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Abstract 

A plethora of dynamic mathematical models exist and to understand and master all of 

them would be a gargantuan task. The author had, nonetheless, attempted to outline 

some of the methods used to analyse linear systems in modeling. Systems techniques 

are fundamental to current research in molecular cell-biology. The systems-approach 

stands in stark contrast to the historically, reductionist paradigm of molecular biology. 

Field work can be very dangerous. The main purpose of this study was to come up with 

the best analysis that would be used without going to the real field and thus saving time, 

money and risks associated with remote field localities. This research showed that the 

best analysis depends on the nature of the objectives intended to be solved by the model. 

Phase plane analysis on linear systems assisted in gaining deeper knowledge on the 

characteristics of such systems. This work analysed some dynamic models looking at 

phase planes, bifurcation, sensitivity and stability. The research provided a qualitative 

analysis of the processes not a numerical analysis.  

 

 

 

 

 

 

 



 2 

Chapter 1  Introduction 

1.1 Introduction 

The research seeks to address the phase plane analysis of linear systems. A background 

of modeling is discussed in this chapter. Also, the statement of the problem is outlined, 

as well as aims of the study, rational of the study, significance of the study and a 

summary of the chapter will be looked at. 

1.2  Background 

Model analysis provides us with an insight into how and why a system behaves in the 

way it does, providing a linkage between network’s structure and behaviour. Since a 

model is a hypothesis, so the outcomes of the investigation are also a hypothesis. Some 

models have limited portending power, however they will be futile for guiding the 

choice of components and suggesting the most compelling experiments for testing 

system completion. Systems and synthetic biology represent unique opportunities. In 

health, agriculture, manufacturing, energy production, and environmental remediation, 

the use of mathematical models is leading to rapid progress in a wide range of human 

endeavours (Ingalls, 2012). 

 

Balance equations and constitutive equations resulting in a set of Differential Algebraic 

Equations (DAE) are currently used in mathematical-process modeling and simulation. 

DAE are systems of differential equations with algebraic constraints that can be 

expressed in terms of an initial value problem such as 

𝐹(𝑡 ; 𝑥 (𝑡) ; 𝑥𝐼( 𝑡)) = 0, 

                              𝐺(𝑡 ; 𝑥 (𝑡)) = 0,     𝑥(𝑡0) = 𝑥0,  𝑥𝐼(𝑡0) = 𝑥1,    (1) 
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in which F represents differential equations, containing differential terms, G represents 

algebraic constraints, which are equations without differential terms; so, G may be 

considered as initial, or boundary conditions to the Ordinary Differential Equations 

(ODEs). 

 

Commercial software packages are available that assist with simulation models. 

Unfortunately, many of the more effective software packages are exorbitantly 

expensive. MATLAB, for instance is one such package that is very good in simulation. 

More recently, packages such as Freemat and Octave, that can be used for simulation 

have become freely available. The end goal of most modeling exercises is to provide, 

at least, qualitatively correct, preferably quantitatively correct information, thus we 

prefer accurate simulations of real behaviour. The accurate representations are then 

used in model-based designs, which will then result in faster and most efficient 

developments of systems. For example, the Boeing 777 jet was executed and tested 

broadly in computer simulations before any physical manufacture began (Ingalls, 

2012).   

Recently, more and more assembly projects use three-dimensional/four-dimensional 

(3D/4D) models to support management tasks. The propensity of 4D modeling 

technology used in the Architecture, Engineering and Construction (AEC) Industry has 

been studied and documented in recent years. 4D modeling allows project teams to 

visualize construction plans, identify construction consequences and space conflicts, 

identify safety issues and improve communication of the project team members (Koo 

and Fischer 2000). The implementation in engineering education is still limited, despite 

an increasing number of successful applications of 4D modeling in the AEC Industry 

(McKinney et al.1998). 3D visualisation, 4D models and virtual reality models can be 
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utilised for more effective generation, communication and evaluation of schedule 

information.  

The main aids that a 4D model provides are,  

• a visualisation tool that assist in conveying information on planning 

• an analysis tool that will enhance collaboration among project participants 

• an integration medium that will support users to conduct additional analyses. 

  

4D modeling also enables the identification of potential conflicts between building 

elements and workspaces, safety hazards created due to proximity of construction 

activities, and the visualization of construction plans (McKinney et al.1998). There are 

so many constructions in Dubai, for example, that were extensively tested using 

computer simulations long before the actual construction work even commenced 

(Baker W.F and Irwin P.A 2006).  

 

A deeper understanding of cellular networks comes from using model-based design in 

synthetic biology. Engineers need to be able to build, re-use and interconnect 

mathematical models from different physical domains into one common simulation 

platform. Despite the fast developments in different fields of software programming 

and hardware availability, industrial practice shows that there are still several problems 

to be solved on dynamic model building and model interconnection (Ingalls, 2012). The 

available simulation tools in the market provide several alternatives for model 

representations, model aggregation and model interconnectivity of processes from 

different physical domains (Soetjahjo, 2006). 

 

Some of the fundamental concepts in dynamic mathematical modeling are explained 
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below. 

 

Deterministic and Stochastic Models 

A deterministic mathematical model is exactly reproducible, while stochastic model 

allows for randomness in their behaviour. Deterministic models are far more compliant 

for both simulation and model analysis, than stochastic models are.  

 

Global and Local Behaviour 

Nonlinear dynamic systems can display a wide variety of behaviours. Local behaviour 

analysis involves paying attention to the near, particular points, therefore providing 

comprehensive insight into global behaviour. The approximations locally allow one to 

apply linear analysis tools and gather more information about the system. Biological 

modeling uses local approximations in particular, since self-regulating (homeostatic) 

systems spend much of their time operating around specific nominal conditions. 

 

Linearity and Nonlinearity 

A linear relationship has direct proportionality (Ingalls, 2012). Linearity allows for 

effortless extrapolation; that is, if the independent variable is tripled, the outcome will 

also be tripled. A linear, dynamic mathematical model is one that has all the interactions 

among its components linear and they have a limited range of behaviour. A nonlinear 

relation does not follow any specific pattern and is difficult to address in generality. A 

hyperbolic saturation (as independent variable increases, the dependent decreases) and 

sigmoidal saturation (the dependent variable starts slowly, then rapidly increases before 

saturating the rate of growth) are examples of nonlinear relationships (Ingalls, 2012). 

   



 6 

 State Variables and Model Parameters 

The distinction between state variables (free/primary components of the model) and 

parameters (fixed values) is clear cut, although it depends on an individual model’s 

context, as well as the time scale over which simulations run. The model parameters 

can be varied so as to explore system behaviour under perturbations, or in altered 

environments (Ingalls, 2012). 

 

Steady-state and Transient Behaviour 

Biological models display a persistent operating state referred to as steady state (Ingalls, 

2012). Transient behaviour is the evolution that leads from an initial state to the long-

term behaviour.  Steady-state behaviour reflects the prevailing condition of the system, 

while transient behaviour shows the immediate response of a system to perturbation. 

 

When reliable simulations related to the behaviour of the real system are available, it 

may be possible, in most cases, to reduce the time devoted to observation and 

experiments. Bearing in mind the above reasoning, one can state that there exists a 

strong link between applied sciences and mathematics, represented by mathematical 

models designed and applied, with the aid of computers and other devices, for the 

simulation of systems in the real world. Mathematical models are designed to describe 

physical systems by equations, or more generally, by logical and computational 

structures. 

 

1.3 Statement of the Problem 

Selecting the best method to analyse a linear system in mathematical dynamic model is 

always a challenge. The purpose of the study is to analyse the different ways 
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mathematical dynamic systems operate so as to gather deeper understanding of 

different models.  

