘ [14], Bhakat and Das [22], Dib and Has-
san [41], Makamba and Murali [66] and Malik, Mordeson, and Nair [77],
amongst others. In [105], Rosenfeld proved that while the homomorphic
pre-image of a fuzzy subgroup is always fuzzy subgroup, only a homomor-
phic image of a fuzzy subgroup with the sup property is a fuzzy subgroup.
Anthony and Sherwood [14], modified the definition of fuzzy subgroups and
studied the effects of the sup property on their homomorphic images. Other
researchers who extended the study of homomorphic images and pre-images
are Ajmal [4] and [5], Bhatacharya and Mukherjee [26], Eroglu [46] and
Mishref [81]. In [131], Zadeh introduced the notion of a fuzzy relation,
which was further studied by Rosenfeld [105], Sanchez [109], and Bezdek
and Harris [21]. In [132] Zadeh defined a generalisation of the notion of

equivalence and its relationship with fuzzy relations. Further studies that



combine fuzzy relations and equivalence were conducted by Murali [84], who
defined properties of fuzzy equivalence relations on a set, showing the exis-
tence of a correspondence between fuzzy equivalence relations and certain
classes of fuzzy subsets. Schmechel and Thiele [110] studied the concepts
of fuzzy equivalence relations and fuzzy partitions, and Boixader, Jacas and
Recasens [28] presented an overview of the different aspects of the concept
of fuzzy equivalence relation. The natural equivalence we will use in this
study was introduced by Murali and Makamba in [67], and further studied
by the same researchers in [68] and [69]. In [90], Ndiweni and Makamba
utilized the definition of an equivalence relation in [67], to obtain the num-
ber of distinct fuzzy subgroups of the dihedral groups D,, for n a product
of distinct primes. In general, the number of fuzzy subgroups of a group is
infinite if there is no equivalence relation, and this includes the trivial group
e. :

Equivalence relations are paramo‘%’he characterisation of fuzzy sub-
groups of finite groups. | Different! vesdatchetsl have developed and studied
different concepts of equivalefiéé relat10ns, ‘and these resulted in the de-
velopment of various enumeration techniques for computing the number of
distinct fuzzy subgroups of a group. In this dissertation, we use two enu-
meration methods derived from the definition of an equivalence relation in
[67].

The classification of fuzzy subgroups of finite groups has largely been focused
on finite abelian groups. In [48], Lazlo conducted a study on the construc-
tion of fuzzy subgroups of orders one to six. Zhang and Zou [136] determined
a formula for the number of fuzzy subgroups of cyclic groups of order p”, for
p a prime, while in [70] Murali and Makamba counted the number of fuzzy
subgroups of the abelian Z,n x Zgm groups. Mordeson, Bhutani and Rosen-
feld [27] found, up to a natural equivalence, the number of fuzzy subgroups

of certain finite abelian groups. Ngcibi, Murali and Makamba [76] charac-



terised and determined a formula for the number of fuzzy subgroups, up to a
natural equivalence, of rank two abelian p-Groups. Ju-Mok Oh [97] extended
this study to find an explicit formula V n and m. Modifying the results of
Murali and Makamba in [67], Tarnauceanu and Bentea [122] established a
reccurence formula for the number of distinct fuzzy subgroups of finite cyclic
groups. Using the definition of equivalence in [70], Ndiweni [88] conducted a
study on the abelian groups Zyn + Zgm, Zyn + Lgm + Ly and Zpn + Lgm + Lyps
where p, ¢, and s are distinct primes. Sulaiman and Ahmad [3] determined
the number of fuzzy subgroups of the finite abelian group Z, x Zq X Z, X Zs,
where p, ¢, r, s are distinct primes. Humera and Raza [56] classified the
fuzzy subgroups of the finite abelian group Z,, x Zy, X --- x Zj, where p1,
D2, -+, Pn are distinct primes, using the equivalence relation defined by Su-
laiman and Ahmad in [3]. Tarnaceanu [127] introduced a new equivalence
relation, extending the study on équivalence by Murali and Makamba in
[67], [68] and [69]. He used this WH to classify fuzzy subgroups of
cyclic groups, elementarly/ abeliani p:Grotrps;t dibedral groups, and symmet-
ric groups. Sehgal A, Sehgal Band Sharma [112] determined the number
of fuzzy subgroups of the finite abelian p-Group Z,n x Zp» where p is a
prime, and Appiah and Makamba [15] determined the number of distinct
fuzzy subgroups of some rank-3 abelian groups.

Not many studies have been conducted on the classification of fuzzy sub-
groups of non-abelian groups. Although there are a number of researchers
that have studied these groups, they have not used the same definition of
an equivalence relation as the Murali and Makamba definition in [67] which
we will use in this dissertation. Tarneauceanu [124], described the fuzzy
subgroup structure of some finite p-groups with cyclic maximal subgroups.
In [123], he further extended the characterization of fuzzy subgroups to fi-
nite non-abelian groups, where he established the formula for the number of

fuzzy subgroups of the dihedral group Dp;q pl2..

s where each p; is a prime
--Ps



number and n; € Z*. Ndiweni [88] studied the symmetric group Ss, the
dihedral group D4 and the quaternion group @s. In [2], Sulaiman and Ah-
mad computed the number of fuzzy subgroups of symmetric groups Sa, S3
and the alternating group A4, and Sulaiman [115] counted the number of
fuzzy subgroups of the symmetric group Ss. Darabi, Saeedi and Farrokhi
[37] computed the number of fuzzy subgroups of the dihedral group Da,,
the quasi-dihedral groups QDon, the generalized quaternion groups Qun,
and modular p-groups My, while Davvaz and Ardekani [16] counted the
number of fuzzy subgroups of a special class of non-abelian groups of or-
der p. Naraghi [86], determined the number of distinct fuzzy subgroups of
the dihedral groups D2, Dy, Dg and the symmetric group S3 and in [87]
he computed the number of distinct fuzzy subgroups of the dihedral group
Dy, xpoxxpn- In[90], [91] and [93], Ndiweni and Makamba classified distinct
fuzzy subgroups of the dihedral groups DP’ Dy, Dpny Dpgry Dpgrs, where p,
q, r and s, are distinct primes, o: -.-§ Ndiweni [89], expanded the study
in [93] to classify fuzzy subgreups IQ ]ﬁd‘dihle&ﬂaﬂl’g‘roup Dygrst, for distinct
primes p, ¢, r, s and t. Tarnauceanu[123] developed a general formula
to determine the number of distinct fuzzy subgroups of the dihedral groups
Dyn and Dyng using the equivalence relation introduced by Tarnauceanu
and Bentea [121]. Darabi and Inamparast [38] used the equivalence relation
in [121] to compute the number of fuzzy subgroups of the dihedral groups
Dyyn for p a prime number, and Doy, p,..p, Where the p;s are distinct primes.
Sehgal, A, Sehgal, S, and Sharma [111] use a recurrence relation to give a
formula for the number of fuzzy subgroups of the dihedral group Dpmgn. In
this dissertation, we include some of the work by [90] and [92], and we com-
pare our results to the results obtained by Tarnauceanu in [123] and Sehgal,
A, Sehgal, S, and Sharma [111]. The rest of the dissertation is organised as
follows:

In Chapter 2, we give the definition of a fuzzy set and list down a few proper-



ties of fuzzy sets. We define a fuzzy point, listing down the characterisation
of fuzzy sets using a-cuts. We give the definition of the image of a fuzzy
set and introduce the notion of fuzzy subgroups as defined by Rosenfeld in
[105]. We define level subgroups according to Das in [39] and investigate
some properties of fuzzy subgroups that include fuzzy normality, and the
homomorphic images and pre-images of fuzzy subgroups. We then define
maximal chains (flags) of subgroups of a group G and the concept of a key-
chain and its components. We give a brief definition and characterisation
of the index of a keychain. These concepts give rise to the notion of pinned
flags, and are significant tools utilised in the enumeration of distinct fuzzy
subgroups of a group.

In Chapter 3, we introduce the notion of fuzzy equivalence. We begin by
defining equivalence relations and subsequently, fuzzy relations. We give the
Murali and Makamba definition ofian equivalence relation on all fuzzy sub-

ice relation is stronger than other

groups of a group in [67]. This o

notions of equivalence, and ﬁs‘(al'sli)bca)li dase bff thewoncept of fuzzy isomor-
phism, which is an equivalencej‘félgfi‘oﬁjdﬁ “;Ll‘l“‘fuzzy subgroups of a group. It
is also in this chapter that we introduce the criss-cut and cross-cut counting
techniques that are used to determine the number of distinct equivalence
classes of fuzzy subgroups of the groups we study. We give examples on how
to determine the number of distinct fuzzy subgroups by using both proce-
dures. In the criss-cut counting technique we utilise the flags of a group
and the equivalence relation defined in [67]. To use this technique, it is im-
portant to correctly identify factors (components) that distinguish the flags
from each other as these determine the number of distinct fuzzy subgroups
contributed by each flag. In the cross-cut counting technique we use the
concept of keychains and pinned-flags, where the levels and components of

the flags play an important role in the enumeration process.

Since the enumeration of fuzzy subgroups of a group is dependent on the



crisp characterisation of groups, in Chapter 4 we study the dihedral groups
D,, for n € N in general, and give the characterisation of maximal chains
as studied in [90]. We list properties of the dihedral groups Dp» and D,
studied in [90] and [92] which we use in our classification problem. This
chapter serves as a basis for Chapter 5.

In Chapter 5, we introduce the dihedral group D4, for p and ¢ distinct
primes, and n € N. We first characterize maximal chains of specified di-
hedral groups Dpngy where n = 2 and 3 according to their cyclic, d-cyclic,
2d-cyclic, 3d-cyclic and b-cyclic maximal chains. From this characterization
and our identification of distinguishing factors of each maximal chain, we
use the criss-cut counting technique described in Chapter 3, to establish
a formula for the number of distinct fuzzy subgroups and non-isomorphic
fuzzy subgroups obtainable from the maximal chains of these groups. The
trends and patterns observed in out investigation of D2, and D3, enable us
to generalize results for the dihedw Dynq for p and ¢ distinct primes
and n € N. Therefore, we characterize tHeambximalchains of this group and
classify them in terms of cychc,md—cychc for 1 <m < n and b-cyclic maxi-
mal chains. We then use this characterization of maximal chains to obtain
a general formula for the number of distinct fuzzy subgroups of Djng.

In the concluding chapter we make comparisons between results obtained
from our formula for the number of distinct fuzzy subgroups of Dyng, and
formulae presented by other researchers for the same group. We also give a
brief summary of our future study on the classification of a dihedral group

that is an extension of this group, based on the outcomes of this study.



Chapter 2

Fuzzy Sets and Fuzzy

Subgroups

2.1 Introduction
| |

i

{

\

Let X be a non-empty se[t, and S Q%Zﬁ%e crils characterization of subsets
Jniversity of Fort Hare
S of the set X can be defined by.the;following characteristic function:

1 if z€8
x(x) =
0 if =z¢58

Now, suppose the set X is a collection of sets in the "real world” and suppose
that the elements of .S have no definitive conditions. Since the property of
the relation € is such that for each x € X, z € S or x ¢ S, we cannot declare,
with absolute certainty that the statement x € S is either true or false. It is
because of this uncertainty that in 1965, Zadeh [131] developed and studied
the idea of fuzzy subsets of a set, and in [105], Rosenfled pioneered the
study of fuzzy subgroups which extended the notion of fuzzy subsets to the
structural setting of groups. In this chapter, we give the basic definition
and general properties of a fuzzy set, we define a-cuts according to the

definitions given by Mordeson [27], Ndiweni [88] and Zimmerman [137]. We



then define the notion of fuzzy subgroups according to Rosenfeld [105], as
well as providing properties that characterise fuzzy subgroups, including
the notion of level subgroups that was introduced by Das in [39] in 1981.
A number of researchers, namely, Murkherjee and Bhattacharya [26]; Akgul
[11]; Dixit, Kumar, and Ajmal [7], amongst them, classified fuzzy subgroups
using level subgroups. Since they play a critical role in the study of general
fuzzy subgroup structures, we define fuzzy normal subgroups as given in

[27].

2.1.1 Fuzzy Sets

In the crisp case, when we speak of elements belonging to a non-empty set
X, we normally refer to every element a € X completely belonging to the
set X. In other words, the element a having total membership. Fuzzy sets

allow for the depiction of elements-as par‘tially belonging to a set.

Definition 2.1.1.1. [2’7] A, fuzzy IS u 0 a group X is the function
niversity of For

w:X —1=1[0,1] foget

We denote the set of all fuzzy subsets u of X by IX.

Remark 2.1.1.0.1. If we define the function p : X — [0,1] by u(x) = A,
w(y) =P and u(z) =afor 1 > A > > a >0, we say that A\ is the degree
that the element x belongs to the fuzzy subset u, 5 is the degree that y
belongs to p and «, the degree that z belongs to . Hence, when A = 0
there is absolute non-membership of z € X, when f =0,y ¢ X and a =0
= 2z ¢ X. When A = 1, we have absolute membership of x € X, similarly
for $=1and a« = 1. When 1 > u(x) > pu(y) > u(z) > 0 then we say that y
belongs to . more than z belongs to u, and = belongs to p more than either

y or z. The image set {0, 1} is clearly a crisp set.

Definition 2.1.1.2. [27] Let u € TX. Then the set {u(x) : x € X} is called

the image set of u and is denoted by p(X) or Im(u).

10



Definition 2.1.1.3. [108] The height of a fuzzy subset u of X, denoted by

hgt(p) is the least upper bound of p(z). Thus

hgt(p) = supgex (p(z))

Fuzzy Points

The concept of fuzzy points was developed from the notion of a fuzzy single-
ton that was introduced by Zadeh in [133]. Fuzzy singletons are instrumental
in the study of convergence and local properties of fuzzy topology, as well
as in the construction of fuzzy topological spaces. In [100] Pu and Liu gave
a definition of a fuzzy point, and Murali [85] defined a fuzzy point of a fuzzy
subset under a natural equivalence. We define a fuzzy singleton using the
definitions given by Goguen [53], Kerre [60], Mordeson et al [27], and Amin
et al. [13].

Definition 2.1.1.0.1. /53] Let X be a . mon-empty set, x € X, and let pux

“The fuzz]y subset px is called a fuzzy
ty of Foit Hare

Univers

be a fuzzy subset of X, with X € [0
|
singleton if Vy € X Toget

A if y==x

0 if y#ux

px(y) =

In this case, px is denoted by z*. To expound the definition of a fuzzy
point z* of a set X, Murali [85] made an implicit assumption referred to as
the null set axiom (NULSAX), based on the vacuous “satisfaction”

principle.

Axiom: (NULSAX) [85]

There is only one fuzzy subset p of the empty set @ which takes the
membership value 1 on the empty set, p: & — I so that u(@) = 1. We call
such a p, the NULSAX fuzzy subset. The empty subset @ of X is denoted
by Xo.

11



Definition 2.1.1.0.2. [85] Let a € X and 0 < A < 1. A fuzzy point, o of
X, is a fuzzy set a® : X — [0,1] defined, Yz € X, by

1 if ze Xy
a’\(x): A if x=a
0 if z€X, z#a

If A =1 then pu(x) =1 when x = a and 0 when z # a, the fuzzy set is the

crisp singleton {a}

Definition 2.1.1.0.3. [85] By a* € u we mean pu(a) > \ and a* €4 y means

wu(a) > X\, where €4 implies strict “belonging”.

Definition 2.1.1.0.4. [108] The support of a fuzzy subset u of X, denoted
by supp(u) is the set of points in Xen@swhich p(x) is positive. Thus
supp(p) = {z € X : p(x) > 0} 1

If 1 € X, then it is said tmh&'\re\ld\supﬂ (prbbbrltgy if every subset of

I'm(p) has a maximal element.

a-Cuts or a-Levels

Definition 2.1.1.0.5. [137] The crisp set of all elements that belong to the

fuzzy set u of X, at least to the degree o, is called the a-level set, denoted
by:
po ={z € X | p(x) > o}

Definition 2.1.1.0.6. [137] A strong a-level set or “strong a-cut” of u, for

each real number « € [0,1] is the crisp set of elements denoted by:
C={reX:pulx)>a}

The characterization of fuzzy subgroups using a-cuts is shown in the

following propositions by [88]

12



Proposition 2.1.1.0.0.1. For any fuzzy subset p, we have that

[L= SUDP X, = Vae(0,1)%Xpa
0<a<1
Proof. [88] O

Proposition 2.1.1.0.0.2. Let u be any fuzzy subset, then

1
nw) = [ o (opte
Proof. [88] O
Definition 2.1.1.0.7. [187] Let A be a fuzzy subset of a set X. The cardi-

nality of A, denoted |A| is defined as

Al =) palz)

zeX

and || Al = % is called the relatmt cardi’z'ality of A.

Images and Pre-imagléé]L)‘F*Fﬁ%iyyg&g"‘l‘ Hare

One of the most important tools in fuzzy set theory is Zadeh’s Exention
Principle, described in [134]. This notion extends the operations of classical

set theory to fuzzy set theory.

Definition 2.1.1.0.8. [27] Let f : X — Y be a function from X toY, and
let p: X — [0,1] be a fuzzy subset of X. Define fuzzy subsets f(u) of Y,
Vy €Y, and f~1(v) of X, Vx € X, by

Viua)le € X, fa) =y} if [y #2

0 otherwise

) (y) =

and [~ (v)(z) = v(f(2))
The fuzzy subset f(u) is called the image of p under f, and the fuzzy subset
f~Y(v) is called the pre-image of v under f.

13



Thus the degree to which y belongs to f(u) is at least as much as the

degree to which x belongs to p Vzx, for which f(z) =y.

Theorem 2.1.1.0.1. [27] Let f : X — Y be a function from X toY, and
let g : Y — Z be a function from Y to Z. Then the following assertions
hold:

(i) (go f)(nw) =g(f(n) YneI¥
(it) (go f)" (p) = f" (g7 (p)) VpeI”
(iii) If i : X — X is the identity function, then u(i) = p
(i) f7H(f(w) 2 p YueI?
(v) f(f'(v) Cv YweI¥
(vi) p1 C p2 = f(u1) C fu) Vg, po $IX

(vii) v1 Cvy = f~1 (1) C fﬁl(Vz? Tovo € IV
University of Fort Hare

Proof. [21] gether in Excellnc ]
2.1.2  Fuzzy Subgroups

In [105], Rosenfeld developed the theory of fuzzy subgroups, showing that
many concepts of group theory can be extended to the fuzzy group setting.

In this dissertation, we use the following definition of fuzzy subgroups.

Definition 2.1.2.1. [1}] A fuzzy subset u: G — I = [0,1] of a group G is

a fuzzy subgroup of G if:
i p(zy) > min{p(z), w(y)} Yo,y € G
i (et = p(z) Vo € G

Definition 2.1.2.2. [6] The range set of u is defined as:
Imp = {p(z) : z € G}
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Definition 2.1.2.3. [39] Let G be a group and p be a fuzzy subgroup of G.

The subgroups jiq, o € [0,1] and o < p(e) are called level subgroups of G

In [4], Ajmal modified this definition of level subgroups by restricting

a € Impu, giving the following definition:

Definition 2.1.2.4. [4] The level subgroup of G is

po ={p(x) >a:ze G, acImu}

Properties of Fuzzy Subgroups

The following properties of fuzzy subgroups result from the above definitions.

Proposition 2.1.2.0.0.1. [88] If i is a fuzzy subset of a group G, then p is
a fuzzy subgroup of G if and only if each ps is a subgroup of G, 0 < a <1
Proof. [88] : O
Proposition 2'1'2'0'01,2'11{{9(81 Let 2 ?‘(cgljl”u%fg;/uggbset of G. Then i is a

ersity ' c
fuzzy subgroup of G < Vay, bg €= w,\u(‘bgl“)w €

Proof. [88] O

Theorem 2.1.2.0.1. [27] Let f : G — H be a homomorphism from a group
G into a group H. If p is a fuzzy subgroup of G, then f(u) is a fuzzy
subgroup of H.

Proof. [27] O

Theorem 2.1.2.0.2. [27] Let f : G — H be a homomorphism and let v a

fuzzy subgroup of H, then f~Y(v) is a fuzzy subgroup of G.

Proof. [27] O
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Fuzzy Normal Subgroups

Just as normal subgroups play a critical role in the study of the general
structure of classical groups, fuzzy normal subgroups play a similar role in
the theory of fuzzy subgroups. In [26], Murkhejee and Bhattacharya gave a
detailed study on the concept of fuzzy normal subgroups introduced by Liu
in [63]. This concept has since been studied by various researchers under

different contexts.

Theorem 2.1.2.0.3. [27] Let p € F(G). Then the following assertions are

equivalent Vx,y € G:

(i) w(yx) = p(xy) In this case, u is called an Abelian fuzzy subgroup of G
(ii) ply) < p(z~'yz)

(iti) p(y) > pleyz)
|
(v) pov=vouvveF(G) T

University of Fort Hare

Proof. [27] O

Definition 2.1.2.0.1. [27] Let p € F(G), then p is called a fuzzy normal
subgroup if p(xy) = u(yzx), Yo,y € G. i.e If p is an Ableian fuzzy subgroup
of G.

Proposition 2.1.2.0.3.1. [88] If u, v € F(G), and p is fuzzy normal, then
uv € F(G).

Proof. [88] O

Proposition 2.1.2.0.3.2. [88] If u and v are both normal fuzzy subgroups
of a group G, then pv € F(G)

Proof. [88] O

Proposition 2.1.2.0.3.3. [88] If u, v € F(G), and p is fuzzy normal, then
uwv =vp € F(G)

16



Proof. [88] O

Proposition 2.1.2.0.3.4. [88] Let u € F(G). Then p is fuzzy normal <

each o is a normal fuzzy subgroup of G Vo € [0, 1]

Proof. [88] O

2.1.3 Maximal Chains, Pins, Keychains and Pinned Flags

Due to the innate connection between subgroup lattices and fuzzy subgroups
of a group G, counting the number of maximal chains, or flags of a group
provides a combinatorial method of enumerating the number of fuzzy sub-
groups of a group G. The concept of keychains, introduced in [67], represents
fuzzy subgroups defined by the flags of a group. Thus, in this section, we
define flags and keychains, we also define some important features of key-
chains that make a difference to the equivalence of fuzzy subgroups, namely

pins and the index of a keychain. W

\ define the notion of pinned-flags
which arises from the phiringeof; iﬂas) fahid eythains. The terms maximal
chains and flags will be used mterchangeably in this dissertation.

The maximal chains of a group are created from the maximal subgroups of

the group, thus we begin with the following definition.

Definition 2.1.3.1. [88] A mazimal subgroup M of a group G, is a proper
subgroup of the group G such that no other proper subgroup H of G contains
M.

Definition 2.1.3.2. [72] A flag ¢ is a mazimal chain of maximal subgroups
of a group G of the form

{e}=GpC G CG C---

N
2
3

|
@Q

where Gy = {e} and G, = G.
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The G;s are referred to as components of a flag (.

Definition 2.1.3.3. [70] An (n + 1)-tuple (1, A1, A2,..., An—1,\n) of real

numbers in the interval I = [0, 1] of the form
I>M>X> > 1> A >0

is called a keychain, denoted by f
With the exception of the component 1, which can be found at the begining
of every keychain, the real numbers AiAs ... \p_1 Ay are components of the

keychain called pins. The length of a keychain £ is n + 1.

A keychain may contain pins \; that are either distinct or exactly the
same. Counting the number of repetitions of \;, for i € {1,2,...,n} in a

keychain ¢ gives the following definition.-

Definition 2.1.3.4. [’74{4}7\1@0{{{?{7’?)T‘SFJE,)OIf‘pgﬁiltlige integersi = (l1,1la,...1ly),
associated with a keychain £, Wherem =4y + - - - + 1, and whose values
depend on the equality sign between pins A;, is called the index of a key-
chain. For example.

The keychain 1AX... A\ is of index (n) and referred to as an exceptional
keycahain

The keychain 1A\Bca...0C is of index (1,1,1,...,1) and referred to as a most

stratified keychain
The following characterise keychains in terms of their indices.

Definition 2.1.3.5. [74] Two keychains {1 = 1\ A\y... N\, and by = 15155 ... By

are equivalent <— V 1<1,7<n
(i) Ni>Aj = Bi>pj
(ii) \i=0 <= (3, =0
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Proposition 2.1.3.0.1. [7}] If two keychains are equivalent then they have

the same index.
Proof. [74] O

Proposition 2.1.3.0.2. [7/] There are precisely four equivalent keychains
of a given index, with the exception of keychains of index (n), that give rise

to only three equivalent keychains.
Proof. [74] O

Definition 2.1.3.6. [67] The number of keychains is determined by the
formula 21 — 1, where n + 1 is the length of the flag.

