
A Model for Intrusion Detection in IoT using Machine Learning

By

Junior Ruddy Nkala

[BSc Honours]

A dissertation submitted in fulfilment of the requirements of the Degree of

Master of Science in Computer Science

Supervised

By

Prof K. Sibanda

[February 2019]

i

Abstract

The Internet of Things is an open and comprehensive global network of intelligent objects that

have the capacity to auto-organize, share information, data and resources. There are currently

over a billion devices connected to the Internet, and this number increases by the day. While

these devices make our life easier, safer and healthier, they are expanding the number of attack

targets vulnerable to cyber-attacks from potential hackers and malicious software. Therefore,

protecting these devices from adversaries and unauthorized access and modification is very

important.

The purpose of this study is to develop a secure lightweight intrusion and anomaly detection

model for IoT to help detect threats in the environment. We propose the use of data mining and

machine learning algorithms as a classification technique for detecting abnormal or malicious

traffic transmitted between devices due to potential attacks such as DoS, Man-In-Middle and

Flooding attacks at the application level.

This study makes use of two robust machine learning algorithms, namely the C4.5 Decision

Trees and K-means clustering to develop an anomaly detection model. MATLAB Math

Simulator was used for implementation. The study conducts a series of experiments in

detecting abnormal data and normal data in a dataset that contains gas concentration readings

from a number of sensors deployed in an Italian city over a year. Thereafter we examined the

classification performance in terms of accuracy of our proposed anomaly detection model.

Results drawn from the experiments conducted indicate that the size of the training sample

improves classification ability of the proposed model. Our findings noted that the choice of

discretization algorithm does matter in the quest for optimal classification performance. The

proposed model proved accurate in detecting anomalies in IoT, and classifying between normal

and abnormal data. The proposed model has a classification accuracy of 96.51% which proved

to be higher compared to other algorithms such as the Naïve Bayes. The model proved to be

lightweight and efficient in-terms of being faster at training and testing as compared to

Artificial Neural Networks.

The conclusions drawn from this research are a perspective from a novice machine learning

researcher with valuable recommendations that ensure optimal classification of normal and

abnormal IoT data.

ii

Statement of Original Authorship

I, Junior Ruddy Nkala do hereby confirm that all the work contained in this dissertation has

not been submitted for any other qualification at this or any other University. Furthermore I

confirm that the dissertation does not contain any published information except where due

reference has been indicated.

Signature: ________________________

Date: ____________________________

iii

Plagiarism Declaration

I…………………………………Student Number.......…………………………………hereby

declare that I am fully aware of the University of Fort Hare’s policy on plagiarism and I have

taken every precaution to comply with regulations.

Signature: ……………………………………..;

iv

Acknowledgements

Rejoice always, pray continually, give thanks in all circumstances; for this is God's will for you

in Christ Jesus (1 Thessalonians 5:16-18). I would like to thank my omnipotent Father for his

unfailing love, grace and providence that has guided me throughout this journey.

I am greatly indebted to my research supervisor Professor K. Sibanda for his immeasurable

insight, encouragement, guidance and support he offered in this study. A special thanks to the

Department of Computer Science for accepting me for the masters programme. Also a heartfelt

thank you to my co- supervisor Mr Ngwenya for his motivation and concern throughout this

study. Thank you to the Masters class of 2018 for the friendship, assistance and knowledge

sharing. It was a worthwhile experience.

A special thank you, to my brother Sibhekisipho Fayayo, who encouraged me to apply for this

programme, and to Andile Gama, Bekithemba Ndlovu, Manford Hlabano, Lloyd Dube,

Nqobile Sikhosana, Prince Mahlangu, Advise Mpofu, Bongani Phiri, Ndumiso Nelela, and Dr

Wayne Malinga, for their support and motivation. I will forever cherish all those unforgettable

moments we had.