1.4 Significance of Study 

This research was done in order to understand different analyses used in dynamic 

mathematical problems. Modeling performs an important role in biological systems, 

engineering and construction. The analysis of the dynamic mathematical model is 

crucial, as this will aid in improving the lifestyles of human kind. It will also assist in 

saving costs and human life. Since models are used to predict the future, means more 

understanding of models will enable predictions to be refined. Making predictions 

about the behaviour of a system is an important idea since many of the mathematical 

models, of the world around us, are in the form of rules and they are of much greater 

use if accurate predictions can be made on the basis of the model and its initial 

conditions. 

The act of creating a model forces the modeler to think deeply about the setting. 

Translating an imprecise, complex, multivariate real-world situation into a simpler, 

more-clearly-defined mathematical structure; such as a function or a system of rules for 

a simulation yields several benefits (Adams J.P, 2001). Problems as diverse as the 

simulation of planetary interactions, fluid flow, chemical reactions, biological pattern 

formation and economic markets can all be modeled as dynamic systems. The main 

goal of doing this research was to seek a deeper understanding of how dynamic models 

operate. Furthermore, it is to assist others to understand the different dynamic systems.  
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1.5  Aims of the study 

The main aim of the study is to analyse the linear systems in mathematical modeling 

using phase plane. Other types of analysis such as sensitivity, bifurcation and stability 

will be discussed as well. Nonlinear systems will also be analysed. The analysis that 

will be done should be cost effective and produce reliable results.  

 

1.6  Rational of the study 

The reason behind studying analysis is to assist modelers in selecting the best method 

to use when they want to do a valid modeling. A good understanding of linear systems 

will aid in gaining deeper understanding of nonlinear systems as there tend to be some 

similarities with linear systems when local analysis is done. For example, at a point of 

contact a tangent has the same characteristics as the nonlinear systems. 

 

1.7  Research outline 

The fundamentals of dynamic modeling will be outlined in chapter one. Chapter two is 

a literature review. An outline of model construction is presented in chapter three. A 

few examples of the models outlined in chapter three are solved in chapter four. Chapter 

five is an introduction to the XPPAUT software, a free program written specifically for 

dynamic modeling; and MATLAB, which is a more comprehensive computational tool. 

XPPAUT is more accessible to readers without any computational background. The 

researcher could not run the program due to unavailability of data. Chapter six will give 

a conclusion and recommendations. 

 

Hopefully, many readers will be able to use this research to enrich themselves with a 

deeper understanding of dynamic mathematical modeling. 
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Summary 

The author outlined the background of the study and the fundamental principles of 

dynamic mathematical modeling have been discussed. The following chapter delves in 

modeling cycle. 
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Chapter 2 Modeling Cycle 

Introduction 

In modeling, there is a need to identify a problem and then look for different ways to 

solve it mathematically. The solution should be able to assist to avoid the same problem 

occurring again in future. 

Mathematical Models 

A dynamical mathematical model of a real-world system is an equation or system of 

equations to describe the evolution of a state with suitable variable which encapsulates 

the physical state of the system. A real physical system is closed if it does not interact 

with the outer environment, while it is open if it does (Ingalls, 2012). 

 

The theory of dynamical systems is concerned primarily with making qualitative 

predictions about the behaviours of systems, which evolve in time; as parameters, 

which control the system, and the initial state of the system itself, are varied. Modeling 

is done to aid the conceptualisation and measurement of complex systems and 

sometimes to predict the consequences of an action that would be expensive, difficult 

or destructive to do in the real-life scenario. 

 

Models are necessary, as they form a link between the observational and theoretical 

levels. They are manifestation of the simplifications, devaluation, actualisation, 

experimentation, extension of globalisation theory formation and explanation.  

 

Dynamic and Static Models 

The most notable difference between static and dynamic models of a system is that 
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while a dynamic model refers to runtime model of the system, static model is the model 

of the system not during runtime. Another difference lies in the use of differential 

equations in dynamic model which are conspicuous by their absence in static model. 

Dynamic models keep changing with reference to time whereas static models are at 

equilibrium of in a steady state. 

 

Static model is more structural than behavioural while dynamic model is a 

representation of the behaviour of the static components of the system. Static modeling 

includes class diagram and object diagrams and help in depicting static constituents of 

the system. Dynamic modeling on the other hand consists of sequence of operations, 

state changes, activities, interactions and memory. 

Static modeling is more rigid than dynamic modeling as it is a time independent view 

of a system. It cannot be changed in real time and this is why it is referred to as static 

modeling. Dynamic modeling is flexible as it can change with time as it shows what an 

object does with many possibilities that might arise in time (Blower S, Bernoulli D, 

2004). 

 

Discrete and Continuous Models 

Continuous modeling is a mathematical practice of applying a model to continuous 

data. A mathematical model is discrete if it is based on discrete data. A probable 

classification can be related to the above definitions and to the structure of the state 

variable, as it is shown in the following table: 
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Discrete Static u = ue 

Discrete  Dynamic u = u(x) 

Continuous Static u = u(t) 

Continuous Dynamic u = u(t; x) 

Table 1: Discrete and continuous dynamic models. 

Where u is the output variable, u(x) is the state variable, u(t; x) is the variable depending 

on time and state. 

 

Linear, static and deterministic models are usually easier to compute than nonlinear, 

dynamic and stochastic models. Continuous variable models appear to be more 

amenable to computation than the discrete variable models, due to the development of 

calculus and differential equations, however, continuous models are simpler only when 

analytical solutions are available (Kapur, 1994). Otherwise one has to approximate a 

continuous model by a discrete model so that it can be dealt with numerically (Kapur, 

1994). There are some models that involve both discrete and continuous variables 

simultaneously.   

 

Modeling is a symbol representation of a real-life scenario. One may as well define 

mathematical modeling as a mathematical construction designed to study a particular 

real-world system or phenomenon. Some will refer to it as transforming a real life 

situation into a mathematical problem that can be solved using different techniques. 

The solutions then need to be thoroughly checked initially to see if they corroborate 

with real world data. The model can then be modified accordingly, depending on its 
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deficiencies. If the solutions are satisfactory then the made model can be implemented 

in real life scenarios. 

A biological model can be devised to gain a deeper understanding of an organism, an 

ecosystem, a genetic lineage, or a wide variety of other topics in biology (Ingalls, 2012). 

Using mathematics, people can set up and test a model. Many topics require a 

mathematical framework. For example, population growth and population dynamics 

are topics, which lend themselves favourably to mathematical modeling. 

 

Modeling dynamic systems with mathematics, furthermore, allows one to entertain 

hypothetical parameters and variables to predict what would happen if such changes 

occurred in the real world. For example, a group of scientists working on an insect pest 

control project might take a mathematical model of the pests in question and then start 

adding variables like the use of insecticides, genetic manipulation of the population to 

create sterility, and other factors to investigate an effective strategy for pest control, or 

extirpation. 

 

A model organism can provide data that may be applicable to other organisms. The lab 

rat is a time-honoured favourite, studied with the goal of learning more about the nature 

of other mammals, especially humans (Ingalls, 2012). Fruit flies are also commonly 

used, as is Escherichia coli, a bacterium widely studied in labs all over the world. These 

biological models are chosen because of the similarities between them and other 

organisms, or for traits such as rapid reproduction or genomes that are easy to 

manipulate (Singleton P. 1999). 
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A system is a collection of objects joined in some regular synergy. Studying different 

systems will help us to accurately model any real-world phenomenon. Future 

predictions can be obtained from the understanding of systems. 

There is a procedure to be followed when modeling: 

1. Abstraction or Simplification – focusing on important characteristics of a 

system will help to determine the primary factors indicated by the real-world 

behaviour. This is where information is abstracted into a mathematical context. 

2. Logical argument – solving the mathematical system generated and deriving 

mathematical conclusions. It also involves analysis and conjecture. 

3. Interpretation – depicting in terms of the real-world problem and making 

predictions based on the mathematical conclusions. 

4. Verification or Experiments or Simulations – results are tested in real life 

situations, or computer programs are used to simulate the real-world 

phenomenon.  

The above procedure is represented diagrammatically in Figure 1. 