Definition 2.1.3.7. [70] The pair (¢,{), with a flag ¢ on G, and a keychain

£, from I, written as
Gy C Gyt €6 C Gy

\
is called a pinned flag. G;\i for‘ﬁ’!,l ...,m, is called the (i + 1)-th

component of the pinne(}:ﬂb'g\.‘(':m"!,\ "fi If‘:?"“‘ Hare

The connection between pinned flags and equivalent classes of fuzzy
subgroups is further clarified when we represent the pair ((,¢) on G as a

fuzzy subgroup u of G as shown:

/

1 ifz=e
Mif zeGi\{e)
,U/(x) =9 A Zf xr € GQ\Gl

A if x e G \Gno1
where G, is the whole group.
Conversely, given any fuzzy subgroup u of GG, then u can be decomposed

into a pinned-flag on G as in Definition 2.1.3.7.
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Chapter 3

Fuzzy Equivalence, Fuzzy
Isomorphism and Distinct

Fuzzy Subgroups

- y

- _

3.1 Introductio[nw ] V ‘LW-Rj ﬁ\ ( ’l\ 1“( ) ﬂ‘ E }Q ire

A number of researchers such as Bhattacharya [24] and [25], Das [39], Dixit
[7], and Ray [101], characterised fuzzy subgroups of finite groups by their
level subgroups. Fuzzy sets are an extension of the theory of crisp sets.
Although it is easier to categorize objects in the crisp case as either striclty
belonging or not belonging to a certain class of objects, in the fuzzy case,
objects have a degree of belonging that requires the notion of an equiva-
lence relation on fuzzy sets for categorization of similar objects that are
related, based on the classes in which they belong. According to Murali and
Makamba in [67], if there is no equivalence relation on fuzzy subsets of a set,
the number of fuzzy subgroups of even the trivial group is infinite. In [110],
Schmechel and Thiele defined the concepts of fuzzy equivalence relations

and fuzzy partitions, while De Cock [40] stated the general unsuitability of
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fuzzy equivalence relations to model approximate equality, as is in the crisp
case. Several more studies on fuzzy equivalence relations have also been
conducted by Tarnauceanu [126], Recasens [103], and Murali and Makamba
in [67], [68] and [69]. When drawing a comparison between the the notions
of fuzzy isomorphism and an equivalence relation on fuzzy sets in [67], Mu-
rali and Makamba observed that the notion of fuzzy equivalence relation is
finer than that of fuzzy isomorphism. In this chapter, we begin by giving a
general definition of a fuzzy equivalence relation as well as the definition of
an equivalence relation. The different notions of equivalence relation defined
have given rise to a number of different enumeration techniques to compute
the number of distinct fuzzy subgroups of finite groups. We give an overview
of the two enumeration techniques introduced in [74] which we will utilize

in our study.

3.1.1 Equivalence RelatimE ‘,J,

Definition 3.1.1.1. /1&7]]]f9(“&h\d of H‘fé"ée%ﬂfh'en a relation from X to
Y is a subset R C X x Y.

We usually write aRb to denote (a,b) € R

If X =Y we say RN is a relation on X.

Definition 3.1.1.2. [107] A relation R, denoted ~, on a set X, is
(i) Reflexive, if a ~ a Va € X
(i1) Symmetric, ifa~b=b~aVa,be X

(i1i) Transitive, if (a ~b andb~c=a~cVa,b,ce X

A relation that has all three of the above properties is an equivalence re-

lation.

Definition 3.1.1.3. [107] Let ~ be an equivalence relation on a set X. If

a € X then the equivalence class of a is the set [a] ={r € X :a~z} C X
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Proposition 3.1.1.0.1. [107] Let ~ be an equivalence relation on X. Then

a~b <= [a] =[b]

Proof. [107] O

3.1.2 Fuzzy Relations

Definition 3.1.2.1. [137] Let X and Y be sets. A fuzzy relation u on
X xY, is the mapping p: X xY +— I = [0,1], where p € X x Y, and is
denoted by:

p=A{((z,9), u(z,y)) | (z,y) € X x Y}

w(x,y) is said to be the degree to which x is related to y.

Definition 3.1.2.2. [137] A fuzzy relation that is reflexive, symmetric, and

transitive is called a fuzzy equivalence relation.

Thus, V(z,y) € X CX XY and ((, 2, E»i X Z, a fuzzy relation is:
(i) Reflexive, if “(x[’ﬂ)iﬁj']r%il} of Fort Hare

(ii) Symmetric, if p(z,y) = p(y,z)

(i1i) Transitive, if po p(z,y) < p where po p is defined by:
pop={(x,2),V(u(z,y) Ay, )}

3.1.3 Equivalence Relations

Murali and Makamba [67] define an equivalence relation on the set of all

fuzzy subsets of a set X as follows:

Definition 3.1.3.1. [67] pu ~ v if and only if Vr,y € X

(i) p(z) > ply) <= v(z) > v(y)

(ii)) wz) =0 <= v(z)=0
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Note 3.1.3.1. The condition u(x) = 0 < v(z) = 0 denotes the equality
of the supports of u and v, and does not follow from condition (7). Also,
when restricted to the two truth values {0, 1}, the equivalence relation p ~ v

coincides with equality of sets.
We use the particular case of Dis to explain the above definition:

Example 3.1.3.1. Let G = D13 = (a,b | a'? = e = b? = (ab)?). We define
the fuzzy subgroups p and v as follows:
4

1 ifz=e
A if e a8\ {e}

wz) =98 if xe(a?))\ (af)

a if zela)\ (a?)

0 otherwise N

A if o DR \{L} mzm
v(e) =S8 if xze(ad)\ (ab)

a if wz€{a)\ ()

0 otherwise,
for1>A>p8>a>0.

6

We observe that supp(u) = (a) = {e,a,a? a? a* a® a, ... a''}. Similarly,

supp(v) = {a) = {e,a,a?,a,a*,a° ab, ... a''}. Hence supp(u) = supp(v).

We also note that,

p(a®) > p(a?) = p(a*) = p(a®) = p(a'®) > pla) = p(a®) = p(a’) = p(a’) =
p(a®) = p(a'')

But, v(a%) > v(a®) = v(a®) > v(a) = v(a®) = v(a*) = v(a®) = v(a") =
v(a®) = v(a'?) = v(a'),

= Va,y,2 € G, where z € (a%) \ {e}, y € (a®) \ (a%) = (a) \ (¢*) and z €

(a)\ {a) = (a®)\ (a®) we have ju(x) > u(y) > u(z), but v(z) > v(y) # v(2),
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since v(z) > v(y). Thus p ~ v.
Proposition 3.1.3.0.1. [67] If u ~ v then Im|u| = Im|v|
Proof. [67] O

Definition 3.1.3.2. [88] Two fuzzy subgroups p and v are said to be distinct
& [u] # [v] where [n] and [v] are equivalence classes containing p and v

respectively.

To further clarify the idea of equivalence of fuzzy subgroups, in [67],
Murali and Makamba use the following Proposition for the characterisation

of a fuzzy equivalence relation.

Proposition 3.1.3.0.2. [67] Suppose p and v are two equivalent fuzzy sub-
sets of X. Then, for each t € [0, ljstheress an s € [0,1] such that s = vs.
Proof. [67] o i | O
University of Fort Hare

3.1.4 Fuzzy Isomorphism/«

There are various notions of fuzzy isomorphism used in literature to char-
acterise fuzzy subgroups of a group. However, in the case of classifying or
counting the number of fuzzy subgroups of a group G, these notions have
limitations. Murali and Makamba in [67], [68], [69] and Mordeson in [27]
discerned the concept of a fuzzy equivalence as finer than that of fuzzy iso-
morphism since the concept of fuzzy isomorphism gives a generalised crisp
equality of sets by replacing this equality with the equality of flags. This
implies that although two equivalent fuzzy subgroups are fuzzy isomorphic,

the converse is not true. We begin by defining a fuzzy homomorphism.

Definition 3.1.4.1. [107] If (G,*) and (H,o) are groups, then a function,
f G — H such that f(z xy) = f(x)o f(y), Vx,y € G, is called a

homomorphism.
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Definition 3.1.4.2. [107] If the homomorphism f : G — H is a bijection,

then it is an isomorphism.

Definition 3.1.4.3. [69] If f : G — H is a homomorphism and 1 is a fuzzy
subset of G, then f(u) is the image of u and is a fuzzy subset of H defined,
for h e H by (f(n))(h) = sup{u(g) : g € G, f(g) =h} if f'(h) # @ and
fp)(r) =04f f~H(h) = 2.

Similarly, if v is a fuzzy subset of H, then the pre-image of v, i.e. f~1(v)
is a fuzzy subset of G defined by (f~'(v))(g) = v(f(9))-

The following definition of isomorphic fuzzy subgroups was given by

Murali and Makamba in [75].

Definition 3.1.4.4. [75] Let G be a group and let p,v € F(G). We say p is
fuzzy isomorphic to v, denoted byl &< 3 an isomorphism f: G — G

such that |

(i) nla) > u(b) <= uLpaYP ST Fort Hare

(ii) w(a) =0<= v(f(a)) =0 fora,beG.

3.1.5 Counting Distinct Fuzzy Subgroups

The different concepts of fuzzy equivalence relation that have been studied
and defined are a foundation for the number of different techniques devel-
oped for the enumeration of distinct fuzzy subgroups of a finite group. In
this section, using the equivalence relation defined by Murali and Makamba
in [67], we define the criss-cut and cross-cut counting techniques presented
in [74]. Since fuzzy subgroups of a finite group G are inherently linked to
the lattice of subgroups of G, it is imperative that we characterise the flags

of the group prior to utilising any method of enumeration.
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Criss-cut counting technique

This enumeration technique requires that we list all the flags of a group G, in
order to identify their distinguishing factors and hence compute the number
of distinct fuzzy subgroups attributed to each flag. The listing order of flags
is irrelevant and will not affect the results, so any numbering associated with
the flags is purely based on the counting sequence. From the propositions
stated and proved in [88], [90], and [83], we explain this counting technique
as follows:

Let the first flag of a finite group G be given as:
(1) {e} CHICHyC---CH,=G

By [67], the number of distinct fuzzy subgroups contributed by flag (1) is
ont+l _ 1, where n + 1 is the length of the flag.
Suppose we have a second flag,

(2) {e} C K1 C Ky C CKn‘_v’

niversity of Fort Ha
Where K; # H;, for any i € {1/208{.0. 713

We call this K; a distinguishing factor of flag (2), as it distinguishes flag (2)
from flag (1). The following proposition gives the number of distinct fuzzy

subgroups contributed by flag (2).

Proposition 3.1.5.0.0.1. [88] The number of distinct fuzzy subgroups of G

contributed by a flag with a single distinguishing factor is given by 25— = 2"
forn > 2.
Proof. [88] O

If we consider a third flag of G
B){e}ChChCT---CJ=G

where J; and J; is a pair of components with i # j, J; # K; # H; for any
i={1,2,3,...n—1} and J; # K; # H; for any j = {1,2,3,...n — 1}.
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We have that the pair J; and J; distinguishes flag (3) from both flag (1)
and flag (2), thus flag (3) has a pair of distinguishing factors. Hence, the
number of distinct fuzzy subgroups contributed by a flag (3) is given by

the following proposition.

Proposition 3.1.5.0.0.2. [88] The number of distinct fuzzy subgroups of

G contributed by a flag with a pair of distinguishing factors is given by

n+1 _
222 =21 forn > 4.

Proof. [88] O

Now suppose we have another flag of G with a triple of distinguishing

factors that do not appear in any previous flags of G. Then the number of

2n+1

5 =272

distinct fuzzy subgroups contributed by this chain is given by
In [88] an inductive process is appliedytordetermine the number of distinct

fuzzy subgroups contributed by eth ﬂag’\’)f G, based on the number of

distinguishing factors in each flag. 1S, in general we have the following
University of Fort Hare

proposition. Foaether in Excelleno

Proposition 3.1.5.0.0.3. [88] With the exception of the first flag that con-

tributes 2"t — 1 distinct fuzzy subgroups; the number of distinct fuzzy sub-

groups contributed by a flag of G with length n + 1 and m < n + 1 distin-

. . . . n+1
quishing factors is given as 2o

We now use a specific case of the dihedral group D, to give an example

of the criss-cut enumeration technique.

Example 3.1.5.0.1. If we let p = 2, ¢ = 3 and n = 2, then for Dyng,
we have Dis = {(a,b : a'? = b2 = e = (ab)?), |G| = 24. This group has
subgroups of orders that divide 24. From the manual construction of flags

of D2, we obtain the following:

The cyclic maximal chains of Do are:
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Thus D15 has 3 cyclic flags. To account for the distinctions between flags,
we identify distinguishing factors in all flags by a star. Flag (1) is
considered to contain subgroups that are all distinguishing factors and by
[67], contributes 25 — 1 distinct fuzzy subgroups, where 5 is the length of
each flag. Each of the flags (2) and (3) has a single distinguishing factor
and therefore the two flags contribute 24(2) distinct fuzzy subgroups.

The d-cyclic maximal chains are:

{e} C (a®) C (a®) C DE" C Dy,

{e} C (a®) C (a®) C D" C Diy i
C (a8 C ) Cc D" Ccp ‘k
fe} & (%) < () € g [,T]I\‘lth‘I'SII} of Fort Hare

{e} C (a%) C () € DY € Dy

{e} C (a%) C (a®) C D§¥" C Dy,

{e} € (a")" C (a®) C D§" C Dig

{e} C(a")" C () C DY C D1z

These are the only d-cyclic flags of D1o. Hence we obtain 7 d-cyclic flags.
We observe that five flags have single distinguishing factors and thus
contribute 24(5) distinct fuzzy subgroups, and the two remaining flags
have a pair of distinguishing factors, contributing 23(2) distinct fuzzy

subgroups. Thus, the number of distinct fuzzy subgroups contributed by
the d-cyclic flags is 24(5) + 23(2)

A listing of the 2d-cyclic maximal chains yields:
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{e} C (a) C DY C D§ C Dy

{e} C (a®) C D" C DEP C Dyy

{e} C (a®) € D§?" C D C Dy

{e} € (a%) € D" C D C Dy
{e} € (a®) € D§™" C DY C Dy

{e} € (a®) C D§™" C D C Dy
{e} C (a®) C D" C DY C Dy

{e} C (a®) C D§" C D§*" C Diy
{e} € (a%) € D" C DY C Dy
{e} € (a®) € D" C D" C Dyy
(e} € (o € D§" € DY C Dif -
{e} C (a%) € Dg™" C Dflﬁ*i Gefity of Fort Hare

ey cpico,

{e} C (a") C D§”" C DgP C Dy

{e} € (a*) € D™ C DY C Dy

{e} € (a") € D§™" C DE" C Dyy

These are the only 2d-cyclic flags of Dj5. Thus, we obtain 16 2d-cyclic
flags. There are ten flags, each with a single distinguishing factor, that
contribute 2#(10) distinct fuzzy subgroups. Each of the remaining six flags
have a pair of distinguishing factors and thus contribute 23(6) distinct

fuzzy subgroups. Hence, the 2d-cyclic flags contribute 24(10) + 23(6)

distinct fuzzy subgroups.

We have the b-cyclic maximal chains as:
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{e} C (ab)* C D® C Dg® C Dy

{e} C (ab)* C D$® C DY*" C Dyy
{e} C (ab)* € D" C D" C Dy
{e} C (a®h)" € D§™ € D C Dy
{e} C (a®)" C Dg™ C DGV C Dy,
{e} € (a®h)" € D§¥" C Dy C Dy
{e} C (a®h)" C D§™ C D> C Dy
{e} C (a®b)" C D™ C DY C Dy 3

-

{e} C (a®h)" € DF" C D!’ {efdity of Fort Hare
{e} C (a*b)* C D" C Db C D12
{e} C (a*h)" C D§™* C D§*" C Dyy

{e} C (a*0)" C DY C D§ C Diy

{e} C (a®h)" C D§™ C D> C Dy

{e} C (a®0)" C D§™ € DYV C Dy

{e} C (a®b)" C D§" C DEb C Dyy

{e} C (a)" C DY C D§ C Diy

*

{e} C (a®)" C DS C DY C Dy
{e} C (a%)" C D§™" C D} C Dyy

{e} C (a"b)" € D3> C Dg* C Dy
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{e} C (a0)" C D§® C D" C Diy
{e} € ()" € DF*" C DgP € Dy
{e} C (a*h)" C D§™ C D C Dyy
{e} € (a®h)" € D§™ € D§™*" C Dy
{e} C (a®0)" C DY C D§ C Diy

{e} C (a%)" C D§™ C D> C Dy
{e} C (a%)" C Dg™* € DY* C Dyy
{e} C (a%h)" C D§P" C DG C Dyy
{e} C (a'%)" C D5 C D C Dz
{e} C (a'%)" C D3 C D§P" C Dy
{e} C (%) CDF C DY C D - - ]
{e} C (a''h)" C D3 C Db Geflity of Fort Hare

[} C @) C DEP C DEY C Dy

{e} C (a'b)" € D§™" C Dgb C Dy

These are the only b-cyclic flags of D2, and we obtain 36. There are 12
flags, each with one distinguishing factor, that contribute 2#(12) distinct
fuzzy subgroups. Each of the remaining 24 flags has a pair of distinguishing

factors, and yield 23(24) distinct fuzzy subgroups. Hence, the number of
distinct fuzzy subgroups obtained from the b-cyclic flags is 24(12) + 23(24).

From the summation of the cyclic, d-cyclic, 2d-cyclic and b-cyclic flags, we

have that the number of flags of D19 is given as
M(D12) =3+ 7+ 16 + 36 = 62
and the number of distinct fuzzy subgroups contributed by the 62 flags of
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D15 is given as
F(D12) = 2°—1+2%(2)+2%(5)+23(2) +2%(10)+23(6) +2*(12) +23(24) = 751

Cross-cut counting technique

In a similar way to the criss-cut counting technique, the cross-cut counting
technique relies on the construction of maximal chains of a group G. For
this method, we make use of the concept of pins and keychains. We begin
by using the levels (length) of a flag to determine the number of keychains.
We then use the components of the flag to determine the number of pins in
each keychain, including 1, which is not considered a pin as it is a constant
component in each keychain. From the definition in [67], each keychain
defines a distinct equivalent class of fuzzy subgroups. The total number
of these equivalence classes depends'solely on the characteristics of these
keychains, and the number of flags of Ell group. Hence we list all the flags
of a group G before Wﬁ?ﬁgl(nlél‘lemi’gﬁaftﬁn1 process. This method is

described as follows:

STEP ONE : From [67], we have that the number of keychains that represent flags
of length n, is 2™ — 1. Each of these keycahins is of the form 1A3---0,

where 1 > A >8> --->0.
STEP TWO : We let the first flag of a finite group G be:
(1) {e}CG1CGC---CGr=0G.

We select any keychain, say 1A3---0, and “pin” it to the first flag
to obtain the pinned flag {e}1 CGrC @GP T CiG,l We then
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represent this pinned flag as the fuzzy subgroup:

1 ifx=e
A if zeGi\{e}

m@) =S4 if zecGy\Gy

0 otherwise

Suppose the second flag of G is:
(2) {e}CH CHyC---CH,=G.

Where H; # G; for any i € {1,2,...,n — 1}

We select the same keychain, 1A ---0, and “pin” it to flag (2), to
obtain the fuzzy subgroup:

\ ‘m‘.’L’ =€
Universjity of Fort Hare
rogder in ifeenaee Hy\{e}

MQ(x) =3B if =x¢€ HQ\Hl

0 otherwise

For 1 > A > 3> --- >0, we observe that:

Va,y,z € G, pa(x) > pa(y) > pa(z) and po(x) > pa(y) > pe(z), but
supp(p1) # supp(pz). Therefore the keychains 1A\3 - - - 0 represents two
distinct fuzzy subgroups on flags (1) and (2). If supp(p1) = supp(us),
then the fuzzy subgroups p; and po belong to the same distinct equiv-
alence class of fuzzy subgroups, and the keychain 1\ - - -0 represents
one distinct fuzzy subgroup on both flags (1) and (2). We continue
the process of “pinning” the keychain 1AS5---0 to all the flags of G to

compute the number of distinct fuzzy subgroups it represents.

33



STEP THREE : From the list of 2" — 1, we again select a different keychain to pin on
all the flags of G. We repeat this procedure, computing the number of
distinct fuzzy subgroups each keychain represents on each flag, until

we have exhausted the list of keychains.

STEP FOUR : Finally, we add the number of distinct fuzzy subgroups that all the
2" — 1 keychains represent on each flag, to obtain the total number of

distinct of fuzzy subgroups of a finite group G.

Note 3.1.5.0.1. “Pinning” a keychain on all the flags of a group is
a task that needs to be thoroughly performed to prevent instances of

either overcounting or undercounting the number of fuzzy subgroups.

Example 3.1.5.0.2. To illustrate this method, we use the dihedral group
of the form Dyng, where p = 2, ¢ =3yand n = 2

and thus we have Dis = (a,b | alQ‘ﬁ'e = (ab)?). The subgroups of Dy

e University of Fort Hare
{e}; Dia; e e

(a) = {e,a,a? a a* a® - a'l};

(a?) = {e,a?,a%, b, a8, al0};

(a®) = {e,a3,a%, a’};

(a') = {e,a’,a®};

(a%) = {e,a’};

(b); (ab); (a®b); ... (a''D)

DS = (a5, b) = {e,ab, b,abb}

Dgb = (a8, ab) = {e, a% ab,a"b}

D& = (a5, a2b) = {e, a8, a2b, aBb}
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D§5b = (a8, a’b) = {e,ab, a’b, a''b}

Db = (a*,b) = {e,a*, a®,b,a*b, a®b}

Db = (a*, ab) = {e,a*, a®, ab, a®b, a"b}

D§2b = (a*,a%b) = {e,a*,a®, a?b,a,a'"b}

Dggb = (a*,a®b) = {e,a*,a®,a®b,a"b,al'b}

D4 = (a®,b) = {e,a?,a%,a” b, a’b, a®b, a”b}

D = (a3, ab) = {e,a? a’, a’, ab,a*b,a’, a'b}

Df” = (a3,a?b) = {e,a3,a% a’, a®b,a®b, a®b, a'1b}

D% = (a?,b) = {e,a?,a*, a5, a8, a'l 4) a2b':[: 4b, a%b, a®b, a'0b}
D = ) = (e H el
Thus D19 has 62 flags shown below

(1) {e} € (a®) € (a?) € (a) € D1s



(12) {e} C (a¥) C Dg* € D C Dy
(13) {e} C (a®) C D§™ € D} C Dy
(14) {e} C (a%) C D™ C D" C D1y
(15) {e} C (a®) C D§™* € D} C Dy
(16) {e} C (af) C D§™ € DE® C Dyy
(17) {e} C (a®) C DS C D} C Dy

(18) {e} C (a®) € D3> C D§* C Dy

(19) {e} € (a®) C D§™* C D§™ C Dy,

(20) {e} C (a%) € DY C DY C V)

University of Fort Hare
(21) {e} € (a®) € D§™ € DY CIDf el

(22) {e} C (a%) C D™ C DY C Dyy
(23) {e} C (a*) € D} C DE C Diy
(24) {e} C (a") € D* C Dg® C Dy
(25) {e} C (a*) C D§™* C D C Dyy
(26) {e} C (a*) € D§™* € DE® C Dyy
(27) {e} C (b) € D} C DE € Dy

(28) {e}  (b) € D} C Di C Dy



(31) {e} C (ab) C D3> C D3> C Dy
(32) {e} C (ab) C D§* € Dg* C Dy
(33) {e} C (a®h) C D§™ C D} C Dy
(34) {e} C (a®h) C DS € DY C Dyy
(35) {e} C (a?h) € D§™* C DY C Diy
(36) {e} C (a®) € D§™* C DE® C Dyy
(37) {e} C (a®h) € D§™* C DY C Diy
(38) {e} C (a®b) C D§™ C D C Dy,
(39) {e} C (a'b) C D§"® C Dt C Dyy

(40) {e} C (a*b) C D5 C Dg* AD\y

(41) {e} C (a"b) C D C D§ C D15V
University of Fort Hare

(42) {e} < (a%) € D§™* © DDy el

(43) {e} C () C D§™* C DY C Dy,

(44) {e} C (a%) C D§® C Dgb C Day

(45) {e} < (a®) < D}

N

D,

o
IN

D12

(46) {e} < (a%) € Dy C D

FNS
N

D1

(47) {e} C (a%b) € D§™ € D C Dy
(48) {e} C (a"h) € D§* € DE® C Dy
(49) {e} C (a"b) C D§® C D> C Dy
(50) {e} C (a"b) C D™ C D C Dy,
(51) {e} C (a®h) € D§™ C D§ C Dyy
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(52) {e} C (a®b) € D§™ € D§™* C Dy
(53) {e} C (a®) C D C D§ C Di2
(54) {e} C (a) € D§™* C DE® C Dyy
(55) {e} C (a) € D§™* C D} C Dyy
(56) {e} C (a%) C D§* C DE" C Dy
(57) {e} C (a'%) C D§™® C D§ C Dyy
(58) {e} C (a'%) C D™ C Dg> C Dy
(59) {e}  (a'%) C D§™® C D} C Dyy
(60) {e} C (a''b) C D™ C DE® C Dyy

(61) {e} C (a'1b) C D C DY € Dyy
(62) {e} € (a''b) C D§* C Dy’ éﬁ'

University of Fort Hare
Since this method employs thé concept ‘k‘)‘fj“i{e“z‘srchains on the flags of the
group, our observation is that each one of the flags has 5 levels. Therefore,
each equivalence class of fuzzy subgroups can be represented by a keychain
with five components consisting of 4 pins, and 1. From [67] we have that
the number of keychains is 2° — 1 = 31, where n = 5 is the length of each
flag, viz.
11111 1111A 11110 111AX 111A8 111A0 11100 11AAX 11AA8 11AX0 11A58
11ABa 11280 11A00 11000 IAAAA 1AAAG 1AAN0 1AABS8 1AABa 1AAG0
1AN00 IABBB 1ABBa 1A Baa 1ABal 1ALald 1AFL0 1AB00 1A000 10000