I would like to acknowledge the on-going support from parents Mr & Mrs R. Nkala, family

members and the lovely Angela Nomvula Sithole, their encouragement, love, prayers and

support through my academic pursuit was, and still is greatly appreciated.

v

List of Figures

Fig 2.1 IoT Architecture…………………………..13

Fig 2.2 Security Requirements at each level………………………………………………...16

Fig 3.1 KNN Classification………………………………………….....................................25

Fig 3.2 SVM Classification...27

Fig 3.3 SVM Basic Concepts..28

Fig 3.4 A simple Decision Tree..31

Fig 3.5 ID3 Tree Construction..37

Fig 3.6 Complete ID3 Tree...38

Fig 3.7 Comparison of Accuracy between ID3 and C 4.5..42

Fig 3.8 C4.5 and ID3 Execution Time..42

Fig 3.9 A visual representation of ANNs...43

Fig 3.10 Bias-Variance Trade-Off..45

Fig 3.11 Generic Learning Curve……………………………...47

Fig 3.12 Discretization Process..50

Fig 3.13 Hierarchical Representation of Discretization Methods..52

Fig 4.1 Proposed Intrusion and Anomaly Detection Model……….......................................61

Fig 4.2 Proposed anomaly detection model flow chart..62

Fig 4.3 Dataset before and after initial data pre-processing...64

Fig 4.4 K-Means Clustering Illustration with k=3...65

Fig 4.5 C 4.5 Algorithm...67

Fig 4.6 Input data representation as a MATLAB Matrix ...71

Fig 4.7 Clustered Data saved in Microsoft Excel Sheet..72

Fig 4.8 Matrix Representation after clustering..72

Fig 4.9 Matrix representation during classification...73

Fig 5.1 Input data before clustering...78

Fig 5.2 Data after Clustering...79

Fig 5.3 Classification Accuracy vs Evaluation Methodology...84

vi

Fig 5.4 Classification Accuracy on Various training sample size......................................86

Fig 5.5 Classification Accuracy based on Discretization Approach..................................87

Fig 5.6 Classification Accuracy of C.45 + K-Means on different sample size………......89

Fig 5.7 Classification accuracy of Naïve Bayes on different sample size.........................90

Fig 5.8 Classification Accuracy MLP ANN on different sample size...............................91

Fig 5.9 ROC C45+K- Means Algorithm..92

Fig 5.10 Comparison of ROC Curves of Multiple Classifiers...93

vii

List of Tables

Table 3.1 Dataset S...35

Table 3.2 Training Set with Continuous Values...40

Table 3.3 Gain Calculation for Continuous Values..41

Table 3.4 Accuracy Comparison between ID3 and C 4.5..41

Table 3.5 Related Work……………………………………………………………………..57

Table 3.6 A comparison of machine learning algorithms……………………………..........58

Table 4.1 MATLAB functions used in Intrusion Detection Model.......................................68

Table 4.2 Confusion Matrix for Classification..74

Table 5.1 Confusion Matrix...80

Table 5.2 Classification Accuracy based on Evaluation Methodology.................................83

Table 5.3 Classification Accuracy on Various training sets..85

Table 5.4 Classification Accuracy based on Discretization Approach..................................87

Table 5.5 C 4.5 + K-Means Classification Accuracy on various discretization approaches.88

Table 5.6 Classification Accuracy of Naïve Bayes on different sample size........................89

Table 5.7 Classification accuracy of MLP ANN on different sample sizes..........................90

Table 5.8 Speed of Model Building and Testing...92

viii

List of Acronyms

IoT Internet of Things

DoS Denial of Service

DDoS Distributed Denial of Service

ANN Artificial Neural Network

IDS Intrusion Detection System

NIDS Network Intrusion Detection System

WEKA Waikato Environment for Knowledge Analysis

GUI Graphic User Interface

DT Decision Tree

ML Machine Learning

SVM Support Vector Machines

ix

TABLE OF CONTENTS

ABSTRACT ... I

STATEMENT OF ORIGINAL AUTHORSHIP .. II

PLAGIARISM DECLARATION ..III

ACKNOWLEDGEMENTS .. IV

LIST OF FIGURES .. V

LIST OF TABLES ... VII

LIST OF ACRONYMS ... VIII

CHAPTER 1: INTRODUCTION .. 1

1.1 BACKGROUND .. 1
1.2 PROBLEM STATEMENT ... 3
1.3 AIM AND OBJECTIVES ... 4
1.4 RESEARCH QUESTIONS ... 4
1.5 SCOPE ... 4
1.6 JUSTIFICATION .. 5
1.7 METHODOLOGY .. 5
1.8 EXPECTED RESULTS AND CONTRIBUTIONS .. 6
1.9 DISSERTATION STRUCTURE .. 6
1.10 CONCLUSION .. 7