 

Figure 1: The modeling cycle 



 15 

Models are used since they are easier to study than real life situation, cheaper and enable 

the desired results to be obtained faster. Models elucidate real-life problems, they can 

also be manipulated and studied. They are also, useful to science as they assist in 

conceptualising, organising and communicating complicated phenomena. Lastly, 

models can be used to make predictions and help people with information. For example, 

a model can be used to predict bad weather, and people will be warned well in advance 

to vacate an area to avoid injury, or loss of life.  

There are three main properties of a model that should be considered when devising 

one: 

• Fidelity: The preciseness of a model’s representation of reality. 

Real-world observations demonstrate the greatest fidelity even though they 

might have bias in testing and errors in measurement. Experiments will also 

show greatest fidelity since behaviour is observed in a controlled environment 

such as the laboratory. Simulations will lose fidelity because of indirect 

observation. Mathematically it will also lose fidelity because real-world 

conditions that have been abstracted are simplified. Every model will have 

additional simplifications thereby losing more fidelity. 

• Costs: The total cost of the modeling process. Experiments and simulation are 

very expensive to set up and operate. Computer software, for example can be 

expensive and so is the maintenance of computers. 

• Flexibility: The ability to change and control conditions affecting the model. 

Mathematical models are generally more flexible since different assumptions 

and conditions can be selected relatively easily. Experiments are less flexible 

because some factors are very difficult to control beyond specific ranges. Real-
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world observations have little flexibility because the observer is limited to the 

specific conditions that pertain at the time of the observation. Other conditions 

might be impossible to create. 

Mathematical models are used in many areas of science to elucidate a system’s 

behaviour through the imitation of specific system behaviour. A dynamic system is one 

in which its centralised properties, or quantities, undergo a change over the course of 

time. Finkelstein (1985) stated that a dynamic system is one in which the present value 

of one of the output variables in the system depends, not only on the current value of 

the input signal being applied to the system, but also the history of the system. It is a 

mathematical description of a dynamic system that consists of aspects such as time and 

behaviour equations (Willems, 1996). Behaviour B of a dynamic system manifests as a 

set of signal trajectories
nRtz )(  on some time interval ( ) Rbabat  , ; ; , satisfying 

behaviour equations, 

 

B = {z(t) :R→Rn such that behaviour equations are satisfied}    (2) 

 

Modeling complicated processes involves an interconnection of sub-models, each 

represented by a set of behaviour equations (2). Mathematical modeling of a system is 

always subject to assumptions. The assumptions are made to reduce complexity in 

modeling. Mathematical models are driven by questions; and we seek solutions to these 

questions by using the models. In most cases models are designed to focus on certain 

aspects of the object of study, making other aspects irrelevant. There are, however, still 

many instances, which have not yet been mathematically modeled, either because the 

situations are sufficiently complicated or since the resulting mathematical models are 

mathematically intractable. 
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Summary 

Chapter two gave a summary of different types of models. It is the author’s desire to 

assist different people on the types of models that exist. It is important for modelers to 

outline the objectives of each model so that an effective analysis will be done that will 

assist in cutting costs. There is no satisfaction in life other than cutting costs in everyday 

survival. Chapter three will analyse different types of analysis that will be useful in 

choosing a model.  
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Chapter 3 Analysis of Dynamic Mathematical Models 

 

Introduction 

In this chapter different types of analysis will be discussed. There are four types of 

analysis that the author will discuss that is phase plane, bifurcation, sensitivity and 

stability analysis. Linear and nonlinear systems will both be looked at. 

 

3.1    Phase plane analysis 

Phase plane analysis is a graphical method for studying autonomous second-order 

systems. The method involves plotting the time derivatives of the system’s position as 

a function of position for various values of initial conditions. The equations of the type: 

),,(

),(

yxQ
dt

dy

yxP
dt

dx

=

=

                                     (3)

 

where  and are the state variables of the system, ),( yxP  and ),( yxQ  are functions 

that satisfy the conditions for the existence and uniqueness of solutions and are the time 

independent variables. Phase plane analysis provides for motion trajectories 

corresponding to various initial conditions, examining of qualitative features of 

trajectories and obtaining information regarding the stability of the equilibrium points 

(Keshmir, 1995). 

 

A singular point is a point at which a given function of a complex variable has zero 

derivative but of which every neighbourhood contains points at which the function has 

derivatives. A singular point is an equilibrium point in the phase plane, since it is 

x y
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defined as a point where the system states can stay forever. For a linear system, there 

is usually only one singular point, although in some cases there can be a set of singular 

points. Singular points are very important features in the phase plane. Examining the 

singular points can reveal a great deal of information about the properties of a system. 

In fact, the stability of linear systems is uniquely characterized by the nature of their 

singular points. Although the phase plane method was developed primarily for second-

order systems, it can also be applied to the analysis of first-order systems. The 

difference is that the phase is composed of a single trajectory. At the equilibrium point 

the system can either be stable or unstable. There are a number of methods for 

constructing phase plane trajectories for a linear or a nonlinear system, for example, the 

so-called analytical method, the method of isoclines, the delta method, Lienard’s 

method and Pell’s method (Slotine, 1991). 

 

Phase Plane Analysis of Linear Systems 

The general form of a linear second-order system is,  

,212

211

dxcxx

bxaxx

+=

+=

•

•

            

𝑎, 𝑏, 𝑐, 𝑑𝜖ℝ.                  (4) 

The equations are transformed into a scalar, second-order differential equation of the 

form,  

𝑏𝑥
•

2 = 𝑏𝑐𝑥1 + 𝑑(𝑥
•

1 − 𝑎𝑥1).        (5) 

Differentiation and substitution lead to  

        𝑥
••

1 = (𝑎 + 𝑑)𝑥
•

1 + (𝑐𝑏 − 𝑎𝑑)𝑥1.                           (6) 

The second-order linear system is  

𝑥
••

+ 𝑎𝑥
•

+ 𝑏𝑥 = 0.                (7) 
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 To obtain the phase portrait of this system, we solve for time history. 

,for      )(

for      )(

2121

2121

21

2
1








=+=

+=

tt

t

tekektx

ekektx
t

              (8) 

 

where the constants
21  and   are the solutions of the characteristic equation  

( )( ) .021

2 =−−=++  ssbass
    (9) 

They (
21  and  ) are the eigenvalues of the system’s Jacobian.  









=

dc

ba
J .                (10) 

The Jacobian is constructed from (4). 

The roots 
21  and  can be explicitly represented as  

2

42

1

baa −+−
=  and 

2

42

2

baa −−−
= .

                             (11) 

 

For a linear system there is only one singular point )0( b , namely the origin. The 

trajectories in the vicinity of the singular point can display quite different behaviour, 

depending on the values of . The following cases occur  

• 
21  and  are both real and have the same sign (+/-). This corresponds to a node 

that can be stable )0,( 21  or unstable )0,( 21  . There will be no 

oscillation in the trajectories. 

• 
21  and  are both real and have opposite sign. This corresponds to a saddle 

point. 

• 
21  and   are complex conjugates with non-zero real parts. This corresponds to 

a focus that can be a stable focus {Re (𝜆1, 𝜆2) < 0} or unstable focus  

a and b
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{Re (𝜆1, 𝜆2) > 0}. 

• 
21  and  are complex conjugates with real parts equal to 0. This corresponds to 

a centre point. All trajectories are ellipses and the singular point is the centre of 

these ellipses. 

 

It should be noted that the stability behaviour of linear systems is uniquely determined 

by the nature of their singularity points. This is not true with nonlinear systems. Figure 

2 gives a summary of phase plane-portraits for linear systems. 

 

Phase-portraits of linear systems 

Eigenvalues Phase Plane Plot 

stable node 
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unstable node 

 

stable focus 

 

 

                        unstable focus 

 

saddle 
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centre 

 

Figure 2: Phase-portraits of linear systems    Source: Slotine J.J.E (1991). 

