
General Relativity and Gravitation           (2020) 52:92 
https://doi.org/10.1007/s10714-020-02740-9

RESEARCH ART ICLE

Effect of a low density dust shell on the propagation of
gravitational waves

Nigel T. Bishop1 · Petrus J. van der Walt1 ·Monos Naidoo1

Received: 30 May 2020 / Accepted: 31 August 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Using the Bondi-Sachs formalism, the problem of a gravitational wave source sur-
rounded by a spherical dust shell is considered. Using linearized perturbation theory,
the geometry is found in the regions: in the shell, exterior to the shell, and interior to
the shell. It is found that the dust shell causes the gravitational wave to be modified
both in magnitude and phase, but without any energy being transferred to or from the
dust.
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1 Introduction

Calculations of gravitational waves (GWs), both analytical and numerical, normally
assume that they propagate from source to a detector on Earth in a vacuum spacetime.
Although the average cosmological density of baryonic plus dark matter is small, of
order 10−29 g/cm3, a detected GW event may be a considerable distance away from
its source, up to order 1 Gpc, and the quantity of intervening matter is not negligible.
Further, it is possible that the astrophysical environment of a source event could be
such that the source is surrounded by a substantial amount of matter. Thus, as wemove
into an era of precision GW measurements, it is important to quantify any effects due
to propagation of GWs through a non-vacuum spacetime.

These issues have been investigated previously. There is a simple physical argument
that an ideal fluid should not extract energy from a GW, because there is no physical
mechanism for it to do so; and this idea has been given a precise expression in the work
of Esposito [1], and of Ehlers et al. [2,3]. However, if the matter is dissipative, e.g.
through shear viscosity, then one would expect GWs to be attenuated. Hawking [4]
investigated GWs in cosmological models and determined conditions for complete
absorption; subsequently, the general theory of GW propagation through a viscous
fluid was further developed [5–8]. More recently, Goswami et al. [9] have investigated
whether the properties of dark matter can be constrained by the attenuation effect
and GW observations. Baym et al. [10] have extended the hydrodynamics model of
the cosmological fluid to a kinetic model with low collision rates and calculated the
attenuation effect.

This work uses the Bondi-Sachs [11,12] formalism for the Einstein equations; see
also the reviews [13,14]. We consider small perturbations about a fixed background,
which topicwasfirst considered some time ago andknownas the “quasi-Netwonian” or
“quasi-spherical” approximation [15,16]; there has also been previous work using this
approach in which a dust cloud source was considered [17]. However, this work uses
the method of separation of variables to construct, within a Bondi-Sachs framework,
eigensolutions for linearized perturbations [18]; when the background is Minkowski
spacetime, these solutions have a remarkably simple analytic form. This approach
has given additional insights in another context, that of GWs propagating in de Sitter
spacetime [19]; see also [20,21].

The paper considers themodel problem of a GW source in a spacetime that is empty
apart from matter contained in a thin shell around the source (then, results for a thick
matter shell can be modelled by adding up, i.e. integrating, over thin shells). As a first
step, the shell is given the simplest equation of state, i.e., that of dust. It is found that
the effect of the shell is to modify the outgoing GWs in both phase and magnitude,
although in a way that does not contradict previous results about energy transfer. The
modification of the GW is small, and in a cosmological context is not expected to
be measurable; but it is possible that a GW event could occur in which the local
astrophysical environment is such that the effect would be measurable. Further, there
is a view that LIGO data for black hole mergers may contain echoes, and explanations
investigated, using numerical simulations, have included new physics near the event
horizon, and the astrophysical environment such as a shell around the system; see,
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e.g., [22,23]; this matter is discussed further in Sect. 5. In any case, the results are
certainly of interest to the theory of GWs propagating in matter.

Section 2 specifies the problem, and constructs the background solution, i.e. when
the geometry is spherically symmetric. The solution when the source is emitting GWs
is then constructed in Sect. 3. The physical interpretation of the modified GWs is
discussed in Sect. 4. The main part of the paper ends with a Conclusion (Sect. 5),
which also includes a discussion of further work. The paper makes substantial use
of computer algebra; the scripts used are available online, and are summarized in
“Appendix A”.