We now select any keychain and “pin” it on all the flags of the group, to
determine the number of distinct fuzzy subgroups each represents. Each
one of the three exceptional keychains 11111, 1AAAA and 10000 of index

(4) will yield a count of one fuzzy subgroup, on all 62 flags. Hence, the
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number of equivalence classes of fuzzy subgroups represented by these
keychains is 3 x 1 = 3. Suppose we let = 1AA5S, a keychain of index
(2,2) then pinning this keychain on each one of the maximal chains yields
the following:

On flag (1), p1 = 1AABP yields:

;

1 ifz=e
A if xe(ab)\{e}
m) =X if xze(a?\ (a®
Bif wefa)\ ()
B if x€Dia\(a)

On flag (2), ua = 1AA\BS yields:

1 ifx=e ‘ ‘ w
Aifee <la612 i\\‘i‘?ﬁhil} of Fort Hare
i@ = A x if we (@) (doyetirin el

B if w€(a)\(a’)
B ’Lf QS‘ED12\<CL>

\

On flag (3), us = 1AA\GS yields:

;

1 ifz=e
A if ze(at)\{e}
ps(x) =S A if xe(a?\ (a*)
Bif wefa)\ ()
B if x€ D\ (a)

\

From the above fuzzy subgroups, it is evident that p; and us belong to the

same distinct equivalence class of fuzzy subgroups. So 1AAGS represents
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one distinct fuzzy subgroups on both flags (1) and (3), while on flag (2), it
represents one distinct fuzzy subgroup, pe. Continuing in this fashion on

the rest of the flags of D1o. 1AABS yields the following;:

On flag (4), pa = 1AABS yields:
pa(a®) = pa(a®) = pa(a®) = pa(a®) = pa(a'®) > pa(d) = pa(a®) =
pa(ab) = pa(a) = pa(a®h) = pa(a'®) = pa(a) = pa(a®) = pa(a®) =
pa(a’) = pa(a®) = pa(a'l) = pa(ab) = pa(ah) = pa(a®h) = pa(a’) =
p14(a”) = pua(a*'d)

On flag (5), 15 — 1ANBS yields:

ps(a®) = ps(a®) = ps(a*) = ps(a®) = ps(a'®) > ps(ab) = ps(a’) =
ps(a’h) = ps(a’d) = ps(a®d) = ps(a''d) = psla) = ps(a®) = ps(a®) =
ps(a’) = ps(a”) = ps(a') = ps(b) = ps(a®h) = ps(a’d) = ps(ah) =
115(a®b) = p5(a'"b)

On flag (6), ue = 1AA33 yields:

e = ole) = sl 1 P
poa) = po(a®) = pelat) =ropgla®) r=ligss
pe(att) = pe(ab) = pe(a®) = pe(a*d) = pe(a®) = pe(a’) = pe(a’) =
f16(a'"b) = g (a''d)

On flag (7), u7 = 1AABS yields:

pr(a®) = pr(a®) = pr(a®) > pr(ab) = pr(ah) = pr(a’d) = pr(a'’b) =
10) —

pr(a) = pr(a®) = pr(a*) = pr(a®) = pr(a’) = pr(a®) = pr(a
pr(a't) = pr(b) = pr(a®h) = p7(ab) = pr(a®) = pr(a®) = pr(a®h) =
pi7(a®b) = pr(a*'d)

On flag (8), us = 1AABP yields:

ps(a®) = ps(a®) = ps(a”) > ps(a®b) = ps(a®h) = ps(a®h) = pg(a''d) =
ps(a) = ps(a®) = ps(a*) = ps(a®) = ps(a’) = ps(a®) = ps(a'®) =
ps(att) = ps(b) = ps(ab) = ps(a®) = ps(a’d) = ps(a®h) = ps(a’d) =
p18(a®d) = pg(a'%b)

On flag (9), po = 1AAGS yields:
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po(at) = po(a®) = po(a®) = pe(a®) = pe(a'®) > po(b) = po(ah) =
pi(a’b) = 19(a®) = pg(a®b) = pg(a'b)pg(a) = po(a®) = pg(a®) = po(a’) =
(

po(a®) = pg(a) = pg(ab) = ug(a®b) = po(a’™) = p10(a’) = pg(a’db) =

On flag (10), 10 = 1AABB yields:
po(at) = pio(a®) = po(a®) = pio(a®) = pio(a'®) > po(ad) = pio(a®d) =
f110(a°b) = pio(a’) = po(a®b) = pio(a'b) = pio(a) = pio(a®) = po(a®) =
pio(a”) = p1o(a®) = pio(at) = p10(b) = p10(a®b) = pio(a’d) = p10(a’b) =
f110(a®b) = puro(a'®b)

On flag (11), p11 = 1AN30 yields:

p1(a®) = pan(b) = p11(a®) > pii(a®) = pii(a*) = pii(a®) = pn(a') =
p11(ab) = pa1(a’d) = p1(a®d) = p11(a'®b) = pii(a) = p(a®) = pn(a®) =
p1(a”) = p(a®) = pai(a't) = pai(ab) = pa1(a®b) = p11(a®b) = pa1(a’) =
p11(ab) = p11(a''h)

On flag (12), p12 = 1ANBS yields:‘» _‘J'

pma(a®) = pa(ab) = mi(aibyessiiy(a?) Foyidlatie= pa(a®) = pma(a') =
p12(a?b) = p12(a®b) = pa(a’) Zulz(agb)z p12(at'h) = pz(a) = pa(a®) =
p2(a®) = ma(a”) = pia(a'') = pi2(b) = pi2(a®d) = ma(a*d) = pi2(a’h) =
f112(a®b) = p12(a'"b)

On flag (13), ju3 = 1ANGS yields:

p3(a®) = ms(a®b) = pi3(a®d) > pi3(b) = piz(a?) = ps(a*) = pis(a®) =
p13(a'%) = p13(a’d) = pa3(ab) = p3(a'®b) = ms(a) = p3(a®) = pz(a®) =
z(a’) = pi3(a?) = ms(a') = ps(ab) = pi3(a’b) = p13(a°b) = p3(a’d) =
p13(a?b) = p13(a''b)

On flag (14), p114 = 1ANBB yields:

p14(a®) = 14 (a®b) = p1a(a”b) > pa(ab) = pia(a®) = pra(a®) = pa(a®) =
pa(a®) = p14(a®) = p1a(a’) = p1a(a''d) = pra(a) = pa(a®) = pia(a®) =
pa(a’) = pia(a®) = pa(a™) = pra(b) = p1a(a®d) = pa(a*d) = p1a(a®h) =
p114(a®b) = p14(a'"b)
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On flag (15), p15 = 1AN30 yields:

p15(a®) = pus(a*h) = p15(a'®b) > pis(b) = ps(a®) = pis(a*) = ps(a®) =
f115(a'%) = ps(a”b) = ps(a®b) = pns5(a®b) = ps(a) = ps(a’) = pus(a®) =
ps(a’) = pis(a®) = ps(a') = pis(ab) = pis(ab) = ps5(a°b) = ps(a’b) =
pi5(a”b) = ps(a*'d)

On flag (16), p16 = 1AABP yields:

pa(a®) = pa(a®b) = pra(a''d) > pa(ad) = pa(a®) = ma(a?) = pa(a®) =
pa(a?) = pa(a®h) = p1a(a™) = pa(a”h) = pia(a) = ma(a®) = pa(a®) =
pa(a’) = pia(a®) = pa(a™) = pra(b) = pa(a®d) = pa(a*d) = p1a(a®h) =
p14(a®b) = p14(a’"b)

On flag (17), ju7 = 1AA3B yields:

p7(a®) = paz(b) = m7(a®) > m7(a®) = pr(a®) = pir(a®) = par(a’d) =
pr(a) = pr(a®) = pr(at) = mr(a®) = mr(a’) = pr(a®) = par(a®) =
p7(a't) = mr(ab) = mr(a®d) = par(a*bf= pi7(a®d) = pa7(a’d) = pi7(a®d) =
p7(ab) = pz(a''h) ==

On flag (18), u1s = L\A/Bﬁ]yleldsll\ of Fort Hare

p1s(a®) = pag(ab) = pig(a’d) > tis(a® MS( 9) = M18(G4b) = pg(a'’b) =
ms(a) = ps(a®) = ps(a?) = ms(a®) = ms(a’) = ps(a®) = ps(a) =
ps(att) = pis(b) = ps(a?b) = ps(a’d) = ps(a’) = ps(a®h) = ps(a®) =
ps(a”b) = pus(a*'d)

On flag (19), 19 = 1ANGS yields:

5

\_/\_/

f119(a®) = p19(a®b) = p1g(a®b) > pg(a®) = pg(a®) = p19(a®d) = pg(a''d) =
pg(a) = pg(a®) = pg(a*) = mo(a®) = mg(a’) = pig(a®) = pg(a'’) =
pg(att) = pig(b) = pg(ab) = prg(a®) = png(a’b) = prg(a®b) = p9(a’d) =
pi19(a”b) = purg(a'®b)

On flag (20), p20 = 1AN30 yields:

p120(a®) = p2o(a®d) = p2o(a’) > p2o(b) = pao(a®) = p2o(a’) = pao(a®d) =
pi20(a''d) = pzo(a) = pao(a®) = pao(a®) = pao(a®) = pzo(a’) = pao(a®) =
pi20(a'%) = pao(a't) = pao(ab) = pao(a®b) = pao(a*b) = pao(a®h) = pao(a’d) =
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p120(a®b) = piz0(a'"b)

On flag (21), jiz1 = 1AA3B yields:

pi21(a®) = p21(a*d) = pa1(a'%b) > poi(ab) = p21(a®) = p21(a®) = p21(a’b) =
p1(a) = po1(a®) = pa1(at) = pa1(a®) = pai(a’) = p2(a®) = pzi(a’) =
po1(a't) = po1(b) = p21(a®b) = po1(a®b) = po1(ab) = p21(a®b) = po1 (aPb) =
pi21(a''b)

On flag (22), p22 = 1AN30 yields:

p122(a%) = p22(a’d) = paz(a''d) > paz(a®) = paa(a”) = p2z(a®d) = p2a(a®d) =
pa(a) = poa(a®) = poa(a') = pa2(a®) = paa(a’) = poo(a®) = pa2(a'’) =
pr22(b) = piza(ab) = piaa(ab) = pza(a'h) = pa2(a®h) = piga(a’b) = pza(a’b) =
po2(a't) = poa(a'®b)

On flag (23), i3 = 1A\3B yields:

pa3(at) = pos(a®) = p23(b) = pos(a'h) = paz(a®h) > pgz(a®) = paa(a’) =
f123(a'%) = po3(a®b) = i23(a°b) = pn3(a') = poz(a) = p23(a®) = pas(a®) =
pi2s(a’) = paz(a®) = pas(a'') = MA@MQS(@%) = pi23(a°b) = ps(a’b) =
po3(a’h) = pgg(ald)  Univer \Il\ of Fort Hare

On flag (24), fios = IS yields:

p2a(a’) = p2a(a®) = pa(ad) = p2a(a®d) = p2a(a®d) > p2a(a®) = p2a(a®) =
p124(a'%) = pi2a(a®b) = piaa(a’b) = p2a(a''b) = paa(a) = p2a(a®) = poa(a®) =
p24(a’) = p2a(a®) = pa(a') = p2a(ab) = poa(a®b) = poa(a*d) = p2a(a®b) =
p124(a®b) = i24(a'"b)

On flag (25), p2s = 1AN30 yields:

pro5(at) = pio5(a®) = pas(a®b) = pos(a®b) = pas(a'%b) > pigs(a®) = pos(a®) =
pi2s(a?) = pas(b) = pas(a*h) = p2s(a®h) = pas(a) = pas(a®) = pas(a®) =
p2s(a’) = pas(a”) = pos(a'l) = pas(ab) = p2s(a®h) = pzs(a’h) = pas(a’d) =
p125(a%b) = pigz(a''d)

On flag (26), 1126 = 1AABB yields:

fi26(a*) = pio6(a®) = pag(a®d) = pog(a’b) = pag(a''d) > pag(a®) = pag(a®) =
pr26(a'%) = pag(ab) = poe(a®) = pas(a’h) = pas(a) = pae(a®) = pge(a®) =
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pra6(a®) = poe(a”) = pae(a') = pae(b) = p2e(a’b) = pas(a*h) = pae(a’d) =
pi26(a®b) = pi26(a'0b)

On the flags (2),(6), (7), and (8), the keychain 1A\3/ yields identical fuzzy
subgroups, hence we will group all maximal chains according to the nature
of equivalence of their fuzzy subgroups. Our observation of the above fuzzy
subgroups indicates that the fuzzy subgroups ps, ug, w7 and ug represent
one distinct equivalence class of fuzzy subgroup. Continuing these iterations
on the rest of the maximal chains gives the following:

On flag (27), por = 1AABS yields:

par(b) = par(a®) = par(a®d) > par(a®) = par(a®) = par(a®) = por(a'’) =
pio7(a?b) = po7(a*h) = po7(aBb) = par(a'®b) = por(a) = por(a®) = par(a®) =
pzr(a’) = por(a”) = por(alt) = por(ab) = par(a®) = par(a’h) = por(a’) =
p127(a”) = paz(a*tb)

On flag (28), p2s = 1AABB yields: »

pi2s(b) = pizs(a®) = pizs(a®d) > Mzwﬂ%(ag) = pas(a’d) = pas(a’d) =
ps(a) = pos(a®) = poslat \#Tﬂiéﬁa?’){ E‘:Wisf&ﬁ)\“—‘ ps(a®) = pog(a'®) =
pias (') = pras(ab) = pos(a?b) = pas(a%B) = pias(a®h) = iz (a7b) = pas(a®h) =
pi28(a°b) = pios(a''b)

On flag (29), p29 = 1AN30 yields:

p20(b) = pizg(a*) = pog(a®) = pag(a*h) = pi2g(a®b) > pag(a®) = pag(a’®) =

1) 10p) = piag(a) = pag(a®) = pog(a®) =

fi29(a'®) = p29(ab) = pigg(a®b) = pag(a
pi29(a”) = pag(a®) = pag(a') = pag(ab) = pag(a’b) = pog(a°b) = piog(a’b) =
f129(a%b) = piag(a''d)

On flag (30), y130 = 1AA3B yields:

p30(ab) = p3o(a®) = pso(a’™) > pso(a?) = psolat) = pso(a®) = pso(al®) =
p130(a®b) = pz0(a®b) = pzo(a”) = pzo(a''b) = pzo(a) = pzo(a?) = pzo(a®) =
pzo(a’) = pso(a”) = pzo(a'') = pzo(b) = pzo(a®d) = pso(a*d) = pzo(a’d) =
p30(a®b) = p30(a'"b)

On flag (31), p31 = 1AN30 yields:
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p31(ab) = p31(a®) = pz1(a™) > pai(a®) = pzi1(a”) = pz1(a*d) = pai(a''b) =
pz1(a'h) M31(b = M31( b) = p31(a®b) = p31(a”b) = p31(a’b) = p31(a®b) =
p131(a%b) = pzi(a''d)

On flag (32), us2 = 1ANGP yields:

(
psi(a) = ps1(a®) = pai(a®) = pzi(a®) = psi(a’) = pai(a®) = pzi(a'?) =
( )

pz2(ab) = pzz(at) = p3a(a®) = psa(a®) = p3a(a’d) > pz2(a®) = p3a(a’)

piza(a'') = pza(a®d) = pi3a(aOb) = pz2(a'®b) = psa(a) = paz(a®) = pza(a®)
p32(a”) = psa(a”) = psa(a') = psa(ab) = p32(a®b) = psa(a’b) = ps2(alb) =
f132(a®b) = puz2(a'®b)

On flag (33), us3 = 1AAB0 yields:

p33(a?b) = p3(a®) = ps3(a®b) > pz3(a?) = paz(a®) = psz(a®) = pss(a'®)

p33(b) = psz(a®b) = pz3(a’d) = psz(a'®b) = psz(a) = psz(a®) = psz(a®) =
ps3(a”) = pss(a”) = pss(a't) = pss(ab) = ps3(a®b) = pss(a®b) = pss(a’d) =
p33(a?b) = p33(a''b)

On flag (34), psa = 1ANGBS yields:‘» - )

p134(a*b) = piza(a®) = M3i(mgb)‘>‘ﬂthh(w?fﬂi fisd(a)e= pza(a®d) = pza(a''d) =
10) —

paa(a) = p3a(a?) = pga(a®) = jisa(a®) = psa(a”) = pzaa®) = psala
pza(a™) = pza(b) = psza(ab) = pza(a®) = pza(a’) = pza(a®b) = pza(a’) =
1134(a”) = piza(a*'b)

On flag (35), uss = 1AAGS yields:

p35(a?b) = p3s(a®) = pss(a®) = pss(a®b) = pzs(a'%b) > pss(a®) = pss(a®) =
p35(at?) = pzs(b) = pss(a®d) = p3s(a®b) = pss(a) = pzs(a®) = pss(a®) =
p35(a”) = pzs(a®) = pas(a'l) = pas(ab) = pas(a®b) = pss(a°b) = pas(a’) =
p35(a?b) = p3s(a''b)

When we pin the keychain 1AA83 on all 62 maximal chains we observe that,
the fuzzy subgroups p11, p17, por, pes, s and pgg represent one disitinct
equivalence class of fuzzy subgroups, since the keychain 1AAGS yields iden-
tical fuzzy subgroups when we pin it on the flags (11), (17), (27), (28), (45)

and (46). Now, taking into account all the distinct equivalence classes of
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fuzzy subgroups we obtain from the 62 flags of D15, we get the total number
of distinct fuzzy subgroups yielded by 1AAS3 as 12. Similarly, the keychains
1AN00, 111A\, and 11100, each gives a count of 12 distinct fuzzy subgroups.
We note that each of these keychains is of index (2,2) and therefore con-
tributes the same number of distinct fuzzy subgroups. Continuing in this
fashion for each flag, we are thus able to calculate the total number of dis-
tinct fuzzy subgroups for Dis. The following table provides these results.

It is clear from the table that keychains of the same index will contribute

the same number of distinct fuzzy subgroups.

Table 3.1: The number of Keychains and Distinct Equivalence Classes of
Fuzzy Subgroups of Dio

Keychains Index of keychain Fuzzy subgroup count in
all flags

11111 (4) ‘:‘ 0 1

DA (4)¥ Rt umm\T:i/m% Hare
10000 (4) : 1

1111 (3,1) 6

11110 (3,1) 6
1IAAAB (3,1) 6

1AAN0 (3,1) 6

111AA (2,2) 12
11100 (2,2) 12
1AABS (2,2) 12
1AN00 (2,2) 12
11IAAN (1,3) 14
1INBBB (1,3) 14
1A000 (1,3) 14
11000 (1,3) 14
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Keychains Index of keychain Fuzzy subgroup count in
all flags
111N (2,1,1) 23
111X0 (2,1,1) 23
1A Ba (2,1,1) 23
1AAB0 (2,1,1) 23
11ANG (1,2,1) 33
1120 (1,2,1) 33
1AGBa (1,2,1) 33
1ABB0 (1,2,1) 33
11A85 (1,1,2) 37
1\ Baa (1,1,2) 37
1AB00 (1,1,2) 37
11X00 (1,1,2) 37
11\3a (1,1,1,1) 1 | 62
11740 PO el T2
1\Bab (1,1,1,1) 62
1ABa0 (1,1,1,1) 62
Total 751

Thus the total number of distinct equivalence classes of fuzzy subgroups

for Dq5 is 751.
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Chapter 4

The Dihedral Group D,, for

n e N

4.1 Introduction

The geometric intricaciesvi_n_volv.ed h AV : “:‘rn‘etric groups has always held an
appeal to mathematics Lelslelgrcilgir;is\ Lz&ltlh(o)lillg}ll ltillale(' feasibility of classifying
all finite groups is improbable, research has shown that most finite groups
that occur naturally, closely resemble the structures of either simple groups
or dihedral groups. The dihedral group of order 2n, denoted by D,, for
n > 3, can thus be defined as the symmetry group of the regular n-gon,
with both rotations and reflections. The fascinating geometric properties
of dihedral groups have deemed them an important aspect in a variety of
mathematical disciplines, hence their crisp characterisation by numerous
researchers that include Al-Hasanat et al, [12], Conrad [35] and [36], Dummit
and Foote [44], Erfanian, Omer and Sarmin [45], Feng, Kwak and Kwon [47],
Gallian [51], Herstein [55], Lenz [62] and Zhang [135], amongst others. Since
our classification problem relies entirely on the construction of the maximal

chains of a group, this chapter briefly outlines the general properties of

the dihedral group D,, for n € N in the crisp case. Furthermore, as an
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introduction to Chapter 5, we briefly characterise the dihedral groups D,
and D, where p is a prime and n € N, and p and ¢ are distinct primes. We
also characterise maximal chains according to the terms introduced in [93].
To classify dihedral groups, it is always useful to move from their geometric,

to their algebraic setting. Thus we have that:
D, = {a,b:a" = e =b*> = (ab)?)

where, " = e = b? and bab~! = ¢!
In D,,, since we can obtain a from b and ab, this implies that the reflections

ab and b can be used as generators for D, so:
D,, = {(a,b) = (ab, a)

Thus D, is generated by two non-commutative elements of order 2. And

hence we have the following theorems:

\
Theorem 4.1.0.1. [36] If a ﬁnit{!”'G of order 2n, is generated by two
University of Fort Hare )
elements, such that G = (z,y), where &' = e, for some n > 3, y* = e and

yry~t = a7, then G is isomorphic to a dihedral group D,,.

Proof. [36] O

Theorem 4.1.0.2. [36] Let G be a finite non-abelian group generated by

two elements of order 2. Then G is isomorphic to a dihedral group.

Proof. [36] O

4.1.1 Properties of the Dihedral group D,, n € N

The dihedral groups are characterised by the following Theorems and propo-

sitions.

Theorem 4.1.1.1. [35] The group D,, has 2n elements, listed as
D, ={e,a,a®,a®, --- "', b,ab,a’b,a®v,--- ,a" " 'b}
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Note 4.1.1.1. All elements of D,, with orders greater than 2, are powers
of the rotation a, however, one should not falsely assume that the only
elements of order 2 are the reflections b. Also, the relationship between the
rigid motions a and b is given as bab~! = @', hence for any k € Z we have

that (a*b)? = (a*b)(a*b) = a*a b = 1? = ¢

Theorem 4.1.1.2. [129] D,, = {a’ : i € Z,}U{a’b : i € Zy} Is the irredun-
dant list of elements of D,

Proof. [129] O

Proposition 4.1.1.2.1. [36] Every subgroup of D, is either dihedral or

cyclic, and listed as:

i The unique cyclic subgroups{a®y = Z,, where din and index 2d.

\
i1 the dihedral subgroups (ad, a‘ﬁ’ere dln, 0 <i < d—1 and index d.
University of Fort Hare

Every subgroup of D,, described above occurs no more than once in this

listing.
Proof. [36] O

Example 4.1.1.1. The dihedral subgroup D% of D,,, where s|n, defines the
dihedral subgroup D? = (a”, b | (a")* = b*> = e = (a"b)?). If we let n = 12,
we have the dihedral group Dio, then for s = 3, and r = 4, we obtain the
dihedral subgroup D} = (a*,b) = {e,a*, a®, b, a*b, a®b}

Definition 4.1.1.1. [88] A subgroup that separates a flag ¢ from other flags
on a group G, is called o distinguishing factor. A collection of these sub-

groups, if more than one exists, are called distinguishing factors
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In [93], the authors extensively characterized the flags of dihedral groups,
according to the terms listed in the following definitions which are

imperative for our classification problem.

Definition 4.1.1.2. /93] In an ascending mazximal chain of subgroups of
G = Dp,p, - - - Dn, a dihedral subgroup of G' can only be followed by a dihedral

subgroup.

Definition 4.1.1.3. [93] A cyclic mazimal chain of subgroups of a group
G = Dp,ps..p, 15 any mazximal chain that contains only cyclic proper sub-

groups of the form (a®), i > 1.