CHAPTER 2: THE INTERNET OF THINGS .. 8

2.1 THE NOTION OF INTERNET OF THINGS ... 8
2.2 DEFINITION OF IOT .. 9
2.3 IOT ARCHITECTURE .. 11
2.4 TECHNOLOGIES OF IOT ... 13
2.5 IOT CHALLENGES .. 15
2.6 INTRUSION DETECTION IN IOT ... 17
2.7 CONCLUSION .. 19

CHAPTER 3: MACHINE LEARNING IN IOT .. 20

3.1 DEFINITION OF MACHINE LEARNING ... 20
3.2 MACHINE LEARNING ALGORITHMS ... 21
3.3 CLASSIFICATION ALGORITHMS ... 22
3.4 CLUSTERING ALGORITHMS .. 28
3.5 DECISION TREE ALGORITHMS (DT) ... 30
3.6 ARTIFICIAL NEURAL NETWORKS ... 43
3.7 CLASSIFICATION PERFORMANCE OF MACHINE LEARNING ALGORITHMS .. 44
3.8 RELATED WORK .. 55
3.9 ALGORITHM COMPARISON .. 57
3.10 CONCLUSION .. 59

CHAPTER 4: METHODOLOGY AND IMPLEMENTATION ... 60

x

4.1 METHODOLOGY .. 60
4.2 MODEL DESIGN .. 60
4.3 INPUT DATA ... 62
4.4 CLUSTERING ... 64
4.5 CLASSIFICATION .. 66
4.6 IMPLEMENTATION ... 67
4.7 MODEL EVALUATION ... 73
4.7.1 ACCURACY ESTIMATION METHODOLOGIES .. 76
4.8 CONCLUSION .. 77

CHAPTER 5: RESULTS AND ANALYSIS ... 78

5.1 RESULTS .. 78
5.1.1 CHOICE OF EVALUATION METHODOLOGY .. 83
5.1.2 SAMPLE SIZE ... 85
5.1.3 DISCRETIZATION APPROACH ... 86
5.1.4 SPEED OF CLASSIFICATION .. 91
5.1.5 RECEIVER OPERATING CHARACTERISTICS (ROC) ... 92
5.2 DISCUSSION AND ANALYSIS ... 93
5.3 CONCLUSION .. 96

CHAPTER 6 – CONCLUSION AND RECOMMENDATIONS ... 97

6.1 PURPOSE AND FINDINGS ... 97
6.2 EMPIRICAL FINDINGS VS RESEARCH QUESTIONS ... 98
6. 3 IMPLICATIONS AND LIMITATIONS ... 99
6.4 RECOMMENDATIONS AND FUTURE WORK .. 100
6.5 CONCLUSION .. 100

REFERENCES ... 101

APPENDIX A – MATLAB CODE FOR PROPOSED MODEL .. 105

APPENDIX B ... 111

APPENDIX C – FRIEDMAN ANOVA TEST ON SAMPLE SIZE .. 112

APPENDIX D ... 113

APPENDIX E – ARTIFICIAL NEURAL NETWORK TRAINING ... 115

1

Chapter 1: Introduction

This study reviews the security and privacy challenges faced in the Internet of Things (IoT)

implementations and architectures, while reviewing related work previously done by academia

and scholars in an attempt to formulate methods for protecting the IoT from malicious attacks

and cyber-security threats. The study then proposes a novel approach for anomaly detection

based on Machine Learning and Data Mining as an Intrusion Detection Mechanism in IoT

Systems. The purpose of this chapter is to provide underlying reasons for this research, it serves

as an introduction to the chapters to follow and the research.