2 Background solution

The Bondi-Sachs formalism for the Einstein equations is well-known [11,12]. The
coordinates are based on outgoing null hypersurfaces labelled by the coordinate x0 =
u. Let x A (A = 2, 3) be angular coordinates (e.g. spherical polars (θ, φ)) that label the
null ray generators of a hypersurface u = constant, and let x1 = r be a surface area
radial coordinate. The Bondi-Sachs metric describes a general spacetime, and here we
write it as

ds2 = −
(
e2β

(
1 + W

r

)
− r2hABU

AU B
)
du2 − 2e2βdudr

− 2r2hABU
Bdudx A + r2hABdx

Adx B , (1)

where hABhBC = δAC , and the condition that r is a surface area coordinate implies
det(hAB) = det(qAB) where qAB is a unit sphere metric (e.g. dθ2 + sin2 θdφ2). We
represent qAB by a complex dyad (e.g. q A = (1, i/ sin θ)) and introduce the complex
differential angular operators ð, ð̄ [24], with the operators defined with respect to the
unit sphere as detailed in [14,25]. Then hAB is represented by the complex quantity
J = q AqBhAB/2 (with J = 0 characterizing spherical symmetry), and we also
introduce the complex quantity U = U AqA. Einstein’s equations are

Eab := Rab = 8π

(
Tab − 1

2
gabT

)
, (2)

with: Eab representing a set of equations, rather than tensor components; Tab =
ρVaVb for dust of density ρ and 4-velocity Va ; T = −ρ. Einstein’s equations may be
categorized as

Hypersurface equations: E11, E1Aq
A, EABh

AB,

Evolution equation: EJ = EAB(q AqB − JhAB),

Constraint equations: E00, E01, E0Aq
A. (3)

Much previous work uses EJ = EABq AqB ; in the case that the background is not
Minkowskian, the additional term introduced above leads to some simplification of
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Fig. 1 Schematic representation:
The spacetime is empty apart
from a GW source at the origin,
and a shell of mass MS located
between r = r0 and r = r0 + Δ.
The spacetime thus comprises
three regions as shown: Interior
(I ), Shell (S) and Exterior (E)

the equation. A characteristic initial value problem may be formulated for the above
with J specified on a null hypersurface u = constant [26].

We consider the physical problem of a spacetime that is empty except in a shell
located at r0 < r < r0 + Δ. where there is a spherically symmetric distribution of
dust with a density profile that vanishes at r = r0 and r = r0 + Δ; see Fig. 1. An
example density profile is

ρ = ρc

(
1

r3
− r0

r4

) (
r0 + Δ

r4
− 1

r3

)
, (4)

and other density profiles tested are in Eq. (28) in “Appendix A”. There is also a source
of quadrupolar GWs at the origin, but the first problem that needs to be solved is the
background solution for which this source is neglected. The problem is spherically
symmetric so J = U = 0. Further, the shell density is small and terms of O(ρ2) are
neglected. The collapse of the shell under its own gravity is an effect with acceleration
O(ρ2) and is therefore ignored. Thus the shell is treated as static, and the only non-
zerometric coefficients are β(r),W (r). The Einstein equations for E11, EABhAB then
simplify to [26,27]

∂rβ = 2πrρ(V1)
2, ∂rW = e2β − 1 − 4πe2βρr2. (5)

Here, to O(ρ), ρ(V [B]
1 )2 = ρ and β = O(ρ), so we have

∂rβ = 2πrρ, ∂rW = 2β − 4πρr2, (6)

which are solved subject to the boundary conditions β → 0 as r → ∞ (so that the
background coordinates are asymptotically Minkowskian), and W = O(r) as r → 0
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(so that the W/r is regular at the origin). We find:

r < r0 : β[B] = B0, W [B] = 2r B0

r0 + Δ < r : β[B] = 0, W [B] = −2MS, (7)

with the superfix [B] indicating a quantity in the background depending only on r , and
where B0 is a constant and MS is the mass of the shell (see below). The solution for
β[B],W [B] in r0 ≤ r ≤ r0 + Δ is lengthy and is in the Supplementary Material, see
“Appendix A”. In the case of Eq. (4) we find,

MS =
∫ r0+Δ

r0
4πρr2dr = ρc

πΔ3(10r20 + 10r0Δ + 3Δ2)

15r40 (r0 + Δ)4
,

B0 = −ρc
πΔ3(2r0 + Δ)(5r20 + 5r0Δ + 2Δ2)

30r50 (r0 + Δ)5
= −MS

2r0
+ O(Δ), (8)

with the result B0 = −MS/2r0 + O(Δ) applying to all density profiles tested. The
solution in r > r0 + Δ is Schwarzschild spacetime in Eddington-Finkelstein coordi-
nates. The solution in r < r0 is Minkowski spacetime (which in standard form has
β = W = 0), and this can be seen upon applying the coordinate transformation

u → u′ = (1 + 2B0)u. (9)

We check, using computer algebra, that for a given density profile, β and W and their
first derivatives are continuous at the interfaces at r = r0 and r = r0 + Δ; and also
that the solution in the shell satisfies all 10 Einstein equations.