The dihedral group Dsg has the following cyclic maximal chains:
(1) {e} € {a'?) € (a?) € (a) € Dag
(2) {e} € {a'?) C(a”) C (a) € Bog-

(3) {e} C (a*) C (a?) € T{d)gip&g of I“("?I‘l Hare

Definition 4.1.1.4. [93] A mazimal chain of subgroups of G = Dy, py-pr, =

{a,b: aPiP2Pm = p2 = ¢ = (ab)?), for m > 2 is d-cyclic if:
i It contains cyclic subgroups {(a'), i > 1 and

1 It contains exactly one proper non-trivial dihedral subgroup, where all

the p; are distinct primes.
Dag has the following three clusters of d-cyclic maximal chains.
(1) {e} C (a') C (a®) C Dﬂnb C Dyg  form e {0,1}
(2) {e} C (a'*) C (a") C DI C Dyg forr € {0,1,2,...,6}

(3) {e} C (a*) C (a®) C D' C Dyg  for m € {0,1}
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Definition 4.1.1.5. [93] A mazimal chain of subgroups of G = Dy py..prn =

{a,b | aPrP2-Pm = ¢ = b? = (ab)? > for m > 2 is 2d-cyclic if
i It contains cyclic subgroups {(a'),i > 1 and

1 It contains exactly two non-trivial proper dihedral groups, where all the

p; are distinct primes
We have the following three clusters of 2d-cyclic maximal chains of Dog
(1) {e} C (a') C D§P C D¢'* C Doy for s € {0,1,2,...,13}
(2) {e} C (a') C D§P C DY? C Dyg for s € {0,1,2,...,13}
(3) {e} C (a?) C DI'? C D3P C Doy for t € {0,1,2,3}

Definition 4.1.1.6. [93] A mazimal chain of subgroups of G = Dy py..prn =

{a,b| aPrP2-Pn = ¢ = b% = (ab)?) fORMER is 3d-cyclic if:

1 It contains cyclic subgroups w 1 and

1 It contains ea:actly['t}l]rl’éé(::;%Z%%#%igﬂ%%%#lcﬁh@dml groups, where all

the p; are distinct primes

For this instance, we use the dihedral group Do, which yields the

following four clusters of 3d-cyclic maximal chains:
(1) {e} C (a®) C Dg"* C Db C D& C Dyg  for n € {0,1,2,...,19}
(2) {e} C (a®) C D§"* C D¥P C DY C Dyy  for m € {0,1,2,...,19}
3) {e} C (a20) C D" C Db € DI C Dy forn € {0,1,2...,19
2 4 8
(4) {e} C (a®) C D"t C D&b C Db C Dyy  for k € {0,1,2,...,7}

Definition 4.1.1.7. [93] A maximal chain of subgroups of G = Dy, py.. p,, =
{a,b | aPrP2-Pm = ¢ = b2 = (ab)?) for n > 2 is b-cyclic if it contains evactly
one non-trivial proper subgroup of the form (a'b), for 0 <i < p1pa...pm—1,

where all the p; are distinct primes.
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Dog has the following clusters of 3 b-cyclic maximal chains:

(1) {e} C (a'b) C D§® C D§;"* C Dag
(2) {e} C (a’b) C D§™® C D§'® C Dag
(3) {e} C (a'b) C DY® C D' C Dyg

For every i € {1,2,...,27}

Definition 4.1.1.8. [95] If two %ﬁ! maximal chains are of identical

length and contain corr[esgol;ﬁiéﬁgllgu%))gir})ﬁ}a[s‘twa%léw“e isomorphic, then the

mazimal chains are isomorphic.
4.1.2 The Dihedral Group D,. for prime p and n € N

To aid in the classification of distinct fuzzy subgroups of Dy, we list down
useful propositions that characterize maximal chains of subgroups of the
dihedral groups Dp» and D,,. Detailed studies on these groups can be
found in [90], [91] and [92].

Let Dy = {a,b | a?" = b? = e = (ab)?). Therefore

Proposition 4.1.2.0.1. [90] The only non-abelian proper subgroups of Dy,

for p and prime, and n € N, are the dihedral subgroups D, for k <n

Proof. [90] O
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Proposition 4.1.2.0.2. [92] In Dp"”, there are p"~* dihedral subgroups of

order 2pF for 1 <k <n and p a prime.
Proof. [92] O

Proposition 4.1.2.0.3. [92] In a flag of Dy», where n > 1, the dihedral
subgroup D;Zsb of Dpn can only precede a unique dihedral subgroup if the

flag is arranged in an increasing order of subgroups.

Proof. [92] O

From the construction of flags in [92], we obtain the following formulae for

the number of maximal chains and fuzzy subgroups of Dpn.

Proposition 4.1.2.0.4. [92] The number of cyclic mazimal chains of Dyn
18 M(Dpn) =1

Proposition 4.1.2.0.5. [92] The ‘ U of d-cyclic maximal chains of Dpyn
is M(Dpn)q = p. University of Fort Hare

Proposition 4.1.2.0.6. [92] The number of 2d-cyclic maximal chains of
Dpn 18 M(Dpn)gd = p2.

Proposition 4.1.2.0.7. [92] The number of 3d-cyclic maximal chains of
_Dpn 18 M(_Dpn)3d = p3.

Proposition 4.1.2.0.8. [92] The number of md-cyclic mazimal chains, 1 <
m <n of Dpn is M(Dpn)ma = p™.

Proposition 4.1.2.0.9. [92] The number of b-cyclic mazximal chains of Dyn

is M(Dyn )y = p™.

Theorem 4.1.2.1. [92] The number of maximal chains of Dpn for a prime

p>2andn €N is
M(Dyr) = Zpi
1=0
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Proof. [92] O
Theorem 4.1.2.2. [92] The number of distinct fuzzy subgroups of Dyn for
a primep > 2 andn € N is
n
F(Dpn) =22 — 1427 x> " pi

i=1
Proof. [92] O

Theorem 4.1.2.3. [92] The number of non-isomorphic classes of fuzzy sub-
groups of Dyn, for n > 1 is
22 _ 1 4 x vt

Proof. [92] O

4.1.3 The Dihedral Group D,,, for distinct primes p and ¢

The classification of fuzzy subgroups of the dihedral group Dpng, where
n = 1 was established in [90] from: assification of fuzzy subgroups of
D,,. The following is allist\sfrpropesitionsiobtained in that study, which
forms the basis for our classiﬁééfigﬁ problem

We let Dpq = (a,b | a?? = b* = e = (ab)?). Thus

Proposition 4.1.3.0.1. [90] The number of cyclic mazimal chains of Dy,
is M(Dpq)e = 2.

Proposition 4.1.3.0.2. [90] The number of d-cyclic mazimal chains of D
is M(Dpq)a = (2—1)![p+ql.

Proposition 4.1.3.0.3. [90] The number of b-cyclic mazimal chains of D,
is M(Dpq)p = 2![pq].

Theorem 4.1.3.1. [90] The number of mazimal chains of Dy, where p and
q are distinct primes is M(Dpq) =2+ (p + q) + 2pq.

Theorem 4.1.3.2. [90] The number of distinct fuzzy subgroups of Dpq, for
p and q distinct primes is F(Dpq) = 23 + 8(p + q) + 12pq.
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Chapter 5

On the Dihedral Group D,
for p and ¢ distinct primes,

n e N

- y

- _

5.1 Introductio[nw ] V ‘LW-Rj ﬁ\ ( ’l\ 1“( ) ﬂ‘ E }Q ire

In this chapter we establish general formulae for the number of flags and
distinct fuzzy subgroups of D,n, for p and ¢ distinct primes and n € N. It
is important that we first observe specific cases of Dpyng, where n =2 and 3
because the results we obtain will aid us in the generalization of this group.
We again use the characterization of flags introduced in [93] to classify the
flags of these specific groups D2, and D3, and the general group Djng,
as cyclic, md-cyclic, for 1 < m < n, and b-cyclic maximal chains. We use
the criss-cut counting technique to compute the number of distinct fuzzy
subgroups attributed to each of the flags of these groups. Finally, we obtain

a formula for the number of distinct fuzzy subgroups of Dyng.
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5.2 The Dihedral group D,:, for p and ¢ distinct

primes

We know by La Granges Theorem [55], that the order of a proper subgroup
H of a finite group G is a divisor of the order of G. We therefore use this
theorem to construct the maximal subgroups of D,z,,.

If we let n = 2, we have D2, = (a, b | aP’? = b2 = ¢ = (ab)?). The subgroups

of D2, are:

The trivial subgroup, {e} of order 1 ; D2, of order 2p%q
The cyclic subgroups of D, are:

{a) of order p?q

(aP) of order pq

(aP”) of order ¢ | -,,J

(aP?) of order p University of I*‘er Hare
{a) of order p? R

The subgroups of order 2 are:

(b); (ab); (a2b); (a®b); ...; (a?*971b)

We also have the dihedral subgroups:

ngb for k € {0,1,2,...,pq — 1} of order 2p

D;ﬁb for k € {0,1,2,...,q — 1} of order 2p?

Dg;b for k € {0,1,2,...,p— 1} of order 2pq

ngb for k € {0,1,2,...,p* — 1} of order 2q.

The following propositions are a characterization of the subgroups of Dz,

hence we are able to easily construct the flags of the group.
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Proposition 5.2.0.1. Let D2, = (a,b : a?*1 = b2 = ¢ = (ab)?). Then D2,

has subgroups with orders that divide 2p*q.
Proof. Based on the Theory of La Grange in [55] O
Proposition 5.2.0.2. The number of dihedral subgroups of D2, of order:
(i) 2p is pq
(ii) 2p? is q
(iii) 2pq is p
(iv) 2q is p?

Proof. From the manual construction of subgroups of D, O

Using the propositions 5.2.0.1 and 5.2:0.2, we obtain the following maximal

chains of Dpzq.

(a) Cyclic maximal [clll]e{i\ﬁgif"!,\‘ ol ‘If(]?"“‘ Hare

(1) {e} C {a") C (@) C (a) € Dy,
(2) {e} C (@) C {a")" C {a) C Dpe,

(3) {e} C (a*")" C (a?) C {a) C D

These are the only cyclic maximal chains of D,2,. Therefore, D2, has 3
cyclic maximal chains.

All the components of the first flag (1) are distinguishing factors. Flag (2)
has a single distinguishing factor (a?). This is because this component of
flag (2) appears for the first time in our listing and does not appear in the
previous flag (1). The subgroup (a?”) is a distinguishing factor for flag (3)
since it appears for the first time in our listing and and does not appear in

any of the previous flags (1) or (2).
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For the rest of this dissertation we will indicate the distinguishing factors

of each flag by a star.
(b) d-cyclic maximal chains

To obtain the number of d-cyclic maximal chains, we replace the cyclic
subgroup (a) in (1) by the dihedral subgroup Dgsb for

k€{0,1,2,...,p — 1} that contains the cyclic subgroup (a?), and thus we
have the following flags:

{e} € (a?7) € (@) C D}, C Dpay
{e} C (aP?) C (aP) C Dgg* C D2,

Qb*
{e} - <apq> - <ap> - ng < Dp2q

: : : ‘k[
{e} € (a?7) C {a?) C D% V" C D‘zv'

PUniversity of Fort Hare
Thus, we obtain one cluster ofj p d—cychc “Ii‘lzﬁ!;imal chains, since there are p
dihedral subgroups of order 2pq by Proposition 5.2.0.2. The dihedral
subgroup Dg;b for k € {0,1,2,...,p— 1}, is a distinguishing factor for each
flag.

In (2), we substitute the cyclic subgroup (a) with the dihedral subgroup
D;;b, s€{0,1,2,...,q — 1}, that contains the cyclic subgroup (a?), to
form the following flags:

*

{e} € (a?) C (a%) C D% C Dppy
a *

{e} C (aP) C (a%) C D" C Dy,

{e} C (a?) C (a%) C DBV C Dy,
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{e} C (@) C (a%) C DS C Dy,

This yields one cluster of ¢ d-cyclic maximal chains, since there are ¢
dihedral subgroups of order 2p? by Proposition 5.2.0.2. The dihedral
subgroup D;;b for s € {0,1,2,...,q — 1}, is a distinguishing factor for each

flag.

In (3), we replace the cyclic subgroup (a) by the dihedral subgroup Dgsb
for k € {0,1,2,...,p— 1}, that contains the cyclic subgroup (aP), to obtain
the flags:

{e} € (@")" C (a?) € Db," C Dy,
2, % b*
{e} - <ap > - <ap> C ng - Dpzq

2\ * 27 %
{e} C (@) C (a”) € Dp," C Dy

University of Fort Hare
e} @™ C@) D™ CDpy
Thus we have one cluster of p d-cyclic maximal chains, since there are p
dihedral subgroups of order 2pq by Proposition 5.2.0.2. The cyclic
subgroup <ap2> and the dihedral subgroups Dgsb for k€ {0,1,2...,p— 1}

appear for the first time together in a single flag and thus are a pair of

distinguishing factors for each flag.

These are the only d-cyclic flags of D,2,. Hence we obtain a total of

p+q+p=2p+ q d-cyclic flags.
(c) 2d-cyclic maximal chains

To obtain the 2d-cyclic maximal chains, we substitute the next cyclic

subgroup with the appropriate dihedral subgroup. Thus, in (1), we replace
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(aP) by the dihedral subgroup Dgtb fort € {0,1,2,...,pq — 1}, that
contains the cyclic subgroup (aP?), and we get the following flags:

b* b

{e} C (aP9) C D" C Db, C Dy,
b* b

{e} C (aP?) C D2* C DP C D,

{e} C (@) C D™ C Dyt C Dy,

1% 1
{e} C (aP7) C DI P C DI P C Dy

This results in one cluster of pq 2d-cyclic flags, by Proposition 5.2.0.2. The
dihedral subgroup Dgtb for t € {0,1,2,...,pqg — 1} is a distinguishing factor
for each flag.

In (2), we substitute the cyclic suw'(a% with the dihedral subgroup
Dgtb fort €{0,1,2,..., quﬁ\l}T'%ﬁh\t @é)rfﬁaihls [y to obtain the following
flags:

{e} C(a) C D}" C D" C Dpg

b* b*
{e} € (a™) C D" C D" C Dy

2b* 2b*
{e} € (") € DF" € DY C Dy,

1% —1p%
{e} C (@) C Dg" Y C DY C Dy,

Thus we have one cluster of pg 2d-cyclic flags, by Proposition 5.2.0.2. The
dihedral subgroups Dgtb fort € {0,1,2,...,pq — 1}, and DZ;b for
s€{0,1,2,...,q — 1} appear together for the first time in a single flag and

are thus a pair of distinguishing factors for each flag.
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In (3), we substitute the cyclic subgroup (a?) with the dihedral subgroup
D‘q’”’ for r € {0,1,2,...,p? — 1}, that contains the cyclic subgroup <ap2), to
obtain the flags:

(e) C (a”") C DY C Db, C Dpe,
2 b* b
(e) € (a¥") C D" C Dyo C Dy

2 2% 2
(e) C (a') C D" C D € Dpp,

p2 ap2_1b* ap2_1b
(e) C (a”") C Dy C Dy, C D2,

We get one cluster of p? 2d-cyclic maximal chains, by Proposition 5.2.0.2.
The dihedral subgroup Dgrb for r € {0,1,2,...,p? — 1}, is a distinguishing

factor for each flag.

These are all the 2d—cyc][ic flags of‘WL summation of these yields a
niversity bf Fort Hare
total of pq + pq + p* = 2pq + p?2d-cyclic-flags

(d) b-cyclic maximal chains

To obtain the b-cyclic maximal chains, we now replace the cyclic subgroups
(aP?) and (ap2> by the subgroup (b), to get the following flags:

{e} S (W) C Db C DS, C Dy,

This results in one cluster of three flags. The first flag in the cluster has
the subgroup (b) as a single distinguishing factor, since this group appears
for the first time in any of the flags of D2,. The second flag is
distinguished by (b) and DZZ;Q, and the third, by (b) and DZ. Therefore both

flags (2) and (3) have a pair of distinguishing factors each.
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The subgroup (b) may be replaced by the subgroups (a™b) for
m €10,1,2,...,p%°q — 1}, of order two, to obtain the following clusters of

b-cyclic flags:

{e} C (ab)* C D® C D C Do,
{e} C (ab)* C D> € D%" C Dy,
{e} C (ab)* € DI C D% C D,
{e} C (a?b)" C D& C DEY C D,
{e} C (a?)" C DZ € DG C Dy,

{e} € (a®)" C Dg*" C Dyt € Dy,

o
2 * -1 1
{e} < (@ lo) c DF" 0 C D;g‘@!ﬂq

pqL{{jig\‘ti‘DI"%i;I“l\bpf‘ Fort Hare

{e} C (@’ "0)" C Do ? inGedeliche

2 4k 29, % 1
{e} C (@) C DY P C DI C D,

These are the only b-cyclic flags of D which result in p?q — 1 clusters of

P*q
3 flags that are isomorphic to the flags that contain the subgroup (b). In
each cluster, the subgroup (a™b,), for m € {1,2,3,...,p?q — 1} is a single
distinguishing factor for the first flag. The second flag has a pair of
distinguishing factors, (a™b, ), for m € {1,2,3,...,p?>q¢ — 1} and Dg;b, for
s€{1,2,3,...,q — 1}. The third flag also has a pair of distinguishing
factors, (a™b,), for m € {1,2,3,...,p?’q — 1} and Dgr”, for
re{l,2,3,..., p? — 1}. This is an exact replica of the first case involving
(b). Thus we have 3p?q b-cyclic flags, where p?q have single distinguishing

factors, while 2p%q have a pair of distinguishing factors.

From these manual constructions of flags of D, 2, we obtain the following.

p2q
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Proposition 5.2.0.3. The number of cyclic mazximal chains of Dz, 1s,

M(Dppg)e = 3.

Proof. The construction of cyclic maximal chains of D, yields 3 cyclic

maximal chains. viz.

(1) {e} € (@) C (@) C {a) € Dpe,

(2) {e} € (a?) C (af)

N

(a) € D2,

(3) {e} C (a”") C (aP) C (a) C Dy,

Proposition 5.2.0.4. The number of d-¢yclic mazximal chains of D2,

is M(Dy24)a = 2p +q.

Proof. By using the thréereyalicsmsiximalcaiainsiin Proposition 5.2.0.3, we

get the following 3 clusters of d—cychcmax1mal chains:
(a) {e} C (a??) C (aP) C D&Y C Dy, for k € {0,1,2,...,p— 1}
(b) {e} C (aP) C (a®) € D% C Dypy for k € {0,1,2,...,g — 1}
(c) {e} C (a¥") C () C D%P C Dy, for k € {0,1,2,...,p — 1}

These are the only d-cyclic maximal chains of D,2,. Cluster (a) yields p d-
cyclic flags, cluster (b) yields ¢ d-cyclic flags, and cluster ¢ yields p d-cyclic
flags. Hence we get a total of 2p + ¢ d-cyclic flags. O

Proposition 5.2.0.5. The number of 2d-cyclic mazimal chains of D2,

18 M(Dp2q)2d = 2pq + p.

Proof. From the cyclic maximal chains in Proposition 5.2.0.3, we obtain the

following three clusters of 2d-cyclic maximal chains:
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(a) {e} C (a?) C DY C DEY C Dya, for s € {0,1,2,...,pg — 1}
(b) {e} C (a?) C Db C Dgﬁb C D,p, for s € {0,1,2,...,pg — 1}
(c) {e} C (a”") C D¥P C D%P C Dy, for s € {0,1,2,...,p> — 1}
These are the only 2d-cyclic maximal chains of D,z,. Cluster (a) yields pq

2d-cyclic flags, cluster (b) yields pq 2d-cyclic flags, and cluster (c) yields p?
2d-cyclic flags. This results in 2pq + p? 2d-cyclic maximal chains.

Proposition 5.2.0.6. The number of b-cyclic maximal chains of D2,

is M(Dy2,), = 3p°q.

Proof. The construction of flags of D, yields the following p?q clusters of

3 b-cyclic maximal chains

-

{e} € (b) € D} € Dy & sty of Fort Hare

{eyc)cD

N
kSRS

{e} C(b) CDSC Db, C Dy

ab ab
{e} € {ab) C D C Dp) € Dy
{e} C (ab) C Dy® € DX C Dy

{e} C (ab) C DS C D% C Do,
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2g—1 pg—1y, p—1p

{e} C{a”"?77b) C Dy C Dy, 7 C Dy
2q—1 pa—1p a—1p

{e} € (a”"177b) C Dy C DSQ C D2,

2 -1 pzflb pflb
{e} C (a”"7'b) C D" P C D@ C D,

All three flags in each cluster contain the subgroup (a™b), for
m €10,1,2,...,p%°q — 1), of order two. There are p?q subgroups of this

form in D hence we obtain 3p?q b-cyclic maximal chains.

p2q

A summation of the above propositions results in the following theorem

Theorem 5.2.1. The total number of mazximal chains of subgroups for the

dihedral group D2, is given by:

Y+ (2 %) + 3p?
Dy q)l niver &Il\ I—i_()(lpqu—i_t%))+ pa
Proof. This Theorem is a result of the number of cyclic, d-cyclic, 2d-cyclic,

and b-cyclic maximal chains of D2, in propositions 5.2.0.3, 5.2.0.4, 5.2.0.5,

P q
and 5.2.0.6. O

Theorem 5.2.2. Let G = D2, = (a,b : a’’t = b2 = e = (ab)?). The
number of distinct fuzzy subgroups of Dz, is:

F(Dpy) = 2° — 1424 x 2+ 24(p + q) + 2*(pq + p?) + 2*(p%q) + 23(pq) +
23(p) + 2°(2p%q)

=2° — 142" x 24+ 2%(pg + p* + p+ q) + 2°(pq + p) + 2*(P*q) + 2%(2p%q).

Proof. From our construction of maximal chains of D, 2,, we have 3 cyclic

p2q
flags, (2p+q) d-cyclic flags, (2pq+p?) 2d-cyclic flags, and 3p?q b-cyclic flags.
All the flags are of length n = 5, and we use the criss-cut counting technique

to calculate the number of distinct fuzzy subgroups contributed by each flag.
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Using the cyclic flags as a starting point, by [67], we know the first flag con-
tributes 2° — 1 distinct fuzzy subgroups. The remaining two cyclic maximal
chains, each with a single distinguishing factor, contribute 2* x 2 distinct
fuzzy subgroups. Next, we count the number of distinct fuzzy subgroups
contributed by the (2p + ¢) d-cyclic maximal chains. p and ¢ d-cyclic flags
have single distinguishing factors and contribute 24(p + ¢) distinct fuzzy
subgroups. Each of the remaining p d-cyclic flags has a pair of distinguish-
ing factors, and hence contribute 23(p) distinct fuzzy subgroups. Therefore,
the number of distinct fuzzy subgroups contributed by the d-cyclic flags
is 24(p + q) + 23(p). To count the number of distinct fuzzy subgroups con-
tributed by (2pg+p?) 2d-cyclic flags, we have that pq and p? flags have single
distinguishing factors and contribute 24(pq + p?) distinct fuzzy subgroups.
The remaining pq have a pair of distinguishing factors each, and thus con-
tribute 23(pq) distinct fuzzy subgreups. Hence the 2d-cyclic flags contribute

ups. From 3p?q b-cyclic flags we

24(pq + p?) + 23(pq) distinct \
have p?q b-cyclic flags, cachi Withi(bp'diéfdnguﬁéhﬁmg factor, that contribute
24(p%q) distinct fuzzy subgro{‘l‘f)‘s,mv‘vhijlé‘“t“‘hé‘wremaining 2p%q b-cyclic flags
have pairs of distinguishing factors and contribute 23(2p%q) distinct fuzzy
subgroups. Hence, the b-cyclic flags contribute 24(p?q) + 23(2p%q) distinct
fuzzy subgroups. Thus the sum of all distinct fuzzy subgroups contributed

by each of the flags yields the result. O

We now examine a specific example of a dihedral group of order 2p?q, to

verify the results obtained above.

Example 5.2.1. If we let p = 2, ¢ = 5 and n = 2, then for Dyn,4, we have
Doy = {a,b: a®® = b? = e = (ab)?, |G| = 40. This group has subgroups of
orders that divide 40. A complete listing of the subgroups of Dy is:

{e}; Dag = {e,a,a?,a3,a*, a%,a®, ..., a'" b, ab,a®b,a’b, a*b, a®b,a’, ..., a'"b}
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_ 2 3 4 5 6 .7 8 9 10 11 19
(a) ={e,a,a%a°,a% a°,a° a",a® a’,a'",a",...,a"}

(a?) = {e,a?,a%, a8, a®, al, a2, a4, a1, 418}

(@) = {e,a*, a®,a'2,a'%}

(@%) = {e,d®,a', a’®}

(@) = {e, 1%}

(b) = {e,b}; (ab) = {e,ab}; (a®b) = {e,ab}; ...; (a'?b) = {e, a'"b}

The dihedral subgroups are:

DS = (a'®,b) = {e,a'%,b,a'"b} -;
University of Fort Hare

DY = (', ab) = {e,a®, ab,alle)

DS = (a0 42b) = {e, a'®, a®b, al?b}

Dgsb = (a'%,a%b) = {e,a'?,ab,a'3b}

Dg% = (a'%, ab) = {e,a'?, a*b, a'*b}

DSSb = (a'%,a%b) = {e,a'?,a%b,a'ob}

DSGb = (a'%,a%) = {e,a'?,a,a'0b}

Dg7b = {a'0,a"b) = {e,a'®,a"b,a'"b}
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Ssb = (a0, a®b) = {e,a'?, aBb, a'8b}
(2191) _ (alo,a9b> _ {e,alo,agb, alQb}
DY = (a®,b) = {e,a’,a'%,a',b,a’b, a'"b, a'®b}
Db = (a®, ab) = {e,a® a', a'®, ab, abb, a''b, a'®b}
DZQb = (a®,a%b) = {e,a’,a'®, a'® a%b,a’b,a'?b, a'"b}
DZSb = (a%,ab) = {e,a’ a'% a'®, a®b, a®b, a'3b, a'®b}
be = (a®,a*b) = {e,a®, a'?, a{5‘; a4bz'agb,a14b,a19b}
D! = (a*,b) = {e, aﬂ,d?’l,iagl,‘ﬂflf}:\‘b‘,v);bgu%kbﬁ%b; a'ob}
D2 = (a*, ab) = {e,a*, a8, a'?, a5, ab, a’b, a®b, a'®b, a*"b}
Dga = (a*,a®b) = {e,a*,a® a'?,a'%, a?b, abb, a'b, a'*b, a'®b}
Dggb = {a*,a%b) = {e,a*,a®,a'?,a'% a3b,a"b,a''b, a'®b, a'®b}

Dll’0 = (a?,b) = {e,a% a* a%, a® a'0, a'?, ... a'® b,ab,a*b,a%,a®b,a'"b,a'?b, ... a'®b}

D$b = (a?,ab) = {e,a?,a* a% a®, al? a'?, ... a'® ab,a®b,a’b,a"b,a%,allb,a®y, ..., al"b}

Using the aforementioned characterisation of flags, we obtain the following:

The cyclic maximal chains of Dy are as follows:
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{e} € (a'%) € (a®) € (a) € D2y

(a*)" C (a) C Dy

{e} € (a'%)

N

{e} C (a")" C (a?) C (a) € Dy

Thus Dy has 3 cyclic flags, and 3 = (24 1). Two of the cyclic flags have
single distinguishing factors.