1.1 Background

The term Internet of Things (IoT) which is a system of interconnected devices was first

proposed in 1999 by Kevin Ashton (Farooq et al., 2015) a co-founder of the Auto-ID Center at

The Massachusetts Institute of Technology (MIT). IoT is basically a wireless interconnected

network of a variety of objects such as Smart Phones, Sensors, Radio Frequency Identification

Tags (RFID) and other types of wireless devices. It has application in areas such as health care,

home automation, smart cities, modern agriculture and security just to name a few. IoT forms

a global network infrastructure and is a self-configuring wireless network of sensors where the

main goal is interconnectivity between various gadgets and objects (Vasilomanolakis, Daubert

and Luthra, n.d.).

The Internet of Things from a different school of thought can be viewed as a worldwide

network of uniquely addressable and interconnected objects, based on standard communication

protocols. Devices that previously had no communication functions are being connected to a

network by IoT Systems. These Systems enable discovery of phenomena that were previously

unseen, providing new heights and insights. With the growth and advancements in RFID

communications and Wireless sensor Networks over the last 10 – 15 years (Gartner, 2012), the

feasibility of IoT and its various levels of architecture has also seen a parallel growth

With more and more devices and objects getting smarter there has been a rise in machine to

machine communication, smart devices communicating with each other without the need for

human interaction e.g. smart electricity meters that communicate their readings and other

events directly to the server components over available mobile networks.

2

According to Gartner, around 25 billion uniquely identifiable objects are expected to be part of

this global ecosystem by the year 2020, an impressively huge number, but the prevalence of

such a big network will pose some new security and privacy threats and put all the devices at

a high risk of hackers as they clutch at security gaps to make devices work to their own benefits

(Farooq et al., 2015).

A previous study done by (Tanaka, Fujishima, Ohashi, & Tanaka, 2016) for the Hitachi Review

documented IOT as a promising tool for efficiency and low costs or increasing sales, but

however the IOT Acceleration Consortium (a collaborative program with members from

industry, academia and the government) has underscored the need to handle three security

issues (1) the increasing number of network–connected IoT devices, (2) long life cycles, and

(3) the difficulty of perfect manual surveillance (Hitachi Review Vol 65, 2016).

The major security goals of IoT are to ensure proper authentication mechanisms and provide

Data Availability, Confidentiality and Integrity (Farooq et al., 2015). IoT systems have

however proven to be susceptible to various security attacks, such as denial-of-service (DoS)

attacks and distributed denial-of-service (DDoS) attacks. Such attacks can cause considerable

damage to the IoT services and smart environment applications in an IoT network.

Consequently, securing IoT systems has become a major concern. For example, on Friday,

October 21, 2016, a series of DDoS attacks were launched across the US that exploited the

security vulnerabilities in IoT systems. These attacks affected IoT devices, websites and online

services such as Twitter, Netflix, and PayPal. One solution that can be used to combat

vulnerabilities in the IoT infrastructure and help prevent cyber-attacks such as DoS is the use

of Intrusion Detection Systems. An Intrusion Detection System (IDS) is a security mechanism

that works in real-time to analyse data being sent between two entities in a network and

classifies the data in normal or abnormal data in an effort to secure the system from malicious

entities. An IDS deployed for an IoT system should be able to analyze packets of data and

generate responses in real time, analyze data packets in different layers of the IoT network with

different protocol stacks, and adapt to different technologies in the IoT environment. An

Intrusion Detection System that is designed for IoT-based system should operate under

stringent conditions of low processing capability, fast response, and high-volume data

processing. Therefore, conventional IDSs may not be fully suitable for IoT environments. IoT

security is a continuous and serious issue; thus, an up-to-date understanding of the security

vulnerabilities of IoT systems and the development of corresponding mitigation approaches are

required.

3

1.2 Problem Statement

With the rapid increase of IoT devices being manufactured and deployed on to the internet,

hackers have been targeting these relatively unsecure devices as source points to originate

attacks such as the DoS and DDoS attacks. Most of these smart devices are deployed without

security as a major goal and due to different security standards and interoperability differences

they have proven vulnerable to hackers, as they can be used to launch ransomware attacks or

act as a source of origin for Denial of Service attacks to attack larger sites (IJACSA Vol 7,

2016).