3 Perturbed solution

Having determined the background solution,which can be regarded asMinkowski plus
small spherically symmetric corrections of O(ρ), we perturb the solution by writing
the metric quantities (β,U ,W , J ) as

β = β[B] + β[e], U = U [e], W = W [B] + W [e], J = J [e], (10)

where the superfix [e] indicates the deviation of a quantity about its background value.
The metric perturbations are functions of (u, r , x A) and are treated as O(ε) with
ε � 1, and with the smallness parameters ρc, ε independent of each other. We also
introduce the matter field perturbations

ρ = ρ[B] + ρ[e], Va = V [B]
a + V [e]

a , (11)

with V [e]
a treated as O(ε) and ρ[e] treated as O(ρcε). Linearization about certain

backgrounds was described in [18]; using a similar procedure we retain only terms of
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order O(ρc, ε, ρcε) and find that the hypersurface and evolution equations are

E11 : 4

r

(
∂rβ

[e] + ∂rβ
[B]) = 8πT11,

q AE1A : 1

2r2

[
−2 r4∂r

(
ðβ[e]

r2

)
− 2 ∂r

(
r4 β[B]∂rU [e])

+∂r

(
r4∂rU

[e]) + r2ð̄∂r J
[e]

]

= 8πq AT1A,

hAB EAB : 4 β[B] − 2 ðð̄β[e] − 2 ∂rW
[B] + 4β[e]∂rW [B]

−
(
2 β[B] − 1

) [
4β[e] − 2∂rW

[e] + 1

r2
∂r

(
r4ðŪ [e] + r4ð̄U [e])]

+ 1

2

(
ð̄
2 J [e] + ð

2 J̄ [e])

= 8π
(
hABTAB − r2 T

)
,

EJ : −2 ð2β[e] − ∂r

(
r ∂r J

[e]W [B])

+
(
2 β[B] − 1

) [
−∂r

(
r2ðU [e]) + ∂r

(
r2∂r J

[e]) − 2 r ∂r

(
r∂u J

[e])]
= 0. (12)

The above equations are tackled using the method of separation of variables, rather
than formulation as a characteristic initial value problem. The required ansatz for the
quantities β[e],U [e],W [e], J [e], ρ[e], V [e]

a is

β[e] = �(β[2,2](r)eiνu)0Z2,2, U [e] = �(U [2,2](r)eiνu)1Z2,2,

W [e] = �(W [2,2](r)eiνu)0Z2,2,

J [e] = �(J [2,2](r)eiνu)2Z2,2,

ρ[e] = �(ρ[2,2](r)eiνu)0Z2,2, V [e]
0 = �(V [2,2]

0 (r)eiνu)0Z2,2,

V [e]
1 = �(V [2,2]

1 (r)eiνu)0Z2,2, q AV [e]
A = �(V [2,2]

ang (r)eiνu)1Z2,2, (13)

with the superfix [2,2] indicating a coefficient of s Z2,2. The perturbations oscillate in
time with frequency ν/(2π). The quantities s Z�,m are spin-weighted spherical har-
monic basis functions related to the usual sY�,m as specified in [14,18]. They have the
property that 0Z�,m are real, enabling the description of the metric quantities β,W
(which are real) without mode-mixing; however, for s �= 0 s Z2,2 is, in general, com-
plex. A general solution may be constructed by summing over the (�,m) modes, but
that is not needed here, since we are considering a source that is continuously emit-
ting GWs at constant frequency dominated by the � = 2 (quadrupolar) components
(Of course, the wave frequency changes with inspiral, and we are assuming that this
timescale is much longer than the wave period). We substitute the ansatz Eq. (13) into
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Eq. (12) with � = 2 to obtain: (1) On integrating over the sphere, only the � = 0
part survives and Eq. (6) for the background are obtained; (2) Multiplication by s Z∗

2,2
(where ∗ denotes complex conjugate) followed by integration over the sphere kills the
spherically symmetric part, and Eq. (12) transform to a system of ordinary differential
equations in r :

E11 : 4
r

d

dr
β[2,2] = 8π

(
ρ[2,2] − 2 ρ[B]V [2,2]

1

)
,

q AE1A : 1
r2

[ √
6 r4

d

dr

(
β[2,2]

r2

)
+ 1

r2
d

dr

(
r4 β[B] d

dr
U [2,2]

)

− 1

2

d

dr

(
r4

d

dr
U [2,2]

)
+ r2

d

dr
J [2,2]

]

= 8π ρ[B] V [2,2]
ang ,

hAB EAB : 12 β[2,2] + 4β[2,2] d
dr

W [B] + 2
√
6 J [2,2]

−
(
2 β[B] − 1

) [
4 β[2,2] − 2

√
6 r U [2,2]

−√
6

d

dr

(
r2U [2,2]) − 2

d

dr
W [2,2]

]

= 8π r2 ρ[2,2],

EJ : 4
√
6β[2,2] + ∂r

(
r W [B] d

dr
J [2,2]

)

+
(
2 β[B] − 1

) [
2

d

dr

(
r2U [2,2]) − d

dr

(
r2

d

dr
J [2,2]

)