Phase Plane Analysis of Nonlinear Systems 

The analysis is related to that of linear systems because the local behaviour of a 

nonlinear system can be approximated by the behaviour of a linear system. Nonlinear 

system can exhibit much more complicated patterns in the phase plane, for example, 

multiple equilibrium points and limit cycles. The Hartman–Grobman theorem, or 

linearization theorem, is a theorem about the local behavior of dynamical systems in 

the neighbourhood of a hyperbolic equilibrium point. It asserts that linearization (which 

is a natural simplification of the system) is effective in predicting qualitative patterns 

of behaviour (Hartman, P. 1960). 

 

When the singular point is not at the origin, it must be shifted to the origin. Using Taylor 

expansion, equation (3) can be rewritten in the form 

𝑥
•

1 = 𝑎𝑥1 + 𝑏𝑥2 + 𝑔1(𝑥1, 𝑥2) 

                                                   𝑥2

•
= 𝑐𝑥1 + 𝑑𝑥2 + 𝑔2(𝑥1, 𝑥2),                                          (12)

                      

 

in which contain higher order terms. 

The higher order terms can be neglected in the locality of the origin and the nonlinear 

system trajectories therefore satisfy the linearised equation (4). As a result, the phase 

portraits of linear systems can approximate the local behaviour of the nonlinear system. 

g1,g2

https://en.wikipedia.org/wiki/Neighbourhood_%28mathematics%29
https://en.wikipedia.org/wiki/Hyperbolic_equilibrium_point
https://en.wikipedia.org/wiki/Linearization
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A limit cycle is an isolated, closed curve (Nguyen, 2002). The trajectory has to be both 

closed, indicating the periodic nature of the motion, isolated indicating the limiting 

nature of the cycle with nearby trajectories converging, or diverging, from it. Limit 

cycles do not occur in linear systems. They represent a very important phenomenon in 

nonlinear systems and are common in engineering and nature. There are three kinds of 

limit cycles that depend on the motion patterns of the trajectories. Figure 3 illustrates 

the kinds of limit cycles. 

1. Stable limit cycle: All trajectories in the vicinity of the limit cycle converge as 

time progresses. 

2. Unstable limit cycles: All trajectories in the vicinity of the limit cycle diverge 

as time progresses. 

3. Semi-stable limit cycle: Some of the trajectories in the vicinity of the limit cycle 

converge as time progresses. 

 

Figure 3: stable (a), unstable (b) and semi-stable (c) limit cycles.    Source: Slotine J.J.E (1991). 

The Van der Pol Equation  

The Van der Pol oscillators are a second-order differential equation that describes many 

physical systems. The equation models a nonlinear system in which energy is added 

and subtracted from the system, resulting in a periodic motion called a limit cycle. The 
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equation is given below (Nguyen, 2002) 

 

𝑑2𝑥

𝑑𝑡2 + 𝜐(𝑥2 − 1)
𝑑𝑥

𝑑𝑡
+ 𝑥 = 0,     𝜐 > 0

                               (13) 

the sign of (𝑥2 − 1)
𝑑𝑥

𝑑𝑡
 changes, depending upon whether  is greater or less than 

unity. If 𝜐 = 0.2 is used in simulation then the limit cycle can be shown that it exists 

because 𝜐 = 0.2 is very small. 

Chaos 

This is caused by small perturbations of initial conditions of nonlinear systems, 

meaning that nonlinear systems are extremely sensitive to initial conditions. In a linear 

system, a small perturbation does not cause a huge difference in output. Chaos cannot 

be predicted even if there is an exact model of the nonlinear system. Atmospheric 

dynamics also display clear chaotic behaviour, thus making long-term weather 

prediction impossible (Nguyen, 2002). 

 

Direction Fields 

As more and more trajectories are added to the phase portrait it will become congested. 

Short arrows are used to indicate the direction and speed of the motion at each point in 

the phase plane. The plot that we get is called the direction field. A direction field is 

easier to plot than a phase portrait. Simulations of the differential equations must be 

carried out in order to plot the trajectories while the direction field can be determined 

directly from the differential equation model. The direction field can be constructed by 

selecting a mesh of points in the phase plane and at each point draw an arrow in the 

appropriate direction. 

 

x
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 Nullclines 

These are points in the phase portrait where the trajectories change their direction with 

respect to one of the axes. One of the two variables could have reached a local 

maximum or local minimum. These changes occur on the phase plane whenever the 

trajectory is directed either vertically, or horizontally, and can be determined directly 

from the model. The turning points are called 𝑥
•

1 − 𝑛𝑢𝑙𝑙𝑐𝑙𝑖𝑛𝑒 if  

𝑥
•

1 = 𝑓(𝑥1, 𝑥2) = 0                                        (14) 

and 𝑥
•

2 − 𝑛𝑢𝑙𝑙𝑐𝑙𝑖𝑛𝑒  if 

       𝑥
•

2 = 𝑔(𝑥1, 𝑥2) = 0                       (15) 

Points on the 𝑥
•

1 − 𝑛𝑢𝑙𝑙𝑐𝑙𝑖𝑛𝑒  have direction arrows with no horizontal component 

(vertically orientated) and points that are on the 𝑥
•

2 − 𝑛𝑢𝑙𝑙𝑐𝑙𝑖𝑛𝑒 have direction arrows 

with no vertical component (horizontally orientated). The trajectories intercept the  

𝑥
•

1 − 𝑛𝑢𝑙𝑙𝑐𝑙𝑖𝑛𝑒  when they are orientated horizontally and the 𝑥
•

2 − 𝑛𝑢𝑙𝑙𝑐𝑙𝑖𝑛𝑒  when 

they are orientated vertically. The nullclines intersect at the steady state and can be 

determined directly from the model, without running actual simulations. The equations  

(14) and (15) are typically nonlinear and as a result may not be solvable except 

numerically. 

 

3.2  Bifurcation Analysis 

Bifurcation theory is the mathematical study of changes in the qualitative or topological 

structure of a given family, such as the integral curves of a family of vector fields, and 

the solutions of a family of differential equations (Afrajmovich, V. S. et al. 1994). 

Bifurcation means division into two. Poincare first used the term bifurcation to describe 

the splitting of equilibrium solutions into a family of differential equations. 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Topological
https://en.wikipedia.org/wiki/Family_%28disambiguation%29#Mathematics
https://en.wikipedia.org/wiki/Integral_curve
https://en.wikipedia.org/wiki/Vector_field
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 If  

                                 𝑥
•

= 𝑓𝜐(𝑥) ;   𝑥 ∈ ℜ
𝑛,  𝜐 ∈ ℜ

𝑘
  

is a system of differential equations depending on the k-dimensional parameter,  , then 

the equilibrium solutions are given by the solutions of the equations 𝑓𝜐(𝑥) = 0. As 

varies, the implicit function theorem implies that these equilibria are described by 

smooth functions of  , away from those points at which the Jacobian of the derivative 

of )(xf with respect to ,
fDx

 has a zero eigenvalue. The graph of each of these 

functions is a branch of equilibria of 𝑥
•

= 𝑓𝜐(𝑥)  At equilibrium  (𝑥0; 𝑣0) , where 

𝐷𝑥𝑓𝜐 has a zero eigenvalue, several branches of equilibrium may come together and it 

becomes a point of bifurcation (Berkooz, G. et al 1993). 

In most cases, if the model parameters are changed, then the position of a model’s 

steady state shifts and, when the plot is constructed from the model, a continuation 

diagram is produced. A qualitative change in the long-term behavior of the system is 

caused by the variation of parameter values. Bifurcation points are where parameter 

values, at which such changes occur, will appear on continuation diagrams (referred to 

as bifurcation diagram). 

 

Types of Bifurcations 

• Transcritical bifurcation: A transcritical bifurcation is one in which a fixed point 

exists for all values of a parameter and is never destroyed. Such a fixed point, 

however, interchanges its stability with another fixed point as the parameter is 

varied. In other words, both before and after the bifurcation, there is one 

unstable and one stable fixed point. Their stability is, however, exchanged when 

they collide. So, the unstable fixed point becomes stable and vice versa 

x
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(Strogatz, 2001). 