The d-cyclic maximal chains are listed as:
{e} € (a') C (a®) C DY" C Doy
{e} C (%) € (a®) € DF"" C Do
{e}gm%gm%gmwgzzmw
{e} C (a'?) C (a®) QID};WCQI@QOM [ml Hare
{e} € (') C (a) € D5 C Doy
{e} € (a'?) C (a®) C DYy C Dy
{e} C (a'%) C (a?) € D" C Dy

(a*) C leo* C D1o

{e} C (a®)”

N

{e} C ()" C (a?) € D’ C Dy

The number of d-cyclic flags of Doy is 9 and 9 =5 4 2 x 2, thus showing
that the formula g + 2p holds for p = 2 and ¢ = 5. We observe that seven
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flags have single distinguishing factors, and the remaining two flags have a

pair of distinguishing factors.
The 2d-cyclic maximal chains are listed as:

{e} C (a') C DY C D} C Dy
{e} C (a') C D3 C D$® C Dao
{e} C (a'%) € D§™" C DI C Dy
{e} C (a'%) € DF" C D™ C Dy

{e} C (a'%) C Dg"" C Dg" C Doy

{e} € {a') € D5 € Df € T =

University of Fort Hare
. \
{e} C (a'?) C D‘zlﬁb C D3b1@efsgyn Excellenc

{e} € (') C D§™" C DI C Dy
{e} C (') C Dg™" C D™ C Dy
{e} C (') € D§™" C D3 C Dy
{e} C (a'%) € DY C D} C Dy
{e} C (a'%) € D" C D" C Dy

{e} C (a'%) C D" C Db" C Dy
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{e} € (a'%) € D" C D" C Dy
C (a'%) c Da*v* c pb * c D
{e} € (a™”) C D3 =Yy =120
C 10y a5b*c ab*C
{e} € (a'”) C D3 C Dig € Dy
{e} € (a'%) € D§™" C Dhy* C Day
C (a0 C Dav* c pab* ¢ p
{e} € (a™”) € Dg* < Difg" € Do
C 10 CDagb*CDb*CD
{e} C(a™) C 2 =i =120

{e} € (a'%) € D§™" C D" C Dy

{e} C (") C DY C DY, C DJ. = )

University of Fort Hare

{}Clatycpg e chy
{e} C (a') € D" C DY, € Dy

{e} C (a*) C D¢ C D C Do

Thus the number of 2d-cyclic flags is 24, and 24 = 2(2 x 5) + 4, showing
that the formula 2pq + p? holds for p = 2 and ¢ = 5. We observe that there
are 14 flags with a single distinguishing factor, and the remaining 10 flags

have a pair of distinguishing factors.
The b-cyclic maximal chains are listed below as:

{e} € ()" € D} C D} C Dy
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{e} C ()" € Db C DYy
{e} € (b)* € DY C DY, C Dy
{e} C (ab)* C D§® C D3> C Doy
{e} C (ab)* C D$® € DSE" C Doy
{e} C (ab)* € D" C DY C Dy
{e} C (a?b)" C D3 C DY C Dy

{e} € (a®)" C D§P C DY C Dy

{e} C (a?)" C DFY" C DY, éw

University of Fort Hare

(e} C(a*h) C DG C Dy E Dy
{e} € (a®0)" € D§™ € DY C Do

{e} € (a®h)" € DE" C Dgb C Dy

{e} C (a*h)" € Dg'"® € D§™® C Dy

{e} C (a%h)" C D§™ C DY C Dag

{e} C (ab)" C D" C DYy C Dy,

{e} C (a®h)" C D" C DY C Dy
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{e} C (a®h)" C D§™ C DY C Dy
{e} C (a®b)" € D" C Dt C Dy

{e} C (a®)* C DS™ C D3 C Dy

{e} C (a®)" C D™ C DY C Dy
{e} C (a%h)" € DE™" C DY C Dy
{e} C (a’0)" C D§'" C DY’ C Dy
{e} € (a78)" < DY C D" D1y 4
{e} C (a"b)* C Dg3b’1,'<_11 m@gu&);}:ml Hare
{e} € (a®h)" C D§™ C DY C Doy
{e} C (a®h)" € Dg™ C DY C Dy
{e} C (a®b)" C DE" C DYy C Dy

{e} C ()" C D§™ C D§™® C Dy
{e} C (a%)" C D™ C DgF" C Dy

{e} C (ab)" € DZ" C Dgh C Dy
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{e} C (a'%)" C Db C DYy C Dy
{e} C (a'%)" € Dg*" C Db, € Dag
{e} C (a''h)" C D3> C D§* C Dy
{e} C (a''h)" C Dg* C D" C Dy
{e} C (a'0)" € DE™" C Db € Dog

{e} C (a'h)" € D§™ C D™ C Dy

()  (@2)" < D" € D}," A an)

University of Fort Hare

(e} C (a2)* C DL C Dby C Doy
{e} C (a'?)" € D§’ € D™ C Dy
{e} C (a’®b)* C D™ C DI C Doy
{e} C (a'®b)" € DZ" C DY C Dy
{e} C (a'b)* C Dg™ € D™ C Dog
{e} C (aMb)" € D§"" C DY C Doy
{e} C (a"b)" € DE" € DY) € Dag
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{e} C (a'®)" € D§™* C D} C Dy
{e} C (a®b)" € D" C DgE" C Doy
{e} C ()" € D" C Db C Dy
{e} C (a'%)" C D§™ C Dg C Dy
{e} € (a'h)" C D§" € DY C Dy
{e} C (a'%b)" C D" C DY, C Dy

{e} C (a'b)* C D3P C D3P gDQO

{e} C (a'b)* C DI @ Dfﬁgl*sg\l;gdkl() 1[ Hare
{e} C (al"b)" C D" C Dgh C Dy

{e} C (a'®b)" € D§™ C D™ C Dy

{e} C (a'h)* € D§™ € Db C Dy

{e} C (a'®)" € DE*" C Db, € Do

{e} C (a'h)* C D™ C D™ C Do

{e} € (a')" C D§™ C D" C Dy
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{e} C (a'%b)" € DEY" C DY C Dy

We count 60 b-cyclic flags and 60 = 3(22 x 5). Hence, the formula 3p?q
holds for p = 2 and ¢ = 5. We observe that there are 20 flags with single
distinguishing factors, and the remaining 40 flags have a pair of

distinguishing factors.

A summation of the above constructed flags yields the following result for
the number of maximal chains of subgroups of the dihedral group Dag:

M(Dgy) =3+9+ 24460 =96 and

96 = 3 + (34 2(2)) + (2(10) + 22) + 3(20)
Therefore, this shows that the formula derived in Theorem 5.2.1 holds for

p=2,g=5andn=2

To compute the number of distindtifizzyisubgroups of Doy we calculate

the number of fuzzy subgroups cottribut?d by each flag. Starting from the

cyclic maximal chains, by [|67], we let*the first ﬁlag contribute 2° — 1
niversity ot Fort Hare
distinct fuzzy subgroups, wherebtis-thedength of each flag. The remaining

two cyclic maximal chains contribute 24(2) distinct fuzzy subgroups. Next,
we count the number of distinct fuzzy subgroups contributed by the
d-cyclic maximal chains and using proposition 5.2.0.4 we obtain

24(2 4+ 5) + 23(2). The 2d-cyclic maximal chains contribute

24((2 x 5) + 2%) 4 23(2 x 5) distinct fuzzy subgroups by proposition 5.2.0.5,
and the b-cyclic maximal chains contribute 24(22 x 5) + 23(2 x 2% x 5)
distinct fuzzy subgroups by proposition 5.2.0.6. A summation of all

distinct fuzzy subgroups contributed by each of the flags yields the result:
25 —142%(2)+21(5+2) +23(2) +24(10+4) +23(10) +-2*(20) +23(40) = 1135

Now, using the formula derived in Theorem 5.2.2 for p =2, ¢ =5 and

n = 2, we have that the number of distinct fuzzy subgroups of Dy is:
F(Dog) =63+ 24245+ 10 + 4 4 20) + 23(2 + 10 + 40) = 1135
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5.2.1 Isomorphic Classes of Fuzzy Subgroups of D,:,

We now employ the method outlined below, to compute the number of

non-isomorphic fuzzy subgroups of D, 2,, using the non-isomorphic maximal

g

chains of the group.

STEP 1 : Cyclic maximal chains
Since all three cyclic maximal chains of D,2, are non-isomorphic, they

result in 2° — 1 4+ 2 x 2 = 63 non-isomorphic fuzzy subgroups.

STEP 2 : d-cyclic maximal chains
Any cluster of isomorphic d-cyclic flags counts as a single flag. Thus,
in the formula 24(p + q) + 23(p) for the number of distinct fuzzy sub-
groups contributed by the d-eyclic flags, p and ¢ indicate the number
of isomorphic flags in a clustersc | flags. For instance, p + ¢ indi-
cates the sum of &n@'él‘u%fé{r\ p éHd oriel Eluster of ¢ flags. Since
all the p flags are 1somorphlc the whole cluster will give a count of
one flag. The same argument applies for q. Thus the formula yields:

24(1 4+ 1) + 23(1) = 2%(2) + 22 = 40 non-isomorphic fuzzy subgroups.

STEP 3 : 2d-cyclic maximal chains
The numbers pq and p? also represent the number of isomorphic flags
in a cluster of flags. As described in the above step, each cluster
then counts as a single flag. Hence the formula 24(pq + p?) + 23(pq)
gives the number of non-isomorphic fuzzy subgroups contributed by
the 2d-cyclic maximal chains as: 24(1 + 1) + 23(1) = 24(2) + 23 = 40

non-isomorphic fuzzy subgroups

STEP 4 : b-cyclic maximal chains

The number p?q also represents a cluster of isomorphic flags that gives
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a count of one, thus the number of non-isomorphic fuzzy subgroups
contributed by the b-cyclic maximal chains is: 24(1) + 23 x 2(1) =
24 +23(2) = 32.

The total sum of non-isomorphic fuzzy subgroups of D,z is thus given by

the following proposition.

Proposition 5.2.1.0.1. The number of non-isomorphic fuzzy subgroups of

G = D,p, is 63 + 40 + 40 + 32 = 175

5.3 The Dihedral group D,s, for p and ¢ distinct

primes

If we let n = 3, then D,s, = (a,b : aP’ = b? = ¢ = (ab)?). The subgroups

of Dps q are:

The trivial subgroup, (e) of orderWof order 2p3q

The cyclic subgroups: L'ni\«;?‘rgiwl‘»\ “ f I(H‘ Hare
{a) of order p?q

(aP) of order p*q

(aP”) of order pq

(a?’) of order ¢

(a9) of order p?

(aP) of order p?

(a”’7) of order p

79



Subgroups of order two:

(b) = {e,b}; (ab) = {e,ab}; (a®b) = {e,a?b}; (a®b) = {e, a’b};

(a'b) = {e,a'b}; ...; (@’ 171b) = {e,a”’ 7" 'b}
The dihedral subgroups:

D]‘;kb for k € {0,1,2,...,p%q¢ — 1} of order 2p
D;Sb for k € {0,1,2,...,pq — 1} of order 2p?
D;;b for k € {0,1,2,...,q — 1} of order 2p?

ngb for k € {0,1,2,...,p% — 1} of order 2q.

akb i12. i ‘
Dy, for k € {0, 1, 2%,‘1’1’1?(‘?&}[}\0( CHsF2Pare

D;:é’ for k € {0,1,2,...,p — 1} of order 2p?q

The following propositions classify subgroups of D,;s, and thus we can

easily construct the flags of the group.

Proposition 5.3.0.1. Let D3, = (a,b : a?’1 = b2 = e = (ab)?). Then D3,

has subgroups with orders that divide 2pq.
Proof. Based on the Theorem of La Grange in [55] O
Proposition 5.3.0.2. The number of dihedral subgroups of D3, of order:
(i) 2p is p*q
(i) 2p* is pq
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(iii) 2p3 is q
(iv) 2q is p*
(v) 2pq is p* and
(vi) 2p*q is p
Proof. From the manual construction of subgroups of D, O

Using the propositions 5.3.0.1 and 5.3.0.2, we obtain the following flags of

Dy,

(a) Cyclic maximal chains
(1) {e} € (1) C (") C (a?) C (a) € Dy,

(2) {e} C (a’"7) C (aP1)* C (aP)enboly@ Dyprq

®) 1} (") < (o) < @)K d Dy,

(4) {e} C (@) C (ap%@\@byli\(wé(DZI)BqH are

These are the only cyclic maximal chains of G = D,3,. Thus, D3, has 4
cyclic flags.

Flag (1) has all its components as distinguishing factors. Flag (2) has a
single distinguishing factor (aP?), which appears for the first time in our
listing and not in the previous flag (1). Flag (3) has (a?) as a
distinguishing factor, which does not appear in the previous flags (1) or (2)
and flag (4) has a distinguishing factor (ap3> that does not appear in the

previous three cyclic flags. We indicate each distinguishing factor by a star.
(b) d-cyclic maximal chains

To obtain the d-cyclic maximal chains, we replace the the cyclic subgroup
{(a) in (1) by the dihedral subgroup D;g;’ for k € {0,1,2,...,p— 1} that

contains the cyclic subgroup (aP), and we get the following flags:
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{e} € (a?"9) C (a”") C (a?) C DY, " C Dy

q
{e} C (@”"1) C (@) C (a¥) C D% * C Dy,

{e} C (ar7) C (") C (a?) € DB

2q g Dp3q

{e} C (@) C (@) C (o) C D% C Dy,

This results in one cluster of p d-cyclic maximal chains, since there are p
dihedral subgroups of order 2p?q by Proposition 5.3.0.2. The dihedral
subgroup Dg§§ for k € {0,1,2,...,p— 1}, is a distinguishing factor for each

flag.

In (2), we replace the cyclic subgroup (a) by the dihedral subgroup D;Sé’,
ke {0,1,2,...,p— 1}, that contal to obtain the following flags:
{e} C (a?°9) C (aP7)* C laPy \gy)gig* @b(pyqt Hare

2
{e} C (a"") C (a?))* C (a?) € D" C Dy,

{e} C <ap2q> C (aP9)* C (aP) C D;;g* C Dy,

{e} C (1) C (a")* C (a”) € D% """ C Dy,

We get one cluster of p d-cyclic maximal chains, since there are p dihedral
subgroups of order 2p?q by Proposition 5.3.0.2. The cyclic subgroup (a??)
and the dihedral subgroup Dggé’ for k € {0,1,2,...,p— 1} appear for the

first time together in a single chain, thus are a pair of distinguishing

factors for each flag.
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In (3), we replace the cyclic subgroup (a) by the dihedral subgroup Dg;b
for s € {0,1,2,...,q — 1}, that contains (a?) to get the flags:

2 *

{e} S (a”?) C (a™) C (a?) C D}y" C Dys,
2 a *

{e} C (a”"9) C (a?) C (a%) € D" C Dysq

{e} C (a?") C (aP) C (a%) C DY C Dj,

{e} C {a”7) C (™) C (a7) C D%V C Dy,

This yields one cluster of ¢ d-cyclic maximal chains, since there are g
dihedral subgroups of order 2p® by Proposition 5.3.0.2. The dihedral
subgroup D;;b for s €{0,1,2,...,q — 1}, is a distinguishing factor for each
flag. ‘ :

-

In (4), we replace the cyclic. subgroup™a,), by the dihedral subgroup Db
University of Fort Hare bra
for k € {0,1,2,...,p — 1}, thatocontains{aP)to get the flags:

3\ * 2 b *
fe} C ()" C (@) C () € DL " C Dy,

3, K 2 ab *
{e} C{a”) C(a”) C (a?) C DR " C Dps,

{e} € ()" C (@) C (a?) € D%V C Dy,

This results in one cluster of p d-cyclic maximal chains, since there are p
dihedral subgroups of order 2p?q by Proposition 5.3.0.2. The cyclic
subgroup <ap3> and the dihedral subgroup Dggé’ for k €{0,1,2,...,p—1}
appear for the first time together in a single chain, thus are a pair of

distinguishing factors for each flag.
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These are the only d-cyclic flags of D hence we obtain

P3¢

p+p—+q+p=3p+ q d-cyclic maximal chains.
(c) 2d-cyclic maximal chains

To obtain the 2d-cyclic maximal chains, we replace the next cyclic
subgroup after (a) by the appropriate dihedral subgroup. Thus, in (1), we
replace (aP) with the dihedral subgroup D;;b for t € {0,1,2,...,p% — 1},
that contains (a?’) and we get the following fags:

e} C (aP’) C (a?”) C DP.* C Db, C D ;
pq p=q p°q

2 2
{e} C (a”"9) C (a?") C Dgt” C D% C D,

2 2 2% 2
{e} C (aP"?) C (aP") C ngb C DZQS C D3,

{e} C (@0) C (") C BRI ivErGiDing B Defare

We get one cluster of p? 2d-cyclic maximal chains, by Proposition 5.3.0.2.
The dihedral subgroup Dg;b for t € {0,1,2,...,p* — 1} is a distinguishing

factor for each flag.

In (2), we replace the cyclic subgroup (aP) by the dihedral subgroup D;; b
for r € {0,1,2,...,pg — 1}, that contains (aP?), to obtain the flags:

2 *
{e} C (aP"?) C (aP?) C DZQ C DZQq C D3,
{e} C (a?°9) C (a?7) C D" C D% C Dy,

2 2p% 2
e} € (@) C (@) € D" C Db C Dy,

2 pq—lb* p—lb
{e} € (a"'1) C (a"7) € D"V C D% ' C D,
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We have one cluster of pgq 2d-cyclic maximal chains, by Proposition 5.3.0.2.
The dihedral subgroup D;; bfor r € {0,1,2,...,pq — 1} is a distinguishing

factor for each flag.

In (3), we replace the cyclic subgroup (a?) by the dihedral subgroup Dg; b
for r € {0,1,2,...,pq — 1}, that contains (aP?) to obtain the flags:

2 b * b *
{e} € (a?"%) € (aP) C Dp,” C D7y C Dy
{e} C (a?") C (a?7) C D" C DU C Dy,

{e} C (@”"9) C (a?1) € DGY" C (D%Y) € Dy,

2 —1z% —1p%
{e} C (a79) C (a?) C D" " CEbs C Dy,

This yields one cluster of pg 2d—cy‘@!¢imal chains, by Proposition
5.3.0.2. The dihedral subgiouips D fot e {0712, ..., pg — 1}, and D%
for s €{0,1,2,...q—1} appedr“fé‘géthéf for the first time in a single chain,

thus are a pair of distinguishing factors for each flag.

In (4), we replace the cyclic subgroup (aP) by the dihedral subgroup Dg;b
for t € {0,1,2,...p* — 1}, that contains <ap2>, to get the flags:

{e} S (@) C (@) C D}, C Dy € Dy,
{e} C ()" C (") C D" € DB C Dy,

3\ * 2 2 2
{e} € (@) S (a”) C(Dg,") € D) € Dysy

C PP\ * C p? C Dap271b* C Dapflb cD
fe} C @) C @y c DY C DY C Dy,
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We obtain one cluster of p? 2d-cyclic maximal chains, by Proposition
5.3.0.2. The cyclic subgroup <ap3> and the dihedral subgroup Dg’;b for

t €{0,1,2,...p*> — 1} appear together for the first time in a single chain,
thus are a pair of distinguishing factors for each flag.

Hence, we have a total count of p? + pq + pq + p? = 2pq + 2p* 2d-cyclic

maximal chains.
(d) 3d-cyclic maximal chains

We obtain the 3d-cyclic maximal chains by replacing the next cyclic
subgroup by the appropriate dihedral subgroup. Thus, in (1), we replace
<ap2) with the dihedral subgroup ngb for j € {0,1,2,...,p?q — 1}, that
contains <ap2q ) to get the following flags:

2 *
{e} C(a”%) C D)" C D), C DY, C Dy,

2 * :
{e} € (a7%) C Dy C Dyt C D2iC Dy

2 a?b* a?b ety
{e} € (a”%) € D™ € D& Py SiPiat Hare

2 p2q71b* pzflb p*lb
{e} C (a?"?) C Dy C Dy, C DZQq C D3,

Thus we obtain one cluster of p?q 3d-cyclic maximal chains, by Proposition
5.3.0.2. The dihedral subgroup ngb for j € {0,1,2,...,p?q— 1} is a

distinguishing factor for each flag.

In (2), we replace the cyclic subgroup (aP?) by the dihedral subgroup ngb
for j € {0,1,2,...,p%q — 1}, that contains <ap2q>, to obtain the flags:

{e} C (ar"1) € DY C DL C Db, C Dy,
{e} C (a?"7) C Dgt" C D" C D% C Dy,

2 21% 21 % 2
{e} (a7 C Dy’ C DLY C DHYC Dy,
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{e} C (ar7) € pr’ ™" ¢ pariv* ¢ par b p
= ="p = “p? =p2q = pig

We obtain one cluster of p?q 3d-cyclic maximal chains, by Proposition
5.3.0.2. The dihedral subgroups Dg’®, j € {0,1,2,...,p%q — 1} and D%"
for r € {0,1,2,...pqg — 1} appear together for the first time in a single

chain, thus are a pair of distinguishing factors for each flag.

In (3), we replace the cyclic subgroup (aP?) by the dihedral subgroup Dgsb
for s € {0,1,2,...,p?q — 1}, that contains <ap2‘1>, to obtain the flags:
{e} C (a”"7) C D" C Db, C DY C Dy

2 * *
{e} S (a"7) C ng < D;S C D;g - Dp3q

2 2p% 2 2p % -
{e} C(@9) C Dy CDL'CD »b Gy -

q

University of Fort Hare

C p’q C Dap2q71b* C Dapq*lb C Daqflb* cD
e} € (@) € D € pee € peht C

This yields one cluster of p?q 3d-cyclic maximal chains, by Proposition
5.3.0.2. The dihedral subgroups D]‘;Sb, s€{0,1,2,...,p?’q— 1} and Dg:b
for k € {0,1,2,...q — 1} appear together for the first time in a single

chain, thus are a pair of distinguishing factors for each flag.

In (4), replace the cyclic subgroup (ap2> by the dihedral subgroup Dgsb for
s€{0,1,2,...,p% — 1}, that contains (a?") to get the flags:

3 *

{e} C{a”) C D)" C Dy, C DY C Dy,
3 *

{e} € (a”') C D" C Dji € Dy C Dy

3 2p% 2 2
{e} C (@) C D" C Dy C DB C Dy,
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3 p371 * p271 p—1
{e} S @)Dy C Dy " C D C Dy,

This results in one cluster of p® 3d-cyclic maximal chains, by Proposition
5.3.0.2. The dihedral subgroup Dgsb for s € {0,1,2,...,p° — 1} is a
distinguishing factor for each flag.