+2 i ν r
d

dr

(
r J [2,2])]

= 0. (14)

Equations (14) contain terms of order O(ε, ρε); terms of O(ρ2) may be larger than
those ofO(ρε), but are excluded by the procedure that kills the spherically symmetric
part of Eq. (12). In changing from Eqs. (12) to (14), formulas were used for the effect
of the ð operator on s Z�,m [14,18]

ð−1Z2,2 = −√
6 0Z2,2, ð 0Z2,2 = √

6 1Z2,2, ð̄ 1Z2,2 = −√
6 0Z2,2,

ð 1Z2,2 = 2 2Z2,2,

ð̄ 2Z2,2 = −2 1Z2,2, ð
2 −1Z2,2 = −6 1Z2,2, ð

2
0Z2,2 = 2

√
6 1Z2,2,

ðð̄ 0Z�,m = −6 0Z�,m,

ðð̄ 1Z�,m = −6 1Z�,m, ð̄
2
2Z2,2 = 2

√
6 0Z2,2, ð

2 −2Z2,2 = 2
√
6 0Z2,2, (15)
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where the above formulas are specialized to the case � = 2. Aswell as the hypersurface
Eq. (14), we will also need the constraints E0a , which are

E00 : − 1

2r3

[
12 rβ[2,2] + 24 rβ[B]β[2,2] − 2

r

d

dr

(
r2

d

dr
β[2,2]

)

− √
6 r U [2,2]

(
d

dr

(
W [B]

r

)
+ 2

d

dr
β[B]

)

− 6 r3 W [B] d

dr

(
β[2,2]

r2

)
− 2 r2

(
2
d2

dr2
β[2,2]W [B] + d

dr
β[2,2] d

dr
W [B]

)

− 6 r3 W [2,2] d

dr

(
β[B]

r2

)
− 2 r2

(
2
d2

dr2
β[B]W [2,2] + d

dr
β[B] d

dr
W [2,2]

)

+ 6W [2,2] − r2
d2

dr2
W [2,2]

− r W [2,2] d2

dr2
W [B] − rW [B] d2

dr2
W [2,2] − 2 iν r W [2,2]

+i
4ν

r2
d

dr

(
r β[2,2]) + 4 i ν r β[2,2]W [B]

+4 i ν r2
d

dr
β[2,2]W [B] − 2

√
6 i ν r3U [2,2]

]

= 4π

(
ρ[2,2] + ρ[B] 2β[2,2]r + W [2,2]

r

)
,

E01 : − 1

2r2

[
24β[B]β[2,2] + 12 β[2,2] − r

d2

dr2
W [2,2] + 4 iνr2

d

dr
β[2,2]

− d

dr

(
2 r2

d

dr
β[2,2] + 2 r W [B] d

dr
β[2,2] + 2 r W [2,2] d

dr
β[B] + r2

√
6U [2,2]

)]

= 4π

(
ρ[2,2] − 2 ρ[B]V [2,2]

1 + ρ[B] W [2,2]

r

)
,

q AE0A : 1

2r2

[
4 r2β[B]U [2,2] + 2

d

dr

(
r4β[B] d

dr
U [2,2]

)
− 2 i ν r4β[B] d

dr
U [2,2]

− √
6

(
2 r W [2,2] d

dr
β[B] + r2

d

dr

(
W [2,2]

r

)
− 2 i ν r2 β[2,2]

)

− 2 r2
d

dr
W [B]U [2,2] − 1

r

d

dr

(
r4W [B] d

dr
U [2,2]

)

−2 r2U [2,2] − d

dr

(
r4U [2,2]) + i ν r4

d

dr
U [2,2] + 2 iν r2 J [2,2]

]

= 4π ρ[B] (2 V [2,2]
ang +U [2,2]r2

)
. (16)

The procedure for solving Eqs. (14) and (16) was given in [18], and in outline is
as follows. Firstly, E11 is integrated to find β[2,2](r); then q AE1A and EJ are solved
together to give J [2,2](r),U [2,2](r); then hAB EAB may be integrated to giveW [2,2](r).
The solution obtained has 6 constants of intergration, 2 of which are fixed on applying
the constraints E00, q AE0A.
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We will see later that the matter terms can be expressed as functions of ρ[B] and
the metric, so that Eq. (14) take the form

(M + ρcR)( f ) = 0, (17)

where f is a multi-vector containing β[2,2](r), J [2,2](r),U [2,2](r),W [2,2](r), and
M,R are linear differential operators with M being the operator when ρc = 0,
i.e. when the background is Minkowski. Let fM be the solution to the homogeneous
problemM( fM ) = 0. fM was derived in Eq. (56) of [18] (but note that the reference
used a different notation, and used ðs 0Z�,m rather than s Z�,m as angular basis), and
is

β[2,2] = b0,

W [2,2] = 6iνr2C10 + r(12C10 − 10b0) + C50

− 12iνC40

r
− 6C40

r2
− Cin0 exp(2irν)

3

r2
,

U [2,2] = −√
6iνC10 + 2

√
6b0
r

+ 2
√
6C30

r2
− 4iν

√
6C40

r4
− 3

√
6C40

r4

− Cin0 exp(2irν)
√
6

(
i

ν

r3
− 3

2r4

)
,

J [2,2] = 2
√
6C10 + 2

√
6C30

r
+ 2

√
6C40

r3
+ Cin0 exp(2irν)

√
6

(
1

r3
− 2i

ν

r2
− ν2

r

)
.