• Fold bifurcation: This bifurcation is also known as saddle-node or tangent 

bifurcation. A point 0  is called a fold bifurcation point for 𝐹(𝜐 ; 𝜐) = 0 if there 

exists a solution );( 00   with the property that for all sufficiently small 0

there exists 0 such that |𝜐 − 𝜐0| < 𝛾, 𝐹(𝜐 ; 𝜐) = 0 has no solutions in 

𝐵(𝜐0 ; 𝜕)  for 0 
 
and two solutions in );( 0 B for 0   (Guckenheimer 

and Holmes, 1997). 𝐵(𝜐0 ; 𝜕) is a behavioural equations and 𝐹(𝜐 ; 𝜐) = 0 is a 

function with (𝑣 ; 𝑣) as parameters. 

• Pitchfork bifurcation: It is a local type of bifurcation where the system 

transitions from one fixed point to three fixed points. In continuous dynamic 

systems pitchfork bifurcation generally occurs in systems with symmetry. This 

bifurcation can either be subcritical (if the bifurcating branch exists for values 

of the parameter   less than the bifurcation value c ) or supercritical (if the 

bifurcating branch exists for values of the parameter   greater than the 

bifurcation value c ). 

• Hopf bifurcation: This bifurcation is also known as Poincaré-Andronov-Hopf 

bifurcation. The term refers to the local birth or death of a periodic solution 

(self-excited oscillation) from equilibrium as a parameter crosses a critical 

value. It is the simplest bifurcation, not just involving equilibria, and therefore 

belongs to what is sometimes called dynamic (as opposed to static) bifurcation 

theory. In a differential equation a Hopf bifurcation typically occurs when a 

complex conjugate pair of eigenvalues of the linearised flow at a fixed point 

becomes purely imaginary. This implies that a Hopf bifurcation can only occur 

in systems of dimension two or higher (Marsden and M. McCracken, 1976). 
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Figure 4: Types of bifurcations: (i) transcritical, (ii) supercritical pitchfork, (iii) fold, (iv) subcritical pitchfork.

      Source: Stuart and Humphries (1996)  

In Figure 4, the thick solid line indicates steady state and broken line indicates unstable 

steady. 𝜇 is the constant parameter. 

3.3  Sensitivity Analysis 

Sensitivity analysis is the study of how the uncertainty in the output of a mathematical 

model or system can be apportioned to different sources of uncertainty in its inputs 

(Saltelli et al., 2000). It is also, the general study of the dependence of a model’s 

behaviour illustrated by continuation and bifurcation diagrams. The parametric 

sensitivity analysis is divided into global sensitivity analysis (addressing wide 

variations in parameter values) and local sensitivity analysis (addressing small variation 

around a nominal operating condition). Sensitivity analysis is important to the 

reliability of simulation results (Ingalls, B. 2008). 

 

Sensitivity analysis is the effect of a perturbed input on the model’s output that 

determines how the “variation in output can be apportioned to different sources of 
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variation” (Saltelli et al., 2000). Sensitivity analysis, furthermore, not only determines 

the effect of variations in assumed information on the model-output it also assists in 

developing an intuition about model structure and guides data collection efforts 

(Sterman 2000).  

 

The initial step of sensitivity analysis is uni-variate, which is conducted according to a 

“one-at-a-time approach” (Saltelli et al., 2000). The changes in model output, which 

stem from the perturbation of each parameter, are analysed separately and the most 

influential parameters are estimated roughly. On the other hand, in nonlinear and 

complex models, uni-variate sensitivity analysis is insufficient for a comprehensive 

study of the model. Simultaneous changes in more than one parameters’ values may 

create an unexpected output change because of the nonlinear relationships among 

different model components (Sterman, 2000). Therefore, a uni-variate sensitivity 

analysis should be succeeded by a multi-variate sensitivity analysis. 

 

Sensitivity analysis may reveal important information to the researcher. The results of 

sensitivity analysis may allow the modeler to identify which of the model parameters 

are most significant to the simulation’s output. The parameters, to which model output 

is sensitive, require more intensive data analysis in order to decrease the uncertainty in 

the parameter value.  

 

As a first step in sensitivity analysis, the distribution function and range of each 

parameter are determined by using the information and sampled data obtained from the 

real system. Typically, ± 20% of the parameter value is used as the distribution range 

(Sterman, 2000). These parameter ranges and distributions can be entered to Vensim’s 
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Sensitivity Simulation module, which is explained in detail in the study by Ford and 

Flynn (2005). The local sensitivity coefficients can be determined by numerical 

approximation or implicit differentiation. 

• Numerical approximation involves determining the coefficient by simulation. 

The coefficient at 0pp =  can be determined by simulating the model at 0pp =

and at another nearby value 00 ppp +=  , where 0p should be normally be 

chosen less than a 5% deviation from 𝑝0 (𝑆𝑎𝑙𝑡𝑒𝑙𝑙𝑖 𝑒𝑡 𝑎𝑙. , 2000). 

• If the explicit formula for steady state is available, then the coefficients will be 

determined by direct differentiation. If the formula is not available, then the 

coefficients will be determined by implicit differentiation of the differential 

equation model.  

 

3.4  Stability Analysis 

The long term behaviour of biochemical and genetic networks will be either  

• Convergence to a steady state; or 

• Convergence to a sustained periodic oscillation (limit cycle oscillations) 

(Ingalls, 2012). 

In systems biology, models do not have divergence.  In phase plane analysis all 

trajectories approach a unique steady state. Figure 5 shows symmetric biochemical 

network. 
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Figure 5: Symmetric biochemical network.    Source: Ingalls (2012)              

This reaction scheme is symmetric because each species allosterically inhibits 

production of the other, resulting in mutual antagonism. With cooperative inhibition 

and first-order consumption rates, the model is  
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Where 𝑠1 𝑎𝑛𝑑 𝑠2  are two types of species, 𝑛 is the number of molecules, 𝑘𝑖  is the 

reaction rate and 𝐾 is the concentration. Considering an asymmetric model 

parametrisation in which 21 nn  , the inhibition by 𝑠2 is more effective than the 

inhibition by 𝑠1. If the other parameters are symmetric, the model will exhibit a steady 

state.  

 

Bistability  

This is when a system exhibits two distinct steady states.  If it exhibits one steady state 

it is referred to as monostable. Bistability provides a system with a type of memory – 

the system’s long-term behaviour reflects its past condition. There are two essential 
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ingredients to bistability: positive feedback and nonlinearity.  Positive feedback is 

implemented in a double negative feedback loop (each species inhibits production of 

the other and thus inhibits the inhibition of itself). Nonlinearity is provided by the 

cooperative inhibition mechanism.  These two ingredients are necessary for stability, 

but they do not guarantee it: the model structure and parameter values must also be 

properly aligned (Ingalls, 2012).  

 

Stable and Unstable Steady States 

The points where nullclines intersect in the system are called steady states. If the system 

attracts nearby trajectories, the steady state will be stable, but if it repels the trajectories 

from it, the steady state will be unstable. In theory, the unstable steady state can be 

maintained by perfectly balanced initial conditions. If there is a deviation from the 

balance, it will cause the trajectory to tend toward a stable steady state. In phase plane 

analysis, stability analysis relied on graphical representations and is restricted to two-

species networks. The researcher is going to look at a technique for stability analysis 

that does not rely on graphical representations and is not restricted to two species 

networks linearised stability analysis. Linearised stability analysis approximates any 

nonlinear system by a linear system and can be used to test for stability of steady states 

(Ingalls, 2012). 

 

A function )(sf near a particular point  𝑠 = 𝑠
_
 by the tangent line centered at 𝑠

_
,  as 

illustrated in Figure 6: 

 

𝑓(𝑠) = 𝑓(𝑠
_
) +

𝑑𝑓

𝑑𝑠
(𝑠

_
). (𝑠 − 𝑠

_
).  