Security experts and Engineers constantly use different techniques and mechanisms to detect

and mitigate threats such as DoS and DDoS which are broken down into four methods i.e.

Statistical, Knowledge based, Soft Computing and Data Mining and Machine Learning

methods (Munivara, Reddy and Rao, 2016).

This study argues that Machine learning techniques and methods are the best way to protect

the IoT infrastructure from malicious threats by use of Intrusion Detection Methods that use

significant patterns in traffic history and using that historical data to build efficient filtering

rules that will be able to detect DoS and other attacks while securing the IoT network

infrastructure. The first question that this study explores is;

How can we use Machine Learning techniques and algorithms to develop filtering rules that

can help with Intrusion and Anomaly Detection in IoT networks?

Cyber-attacks vary in magnitude as some can take down a small intranet or a smart home, while

others can render a nation-wide ISP provider unavailable, there have been attacks recorded of

such magnitude, such as the Mirai DDoS attack of 2016 that peaked at 280 Gbps and rendered

a number of internet sites unavailable, namely Netflix, Twitter and Facebook (Security

Intelligence, 2017). It important to study how our solution will handle attacks of different seizes

and magnitude. This leads to the second and final problem that this thesis seeks to investigate;

How resilient and accurate is our solution in detecting anomalies of varying magnitudes.

4

1.3 Aim and Objectives

The Aim of the study is to develop an effective and secure lightweight Intrusion and Anomaly

Detection Model for IoT to help detect threats in the environment. This aim has been broken

down to various research questions and objectives listed below:

 To review and study IoT Security Architecture requirements, goals and challenges.

 To investigate which Data mining, Machine learning algorithms and hypothesis that

can be used to develop a comprehensive Anomaly detection Model for IoT.

 To develop an effective machine learning based model which can be for detection of

anomalies and intrusions in an IoT infrastructure.

 To evaluate the proposed model.

1.4 Research Questions

1. What are the security challenges and vulnerabilities being faced in IoT security

implementations and what tentative security measures can be used help improve

security?

2. Can Data mining and Machine learning techniques be used as an effective way to

develop a comprehensive defence mechanism against attacks on an IoT Network?

3. Which Machine learning and Data mining algorithms can be best implemented to

effectively develop an efficient self-learning program/system to detect anomalies in

data being transmitted in an IoT ecosystem.

4. How secure and accurate is the proposed intrusion and anomaly detection model.

1.5 Scope

In this study we discuss the security architecture of IoT and the security challenges and threats

that it faces. The study is limited to designing and developing a model or framework for

Anomaly and Intrusion Detection. This study is not focused on improving machine learning

algorithms that can be used for threat detection and mitigation methods but rather to use data

mining and machine learning techniques to develop a comprehensive defense mechanism

against cyber-attacks on an IoT Infrastructure by analysing anomalies in data communicated

between IoT devices. This study focuses on implementing a lightweight host-based intrusion

detection model, which filters data by analysing anomalies in data at Application Level of the

IoT architecture.

5

1.6 Justification

With the growth in the number of connected devices in the IoT ecosystem there has been a

growth in the risk associated with the use of these devices. There will be an estimated 16 billion

interconnected devices by 2020 (Kozlov, Veijalainen and Ali, 2012) therefore, the level of risk

is only going to increase, hence there is a need to study at how we can improve the security

architecture of the IoT and find new ways in which we can mitigate attacks. A Case Study of

such an attack is a Denial Of Service Attack that occurred in October 2016 when an IoT Botnet

known as the Mirai Malware generated a Flooding Attack through ordinary IoT gadgets such

as Web Cameras, Smart Refrigerators and DVRs rendering a number of high profile websites

such as Twitter and Netflix unavailable for a number of hours (Security Intelligence, 2017).