(18)

The solution includes constants of integration b0,Cin0,C10,C30,C40,C50, two of
which are fixed on applying the constraints E00, q AE0A giving

C50 = 12ν2C40, C10 = 2b0 + iνC30 + iν3C40

3
. (19)

The remaining Einstein equation E01 is known as the trivial equation, since it is
automatically satisfied provided all the other Einstein equations are satisfied [11]. The
solution Eq. (18) subject to Eq. (19) will be denoted by fM ; and thismay be specialized
to the case of no incoming radiation by setting Cin0 = 0 with the solution denoted by
fM0.
The gravitational newsN is defined in a coordinate system that satisfies the Bondi

gauge conditions limr→∞ J ,U , β,W/r = 0, and is calculated onmaking the required
coordinate transformation. The procedure in the general case was described in [28],
whichwas then simplified for the linearized approximation in [18] (Sec.3.3); an explicit
expression for the news was given in [29], Eq. (16). Allowing for the conventions used
here, we find that for fM0, NM0 = −√

6ν3�(iC40 exp(iνu)) 2Z2,2. The gravita-
tional wave strain and news are related (see Eq. (276) in [14]) HM0 = h+ + ih× =
2

∫ NM0du, giving

HM0 = �(HM0 exp(iνu)) 2Z2,2 with HM0 = −2
√
6ν2C40. (20)
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C40 is determinedby thephysical problembeingmodelled, andb0,C30 represent gauge
freedoms; e.g., for an equal mass m binary with orbital radius ro, C40 = 2mr2o

√
π/15

[30].
We regard the solution fM0 as applying when no matter shell is present, i.e. when

ρc = 0, with all the constants of order O(ε) and with C40 fixed by the physics of
the source. Then the solution in the presence of the matter shell will be fM0 plus
small corrections of orderO(ερc). We construct a solution in each of the three regions
r < r0, r0 < r < r0 + Δ, r0 + Δ < r , and then apply matching conditions at the
boundaries r = r0, r = r0 + Δ.

3.1 Solution inside the shell, i.e. r < r0

Perturbations in this region are on a background that is explicitly Minkowskian in
(u′, r , θ, φ) coordinates; thus the solution fM applies, although the effect of boundary
conditions may be to change the values of the constants by O(ερc) from their values
in fM0. We therefore make the substitutions in Eq. (18) b0 → b0 + b0I ,Cin0 →
CinI ,C10 → C10 + C1I ,C30 → C30 + C3I ,C40 → C40 + C4I ,C50 → C50 + C5I
with b0I etc. of orderO(ερc), and denote the solution as f I ′ . The solution f I in global
(u, r , θ, φ) coordinates is obtained on applying the coordinate transformation Eq. (9)
to f I ′ ; using computer algebra, we have evaluated f I explicitly and give the formulas in
the Supplementary Material, see “Appendix A”. Using computer algebra, the solution
f I has been substituted into Eq. (14) with β[B],W [B] taking the values for r < r0 in
Eqs. (7) and (8), and we have confirmed that the equations are satisfied. Values of the
constants C1I ,C5I have been determined by substituting f I into Eq. (16), and then
the constraints have been re-evaluated to confirm that they are satisfied.

3.2 Solution within the shell, i.e. r0 < r < r0 + 1

The metric perturbations introduce perturbations into the matter fields, and these act
as source terms in the Einstein equations. We evaluate the condition that the energy
momentum tensor should be divergence-free, ∇cTabgbc = 0, with the metric and
metric connection terms evaluated using fM0 (rather than f ). The result is four equa-
tions for five unknowns ρ[2,2](r), V [2,2]

0 (r), V [2,2]
1 (r), V [2,2]

ang (r) (note that V [2,2]
ang (r) is

complex with two components), and the system is closed on applying the condition
that the 4-velocity has unit norm, i.e. VaVbgab = 1. The resulting formulas are given
in the Supplementary Material, see “Appendix A”, and we note that they are explicit
functions of r depending on the parameters b0,C10,C30,C40,C50, r0,Δ, ρc. We also
consider terms on the left hand side of Eq. (14) of the form (β[B] or W [B])×(metric
perturbation) and use fM0 rather than f to evaluate the metric perturbation; thus these
terms also become explicit functions of r depending on known parameters.