Thus we have a total count of 3p?q + p3 3d-cyclic maximal chains.
(e) b-cyclic maximal chains

To obtain the b-cyclic maximal chains, we replace the cyclic subgroups
(a”’) and (a”’7) by the subgroups (a™b) for 0 < m < p3q — 1 of order two,
to get the flags:

{e} € ()" € Dy C Dy, C Db C D,

|
{e}c () cDpc DY, C D Q‘W'
P v ljn|\p(2ﬁ'.~sll} of Fort Hare

{e} C (b)* C D} C Db, C Db s et

This yields one cluster of four flags. The first flag is distinguished by the
subgroup (b), since this group appears for the first time in this listing. The
second flag is distinguished by the pair (b) and Dfﬂ, flag (3) is
distinguished by (b) and ng, and the fourth flag, by (b) and Dg. The
subgroup (b) may be replaced by the subgroups (a™b) for
m € {1,2,...,p3q¢ — 1}, of order two, to get the following flags:
{e} C (ab)* € Dg C Dt C D% C Dy,
{e} C (ab)* C Dg? € D" C D% C Dy,

b b b*
{e} C (ab)” € Dg* C D32 C D32" C Dy,

{e} C (ab)* C D" C Db € DR, C Dy,
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* 2 2 2

{e} C (a®0)" C Dy™* C Dy,P C DY C Dysy
* 2 2% 2

{e} C (a®h)" C Dy’* C DR C DY C Dys,
* 2 2 2%

{e} C{a®h)" C Dy C D&P C D&Y C Dpsg

* 2% 2 2
{e} € (a®0)" C Dy = ngb < DZQZ C Dpsq

31Kk Zg—1 2 —1
{e} C(@”97'h) C D"t C Dy C DY P C Dy,

31K 2g—1 1k 1
{e} C (@ '0) C D" P C DB C DY P C Dy

3, * 2q— - —1p%
{e} C(a’e1b)" C D"t C DL C DL C Dy

31Kk 3_1;% 21 —1
{e} S (@710 S D" " C DigeeuyaDry € Dyt
Thus we have p3q — 1 clusters of 4 flags iSomorphic to the ones involving
(b). In each cluster, the subgronps Kq’ﬂb}«‘fﬂr{ mig{l,2,...p%°q — 1} are
distinguishing factors for the ﬁrstﬁag Eachof the remaining three flags
has the pair of distinguishing factors (a™b) for m € {1,2,...p3%¢ — 1} and
D;;b for t € {1,2,...pq — 1}; {(a™b) for m € {1,2,...p3>q — 1} and D;Q“b, for
ke{1,2,...,q— 1}; also (a™b) for m € {1,2,...p3%¢ — 1} and Dgsb, for
s€{1,2,...,p% — 1}. These flags are a carbon copy of the first case

involving (b). Thus we have 4p3q b-cyclic maximal chains, and p®q have

single distinguishing factors, while 3p3q have pairs of distinguishing factors.
From the above manual constructions, we obtain the following:

Proposition 5.3.0.3. The number of cyclic maximal chains of D,s, is

M(Dysg)e = 4.

Proof. As we have observed, D3, has 4 cyclic maximal chains. viz.
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Proposition 5.3.0.4. The number of d-cyclic mazimal chains of D3,

18 M(Dp:sq)d =3p+q.

Proof. Using the four cyclic maximal chains in Proposition 5.3.0.3, and the
appropriate subgroup substitutions, we obtain the following four clusters of

d-cyclic maximal chains:

for € {0,1,2,...,p—1}

(a) {e} C (@) C (") C (@) EDHE Dy,

b) {e} C (aP*?) C (aP)* C (aP) CDg, forke{0,1,2,...,p—1
(b) {e} € (@) < l,>'n|\«<j‘1'.~s>|lT of Fort Fpligfl‘«;‘ { r=1}

(c) {e} C (a’"9) C () C (ad$* C DEY C Dy, fori€{0,1,2,...,q— 1}

(d) {e} € (@) C (a”) C (a?) C DBY C Dy, for k€ {0,1,2,...,p—1}

These are the only d-cyclic flags of D,,. Cluster (a) contains p d-cyclic
flags, cluster (b) contains p d-cyclic flags, cluster (¢) contains ¢ d-cyclic
flags, and cluster (d) contains p d-cyclic flags. Thus, we have a total of

3p + q d-cyclic flags.

Proposition 5.3.0.5. The number of 2d-cyclic mazimal chains of D3,

is M(Dys,)2q = 2pq + 2p*.

Proof. Using the four cyclic maximal chains in Proposition 5.3.0.3, and sub-

group substitutions, we obtain the following four clusters of 2d-cyclic flags:
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(a) {e} € (a”"9) C (a#") C D& C DBY C Dy for s € {0,1,2,...,p?~1}

k
(b) {e} € (a?"7) C (a?1)* C D%P C D% C Dy, for t € {0,1,...,pg — 1}

(c) {e} C (a’"9) C (a??) C D%P C D&Y C Dy, fort € {0,1,2,...,pg—1}
(d) {e} C (@) € (@) € Db € DY C Dy, fors € {0,1,2,...,p*~1}

These are the only 2d-cyclic flags of D,s,. The first cluster, (a), yields P2
flags, cluster (b) yields pq flags, cluster (c) yields pq flags, and cluster (d)
yields p? flags. Thus the number of 2d-cyclic flags is 2pq + 2p°.

Proposition 5.3.0.6. The number of 3d-cyclic mazimal chains of D3,

is M(Dysq)3a = 3p*q + p*.

Proof. The cyclic maximal chainsiin Préposition 5.3.0.3 and use of the ap-
propriate replacement of subgrou ield’ the following four clusters of 3d-

cyclic flags: University of Fort Hare

for r € {0,1,2,...,p%q —

2 s s k
(a) {e} C (a"9) C Dy’* C Dy,? € DHY C Dys,

1}
(b) {e} C (a?*®) C DF'® C D&Y € D%GP C Dy

1}

g forre{0,1,2,...,p% —

(c) {e} C (aP"9) C Dg"* C D%P C D&Y C Do

1)

q forTE{O,l,Q,.-.,pQQ—

(d) {e} € (a”")" € DY C D&Y C DB C Dy, forj € {0,1,2,...,p°—1}

These are the only 3d-cyclic flags of D,s,. Cluster (a) yields p?q flags,
cluster (b) yields p?q flags, cluster (c) yields p?q flags, and cluster (d) yields
p3 flags. Thus the total number of 3d-cyclic flags is 3p?q + pS.
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Proposition 5.3.0.7. The number of b-cyclic mazximal chains of D3,

is M(Dy3,)p = 4p°q.

Proof. As observed in the construction of flags of D,3,, we have the following

p3q clusters of 4 b-cyclic flags:

{e} € {ab)" € D}’ € Djg < D2, € Dy,
b b* b
{e} C (ab)" C D* € D" C Di3 € Dy,

{e} C (ab)* C Dgb C D% C D" €D

(e} € (ab)* € D" < D3t € D1t Sy
University of Fort Hare

3 -1 * p2q—1b p2—1b p—lb
{e} € (a”177b) C Dy C Dy, C DZQQ C D3,

3q— * p2q—1 pg—1p* p—1
{e} C{a” ') C D" "t C DT C DY P C Dy

3 * 2g-1 —1 —1p%
{e} C (a7 10)" C D" P C DR C DY C Dy

C (aP'1p) C par' T pa' b ¢ parh
{e} S la ) S Dg = “pq = p2q = "Pq

These are the only b-cyclic flags of D,s,. All four flags in each cluster
contain the subgroup (a™b), for m € {0,1,2,...,p3q — 1} of order two.

There are p3q subgroups of this form in D,s,, thus we obtain 4p3q b-cyclic

peq

maximal chains.
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Theorem 5.3.1. The number of mazximal chains of subgroups of the dihedral

group D3, is

M(Dysy) = 4+ (3p+q) + (2pg + 2p%) + (3p°q + p°) + 4p’q

Proof. This Theorem is a result of the total sum of cyclic, d-cyclic, 2d-cyclic,

3d-cyclic, and b-cyclic maximal chains of D,3,. O

Theorem 5.3.2. Let G = D3, = (a,b: a?’1 = b2 = e = (ab)?). Then, the
number of distinct fuzzy subgroups of Dz, is:

F(Dys,) =2 —1+25x3+25%(p+q) +2(2p) + 2°(pq + p?) + 2*(pqg + p*) +
25(p?q + p%) + 24 (2p%q) + 2°(P%q) + 2*(3p°q)

=20 1425 x 3+ 25(pPq +p* +pg +p* +p+q) + 24 (20°q + pg + p* + 2p) +
2°(p’q) + 2'(3p°q). »\

University of Fort Ha )
Proof. D,s, has 4 cyclic flags,, (3p, - q) d—cychc ﬂags (2pq + 2p?) 2d-cyclic

flags, (3p%q + p*) 3d-cyclic flags, and 4p3q b-cyclic flags. All the flags are of
length n = 6. We use the criss-cut counting technique to calculate the num-
ber of distinct fuzzy subgroups contributed by each flag. Using the cyclic
flags as our first point of enumeration, we know that by [67] the first flag con-
tributes 26 — 1 distinct fuzzy subgroups. The remaining three cyclic maximal
chains, each with a single distinguishing factor, contribute 2° x 3, distinct
fuzzy subgroups. Thus, the cyclic flags contribute 26 — 1 + 25 x 3 distinct
fuzzy subgroups. We then count the number of distinct fuzzy subgroups
contributed by the (3p + q) d-cyclic maximal chains. p and ¢ d-cyclic flags
have single distinguishing factors and contribute 2°(p + ¢) distinct fuzzy
subgroups. Each of the remaining 2p d-cyclic flags has a pair of distin-
guishing factors and contribute 24(2p) distinct fuzzy subgroups. Therefore,

the number of distinct fuzzy subgroups contributed by the d-cyclic flags is
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25(p+q)+24(2p). From (2pq+2p?) 2d-cyclic flags, pq and p? flags have single
distinguishing factors and contribute 2°(pq + p?) distinct fuzzy subgroups.
The number of distinct fuzzy subgroups contributed by the remaining pq
and p? flags, each with a pair of distinguishing factors, is 2*(pg + p?). Thus
the total count of the number of distinct fuzzy subgroups contributed by the
2d-cyclic flags is 2°(pq + p?) +2*(pg +p?). Of the (3p%q+ p?) 3d-cyclic flags,
p?q and p? have single distinguishing factors and contribute 2°(p?q+p?) dis-
tinct fuzzy subgroups. The remaining 2p?q, each witha pair of distinguishing
factors, contribute 24(2p?) distinct fuzzy subgroups. From 4pq b-cyclic flags
we have p3q b-cyclic flags with single distinguishing factors that contribute
25(p3q) distinct fuzzy subgroups. The remaining 3p3q b-cyclic flags have
pairs of distinguishing factors and contribute 2*(3p3q) distinct fuzzy sub-
groups. Thus, the number of distinct fuzzy subgroups contributed by the
b-cyclic flags is 2°5(p3q) + 24(3p3¢)e A summation of these fuzzy subgroups
yields the result. . ‘»J O

University of Fort Hare
We use the following example of aidihedral.group of order 2p3q, to verify

the results obtained above.

Example 5.3.1. We let p = 2, ¢ = 5 and n = 3. Thus, for Dyn,, we have
Dyo = {(a,b: a*® = b? = e = (ab)?), |G| = 80. This group has subgroups of
orders that divide 80. A complete listing of the subgroups of Dggresults in

the following.

{e}; Dy = {e,a,a?,a3,a* a5, ...a%,b,ab,ab,a®b,a*b,a®, ..., a*b}

— 2.3 ,4 5,6 7,8 ,9 10 ,11 12 13 14 15 _16 39
(a) ={e,a,a%,a°,a% a’,a° a",a® a’,a”,a ", a'*,a"?,a*,a”,a®. .. a”}

2y _ 2 4 .6 .8 10 .12 14 16 _18 20 38
(a®) ={e,a”,a",a’ a®% a’ a"* a"* a'® a® a® ... a°}

4y _ 4 8 12 16 ,20 .24 28 32 _36
(a*) ={e,a*,a® a'*,a'® a®, a** a*®, a’* a°}

<a5> — {6, a57 alO’ a157 CL20, a257 a30, a35}
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The subgroups of order two are:

(b) = {e.b}: (ab) = {e,ab}; (a®b) = {e, a’b};

(a®b) = {e,a’b}; ...; (a®b) = {e,a®"b}

The dihedral subgroups are:
Db = (a®,b) = {e,a",b,a%"b, }
DS = (a®, ab) = {e,a?®, ab, a*'b}

Dng = (a?°,a?b) = {e,a®, ab, a*2b)%

D‘Q’“Sb = (a*%,a%b) = {e,a?°, a3b, a2%| igw

University of Fort Hare
19

Dg b _ <a20’ a19b> — {e’ a20’ algb, a39b}

D% = (a'%,b) = {e,a'?,a?°,a%, b, a'%b, a*°b, a®*"b}

D4 = (a'®, ab) = {e,a'®,a®, a0, ab, a''b, a®'b, a®'b}
2

D& = (a1, a2b) = {e, ', a?, a®, a2b, a'2b, a?b, b}

3
Di b _ <a107 a3b> — {6,&10, a20’ a30’ a3b, a13b, a23b, a33b,}

9
Dfll, b _ <a10’ a96> — {6, alO’ CL20, a30’ agb, algb, a29b, a39b}

D! = (a®,b) = {e,a®, a'% a®, a2, b, a®b, a'®b, a®*b, a®?b}
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Dgb = (a®, ab) = {e,a®, a'® a®*, a2, ab,a%,al"b, a®®b, a33b}
2
(51 b _ <a8’ a2b> — {6, a8’ a167 CL24, CL32, a2b, alOb’ CLle, (126(), a34b}

3
g b _ <a8’ a3b> — {e, a8, a167a247 a32,a3b, allb, a19b’ a27b, a35b,}

7
D" = (a®,a"b) = {e,a®,a'® a®, a2, a"b, a'®b, a®?b, a®'b, a®'b}

Dg = (a®,b) = {e,a’,a'%,a'?,--- a0, a%,b,a’b,a'"b,a'®b, - -- ,a®’b, a®b}

ng = (a®, ab) = {e,a’,a'?,--- a0, a3, ab,abb,a''b,a'%b, - -- ,a®'b,a®b}

Dgzb = (a®,a%b) = {e,a’,a'0, - a3 a%, ab,a"b,a'?b,--- ,a3?b,a® b}

D§3b = (a%,a®b) = {e,a® a'% -, a® a® a3b,a®b,a'3b, - - a33b, a0}

Dg4b = (a%,a*) = {e,a® a', - ,a30,a3§—, a*b,a’b, a'*b, - - -, a>*b, a®b}

Db, = (a*,b) = {e, a*,a®, a'?, al", .‘d’b, a*b,a®b, a'?b, a'%b, . .. a%0b}

University of Fort Hare

D3 = (a*, ab) = {e,a*, a®, a2 1688 i @35 ab; aBb, adb, al3b, alTh, . . .a>"b}
i‘;b = (a*,a%b) = {e,a*,a®,a'?,a'%,. .., a5, a®b,a%,a'"b, a'?b, .. .a8b}
fgb = (a*,a%b) = {e,a*,a®,a'2,a'%,...,a5, a3b,a"b,a''b, a'®b, . ..a3b}

Dy = (a®,b) = {e,a? a* a5 a®,...,a%, b, a%,a*b,a’,a®,. .., a%8b}

D3 = (a?,ab) = {e,a? a* a% d®, ... a%®, ab,a®b,a®b,a’b,a%, ..., a*b}

Now using the aforementioned characterisation of flags, we obtain the
following:

The cyclic maximal chains of Dy are as follows:

{e} € (a®) € (a*) € (a®) € (a) € Do

{e} C (a®) C (a'%)" C (a?) C (a) € Do
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{e} C (a®) C (a'®) C (a®)" C (a) € Dy

{e} € (a®)" C (a*) C (a?) C (a) C Dug

Thus Dy4g has 4 cyclic maximal chains. Using a star on subgroups in a flag
to establish distinguishing factors, we observe that three flags have single

distinguishing factors.
The d-cyclic maximal chains are listed as:

fe} C (™) C (a*) C (a?) € D" € Dag

{e} C (a®) C (a*) C (a®) C D" C Dyo

)
20 10\* 2
{e} € (@) € {a™) Lgn<|a\'2‘1%ip\2?) i [Qﬁol Hare

{e} € (a®) C (a'%) C (a®) € D" C Dag
{e} C (a®) C (a'®) C (a®) € D" C Dyg
{e} C (a®) C (a'%) C (a°) € DF?" C Dag

{e} € (a*) C (a'°) C (a%) € DE" C Dy

N

{e} € (a*) C (a'%) C (a%) € DE"" C Dag

{e} € (a®)" C (a*) C (a?) € Djy" C Dy

—
)
—
N
—
IS
0
~
*
N
T
Q
I
~
IN

(a?) C D" C Dyg
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The number of d-cyclic maximal chains of Dyg is 11 and 11 =3 x 2+ 5,
showing that the formula 3p + ¢ holds for p = 3 and ¢ = 5. We observe
that seven flags have single distinguishing factors, while each of four flags

has a pair of distinguishing factors.
The 2d-cyclic maximal chains are listed as:

{e} € (a®) C (a*) € Db," C DY, C Dag
{e} C (a®) C (o) C D§Y™ C D8 € Dag
{e} € (a®) C (a*) € D" C DYy € Dy
{e} € (a®) C (a*) C D" € Dgh € D

(a'%) C DY C DSy € Dio

{e} € (a®)

N

University of Fort Hare
{e} € () C (a'%) C DY@ DI Di

{e} C (a®) C (a'®) € D" C DYy C Dy
{e} C (a®) C (a'%) € D" C Dgh C D
{e} C (a®) C (a'%) € D§"™" C DY, C Dy
{e} C (a*) C (a'%) € D" C DY C Dy
{e} € (a®) C (a'%) € D§™" C DY, C Dy

{e} C (a%) C (a'0) C D" C Dg C Dy
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{e} C (a%) C (a'0) C D" C Dby C Dy
{e} C (a%) C (a'%) C D" C Dg C Dy

(al%) C DY C DY C Dyo

{e} € (a®)

N

{e} C (a®) C (a'%) C D§*" C D" C Dyg
{e} € (a®) C (a'®) € D" € DE" C Dyg
{e} € (a®) C (a'®) € D" € DE™" C Dyg
{e} € (a*) C (a'%) € DY C Dg“é*‘ C Dy

<a10> C Dzsb* C b* ‘ 40

{e} € (a®)

N

University of Fort Hare

(e} C @) € (a) € DY E B C Dy
{e} € (a®) C (a'®) C DY C DE™" C Dyg
{e} € (a®) C (a!®) € D™ € DE™" C Dug
{e} C (a®) C (a'®) € DY C DE" C Dy

(a*) € Db," € DY, C Dy

{e} € (¥

N

(a*) C D" C Dgh C Dy

{e} C (a®)"

N

{e} C (a®)" C (a*) C D§P" C DYy C Dyg
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{e} C (a®)" C (a*) C DY C DY C Dy

The number of 2d-cyclic maximal chains is 28, and 28 = 2(2 x 5) + 2(2?),
showing that the formula 2pg + 2p? holds for p = 2 and ¢ = 5. We also
observe that there are 14 flags with a single distinguishing factor, and 14

have a pair of distinguishing factors
The 3d-cyclic maximal chains are listed as:

{e} C (a®) C D§" C DY, C D5, C Do
{e} C (a®) C D$*" C D§ C D3 C Dy

{e} C (a®) € D§™*" C Dyt C[BYEDso

-

{e} C (a®) C Dg™*" gxﬁilég?r'gi ll:?m@(f‘@ﬂ Hare
{e} € (a®) € D§"" € DY, € D4, € Dug
{e} € (a®) € D§™" C D € D € Dy
{e} € (a®) C D§™" C D C DYy C Dag
{e} € (a®) € D§"*" C D € D3 C Dag
{e} € (a*) € DF" C Db, € DYy C Dag

{e} C (a®) C D™ C D§b C Dgh C Dyg
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{6} g <a20> g DalOb*
2 c D%
C D*b C Db
10 = D2O C D40
{6} g <G2O> g Dallb*
2 C pa’b
C Diy’ S Dy € D
= 40
{6} C <a20> - Da12b*
2 c Db
= 10 - DSO cD
= 40
(e} C (a2) C Da™™*
2 C Dab
< Dip © Dgg cD
= 40
{6} g <a20> g Da14b*
2 c D%
C D*b C Db
10 = D20 g D40
{6} g <a20> g Da15b*
2 c Da’b
= 10 c Dgg cD
= 40
{e} C (a2 C Da™*
2 C DP
= 10 - DSO CcD
= 40
{e} C (a®) C D" >
2 C D% [
C Dff C'Qg |
Universi 0
e ersl T
{e} C (a2) C Datts* i 1\ f)f Fort Hare
g c Do goether p Exe are
o & Do & D;
- 0
e
{ } g <a20) g Dglgb* c 3
C Dfy’ € D
20 g D40
e
{ } - <CL20> C Db*
9 C DZ* c Db
e
{ } g <CL20> g Dab*
2 g Dab*
4 c Dgg cD
= 40
e
{ } g <a/20> g D0«2b*
2 C 27%
C DY v« pb
- DQO g D40
e
) C Dagb*
C Dt C Dy D
= 40

e
{e} € (a®) C Dg"
a't™ ¢ pa'v”
1 < Db C
20 = D40
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{e} € (a®) C D§™" C D§™" C Dgh C Dag
20 abb* abb* b

{e} (") C D3> CD§” C D3y € Do
20 ab* a’b* ab

{e} C(a®) C D3" C D}° C D35 C Dy

{e} C (a®) € D§™" C DY C DYy C Dag
20 a®b* a%b* ab

{e} C(a*”) C D3> C D C D3 C Do
20 alob* b* b

{e} € (a™) C D C Dy € Dgy € Dy

{e} € (a®) C D§™" C D" EDYE Do

kig'

Lc’_meﬁ b icyo% Koy §lare

12b*

{e} C (a®) C D§
{e} € (a®) € D§™Y" C Dg" C DY C Dyg
{e} C (a®) C D§"™" € Dg"*" € DY, € Dy
{e} € (a®) C D§™Y" C Dg" C DY C Dyg
{e} C (a®) € D§"™Y" C D§"" C DY, C Dag
{e} € (a®) € D§'™" C D§"*" € DL € Dy

{e} C (a®) € D§"™" C D§™ C Db, C Dag
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{e} € (a®) C D§"™" € D§™*" € DL € Dy
{e} € (a®) C DY C D} C DY € Dy

{e} C (a®) C D" C D3* C D" C Dyo

{e} € (a®) € D§" C DY € DFY" C Dy
{e} € (a®) € D" € DF™ € DEY" C Dy
{e} € (a®) € D§"™" € D" € DEY" C Dy

{e} C (a®) C DFY" C DY C Dg* C Dao

{e} C (a20) C D" C Dg°b CMDM

University of lm Hare

{e} C (a®) C DI C D47b c D“ W Do
{e} C (a®) C D§Y" C DI C DY C Dy
{e} € (a®) € D§™" € DY € DEY" C Dy
{e} € (a®) € D§"*" € D} € DY C Dy

{e} C (a®) C D" C Db C DE" C Dy
{e} C (a®) € D§™Y" C Dg* € DFY" C Dy
{e} € (a®) € D§"™"" € D§* € DE" C Dy
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{e} € (a®) € D™ C Dg* € DEY" C Dy
{e} C (a®) € D§"™" € D§™ € DE* C Dy
{e} € (a®) € D§"™Y" C D§" € DP* C Dyg
{e} € (a®) € D§'™" C D§"* € DFY" C Dy
{e} C (a®) € D§"™" C D§™ € DFY" C Dy
{e} C (a®) C D§"" C D§™ C DE" C Dyg

{e} € (a®) € D5 C DY, C D,

cm ‘
R

{e} C (a®) C D clbgheByo Dijprt Hare
{e} C (a®) € DE™" C Db C DYy € Dy
{e} C (a®) € DE"" C D € Dgh € Do
{e} € (a®) C D" C Db, € Dby C Dug
{e} C (a®) C D" C Dib € Dgh C Dag
{e} C (a®) € DE"" C Db € DY, € Do

{e} C (a®) € DE"" C DY C Dgh C Dag
We count 68 3d-cyclic maximal chains, and 68 = 3(225) + 23, which shows
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that the formula 3p?q + p3 holds for p = 2 and ¢ = 5. We also note that
there are 28 flags with a single distinguishing factor, and 40 that have a

pair of distinguishing factors.