                 (18)
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Figure 6: Linear approximation of a function of a single variable.  Source: Ingalls (2012) 

The tangent line is called the linearization (or linear approximation) of ( )sf  at 𝑠 = 𝑠
_
. 

 

Stability Analysis for Linear Systems 

 

The general form of a two-state linear system is  

).()()(

)()()(

212

211

tdxtcxtx
dt

d

tbxtaxtx
dt

d

+=

+=

                                                              (19)

 

This system can be solved explicitly. Solutions take the form 

.)(

)(

21

21

22212

12111

tt

tt

ecectx

ecectx





+=

+=
                (20) 

The constants ijc  depend on the initial conditions, but the values 1  and 2 are inherent 

to the system. The 1  and 2 are the eigenvalues of the system’s Jacobian (10). 

The Jacobian is constructed from (19). 

The roots 1  and 2  can be explicitly represented as  

  ( ) ( ) 02 =−++− bcadda                  (21) 

Applying the quadratic formula gives 
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( ) ( )

( ) ( ) ( )
.

2

4

2

4)(

2

2

2

1

bcaddada

bcaddada

−−+−+
=

−−+++
=





                (22) 

Depending on the sign of the discriminant ( ) ( )bcadda −−+ 4
2

, these two eigenvalues may 

be real-valued or complex-valued. The general behaviour of the solutions to (21) depends on 

the nature of the exponential functions 
te 1  and 

te 2 . To classify the behaviour of these 

functions, there are two cases to consider; 

Case 1. The discriminant is positive, so that 1  and 2 are real numbers. Then if, 

a) both eigenvalues are negative, then both solutions tend to zero and the steady state is a 

stable node. 

b) either eigenvalue is positive, then most of the solutions diverge and the steady state is 

unstable 

c) both eigenvalues are positive, then all trajectories diverge and the steady state is an 

unstable node 

d) one eigenvalue is positive and the other is negative, then the steady state a saddle point 

(unstable). 

Case 2.  The discriminant is negative, so the eigenvalues are complex-valued. Then the 

solutions of the eigenvalues will be  

.2

1

i

i





−=

+=

                  (23)

 

Since the solutions involve the terms
te 1  and 

te 2 , there is need to evaluate the exponential of 

complex numbers. Substituting into Euler’s formula, the following is obtained  

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ).sincossincos)(

sincossincos)(

22212

12111

titectitectx

titectitectx

tt

tt








−++=

−++=
  (24) 

The long-term behaviour is determined solely by the exponential term 
te
. Then if  

a)  , the real part of the eigenvalues, is negative, then the solutions converge to zero. In 
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this case the steady state is stable and it is called a stable spiral point, or focus. The 

solutions will exhibit damped oscillations as they converge. 

b)  , the real part of the eigenvalues, is positive, then the solutions diverge. The steady 

state is unstable, and is called an unstable spiral point 

There is a linearised stability criterion 

1. If both eigenvalues of the Jacobian have negative real part, then the steady state is 

stable. 

2. If either eigenvalues have positive real part, then the steady state is unstable. 

In summary, to apply the linearised stability criterion to a nonlinear model: 

1. Determine a steady state of interest. 

2. Develop the system Jacobian at that point (by taking the appropriate partial 

derivatives). 

3. Calculate the eigenvalues of the Jacobian. 

4. Test the sign of their real part. 

Summary 

The four types of analysis were discussed fully. All the steps to be followed have been 

detailed down. The Jacobian is very important in determining the eigenvalues that will 

be used in determining the stable points. There are other methods that could be used as 

well that the author did not mention such as Gauss Siedel and relaxation methods. The 

author would wish to take up a study to investigate the three different methods and their 

applicability to different modeling situations. Another area of interest will be the Van 

del bel equation, the way it is used to study physical systems will help a great deal. In 

summary it has been seen that there are different analysis methods that can be used 

depending on what one wants to do with the results. The next chapter will discuss and 

solve mathematical problems.  
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Chapter 4  Discussion of Mathematical Models 

 

Introduction 

In this chapter, the author will solve mathematical modeling questions dealing with 

limit cycle stability, bifurcation, phase plane analysis of linear and nonlinear system. 

With nonlinear system, a model on chemostat will be solved.  

 

Example of Limit Cycle Stability  

To check for stability, we need to transform the rectangular coordinates to polar 

coordinates ( ),r .  Then we find an expression for the derivative of r. 

• If 0=
•

r , then the system is on the limit cycle.  

• The system will be stable if 0
•

r  inside the limit cycle and if 0
•

r  outside the 

limit cycle.  

• It will be unstable if 0
•

r  inside the limit cycle and if 0
•

r outside the limit 

cycle.  

• Lastly the system will be semi-stable 0
•

r inside and outside limit cycle or 

0
•

r inside and outside the limit cycle. 

The following polar equations will be used for (𝑟, 𝜃). 

𝑟2 = 𝑥1
2 + 𝑥2

2 

𝑡𝑎𝑛(𝜃) =
𝑥2

𝑥1
 

𝑟
•

=
𝑥1𝑥

•

1 + 𝑥2𝑥
•

2

𝑟
 

   𝜃
•

=
𝑥1𝑥

•
2−𝑥2𝑥

•
1

𝑟2 .                                                    (25)
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Consider the differential equations 

  
( )

( ),1

1

2

2

2

1212

2

2

2

1121

−+−−=

−+−=

•

•

xxxxx

xxxxx

      (26)

 

with initial conditions   

𝑟0 = √
1

𝑐0 + 1
,  𝜃(0) = 𝜃0,

 

 

then substituting for 
•

r and  
•

  we get 

𝑟
•

=
𝑥1𝑥

•

1 + 𝑥2𝑥
•

2

𝑟
 

= −
(𝑥1

2 + 𝑥2
2)(𝑥1

2 + 𝑥2
2 − 1)

𝑟
 

= −
𝑟2(𝑟2 − 1)

𝑟
 

= −𝑟(𝑟2 − 1) 

𝜃
•

=
𝑥1𝑥2

•
− 𝑥2𝑥1

•

𝑟2
 

= −
𝑥1

2 + 𝑥2
2

𝑟2
 

= −1 

r increases inside the unit circle and decreases outside it. So, there is a stable limit cycle 

when  

𝑟 = 1 (𝑢𝑛𝑖𝑡 𝑐𝑖𝑟𝑐𝑙𝑒)

 𝜃
•

= −1. 
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Solution:   𝑟 = (1 + 𝑐0𝑒−2𝑡)
−1

2 , 𝑐0 = 𝑟−2 − 1 

                                        𝜃 = 𝜃0 − 𝑡.  

Limit as →t of r is unity. 

 

Example of Bifurcation Analysis 

Given the differential equation 

( ) ).(1)( txatx −=
•

                 (27) 

The steady state is when .0=x  The parameter value 1=a  is a bifurcation point in the 

system.  

Look at the case when 𝑎 < 1.  

• Then for 0x  there is 𝑥
•

> 0 and for 0x there is 𝑥
•

< 0.  

• The steady state when 0=x  is stable, trajectories converge to the point 0=x .  

Next, look at the case for which 𝑎 > 1. 

• Then, for 0x there is 𝑥
•

< 0 and for 0x there is 𝑥
•

> 0 .  

The steady state at 0=x  is thus unstable, as trajectories are repelled from this point. 

 

Example of Phase Plane Analysis 

Consider the biochemical network, which involves two species, S1 and S2. To simplify 

the analysis, we suppose that all reaction rates follow mass action (or equivalently, 

Michaelis – Menten kinetics with all enzymes operating in their first-order regime). 