The justification for using fM0 instead of f is that the error introduced is O(ρcε),
and all such terms are multiplied by a term ofO(ρc) so the total error isO(ρ2

c ε)which
is ignorable. The result of these simplifications is that Eq. (17) becomes

M f = −ρcRS( fM0), (21)
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for which the solution to the homogeneous part has already been obtained, and there
is just a particular integral that needs to be found; RS denotes the specific form
of the operator R within the shell. We denote the solution within the shell as fS ,
and introduce additional constants b0S,CinS,C1S,C3S,C4S,C5S similarly to what
was done in Sect. 3.1 with f I . The explicit solution for fS is obtained by means of
computer algebra; it is very long and is given in the Supplementary Material, see
“Appendix A”. Using computer algebra, we have evaluated the constraints to find
expressions for C1S,C5S , and the solution fS has been confirmed by checking that it
satisfies Eqs. (14) and (16) to order O(ρcε).

3.3 Solution exterior to the shell, i.e. r0 + 1 < r

In this region, the background geometry is Schwarzschild and perturbations about this
background are not known analytically, but a numerical solution has been obtained
[31]. Here, however, we can use the same procedure as in the previous sub-section, that
is for terms of the form (β[B] or W [B])×(metric perturbation) we use fM0 rather than
f to evaluate the metric perturbation, and Eq. (17) becomes M f = −ρcRE ( fM0).
We denote the solution outside the shell as fE , and introduce additional constants
b0E ,CinE ,C1E ,C3E ,C4E ,C5E similarly to what was done in Sect. 3.1 with f I . The
explicit solution for fE is obtained by means of computer algebra and is given in
the Supplementary Material, see “Appendix A”. Using computer algebra, we have
evaluated the constraints to find expressions for C1E ,C5E , and the solution fE has
been confirmed by checking that it satisfies Eqs. (14) and (16) to order O(ρcε).

Having determined the solution in the exterior region, we can now evaluate the
gravitational newsN [2,2], and the formula is given in the Supplementary Material, see
“Appendix A”. It involves C40,C4E , ρc, r0,Δ and we need to express C4E in terms
of the physical variables C40, ρc, r0,Δ so as to complete the calculation.

3.4 Matching conditions and the complete solution

After having used the constraints in each region, fE , fS, f I contain 12 free constants.
The condition of no incoming radiation in the exterior requires that the coefficient of
exp(2irν)/r in fE be zero, leading to

CinE = −4νπC40MS, (22)

and continuity of the metric quantities β,W , J ,U at r = r0 and r = r0 + Δ imposes
8 conditions

β[2,2,I ](r = r0) = β[2,2,S](r = r0), β[2,2,S](r = r0 + Δ) = β[2,2,E](r = r0 + Δ),

J [2,2,I ](r = r0) = J [2,2,S](r = r0), J [2,2,S](r = r0 + Δ) = J [2,2,E](r = r0 + Δ),

U [2,2,I ](r = r0) = U [2,2,S](r = r0), U [2,2,S](r = r0 + Δ) = U [2,2,E](r = r0 + Δ),

W [2,2,I ](r = r0) = W [2,2,S](r = r0), W [2,2,S](r = r0 + Δ) = W [2,2,E](r = r0 + Δ),

(23)
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where the I , S, E within the superfix indicates a quantity in the interior, shell or
exterior respectively. We first solve the continuity conditions at r = r0 + Δ to find
expressions for b0E ,C3E ,C4E ,CinS , and then we solve the continuity conditions at
r = r0 to find expressions for b0S,C3S,C4S,CinI ; all these expressions are given
in the Supplementary Material, see “Appendix A”. Since the Einstein hypersurface
equations contain second derivatives of J and U , we also expect ∂r J , ∂rU to be
continuous at r = r0 and r = r0 + Δ. Using computer algebra we have checked that,
provided Eqs. (23) are satisfied, the following conditions are also satisfied

∂r J
[2,2,I ](r = r0) = ∂r J

[2,2,S](r = r0),

∂r J
[2,2,S](r = r0 + Δ) = ∂r J

[2,2,E](r = r0 + Δ),

∂rU
[2,2,I ](r = r0) = ∂rU

[2,2,S](r = r0),

∂rU
[2,2,S](r = r0 + Δ) = ∂rU

[2,2,E](r = r0 + Δ). (24)

The outcome is that three degrees of freedom remain, b0I ,C3I ,C4I , and the expres-
sion for H involves C40,C4I . As already discussed, the value of the constant C40 is
determined by the physics of the GW source, and we need another physical condition
in order to close the system and to fix C4I . The calculation of the perturbations from
an equal mass binary assumes no incoming radiation, but the back-reaction due to the
matter distribution may introduce such a term. Thus, the computer algebra script for
the calculation of GWs emitted by an equal mass binary [30] has been amended with
Cin0 �= 0 but O(ρc). We find

C4I = −CinI

2
. (25)

This result applies independently of source properties, and in particular it applies when
the mass of the orbiting binary is zero. Thus, it is reasonable to regard the result in
Eq. (25) as general, representing the reflection at the origin of an incoming GW.