The b-cyclic maximal chains are listed below:

{e} C (ab)* C D> C DY C Diaf C Dji

{e} C (ab)* C D3° leffnb*‘?f#?g gf lbi())ll Hare
{e} C (ab)* C D> € D§® C D™ C Dy

{e} C (ab)* € Dg"" C D C D3 € Dag

{e} C (a?0)" € D§™* € DI’ € Dy € Dug

{e} C (a?b)" € D§’ € D§™*" C DY, C Dag

{e} C (a?)" € DFP € Dg™® € DFY" C Dy

{e} C (a?)" € DF?" C Db C Dby C Dag
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{e} C (a®h)" € D§™ € Dg € D3 C Dag

{e} € (a®)" € D§™ € D§™" C Dg C Dug
{e} € (a®h)" € D§’* € D§™ € DEV" C Dug
{e} C (a®h)" € DI C D € Dgh € Do
{e} C (a'0)" € D3 C DY, € Dby € Dag

{e} C (a%h)" C D™ C D§**" C DY, C Dag
{e} C (a'b)" C D§" C D§' € DE" C Dy

{e} C (a'h)* C D" C DYy <Dk { 40

University of Fort Hare

fe} C (0% € Dg™ € D & D'C Dy
{e} C (a®)" C D" € D§™" C Dg C Dug
{e} C (a®)" € D§’* C D’ € DY C Dy
{e} C (a®h)" € DI C Db € Dgh C D
{e} € (ab)* € D§™ C Dg> € Dby € Do
{e} C (a%)" C D™ € D§*" C DY, C Dag
{e} C (aS0)" € D§™* C DY C D" C Dyg
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{e} C (a®)" € D" C Db € DYy C Dag
{e} € (a"0)" € D§™® € Dg> € D3 C D
{e} € (a"b)" € D§* € D§™*" C Dg C Dug
{e} C(a"h)" € D§'P C D§" C DE" C Dag
{e} € (a"h)" € D"V C D € D3 € Do
{e} € (a®h)" € D§™* € DY, € Dby C D
@mm%tDﬂgmwg%ﬁDm
{e} € (a®h)" C DE" C DY, € DYy C D
{e} € (a®h)" € D§™ C Dy € Dgb € Dag
{e} € ()" € D§™ € D§™" € Dg C Dug
{e} € (a®h)" € D§"* C D§* C DE™" C Dug
{e} C (a%)" C Dg"" C Dff € D3 C Do

{e} C (a'%)* € D™ C Dgsb € D8, € Dag
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{e} € (a'®b)* € D§™ € DY C DY, € Dag
{e} € (a'%h)* € D§™ C Dy € DY C Do
{e} C (a'%)" € DE"" C D§b € DYy € Do
{e} C (a'b)" € D§'"* € D§b € Dgb € Dyg
{e} € (a''h)" € D§" € D" C Dgb € Dag
{e} C (a'b)" € D§'"* C D§® C D" C Dy

{e} C (alb) € DE?" C DY € Dg C Dag

{e} C <a12b>* C Dgub C Dll’o WDzLO

University of Fort Hare

fe} C (a120)" € D§™ € DI Dhy <Dy
{e} C (a'?0)* € D§"P € DY C DE" C Dy
{e} C (a'2b)" C Dg"" C DY, C DYy C Do
{e} C (a'®)" € D™ € Dgh € Dgh C Do
{e} € (a'¥b)" € D§* € D§™" C Dg C Dug
{e} C ()" € D§" € D§* € DFY" C Dy
{e} C (a'®) € DE™" C D € D3k € Dy
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{e} C (a*b)" € D§™ C D§b € Dby C Dag
{e} C (a"b)* € Dg"™ € DY™" € DY, C Dug
{e} € (a™b)" € D§"™ € Dg* € DEY" C Dy
{e} C (ab) € DI C DY € DY, € Dy
{e} € (a'®h)" € D§™ C DK € DGy C Dy
{e} C (a'®)* C D§"™> € D" C Dgh C D
{e} C (a'®)" C Dg""b C D§ € Dg*% Dao
)
{e} C (a'®b)* C DI g ﬂ?ﬁ%i‘g;@%[gfqzlﬁ are
{e} C (a'%b)" C D§""™® C Db C Dy C Dy
{e} C (a'%)* € D§"*> € DI C DY, C Dug
{e} C (a'oh)* C Dg** € D§™ C D C Dy
{e} C (a'b)" C D" C D}, € Dy C Dy
{e} C (a'0)" € D™ € D € Dgh C Do

{e} € (aTh)" € Dg'™ € DYV C D§h € Dag
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{e} C (a'Th)" € D§'™ C D§" € DFY C Dy
{e} C (a'"b)" C D" C D§ € D3h C Dy
{e} C (a'®h)" C D§"™ C D> € DYy C Dy
{e} C (a'h)" € D™ C DY™" C DYy C Dy
{e} € (a'®h)" € D§"™ € D§™ € DFY" C Dy
{e} C (a'®0)" € DE"" C D§b € DYy € Do

{e} C (a'h)* C D§** € D§ € Dgh C Dag

{e} C (@B C Dg™ C ngb@k Dao
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fe} € ()" C Dg" < DI C DI Dy
{e} € ()" € DI C DY C Dgh € Do
{e} C (a®b)" C DS C DY, C DY, C Dag

{e} C (a®b)" C DS C DY C Db, € Do

{e} C (a®b)" C D4 C Db C D}
{e} C (a®b)" C Dg"" C DY, C DYy C Do
{e} C (a®'b)" C D3* C D{t C D3t C Do
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{e} C (a®'b)" C Dg* C D" C D3h C Dy
{e} C (a*'b)" C D§* C D$® C D" C Dy
{e} C (a®'b)" € D" C Dib € Dgh C Dag
{e} C (a®b)" € D§* C Db € DYy € Dag
{e} C (a®h)" C Dg™ C DY™" C DY, C Dag
{e} C (a®0)" C D§™ C DY € DEY" C Dy
e} € (a22)" C D™ C Dyt gD‘SO,‘g Dug
{e} C (a®b)" C Df’l@@ﬁ?s@i@éﬁl@@kl;m'
{e} C (a®b)" C D™ C D§™" C Dgh C Dag
{e} C (a®b) € D§™ C DY € DE" C Dy
{e} € (a®b)" € DI C DY C Dgh € Dy
{e} C (a*b)" € D§'* C DY, C Dby C Dag
{e} C (a®')" € D§"* € D3 C DY, € Do

{e} C (a®'b)" € D" C D' € DEY" C Dy
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{e} C (a®'b) C DE" C DY, C Db C Dy

{e} C (a®b)" C D" C D3 C D3t C Dag
{e} C (a®b)" € Dg* C D§™" C Dgh C Do
{e} C (a®b)" € D" C D§™ € DY C Dyg
{e} C (a®b)" C Dg"" C D{f C Ds C Dy
{e} C (a®®b)" € D§™ C D € DYy € D
{e} C (a®b)" C D§™ C D§™" C DY, C Dag

{e} C (a®h)" C D3 C D3 QDEEL Dy
University of Fort Hare

{e} € (@®t)" € D" € DY € Dy € Dag
{e} € (a?"0)" C D5 C DY’ C Dg§ C Dag

{e} C (a*b)" € D§"* C DYV C Dgh C Dy
{e} C (a¥h)* C D§™ C D™ € D" C Dy
{e} C (a¥b)* C D" C DY € D € Dag
{e} C (a®b)" C D™ C DY, C Db, € Dy

{e} C (a®b)* € Dg™ € DI C DY, € Do
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{e} C (a®)" C D§™ C DY C DF™" C Dy
{e} C (a®b)* € Dg"" € DY, € DY, € Dug
{e} € (a®b)* € D§’ € Dy € Dy C Dag
{e} C (a®b)" € Dg" € D§™" C Dgh C Do
{e} C (a®b)" € D§" C DY € DG C Dy
{e} C (a®b)" C DE™" C Dy C D C D
{4@@WV@%WQD@QD%%MO
{e} C (a®)" C DSIOI’Z'QiHQIZI*'@:\Z‘)?@Vd;‘(lD%?H;m'
{e} € (a®b)* C D§'™ C D4 C DY C Dyg
{e} C (a®b)" € DE"" € i € DY, € Do
{e} C (a®'h)" C Dg'"* € DY € Dgh C Dag
{e} C (a®'b)" € D§'"* C D" C Db C Dy
{e} € (a®b)" € D"t € D§® € D" C Dy

{e} C (a®'b)" C DI"Y" C DY € Dgh € Dag
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{e} C (a®)" € D™t € DYy € Dby C Do

{e} € (a®)" € D§P € D§™" C DY, C Dug
{e} C (a®b)" € D§P C D§* € DFY" C Dy
{e} C (a®?)" € DY C DY, C Dby C Dy

{e} € (a®h)" € D§™ C D§f € D3h € Dyg

{e} € (a®b)" C D" € D" C DY C Dy
{e} C (a®b)" C D§™ C D§™ C DE" C Dyg
(e} € (@) € D2 < it \DEDs
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(e} € (a"t)" < D§"™ € DYDY, € Duy
{e} € ()" € D§"™ € D§" C DYy C Dag
{e} € (a™b)" € D§™ € Dg* € DEY" C Dy
{e} C (a®b)" € DE"" € i € DYy € Do
{e} € (a®b)" € D§™" € D§® € Dgh C D
{e} C (a®b)" C D" € D" C Dg C Dy

{e} C (a*h)* C Dt € D§™ € DY C Dy
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{e} € (a®b)" € D" C D§® € Dgh € Do
{e} C (a®b)" € D§'** € DYy € Dby C Do
{e} € (a®b)" € D§"** € D§™" C DY, C Dug
{e} C (a®b)" C D§* C D§™ € D" C Dyg
{e} C (a®b)" € Dg™" C DY, C DYy C Do

{e} C (a®Th)" C Dg'™* € Db C D3 C Dy

‘iJ'

{e} C (a®b)* C D"V @iDgrbicyDE T (tDigire

{e} C (a*™)" C Dg"™ C DV IE DIFE Dio

{e} C (a®b)" C DE™" C Dib € Dgh C Dag
{e} C (a®b)" € D§"™ € D§b € Dby € Dag
{e} € (a®b)" € D§"™ € D§™" C DY, C Dug
{e} C (a®b)" € D§™ € D§™ € DFY" C Dy
{e} C (a®b)" € DE"" € Dib € DYy € Do

{e} € (a®b)* € D™ C Dgsb € Dy € Dug
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{e} C (a®b)" € Dg™ C D§™" C Dgh C Dy
{e} C (a*)" C D5 C D§™ C DE'*" C Dyg

{e} € (a™b)" € D" C DY € D € Dag

We count 160 b-cyclic maximal chains and 160 = 4(23 x 5). Hence, the
formula 4p3q holds for p = 2 and ¢ = 5. We observe that there are 40
maximal chains with single distinguishing factors, and 120 have pairs of
distinguishing factors.

Hence, the number of maximal chains of subgroups of the dihedral group
Dy is given by:

M(Dyp) = 4+ 11 + 28 + 68 + 160=127P7and

271 =4+ (3(2) +5) + (2(10) + 8)‘%1’) + 8) + 4(40)

University of Fort Hare
This shows that the formula derived in:'I’heorem 5.3.1 holds for p = 2,

q=>5and n = 3.

To compute the number of distinct fuzzy subgroups of D4y we calculate
the number of equivalence classes of fuzzy subgroups contributed by each
flag. Starting from the cyclic maximal chains, we let the first flag
contribute 26 — 1 distinct fuzzy subgroups. The remaining three cyclic
maximal chains contribute 2° x 3 distinct fuzzy subgroups. Next, we count
the contribution from the d-cyclic maximal chains using Proposition
5.3.0.4, and get 2°(2 + 5) + 24(2(2)) distinct fuzzy subgroups. The
2d-cyclic maximal chains contribute 2°(2 x 5 + 22) + 24(2 x 5 + 22) distinct
fuzzy subgroups by proposition 5.3.0.5. The 3d-cyclic maximal chains
contribute 2°(22 x 5 + 23) + 24(2(22 x 5)) distinct fuzzy subgroups by

proposition 5.3.0.6, and the b-cyclic maximal chains contribute
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25(23 x 5) + 24(3(23 x 5) distinct fuzzy subgroups by proposition 5.3.0.7.

The summation of all these contributions yields the result:

F(Dyo) =2° —1+25 x 3+ 2°(2+5) +2%(4) +25(10 + 4) + 24(10 + 4)

5.3.1

We calculate the number of non-isomorphic fuzzy subgroups of D, 3

+25(20 + 8) + 2%(40) + 2°(40) 4 2*(3(40))
=159+ 2°(40 + 20+ 8 + 10 + 4 + 2+ 5) +2%(120 + 40 + 10 + 4 + 4)

= 5855
Isomorphic Classes of Fuzzy Subgroups of D3,

p3qs USING

the non-isomorphic maximal chains of the group.

STEP 1 :

STEP 2 :

STEP 3 :

: Cyclic maximal chains
Since all four cyclic maximal chains of D3, are non-isomorphic, they
result in 26 — 1 4 25 x 3 = 159 nonfisomorphic fuzzy subgroups.

|
: d-cyclic maximal chains‘@'

Any cluster of 1som[0rp 1c d\ Icly\cl‘i)c fiags counts as a single flag. Thus, in

the formula 2°(p+¢q)+2%(2p) for the number of distinct fuzzy subgroups
contributed by the d-cyclic flags, the numbers p and ¢ indicate the
number of isomorphic flags in a cluster. So the clusters of p and ¢ flags
count as 2 non-isomorphic flags. The same argument is applicable for
2p = (p+p). Therefore, the number of non-isomorphic fuzzy subgroups
contributed by the d-cyclic maximal chains is: 25(1+1) 4+ 2%(1+1) =

25(2) + 2%4(2) = 96 non-isomorphic fuzzy subgroups

2d-cyclic maximal chains

The numbers pq and p? also represent the number of isomorphic flags
in a cluster. Again, each number then counts as a single flag. Hence
the formula 2°(pg+p?)+2*(pg+p?) gives the number of non-isomorphic
fuzzy subgroups contributed by the 2d-cyclic maximal chains as: 2°(1+
1) +2%4(1 + 1) = 25(2) + 2%(2) = 96 non-isomorphic fuzzy subgroups
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STEP 4 : 3d-cyclic maximal chains
In this case, the numbers p?q and p? in the formula 2°(p2q + p3) +
24(p2q X 2, each represents the number of flags that are isomorphic, in
a cluster of flags. Therefore each cluster of p?q and p? will each count
as one flag. Hence, the number of non-isomorphic fuzzy subgroups
contributed by the 3d-cyclic maximal chain is: 25(1+1) +24(1+1) =

25(2) + 2%(2) = 96 non-isomorphic fuzzy subgroups

STEP 5 : b-cyclic maximal chains
The number p3q also represents a cluster of isomorphic flags that give
a count of one flag, thus the formula 2°(p3q) + 24(p3q x 3) gives the
number of non-isomorphic fuzzy subgroups contributed by the b-cyclic

maximal chains as: 25(1) + 24(1 +1+1)= 25 1 24(3) — 80.

The sum of non-isomorphic fuzzy subgroups yields the following:

Proposition 5.3.1.0.1. The num of non-isomorphic fuzzy subgroups of
University of Fort Hare
G = D3, i5 159 + 96 + 96 + 96,5t,80 75217,

5.4 On the Dihedral group D,

In this section, we present the general formulae for the number of cyclic,
md-cyclic, for 1 < m < n, and b-cyclic maximal chains of the dihedral
group Dpng. We also establish a formula for the number of distinct fuzzy
subgroups of the group. The results are a generalizations of trends and
patterns observed in the study of the specific groups. Thus we have the

following propositions.

Proposition 5.4.0.0.1. The length (levels) of flags of the dihedral group
Dpnq 8N + 3
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5.4.1 The number of maximal chains of subgroups of D,

Proposition 5.4.1.0.0.1. The number of cyclic mazimal chains for the
dihedral group Dyng for p and q distinct primes and n € N is
M(Dyrg) = (n+1).

Proof. Consider the cyclic maximal chain of powers of p
(1) {e} C (a") S (@) C (@ 7) C -+ C (aP") C (aP) C {a) C Dyng

In (1), when we replace the cyclic subgroup (a?) by (a?), then (a?”) must
be replaced by (aP?), <ap3> must be replaced by <ap2‘1), and so forth, until
we replace (a?") by (a?"'). This gives us one cyclic flag from (1).
Next, in (1), we start with the cyclic subgroup (a?’) and replace it by
(aP?). Bach (a?") is then replaced by (a?*'?) to produce another cyclic
flag. We continue until only (a?")/is replaced by (a?" '9).
Counting from the replacement OW (a?) = (aP"1), we have n cyclic
flags coming from (1). Hémce;ctiha ttotal ombér of eyclic maximal chains is
equal to n + 1. oether i Feetine

O

The following table summarises the results obtained in sections 5.2 and 5.3.
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Maximal | n=1 n=2 n=3 n=4 m<n

Chains

cyclic 2 3 4 ) n+1

b-cyclic 2pq 3pq 4p®q 5p'q (n+1)p"q

d-cyclic q+p q-+2p q-+3p qg+4p q+np

2d-cyclic 2pq +p? | 2pq +2p* | 2pq + 3p? 2pq + (n — 1)p?

3d-cyclic 3p*q +p° | 3p*q+2p° 3p?q + (n — 2)p’

4d-cyclic 4p*q +p* Apq + (n —3)p*

md-cyclic mp™ g+ (n — (m—1))p™

Table 5.1: Number of Maximal Chains of D, for varying n values

I
1

We now present general formulae_é%%ble from the table above in the

University of 1
form of the following propositions.,.,

‘ort Hare

Proposition 5.4.1.0.0.2. The number of d-cyclic mazimal chains of Dyng

form>1, is

(M(Dypng))a = np+q

Proof. Dyng has maximal subgroups of the form Dgﬁb = (a4,a"b) for k =

0,1,2,---,q—1, and Dgﬁélqzmp,akb) for k=0,1,2, - ,p— 1.

Consider the cyclic flag

(1) {e} S (@) C (@)

C (ar"1) C (a") C (af) C (a) C Dyng

In (1), the cyclic subgroup (a) can only be replaced by the dihedral

subgroup D;ﬁb = (a%,a*b) for k =0,1,2,---,q — 1. This gives us ¢ d-cyclic

flags. Since there are n + 1 cyclic flags, the component (a) in the

remaining n cyclic flags can only be replaced by the dihedral subgroup
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D;:Illq = (aP,a"b) for k = 0,1,2,--- ,p — 1. This replacement yields np
d-cyclic flags since there are p values of k and n cyclic flags. Hence, the

total number of d-cyclic maximal chains is equal to np + q.
O

Proposition 5.4.1.0.0.3. The number of 2d-cyclic mazximal chains of Dyng
forn > 2, is

(M (Dyrg))2a = 2pq + (n — 1)1’2
Proof. Consider the cyclic flags
(1) {e} S (@"'9) C (a9 C -+ C (ar"9) C (aP) C (af) C (a) C Dyng
(2) {e} € (@"7'9) C (a9 C - C (@) C (aP?) C (aP) C (a) C Dyng

In (1) and (2), the cyclic subgroups (a?)“and (aP) can only be replaced by
the dihedral subgroup Dpn-1 = (aWor t=0,1,2,--- ,pqg—1 (here, we
assume that (a) has alrdady beeni tepldced by Id suitable dihedral
subgroup). Thus, each of the twoﬂags ylelds pq 2d-cyclic flags. From a
total of n + 1 cyclic flags, the remaining n — 1 cyclic flags have the
component (a?), so in each one of them, the cyclic subgroup (a?) can only
be replaced by the dihedral subgroup Dn-2, = <ap2, a'b) for
t=0,1,2,--- ,p* — 1. Thus, each of the n — 1 cyclic flags yields p?
2d-cyclic flags. Hence Dyn, has 2pg + (n — 1)p? 2d-cyclic maximal chains.
O

Proposition 5.4.1.0.0.4. The number of 3d-cyclic mazimal chains of Dyng
forn >3, is

(M(Dynq))sq = 3p°q + (n — 2)p°
Proof. Consider the cyclic flags:

(1) {e} C (a"'9) C (a?" %) C - C (aP") C (a?) C (a?) C (a) C Dyng
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(2) {e} C(a”"'9) C (a?" "9) C - C (aP"9) C (aP7) C (a?) C (a) € Dprg
(3) {e} C(@"'9) C (a7 C - C (aP"0) C (@) C (aP) C (a) € Dyng

In (1), (2) and (3), the cyclic subgroups (a??) and (a?’) can only be
replaced by the dihedral subgroup Dpn—2 = (aPQq, a®b)y for

5=0,1,2,--- ,p?q — 1 (here, we assume that the components (a), (a?) and
(a?) have been replaced by the appropriate dihedral subgroups). Thus the
three flags yield 3p2q 3d-cyclic flags. In the remaining n — 2 cyclic flags
there must be a component (a?’) preceded by (a?”) and this can only be
replaced by the dihedral subgroup Dn-s, = (apg, a®b)y for

5=0,1,2,--- ,p> — 1. So, the n — 2 remaining cyclic flags yield (n — 2)p3
3d-cyclic flags. Hence Dyn, has 3p*q + (n — 2)p? 3d-cyclic maximal chains.

O]

Observing the patterns followed b( the fl\'mulae in the above propositions

determines that for any n > m, we" Btain the following proposition.
University of Fort Hare
Proposition 5.4.1.0.0.5. The fumbér of md-cyclic mazimal chains of Dyn,

for1<m <mn, is
(M (Dpg))ma = mp™ g+ (n — (m —1))p™
Proof. Consider the following cyclic flags:
(1) {e} S(@" ) C - C{a”™ ) C (") C - C {aP) € {a) € Dprg
(2) {e} © - C{a™ ) C (a7 (") C - C {a?) € {a) € Dy

(3) {e} C-+- C (@ 79) C (@) C (@™ ") C - C (aP) C (a) C Dprg



We number the flags according to where ¢ is inserted for the first time. In
(1), ¢ is inserted just after the cyclic subgroup (a?™ '), in (2), ¢ is inserted
just after (a?™ *); in (3), ¢ is inserted just after the component (a?™ ).
Continuing, we have that in flag (m — 1), ¢ is inserted just after the cyclic
subgroup (a?'), and in flag (m), ¢ comes right after (a) = (a?’). Counting
from 0 to m — 1 yields m cyclic flags. In each of these flags, the
components (a?" ) and (a?" %) can only be replaced by the dihedral
subgroup D;Zlimﬂ = <apm71q, a’b) for r =0,1,2,--- ,p™ g — 1. Therefore,
the m cyclic flags yield mp™1q md-cyclic flags. In each of the remaining
n+ 1 —m cyclic flags there is a component (a”"), preceded by (aPM71>,
which can only be replaced by the dihedral subgroup Dzzlim = (a?",a"b)
forr=20,1,2,--- ,p™ — 1. Note that we assume the components preceding
(a”" ") and (a?™ *%) have already been replaced by suitable dihedral
subgroups. Hence, the total number of md-cyclic maximal chains of Dyng
is mp™ g+ (n+1—m)p™. L ‘»J

University of Fort Hare O

Proposition 5.4.1.0.0.6. The number of b-cyclic maximal chains of Dyng
18

(M(Dprg))p = (n+ 1)p"q

Proof. From [90], we know that for n = 1, the number of b-cyclic maximal
chains of Djng is 2pg. In propositions 5.2.0.6, and 5.3.0.7, we obtained 3p%q
and 4p3q b-cyclic maximal chains for D2, and D3, respectively.

Thus for any n > 1, substituting the subgroup (b) of order 2 into each of

the n + 1 cyclic flags of Dyn, yields the following cluster of n + 1 flags:

(1) {e}c®) S Dy DY C---C DY, C DYy C Dy © Dyng

(2) {eyc )y cDycpl, C..oCcDb,CDh L C Db T C Dy
3) {eyc @y cpycpl,c...cpb ,CDb, " C Db, C Dy
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b b
2 g”'gDpn72 gDpnflqup"q

q

(n+1) {e} C ()* C D" C Dy C DY C---C Db, C Db, C Dy

q

When we substitute all subgroups (a™b) for m = 1,2,...,p"q — 1 into each
of the n + 1 cyclic flags we obtain the following p™”q — 1 clusters of n + 1

flags:
(1) {e} Clab)* C Dyt C DB C---C DY, C DY, C Dyh C Dyng
(2) {e} S(ab)" C D C DY C-.-C D%, C D, C DY, " C Dy

(3) {e} C(ab)* C D C DB C...C D%, C D%, " C D%, C Dpny

==

n) {e} C (ab)* C D% C Dub* C C...CDw® , Cp®  CDn
(n) {e} < {ab)” < p[,—111\?3‘1‘911)1?%?[7()1‘[ Fafi e~ 7pria = 7P

* J"m‘ .“\“H " LXC¢ .‘““‘ Tece
(n+1) {e} C (ab)* C D" C Dy C D C---C D4, C DIy C Dyng

n n—1__ _ _
(1) {e} C(@"p)" C Dg" TP C ... C DU C DT C Dy

n n—1__ _ _
(@) {e} € (@M C D T DRI C DT C Dy
(3) {e} C (a"i-1p)* C p@" ... c par’ W c paerlb o p
€y =@ ="p = = Tpr=2q = Tpn-lqg =P

n n—1__ n—1_4. % _
() {e} € @™ty c D T DT Y C e C DR C Dy

" n_q,% n—1_ _
(n+1) {e} € @) C DY DTS C DY € Dy
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We observe that these clusters are isomorphic and are replicas of the
cluster involving (b). A summation of these flags yields (n + 1)p"q b-cyclic

maximal chains. Which completes the proof.
O

Theorem 5.4.1.0.1. The number of mazimal chains for the dihedral group

Dyng, for p and q distinct primes and n € N is

M(Dpng) =Y [(n+1—i)p' + (i+ 1)p'q)  VneN
=0

Proof. We obtain this formula from a combination of the cyclic, md-cyclic,

for 1 < m < n, and b-cyclic maximal chains of Dpn,. ]

To validate the above formula, we use the following cases:

CASE: n=1:
1

|
M(Dpq) = Z[(nﬂ—_i)piﬂ‘m;] = (1+1)+q+p+2pg = 2-+(p+q)+2pq
=0 University of Fort Hare
This is the same result obtained in [90].
CASE: n=2and n =3:
M(Dyzg) = 3+ 2(pqg + p) + (0 + q) + 3p°

and
M(Dys,) =4+ (3p+q) + 2(pg + p°) + (3p°q + p*) + 4p%q
which is the same result obtained in Theorems 5.2.1 and 5.3.1.
5.4.2 General Formula for the number of distinct fuzzy sub-
groups of D,

To obtain the general formula for the total number of distinct fuzzy sub-

groups of Dpng, we use the criss-cut counting technique to calculate the
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number of distinct fuzzy subgroups obtainable from the cyclic, md-cyclic,

for 1 < m < n and b-cyclic maximal chains of the group. Using the results

obtained from the specific groups in sections 5.2 and 5.3 and identifying

patterns, we obtain the following table:

Fuzzy subgroup contribution

Flags n=1 n =2 n=3 m<n
cyclic 24 —1423(1) | 2° — 14242 26 — 1+ 25(3) 2nH3 — 1 4 272 (n)
bcyclic | 2%(pg) +2%(pq) | 2*(pP*q) +23(2p%q) | 2°(p*q) + 2*(p%q) 22 (p"q) + 2" (p"q)
d-cyclic | 2°(q+p) 24(q+p)+2°(p) | 2°(q+p) +2%(2p) 272 (g+p)+2" ((n—1)p)
2d-cyclic 2'(pg+p*)+2%(p) | 2°(pg + P*) + 22 (pg + p®) + 2" (pg +
24(pq + p?) (n —2)p?)
3d-cyclic V2@ + PP + 22 (p*q + p)
)
University|of Fort Hare ) 5

o +2"+ 1 (2pg + (n — 3)p?)

md-cyclic 22 (pm=lg 4+ pm)

+27((m = 1)p™ g +

(n —m)p™)

Table 5.2: Number of Distinct fuzzy subgroups contributed by the flags of

Dpn g for varying n values

It is from this table that we are able to arrive at the following propositions.
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Proposition 5.4.2.0.0.1. The number of distinct fuzzy subgroups contributed

by the cyclic maximal chains of Dpng is
(F(Dpng))e = 2" — 142" x p

Proof. We have shown that the number of cyclic flags of Dyng is n + 1.