The first kinetic model that successfully explained this situation was started by Leonor 

Michaelis and Maud Menten (Ingalls, 2012). They assumed that the enzyme directly 

interacts with substrate in a stoichiometric manner, the interaction results in a well-

defined intermediate complex, and the interaction leads to thermodynamic equilibrium. 
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The allosteric inhibition of v1 will be modeled by presuming strong cooperative binding 

of n molecules of S2. We can then write  

𝑣1 =
𝑘1

1 + (
𝑠2

𝐾 )
𝑛 

𝑣2 = 𝑘2 

  𝑣3 = 𝑘3𝑠1 

𝑣4 = 𝑘4𝑠2 

𝑣5 = 𝑘5𝑠1 

where,  𝑘𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛, 𝑣𝑖  𝑎𝑟𝑒 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑠 (𝑖 = {1,2. .5}) 

 𝑎𝑛𝑑 𝑎𝑟𝑒 𝑚𝑜𝑑𝑒𝑙𝑒𝑑 𝑏𝑦 𝑝𝑟𝑒𝑠𝑢𝑚𝑖𝑛𝑔 𝑎 𝑠𝑡𝑟𝑜𝑛𝑔 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝑜𝑓 𝑛 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑜𝑓 𝑆2,   

𝑠1 = [𝑆1]  and  𝑠2 = [𝑆2] so that the model is, 

𝑑

𝑑𝑡
𝑠1(𝑡) =

𝑘1

1 + (
𝑠2(𝑡)

𝐾 )
𝑛 − 𝑘3𝑠1(𝑡) − 𝑘5𝑠1(𝑡) 

                                         
𝑑

𝑑𝑡
𝑠2(𝑡) = 𝑘2 + 𝑘5𝑠1(𝑡) − 𝑘4𝑠2(𝑡).                                            (28) 

The nullclines can be determined analytically.  

The nullclines −1 is defined by,  

0 =
𝑘1

1+(
𝑠2(𝑡)

𝐾
)

𝑛 − 𝑘3𝑠1(𝑡) − 𝑘5𝑠1(𝑡)               (29) 

which can be simplified to,  

𝑠1 =
𝑘1

(1 + (
𝑠2(𝑡)

𝐾 )
𝑛

) (𝑘3 + 𝑘5)

 

The nullclines −2 is defined by,  

0 = 𝑘2 + 𝑘5𝑠1(𝑡) − 𝑘4𝑠2(𝑡). 

which can be written as,   
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𝑠2 =
𝑘1 + 𝑘5𝑠1

𝑘4
. 

 

 

Example of Stability Analysis for Nonlinear Systems (Chemostat) 

A chemostat is a growth vessel into which fresh medium is delivered at a constant rate 

and cells and spent medium overflow at that same rate. 

Consider the model,  

𝑑𝑥

𝑑𝑡
= 𝑘(𝑐) − 𝐷𝑥,    

𝑑𝑐

𝑑𝑡
= 𝐷(𝑐0 − 𝑐) −

1

𝑦
𝑘(𝑐)𝑥,            (30) 

where )(ck is the growth-rate function 𝐷  is the dilution rate and 𝑐  is the nutrient 

concentration. The typical graph of  )(ck is shown in Figure 7. 

 

Figure 7: Typical graph of specific growth-rate function.   Source: Kapur (1992) 

The system has the following two possible steady states: 

𝑥
__

= 0,  𝑐
__

= 𝑐0; 

                                                                   𝑘(𝑐) = 𝐷,  𝑥
__

= 𝑦(𝑐0 − 𝑐
_
)             (31) 

The first state is called the washed-out steady state because, in this state no 

microorganisms are produced. The second state, when it exists, is called the normal 
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steady state and is of greater interest. The first state can arise when  𝐷 > 𝑘(𝑐0) so 

that 
𝑑𝑥

𝑑𝑡
 is always negative and 𝑥 → 0, 𝑐 → 𝑐0. To discuss the stability of this steady 

state, we consider slight deviations )(tu and )(tv from the steady state, and write  

𝑥(𝑡) = 𝑢(𝑡),   𝑐(𝑡) = 𝑐0 + 𝑣(𝑡).              (32) 

Substituting in (30) and neglecting products, squares and higher powers of )(tu and 

)(tv  we get   

  .)(
1

   ,)( 00 uck
y

D
dt

dv
uDck

dt

du
v −−=−=               (33) 

We try the solution 

 

tt BetvAetu  == )(   ,)(                 (34) 

to have  

( )

( ) ( ) 0
1

,0][

0

0

=++

=−+

BDAck
y

AckD





              (35) 

Eliminating A and B, we obtain the equation for determining  

 ( ) .0)( 0 =+−+ DckD                (36) 

Both the roots are real, and both are negative if )( 0ckD  and if this is satisfied then

)(tu and )(tv  approach zero as →t so that 0)( →tx and .)( 0ctc →  Consequently, 

the equilibrium position is stable and is in fact a node. Then if )( 0ckD  , one of the 

values of is positive, )(tu and )(tv  can increase so that the equilibrium position is 

unstable.  

 

Biologically, the discussion gives the following: if )( 0ckD  , and some 
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microorganisms are introduced in the chemostat, they will be ultimately washed out; 

however, if )( 0ckD  , the populations of the microorganisms will increase.  

 

We now discuss the normal steady state position. The second set of equations (35) will 

give a positive real value of 
_

c  only if ,kD   and then 0
_

x  only if  

𝑐
_

< 𝑐0,  or  𝑘(𝑐
__

) < 𝑘(𝑐0)  or 𝐷 < 𝑘(𝑐0).                            (37) 

Thus, a necessary and sufficient condition for the existence of the normal steady state 

position is 𝐷 < 𝑘(𝑐0). 

Now, to discuss the stability of the normal state, we substitute  

     𝑥(𝑡) = 𝑥
__

+ 𝑢(𝑡),   𝑐(𝑡) = 𝑐
__

+ 𝑣(𝑡)             (38) 

in (32) and get 

𝑑𝑢

𝑑𝑡
= [(𝑘(𝑐

_
) + 𝑣(𝑡)𝑘 ⋅ (𝑐

_
)+. . . ) − 𝐷][𝑥

_
+ 𝑢(𝑡)], 

          
𝑑𝑣

𝑑𝑡
= 𝐷[𝑐0 − 𝑐

_
− 𝑣(𝑡)] −

1

𝑦
[𝑘(𝑐

_
) + 𝑣(𝑡)𝑘 ⋅ (𝑐

_
)+. . . ][𝑥

_
+ 𝑢(𝑡)]          (39) 

Neglecting products, squares, and higher powers of )(tu  and )(tv  we obtain 

𝑑𝑢

𝑑𝑡
= 𝑘(𝑐

_
)𝑥

_
𝑣(𝑡),      

𝑑𝑣

𝑑𝑡
= −𝐷𝑣 − [𝑣(𝑡)𝑘 ⋅ (𝑐

_
)𝑥

_
+ 𝑘(𝑐

_
)𝑢(𝑡)]            (40) 

using solution (34) we get 

𝜆𝐴 − 𝑘 ⋅ (𝑐)𝑥𝐵 = 0, 

                                           
1

𝑦
𝑘(𝑐)𝐴 + [𝜆 + 𝐷 +

1

𝑦
𝑘 ⋅ (𝑐)𝑥] 𝐵 = 0.             (41) 

Eliminating A and B, we get 

𝜆2 + 𝜆 [𝐷 +
1

𝑦
𝑘 ⋅ (𝑐

_
)𝑥

_
] +

1

𝑦
𝑘(𝑐

_
)𝑘 ⋅ (𝑐

_
)𝑥

_
= 0            (42) 

Since 𝐷, 𝑦, 𝑥
_
, 𝑘(𝑐

_
)  and 𝑘(𝑐

_
)are all positive, both the roots of this equation are real and 

negative or both its roots are complex but with negative real parts. In either case )(tu  

and )(tv approach zero as →t and the normal steady state is asymptotically stable; 
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in fact, it is a node. Therefore, the result we get is as shown in Table 2: 

 

 

Steady state )( 0ckD   )( 0ckD   

Washed-out state Asymptotically stable; node Unstable; saddle point 

Normal state Does not exist Asymptotically stable; node 

Table 2: Steady state results for Chemostat 

We also get the operating diagram shown in Figure 8.  