Then, finally, for all density profiles tested, the gravitational wave strain in terms
of the mass of the shell MS and as measured by an observer at future null infinity, was
found to be

H = �
(
HM0

(
1 + 2MS

r0
+ 2iMS

r20ν
+ iMSe−2ir0ν

2r20ν

+O
(
MSΔ

r20
,
MS

r30ν
2

))
exp(iνu)

)
2Z2,2, (26)

where HM0 was given in Eq. (20). Each of the terms containing MS in Eq. (26)
represents a correction to thewave strain in the absenceof the shell, and these correction
terms are discussed in Sect. 4 below.

The formula Eq. (26)was derived using quite complicated computer algebra scripts,
and it is important to investigate its reliability through consistency checks:

– In each of the three regions, we confirmed using computer algebra that all 10
Einstein equations are satisfied. The four constraint equations were not used in the
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construction of the solution, although they were used to fix two (in each region)
constants. Note that it was found that if an error were introduced into one of the
hypersurface equations, then the formulas obtained for C1,C5 were not constant
but were functions of r . Thus, the fact that the solutions satisfy the constraints
amounts to a strong consistency test.

– The solution was constructed to ensure continuity of β,W , J ,U at r = r0 and
r = r0 + Δ, but continuity of ∂r J , ∂rU is also needed. We confirmed using
computer algebra that these conditions are satisfied, which again amounts to a
strong consistency test.

– As will be discussed in the next section, the formula Eq. (26) satisfies physical
expectations,with one of the terms in the formula being derivable in an independent
way.

4 Physical interpretation

We investigate the physical meaning of each of the correction terms in Eq. (26), in
the light of the expectation that the dust shell cannot add or remove energy from the
GWs:

– Correction 1, 2MS/r0. In natural Minkowski coordinates u′ and in the absence of
a matter shell, H ′ = −2ν′2√6C40. From Eq. (9), it follows that ν′ = ν(1−2B0)),
and thus fromEq. (8), ν′ = ν(1+MS/r0)). Thus H ′ ≈ −2ν2

√
6C40(1+2MS/r0).

This term is therefore a consequence of the coordinate transformation Eq. (8), i.e.
it represents the gravitational red-shift effect of the shell.

– Correction 2, 2iMS/(r20ν). The term is out of phase with the leading terms 1 +
2MS/r0. Thus, to O(MS), the magnitude ofH, and therefore of the energy of the
GW, is not affected; but the shell does change the phase of the GW.

– Correction 3, iMSe−2ir0ν/(r20ν). This term does affect the magnitude of H. We
have checked using computer algebra (see “Appendix A”) that if H is calculated
with CinI set to zero the term disappears, and so it is interpreted as being an effect
due to the shell generating an incoming GW. Such an incoming GW modifies
the geometry near the source and affects the radiation reaction (or self-force) and
thus the inspiral rate. The calculation of the self-force is a 2nd order effect which
is beyond the scope of this work. The energy change in the GW at infinity can
therefore be interpreted as being caused by themodification of the self-force, rather
than by energy being transferred to or from the dust cloud.

In order for Correction 1 to be ameasurable,MS/r0 would need to have a significant
value (but note that the results obtained here also assume that (MS/r0)2 is negligible),
i.e. the shell would need to be close to the GW source. For Corrections 2 and 3 to be
measurable, we would also need that r0ν should not be large, where r0ν = 2πr0/λ
with r0/λ being the number of wavelengths in r0; note that the only assumption that
has been made about ν is ν �= 0. For example, if MS/r0 = 10−2 (so that the linearized
approximation can apply) and r0ν = 10, then themodification to the GW signal would
be of order 1% by Correction 1, and of order 0.1% by Corrections 2 and 3.
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We now consider the case of a thick shell comprising a dust cloud of constant
density (ρ0) extending from near the origin to an observer at r = rF , so that δMS =
4πr20ρ0δr0; integration gives

H = �
(
HM0

(
1 + 4πρ0r

2
F + 4iρ0rFλ + O

(
ρ0 log(rF )

ν2

))
exp(iνu)

)
2Z2,2,

(27)
and the integral of Correction 3 is omitted since it is smaller than the order term.Apply-
ing Eq. (27) to cosmology, and taking the cosmological density as 10−29 g/cm3 ≈
0.7 × 10−8 Mpc−2 in geometric units, it is found that, apart from the gravitational
redshift, no measurable effect is expected since the GW wavelength λ is at most
O(104) km � 1 Mpc.