1 n—2

{e} C{a" ') C (@70 C oo C {aPT) C () C (a7) C (a) € Dy (1)

{e} C (") C (aP"70) C oo C (@P"9) C (aP) C (aP)* C {a) € Dpng (2)

{e} C (a"7) C (") C oo C(aP"1) C (aP)” C (aP) C (a) € Dpng (3)

{e} C @'y @) C

- C (a”) C (@) C (aP) C (a) C Dprg (n)

{e} C (@) C (@) C o (B CHal") C (a7) C (a) C Dprg (n+1)

These are the only cyclic maximal‘i'of G = Dpng. The length of each
, University of Fort Hare

flag is n + 3 S R T

All the components of flag (1) are distinguishing factors, and from [67] it

contributes 2" — 1 distinct fuzzy subgroups. Flag (2) has one

distinguishing factor (a?) and thus contributes ? = 2"*+2 distinct fuzzy

subgroups. Flag (3) has the subgroup (ap2> as a distinguishing factor, and

contributes 2”2 distinct fuzzy subgroups. In general, the i** flag has a
distinguishing factor <api71> fOI' Z - 2, 37 - + 1, and Contributes @

distinct fuzzy subgroups. Summing up, we obtain 23 — 1 4 27+2 x n,

distinct fuzzy subgroups. This completes the proof.
O

Proposition 5.4.2.0.0.2. The number of distinct fuzzy subgroups of Dyng

contributed by the d-cyclic mazximal chains is
(F(Dprg))a =2""2(g+p) + 2" ((n — 1)p)
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Proof. As shown previously, the number of d-cyclic maximal chains of Dy,

is ¢ + np. Thus we have the following n + 1 clusters of flags.

{e} C (a?"'9) C (a”" "

for k €{0,1,2,...q — 1}

7) C ... C (aP1) C (a%) C Dot C Dy, (1)

n—2

{e} C (a?" ') C (a”

fori€{0,1,2,...,p—1}

) S C (@) C(aP) S DBE S Dy (2)

fe} C (@7 C (@) C o C (aP") C (a?) S DAL, " C Dy (3)
forie{0,1,2,...,p—1}
{e} C (a0 C oo C ()" C{a?) C{a?) DL, C Dy (4)

fori e {0,1,2,...,p—1}

{e} Sl M) C @) C gww cDut, CDpy  (n)

for i € {0,1,2,...,p — 1}Jniversity of Fort Hare

{e} Cla?") C(a” ") C oo C () C(a?) CDLL, " C Dpg  (n+1)

forie{0,1,2,...,p—1}

Each of the flags in cluster (1) has one distinguishing factor Dgib for
k€{0,1,2,...,q— 1}. Thus cluster (1) contributes 2"*2(q) distinct fuzzy
subgroups. Cluster (2) has flags, each with a single distinguishing factor

Dg,ib_lq, for i € {0,1,2,...,p — 1}, that contribute 2"2(p) distinct fuzzy

subgroups. In cluster (3), the subgroups <ap2) and D;:fll are a pair of

q
distinguishing factors for each of the flags, which contribute

%;B(p) = 2"*1(p) distinct fuzzy subgroups. Each of the flags in cluster (4)
has a pair of distinguishing factors <ap3> and D;:f’,lq for

i€1{0,1,2,...,p— 1} and contribute 2""!(p) distinct fuzzy subgroups. In

general, there is one cluster out of n 4+ 1 with ¢ flags, each with one
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distinguishing factor Dgf:b, for k € {0,1,2,...,q — 1}, that contribute
2"+2(q) distinct fuzzy subgroups. In the remaining n clusters, the first

cluster has flags with one distinguishing factor DZ;b_lq, for

i€{0,1,2,...,p — 1}, that contribute 2"*2(p) distinct fuzzy subgroups.
The j*" cluster contains flags that have pairs of distinguishing factors
(a” ") for j =3,4,...,n+1 and D;‘:,,b_lq for i €{0,1,2,...,p— 1}, and
thus contributes 2" T!((n — 1)p) distinct fuzzy subgroups. This completes
the proof.

If we use the same argument and manual construction as in the previous

propositions, we are able to obtain the following:

Proposition 5.4.2.0.0.3. The number.of distinct fuzzy subgroups of Dyng

contributed by the 2d-cyclic maximal, chains is
— on+2 > n+1 _ 2
(F(Dprg))2a £, |m<,l??|§rmgﬁr)?1 HpgtH (n—2)p7)

Proposition 5.4.2.0.0.4. Thé numbebr of distinct fuzzy subgroups of Dpng

contributed by the 3d-cyclic maximal chains is
(F(Dyrg))sa = 2" (p*q + p°) + 2" (2p°g + (n — 3)p°)

Thus, in generalizing the formulae from the above propositions, for any

n > m we obtain the following:

Proposition 5.4.2.0.0.5. The number of distinct fuzzy subgroups of Dyng

contributed by the md-cyclic maximal chains, for 1 < m <mn is
(F(Dpng))ma = 2"2(p™ g +p™) + 2" TH((m = 1)p™ g + (n — m)p™)

Proposition 5.4.2.0.0.6. The number of distinct fuzzy subgroups of Dyng

contributed by the b-cyclic mazximal chains is
(F(Dpng))p = 2F2(p"q) + 2" (np"q)
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Proof. From proposition 5.4.1.0.0.6 we know that the number of b-cyclic

maximal chains of Djn, is (n + 1)p"q, obtained from

Cluster (1)

{ey )y CDyC Dy C---CDb , CDY C Dy C Dy (1)
{ebc)*cDyCDLC - CDY, ,CDb CDY " C Dy (2)

q — pqg — q —4q — pn—iq prq
Cluster (2) ‘_'.J'
niversity of Fort Hare
fe} € taty* < D ¢ Dk EVSE Bl OBt 1 pat < 0, (1)

*
{e} Clab) DR C DB C---C DU, CDI CDY " C Dy (2)
{e} C(ab)*C Db CDBHC--CDW ,CD%, " CD, C Dy (3)

{e} Clab) C---C D%, C Do, " C D%, C D%, C Dy (4)

{e} C{ab)* C Dy C D" C - C D S Dt o S Dy S Dy (0)

{e} C{ab)* C DG C Dph C DR C - C Dk o S Dy, C Dy (n+1)

q

Cluster (p"q)
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n—1 _
e} @) cpy” T CDR P C DR C Dy (1)

n n—1__ _ —
{e} (@) c D" TP C Daf;‘ifb CDE Y C Dpg  (2)

{e} C <ap”q—1b>* C. Dap a—1p c D 1b C Dal’ 1b C Dyng (3)
{e} C (a7 p)" C .- C DY ;b C Do ;b C DY Y C Dyng (4)
prg—1p\* a?" " la1p a1t ap 1b
{6}g<a b> gDp gqu g D CDP "q (n)
n__ n—1_
{e} < (@) Dy TV c D S CDETEC Dy (nt1)

Thus we obtain p™q clusters of n + 1 flags.

In cluster (1), the first flag has one distinguishing factor (b) and

2n+2

contributes distinct fuzzy subgroups. The second flag has a pair of

distinguishing factors, (b) and D% n W) form € {0,1,2,...,p— 1} and thus

contribute 2”1 distinct fuzzy su%roups’{’ The third flag has two

distinguishing factors <b{ and D22, €{0,1,2,...,p> — 1} and
niver8itv¥of F (ll Hare

contributes 2"t distinct fuzzy: subgroupsmThus, in general, the k" flag

has a pair of distinguishing factors (b) and Dgi”,l for t € {0,1,2,...,p" 1}

2;;3
2n+2 4 ontl(p) distinet fuzzy subgroups for one cluster of n + 1 flags. We
now substitute the subgroups (a™b) for m € {1,2,...,p"q} of order two,
into each of the remaining p™q — 1 clusters and we obtain clusters that are
a carbon copy of the one involving (b). Thus the number of distinct fuzzy
subgroups obtainable from the b-cyclic flags is 2"2(p"q) + 2"+ (np"q).

This completes the proof.
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Theorem 5.4.2.0.1. The total number of distinct fuzzy groups of Dyng 15:

F(Dpng) = 2" — 14 2"2(n) + 2"2(q + p) + 2" ((n — 1)p) + 2" 2(pg + p?)
+ 2n+1(pq 4 (n o 2)172) + 2n+2(p2q +p3) + 2n+1(2p2q + (n o 3)]?3)

e 22" g ™) + 27T (m = P g A+ (n = m)p™)
n

—9ont3 _1q + 2n+2(n) + 2n+2[2<pi—1q +pi)]
=1
n

+ 27D (= D)p g+ (n = i)ph)] + 272 (p"g) + 27 (npTq)
=1

Proof. This is a result of a combination of the number of distinct fuzzy
subgroups contributed by the cyclic, md-cyclic, for 1 < m < n and b-cyclic
flags of Dpyng. O

==

University of Fort Hare
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Chapter 6

Conclusion

The primary objective of this dissertation was to classify distinct fuzzy sub-
groups of the dihedral group Dyn, for p and ¢ distinct primes, and n € N.
We used the natural equivalence relationsdefined in [67] and the two count-

ing techniques introduced in [74] ttat wey developed from this equivalence.

We have successfully established _a> ioved formulae that can be used to
University of Fort Hare

obtain the number of flags and, disfinct. fugzy, subgroups of this group.

This study has highlighted the significance of the crisp characterization of
dihedral groups as the first requisite step needed in the classification of dis-
tinct fuzzy subgroups, since we use flags to compute the number of distinct
fuzzy subgroups of the group. We exploited the characterization of flags in-
troduced in [93] and managed to successfully classify flags of Dyn, as either
cyclic, md-cyclic, for 1 < m < n, or b-cyclic. This study has shown that
the notion of distinguishing factors for flags introduced in [88] is an integral
part of the criss-cut counting technique and it helps avoid under counting
and over counting the number of distinct fuzzy subgroups attributed to each
flag. In addition, we observed that the Murali and Makamba definition of an
equivalence relation is stronger than other notions of equivalence relations,
as it results in an improvement in the number of distinct fuzzy subgroups

obtained for the same group.
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This is evidenced by comparing results for the number of distinct fuzzy
subgroup of two specific dihedral groups, D13 and Dy, using the general
formula from Theorem 5.4.2.0.1 and formulae established by Sehgal and
Sharma in [111], for the number of distinct fuzzy subgroups of the dihedral
group Dpngm, for p, g distinct primes, n € N, and a fixed m = 1 and by
Tarnauceanu in [123], for the number of distinct fuzzy subgroups of the di-
hedral group Dyng, for p, g distinct primes, and n € N. Both [111] and [123]
compute the number of distinct fuzzy subgroups of groups without utilizing
the notion of distinguishing factors to classify flags, and obtain their formu-
lae from the definition of an equivalence relation in [20].

Theorem 5.4.2.0.1 of our study states that the number of distinct fuzzy

subgroups of Dy, is given by

F(Dpnq) — 2n+3 1 4 2n+2 2n+2 [Z q +p
n R Nl
+ 27D (- 1)p' n— Z)pl)] 2”+2(p”q) + 2" (np"q)
—iuniversity of Fort Ha

In [123] the formula for the nﬁmber of bdisbtinct fuzzy subgroups of Dpn, is

n
(p—1)°
+p" 4 (n+2)p — pPq — (4n + 9)p® + 3pg + (5n + 11)p — 2¢ — (2n + 4)]

F(Dpng) = [(n+2)p" g + 2p" " — (20 4+ 5)p" " 2q = 3" + (n + 3)p" g

While using a recurrence relation, Sehgal and Sharma derive the formula

for the number of distinct fuzzy subgroups of Dyn, as

n

(p—1)2
="+ (n+2)p* = (Bn+ T)p+ (2n + 4)]

F(Dpng) = [(n+2)p" g — (n+3)p" g+ 2p"*?

Now, suppose n = 2, p = 2, and ¢ = 3. We have the dihedral group D2,
and if we let n = 3, p =2 and ¢ = 5, we have the dihedral group Dyg.
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Thus, our formula in Theorem 5.4.2.0.1 yields the following results

F(D13) =2° =1+ 2'(n) + 2% (¢ + p + pg + p°) + 23(p + pq) + 2* (p%q) + 2(2p%q)
=2° —14+2%2) +2*(3+ 24+ 6 +4) + 2%(2 + 6) + 2%(12) + 23(24)
= 63 4 240 + 64 + 192 + 192
= 751

F(Dyo) =25 =1+ 25(n) + 2°(q + p + pq + p* + p’q + p°)
+24(2p + pg + p* + 2p°q) + 2°(P*q) + 2*(3p%q)

=20 - 14+2°(3) +2°(54+2+ 10+ 4420 + 8) + 2*(4 + 10 + 4 + 40)
+ 2°(40) + 2*(120)

= 159 4 1568 + 928 4 1280 + 1920

= 5855
With the formula from [123] we owe following results.
9 University of Fort Hare

F(Dy2) =

Goiplet 2)(2%)(B) 4<2(2%)L(2(2) + 5)(24)(3) — 3(2) + (2 + 3)(2%)(3)

+ 28 4 (24+2)(2%) - 22(3) — (4(2) +9)22 4+ 3(6) + (5(2) + 11)2 — 6 — (2(2) + 4)]
= 4((4)(32)(3) + 64 — (9)(16)(3) — 3(16) + (5)(8)(3) + 8 + 32 — 12

— (17)(4) + 18 + 42 — 6 — 8)

= 4(94)

= 376
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3
(2-1)?
+ 2%+ (34+2)2% — (235 — (4(3) +9)22 +3(2)(5) + (5(3) + 11)2
—2(3) — (2(3) +4)]

= 8((5)(64)(5) + 128 — (11)(32)(5) — 96 + (9)(16)(5) + 16 + 40 — 20

F(Dao) = [(3+2)(2°)(5) +2(2°) — (2(3) + 5)(2°)(5) - 3(2°) + (3 +3)(2")(5)

— (21)(4) + 30 + (26)2 — 8 — 10)
— 8(366)
— 2928

The formula from [111] results in the following

2

F(D12) = [(2+2)(2%)(3) — (2+3)(2°)(3) +2(2)

(2-1)?
=22+ 2+ 2@ E(2) + 7)(2) + (2(2) +4)]
— 4((4)(16)(3) w@) +32—8+16— 26+ 8)
— 4(§4j1i\‘(j‘1'8i|} of Fort Hare
= 376 B
3
F(Duo) = 33+ 2@27)(5) — B +3)(29)(5) +2(2")

— 21 1 (34+2)(2%) - (3(3) +7)(2) + (2(3) + 4)]

= 8((5)(16)(5) — (6)(16)(5) + 32 — 16 4+ 20 — 32 + 10)

= 8(366)

= 2928
The figures obtained in the above comparisons clearly show that the study
has made an improvement in the results for the number of distinct fuzzy
subgroups of the dihedral group D,n4 for p and ¢ distinct primes and

n € N. Finally, in light of this work, this study lays some groundwork and

forms the basis for the extension of the dihedral group Dynq for p and ¢
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distinct primes, and n € N, to the broader group of a larger size, which is
Dyngm, for p and ¢ distinct primes, and m,n € N which will be undertaken

in our future work.
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Appendix A

Tree diagrams

Figure A.1: For n = 1; number of Cyclic Maximal Chains = 2
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Figure A.2: For n = 2; number of Cyclic Maximal Chains = 3
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Figure A.3: For n = 3; Number of Cyclic Maximal chains = 4
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Figure A.4: For n = 4; Nu yclic Maximal chains = 5
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Figure A.5: For n = k 4+ 1; Number of Cyclic Maximal chains = k + 2
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Appendix B

The Dihedral group Dp4q

If we let n = 4, then Dy, = (a,b : a?'t = b2 = ¢ = (ab)?). Similarly to
the case where n = 2 and 3, we list all subgroups of D,s, and manually

construct the flags, to obtain the following:

Proposition B.0.0.1. Let D, i&j—/@ a?'t = b2 = ¢ = (ab)?). Then
Dyay has subgroups with[b‘ftiérs‘[:tﬁ%{t‘ dtbzbeﬁ 2}746}3J['\,'
Proof. Based on the Theorem of La Grange in [55] O
Proposition B.0.0.2. The number of dihedral subgroups of D, of order:
(i) 2p is p°q
(ii) 2p* is p*q
(iii) 2p3 is pq
(iv) 2p* is q
(v) 2q is p*
(vi) 2pq is p°

(vi) 2p*q is p*
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(vii) 2p3q is p
Proof. From the manual construction of subgroups of D, O

Using the propositions B.0.0.1 and B.0.0.2, we manually construct the flags

of Dy, and hence obtain a list of the following propositions and theorems:

Proposition B.0.0.3. The number of cyclic mazimal chains of Dps, is

M(Dpig)e = 5.

Proposition B.0.0.4. The number of d-cyclic mazximal chains of D,

is M(Dpag)a = 4p +q

Proposition B.0.0.5. The number of 2d-cyclic mazximal chains of D,

18 M(Dp4q>2d = qu + 3p2

Proposition B.0.0.6. The number of 3d-cyclic marimal chains of Dy,

is M(Dyq)3a = 3p°q + 2p° L)

Proposition B.0.0.7. LI’ € \ﬁuln;})le}r Ko)jl élcé—)égl/ckz]cl%ammal chains of D,

is M(Dpag)1q = 4p>q + p*
Proposition B.0.0.8. The number of b-cyclic mazimal chains of Dy,

18 M(Dp4q)b = 5p4q
Theorem B.0.1. The number of mazximal chains of subgroups for the di-
hedral group D, is:

M(Dyig) =5+ (4p + q) + (2pq + 3p®) + (3p°q + 2p°) + (4p°q + p*) + 5p'q

Proof. This result is a combination of the sum of cyclic, d-cyclic, 2d-cyclic,

3d-cyclic, 4d-cyclic, and b-cyclic maximal chains of D in propositions

piq
B.0.0.3, B.0.0.4, B.0.0.5, B.0.0.6, B.0.0.7 and B.0.0.8. OJ

Theorem B.0.2. The number of distinct fuzzy subgroups of D, is:
F(Dysg) = 27— 1420 x4+ 25(p+q) +2°(3p) + 2°(pg + p°) + 2°(pq + 2p*) +
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26(p2q + p®) + 25(2p%q + p?) + 25(PPq + p*) + 2°(3p3q) + 25(p*q) + 2°(4p*q)
=27 —1+20 x4+ 2%(p+q+pg+p*+p2g+p* +pPq+p*) +2°(3p+pg +
2p% + p* + 2p%q + 3p3q) + 2°(pq) + 2°(4pq).

Proof. From our construction of maximal chains of D, we note that there
are 5 cyclic flags, (4p+q) d-cyclic flags, (2pq+3p?) 2d-cyclic flags, (3p?q+2p?)
3d-cyclic flags, (4p3q+p*) 4d-cyclic flags, and 5ptq b-cyclic flags. All the flags
are of length n = 7, and we use the criss-cut counting technique to calculate
the number of distinct fuzzy subgroups contributed by each flag. Using the
cyclic flags as a starting point, the first flag contributes 27 — 1 distinct fuzzy
subgroups by [67]. The remaining four cyclic flags have single distinguishing
factors and contribute 2° x 4 distinct fuzzy subgroups. Thus the number of
distinct fuzzy subgroups attributed to the cyclic flags is 27— 1426 x 4. Next,
we count the number of distinct fuzgypsubgroups contributed by (4p + ¢q)
d-cyclic maximal chains. p and g d-cycli flags have single distinguishing
factors and contribute 2°(p + ¢q) lﬂrfuzzy subgroups. The remaining
University of Fort Hare
3p d-cyclic flags have pairs of distinguishing, factors and contribute 25(3p)
distinct fuzzy subgroups. Therefore, the d-cyclic flags contribute 2°(p +
q) + 2°(3p) distinct fuzzy subgroups. From (2pq + 3p?) 2d-cyclic flags, we
have that pg and p? flags have single distinguishing factors and contribute
26(pq + p?) distinct fuzzy subgroups. The remaining pg and 2p? flags have
pairs of distinguishing factors, and contribute 2°(pg + 2p?) distinct fuzzy
subgroups. Thus the 2d-cyclic flags contribute 2%(pq + p?) + 2°(pq + 2p?)
distinet fuzzy subgroups. From (3p?q + 2p3) 3d-cyclic flags, p?q and p?® flags
have single distinguishing factors and contribute 26(p?q + p3) distinct fuzzy
subgroups. The remaining 2p?q and p? flags have pairs of distinguishing
factors and contribute 2°(2p? + p3) distinct fuzzy subgroups. From 5ptq
b-cyclic flags we have p*q b-cyclic flags with single distinguishing factors
that contribute 26(p*q) distinct fuzzy subgroups, while the remaining 4p*q

b-cyclic flags have pairs of distinguishing factors and a contribute 2°(4p*q)
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distinct fuzzy subgroups. Thus, the number of distinct fuzzy subgroups

attributed to the b-cyclic flags is 26(p*q) + 2°(4p*q). A summation of all

these contributions yields the result. O

B.1 Isomorphic Classes of Fuzzy Subgroups of D,

We calculate the number of non-isomorphic fuzzy subgroups of D

piq, USING

the non-isomorphic maximal chains of the group.

STEP 1

STEP 2

STEP 3

STEP 4

: Cyclic maximal chains
All five cyclic flags of D, are non-isomorphic, hence, they result in

27 — 1+ 26 x 4 = 383 non-isomorphic fuzzy subgroups.

: d-cyclic maximal chains

Any cluster of isomorphic d-¢yclic’flags counts as a single flag. Thus, in

the formula 2°(p-+¢)+2°(3p) for t’hﬁ umber of distinct fuzzy subgroups

contributed by th‘f vd-cyc}_iC- g)sl,

d-cyelic; }tj%e%‘lnplrﬂll),grs p and ¢ indicate the

number of isomorphic flaggin<a chistériSo the clusters of p and ¢ flags
count as 2 non-isomorphic flags. The same argument is applicable
for 3p = (p + p + p) which gives a count of 3 non-isomorphic flags.
Therefore, the number of non-isomorphic fuzzy subgroups contributed
by the d-cyclic flags is: 26(14+1) +2°(1+1+1) = 26(2) +2°(3) = 224

non-isomorphic fuzzy subgroups

: 2d-cyclic maximal chains

The numbers pqg and p? also represent the number of isomorphic flags in
a cluster of flags. Each number then counts as a single flag. Hence, the
formula 2°(pg +p?) +2°(pq + 2p?) gives the number of non-isomorphic
fuzzy subgroups contributed by the 2d-cyclic maximal chains as: 26(1+

1) +25(1+1+1) =25(2) +2°(3) = 224
: 3d-cyclic maximal chains
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STEP 5

STEP 5

The numbers p?q and p? in the formula 26(p?q+p3)+2°(2p%q+p?), each
represent the number of flags that are isomorphic, in a cluster of flags.
Therefore each cluster of p?q and p? will each count as one flag. Hence,
the number of non-isomorphic fuzzy subgroups contributed by the 3d-
cyclic maximal chain is: 26(1+1)+24(14+1+1) = 26(2) +2°(3) = 224

non-isomorphic fuzzy subgroups

: 4d-cyclic maximal chains

The numbers p3q and p* in the formula 26(p3q + p3) + 2°(3p3q), each
represent the number of flags that are isomorphic, in a cluster of flags.
Therefore each cluster of p3¢q and p? flags will each count as one flag.
Hence, the number of non-isomorphic fuzzy subgroups contributed by
the 4d-cyclic maximal chain is: 26(14+1)4+2°(1+1+1) = 25(2)+2%(3) =

224 non-isomorphic fuzzy subgreups

: b-cyclic maximal chain4, -,,J’

The number p*q al$pm¢p(eps$in§s afclaster pfdisemorphic flags that give a
count of one flag, thus the formula \2\6““(]9‘4‘(]) +25(4p*q) gives the number
of non-isomorphic fuzzy subgroups contributed by the b-cyclic maximal
chains as: 26(1) + 2°(1 + 1 4+ 1) = 2% + 25(3) = 160 non-isomorphic

fuzzy subgroups.

The sum of non-isomorphic fuzzy subgroups yields the following:

Proposition B.1.0.0.1. The number of non-isomorphic fuzzy subgroups of

G = Dpa, is 383 + 224 + 224 + 224 + 224 + 160 = 1439
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