 

Figure 8: Operating diagram for the stability of the two states  Source: Kapur (1992) 

If the point (𝐷; 𝑐0) of the operating conditions lies below curve A, the normal steady 

state (𝑥
_

; 𝑐
_
)is the only stable steady state. This means that we should expect that, 

whatever be the non-zero initial values of (𝑥 ; 𝑐)in the chemostat, ultimately, they will 

converge to (𝑥
_

; 𝑐
_
). Similarly, if the point  (𝐷; 𝑐0) lies above the curve A, the washed-

out steady state is the only stable equilibrium state. Thus, whatever be the initial values 

of (𝑥 ; 𝑐) in the chemostat, these should always converge to  (0; 𝑐0). These results are 

based on the local stability analysis, which have been discussed above.  To see whether 

these are true for large deviations from steady state positions, numerical integrations of 
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the basic equations is carried out.  We do this for Monod’s model for which our original 

model becomes  

𝑑𝑥

𝑑𝑡
= (

𝑘𝑐

𝐾+𝑐
− 𝐷) 𝑥,     

𝑑𝑐

𝑑𝑡
= 𝐷(𝑐0 − 𝑐) −

1

𝑦

𝑘𝑐

𝐾+𝑐
𝑥.                   (43) 

We now use the non-dimensional variables and parameters 

𝑋 =
𝑥

𝑦𝑐0
, 𝜏 = 𝑘𝑡, 𝐶 =

𝑐

𝑐0
, 𝐾 =

𝐾

𝑐0
, 𝐷 =

𝐷

𝑘
              (44) 

to get 

𝑑𝑋

𝑑𝜏
= (

𝐶

𝐾+𝐶
− 𝐷) 𝑋,   

𝑑𝐶

𝑑𝜏
= 𝐷(1 − 𝐶) −

𝐶

𝐾+𝐶
𝑋.             (45) 

The curve A now becomes 

 𝐷
_

=
1

𝐾+1
.               (46) 

We now take two operating conditions, one above the curve, namely 𝐾
_

= 1,  𝐷
_

= 1 and 

the other below the curve 𝐾
_

= 1,  𝐷
_

=
1

3
. The differential equations and the equilibrium 

points for the two cases are as follows: 

𝑑𝑋

𝑑𝜏
= −

1

1+𝐶
𝑋,    

𝑑𝐶

𝑑𝜏
= (1 − 𝐶) −

𝐶𝑋

1+𝐶
,    (0 ; 1)             (47) 

𝑑𝑋

𝑑𝜏
=

2𝐶−1

3(1+𝐶)
𝑋,   

𝑑𝐶

𝑑𝜏
=

1

3
(1 − 𝐶) −

𝐶𝑋

1+𝐶
,      (0 ; 1),  (

1

2
;

1

2
).             (48) 

The trajectories on the XC-plane for the above equations are shown below in Figure 9 

and Figure 10 respectively.  
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Figure 9: Trajectories for the first solution (47)  Source: Kapur (1992) 

 

Figure 10: Trajectories for the second solution (48)    Source: Kapur (1992) 
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Summary  

The author managed to solve different types of questions on phase plane of linear 

systems and nonlinear systems. Bifurcation analysis problem was also solved. 

Unfortunately, computer programs could not be run to solve more problems. The next 

chapter gives an outline of the computer programs that the author could have done.  
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Chapter 5   Computational Software 

 

Introduction 

The mathematical approaches covered in this research can be executed in a number of 

computational software packages. This chapter offer two such programs: MATLAB 

(Matrix Laboratory) and XPPAUT (X-windows Phase Plane Auto).  Many researchers 

subscribe to MATLAB to be the standard tool for analysis, but it is a commercial 

product, which may be too expensive to many. XPPAUT is then suggested for users 

who have confined experience with computational software and it is freely available. 

There are many other software packages that can be used as well. 

MATLAB 

MATLAB software can be bought directly from the company website 

(www.mathworks.com/matlab) or may be accessed from institutional license. It is well 

suited for matrix calculations. The tutorials are available online and documentation 

provided by company. User-coded scripts is used in most analysis and the interface is 

command-line driven (Gilat, A. 2008). 

The command ‘plot’ is used to plot trajectories in the phase plane analysis. Running 

multiple simulations and plotting them together can plot a collection of trajectories. A 

command ‘quiver’ is used to produce direction field. The command mesh grid generates 

a mesh of point at which the direction arrows can be placed. The length of the arrows 

in the x and y directions can then be assigned by calculating the right-hand-side of the 

differential equations. Dividing each arrow by its length will result in a scaled direction 

field. 

 

http://www.mathworks.com/matlab
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The command ezplot will generate nullclines. Although the nullclines in chain1.m can 

be solved explicitly, we nevertheless use this model to illustrate the general procedure. 

The ezplot command is also used to plot the solution to implicit equations. The program 

PPLANE, by John Polking, provides a GUI for phase plane analysis in MATLAB 

(Gilat, A. 2008). The interface allows the user to specify model equations and display 

a direction field or nullclines. 

 

MATLAB can be used to numerically approximate parametric sensitivity. A template 

script is: 

 

nom par=5;       % set nominal parameter value 

par=nom par;       % assign nominal parameter value 

[t nom, s nom]=ode45(ODEFUN,[0,Tend],s0);   % nominal trajectory 

s nom ss = s nom(length(t nom));    % steady-state concentration 

delta=0.05;       % set deviation (5 percent) 

par=par*(1+delta);      % perturbed parameter value 

[t pert,s pert]=ode45(ODEFUN,[0,Tend],s0);   % perturbed trajectory 

s pert ss=s pert(length(t pert));     % steady-state concentration 

abs sens=(s pert ss-s nom ss)/(delta*nom par);   % absolute sensitivity 

rel sens=abs sens*(nom par value/s nom ss);   % relative sensitivity 

Source: Gilat, A. (2008) 

 

XPPAUT 

G. Bard Ermentrout created XPPAUT and is maintaining it. The name of the program 

incorporates three key features: it runs in the X-windows environment; Phase Plane 

analysis is one of its primary uses; and it employs a program called AUTO for 
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bifurcation analysis. (E. Doedel created AUTO.) Ermentrout, B. (2002). The XPPAUT 

software and documentation are available online.  

 

Summary 

The computer programs mentioned in this chapter are so far leading in the analysis of 

models, each has got its own advantages that outweigh the other package. So, it depends 

really on what one hopes to achieve that will decide which package to use. 
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Chapter 6 Conclusions and Recommendations 

 

Research assisted in providing a deeper understanding of different ways of analysing 

dynamic mathematical models. Intimate knowledge of the physical processes is 

required in the modeling of any physical system. The modeler must decide what 

processes are to be modeled and how detailed an analysis is required. The modeling 

process can be greatly altered by approximations in the calculated dynamic behavior. 

Therefore, each simplifying assumption must be justified. 

 

The modeling process is verbose in that one repeatedly refines the models to show the 

current level of understanding. Therefore, there is a need to use top of the range 

computational software.  

 

As mathematics students at University of Fort Hare, we have been exposed to many 

subjects such as Ordinary Differential Equations, Calculus of Variations, Numerical 

Analysis and Mathematical Modeling. Various similarities and connections were 

noticed among these subjects. That is in fact the motivation behind the idea of 

presenting the analysis of Dynamic Mathematical Modeling. Hopefully, I will continue 

to research on different analysis that can be used to understand mathematical systems 

better.  

 

If in any system, there are problems arising, then action must be taken to solve such 

problems. However, making the wrong decision could propagate the problem, and 

ultimately collapse the system. Therefore, understanding the behaviours and structures 
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of systems is essential for problem solving. In general, systems contain many complex 

relationships, which might cause them to be nonlinear, and make it difficult for the 

human mind to think through the problem. Therefore, many graphical and mathematical 

modeling methods have been developed as potential tools to understand a system.  

 

 To this end it is highly recommended to familiarise with a lot of different ways of 

analysing systems so that one is able to understand models that will make life easier. 

Also the researcher is recommending to research on different computational software 

that will assist in more analysis of systems. 
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