5 Conclusion

Using the Bondi-Sachs formalism, this work has investigated within linearized pertur-
bation theory, the effect of a spherical dust shell on GWs sourced from the center of the
shell. It was found that the GWs were modified, although without any energy transfer
between the GWs and the shell. This finding is novel. In the context of cosmology,
the effects are too small to be measurable; but the effect would be measurable if a GW
event were to occur with a source surrounded by a massive shell and with the radius
of the shell and the wavelength of the GWs of the same order.

There are three avenues for further work. Firstly, the matter equation of state needs
to be generalized beyond dust to include shear viscosity, and perhaps other forms
of dissipation. Secondly, the background spacetime without the matter shell can be
changed fromMinkowski to something more appropriate to cosmology. Solutions are
known for de Sitter spacetime [19]; and for Einstein-de Sitter [27], although in this case
the algebraic complexity of the solution may make the construction of perturbative
solutions problematic. Finally, we found that a shell of matter, in effect, reflects part
of an outgoing GW, and so in the context of a burst (rather than a continuous) source
it is possible that an echo would be the result. Now, it should be possible to model a
burst source as a Fourier sum of the eigensolutions obtained here, i.e. as something of
the form

∑
n an f (νn), and in this way to investigate GW echoes.
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ADescription of computer algebra scripts

The computer algebra scripts used in this paper are written in Maple in plain text
format, and are available as Supplementary Material. Note that the output files may
be viewed using a plain text editor provided line-wrapping is switched off.
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The scriptsgamma.out, initialize.map, lin.map, ProcsRules.
map are not used directly, but are called by the other scripts described below.
gamma.out contains formulas for the Bondi-Sachs metric, its inverse and the metric
connection coefficients. lin.map constructs the Einstein equations linearized about
a given background. ProcsRules.map contains various procedures and rules that
are used by other scripts.

The script initialize.map initializes various arrays etc., and sets the density
profile of the matter as given in Eq. (4); other density profiles tested were

ρ = ρc

(
1

r3
− r0

r4

) (
(r0 + Δ)2

r5
− 1

r3

)
, ρ = ρc

(
1

r4
− r0

r5

) (
r0 + Δ

r4
− 1

r3

)
,

ρ = ρc

(
1

r2
− r0

r3

) (
(r0 + Δ)

r5
− 1

r4

)
, ρ = ρc

(
1

r2
− r0

r3

) (
r0 + Δ

r6
− 1

r5

)
.

(28)

The script backgroundShell.map constructs the background (spherically
symmetric) solution for the given density profile; it also checks that the metric func-
tions are sufficiently smooth at the interface r = r0, and that the solution satisfies all
10 Einstein equations. The output is in backgroundShell.out

The script paperEqs.map, with output in paperEqs.out, generates the for-
mulas given in Eqs. (12), (14) and (16); note that some manual simplifications have
been applied to the formulas generated by the computer algebra.

The script shell.map uses the divergence-free condition on the energy-
momentum tensor, ∇aTbcgac = 0, to determine the fluid properties, i.e. density and
velocity perturbations. It then constructs the metric in r < r0, r0 < r < r0 + Δ

and r > r0, and checks that the solutions obtained satisfy all 10 Einstein equations.
Finally, it constructs and solves the continuity conditions at r = r0, r = r0 + Δ, and
then evaluates the gravitational wave strain. The output is in shell.out.

The script shellCinI_0.map is the same as shell.map except that: on line
399 CinI is hard-coded to be 0, and some output has been suppressed. The output is
in shellCinI_0.out.

The script regular_0_IncomingGW.map is an adaptation of the script
regular_0.map used in [30] to calculate the GWs emitted by an equal mass binary.
The adaptations are: (a) an incoming wave, as a free parameter, is included; and (b) the
coefficient names have been changed to be consistent with those used in shell.map.
The output is in regular_0_IncomingGW.out.

The file formulas.pdf is in pdf format and contains the Maple output for

β[B],W [B], β[2,2,I ], J [2,2,I ],U [2,2,I ],W [2,2,I ],C1I ,C5I , ρ
[2,2], V [2,2]

0 , V [2,2]
1 , V [2,2]

ang

β[2,2,S], J [2,2,S],U [2,2,S],W [2,2,S],C1S,C5S, β
[2,2,E], J [2,2,E],U [2,2,E],

W [2,2,E],C1E ,C5E ,

N [2,2], b0E ,C3E ,C4E ,CinS, b0S,C3S,C4S,CinI .

The formulas for the above are generated during the execution of shell.map and
written to the file formulas.out.
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The file Eqs.pdf is in pdf format and includes the content of paperEqs.out
with annotations, together with the formulas for β[B],W [B] within the matter shell
extracted from backgroundShell.out.
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