1.7 Methodology

There are 2 types of Research Methodologies, namely Qualitative and Quantitative, the latter

is categorized into Experimental, Simulation and Inferential. Inferential approach entails

forming a database from which to deduce the characteristics or relationships of the sample

population (Silhavy et al., n.d.). Experimental involves conducting empirical studies with the

aim of obtaining results from a real-world test-bed. Simulation is used for research that involves

complex phenomena and hence cannot be setup in a laboratory environment. (Silhavy et al.,

n.d.)

For the purpose of this study we use a Simulation Approach as we are implementing a complex

IoT Interconnected ecosystem and we do not have the tools to perform the study physically as

with the experimental approach. We design and implement an Intrusion Detection Model using

MATLAB Simulator, the model’s purpose is to detect anomalies between data recorded and

transmitted by sensor nodes in an IoT environment. The model must predict if certain data

patterns are normal or abnormal. By analysing data patterns which usually change if there is

an intrusion or when the system is under attack, as is common with DoS attacks and other

malicious attacks, the system predicts whether there is an anomaly or normal data is being sent

and received within the network.

6

1.8 Expected Results and Contributions

The study should reveal vulnerabilities and network security loopholes in IoT Architecture and

in IoT implementations. The study shows the importance and benefits of securing IoT

infrastructure and provide a platform for other researchers to further in this field of security in

the field of IoT. The study provides a comprehensive research and analysis into data mining

and machine learning techniques as a method to combat DoS, DDoS and any other malicious

attacks on IoT Infrastructure and also at the end of the study contribute an efficient and

comprehensive defence mechanism against the above mentioned threats.

1.9 Dissertation structure

The dissertation consists of six chapters inclusive of this introduction chapter.

Chapter 1: Gives the introduction of the research by presenting the background information

to the study. It outlines the underlying reasons for the research work, presents the problem to

be investigated, research objectives and scope.

Chapter 2: This is a Literature Review, the chapter introduces The Internet of Things, the

benefits of this relatively new landscape and its technologies. The chapter reviews the Security

Aspects of the Internet, Cloud Computing and Cyber Security in general and later on focuses

on IoT, how it is affecting cyber security and what are the threats and security challenges faced

in IoT implementations. A special section is dedicated to Anomaly Detection techniques, as

this is what the proposed model for intrusion detection will be based on.

Chapter 3: provides an in-depth literature review on Machine Learning algorithms, how they

are implemented and how they can be used in an anomaly detection model to secure IoT

architecture.

Chapter 4: The Chapter presents the tools used, methodology followed and experiments

conducted in this study.

Chapter 5: This Chapter describes the results and presents the evaluations of the research.

The aims of the study are stated, described and the results are analysed.

Chapter 6: Presents the conclusions drawn from the research and also give the further areas

that can be explored in this particular study.

7

1.10 Conclusion

This chapter introduces the research study by providing background information on IoT

and introducing the problem statement, listing the research objectives and outlines the research

questions that are answered by this study. The chapter states the research scope and concludes

with the dissertation structure. The chapter gives us a background of how this relatively new

field IoT is using sophisticated technology to better the livelihoods of those using it, and how

more processes are being automated, in the fields of Agriculture, Engineering, Medicine, etc.

However, with the increased number in these IoT devices, there comes a threat posed by

compatibility issues and lack of security which has seen IoT devices being used as entry points

to launch certain cyber-attacks. Denial of Service and Distributed Denial of Service attacks

have proven to be a threat in the past, hence there is a need for a comprehensive defense

mechanism to protect IoT, this study proposes use of machine learning algorithms and data

mining to develop an anomaly detection model that can be used as part of an Intrusion

Detection System. An extensive review of IoT and the IoT Architecture follows in Chapter 2.

8

Chapter 2: The Internet of Things

This Chapter reviews the Internet of Things by introducing the notion of IoT and the underlying

concepts of this technology. Furthermore it discusses the IoT Architectures and the Security

Requirements, Goals and Issues related to this relatively new technology. The Chapter also

discusses the Security Challenges faced in IoT implementations, and concludes by discussing

Intrusion Detection and the threats posed by Network Intrusions on an IoT environment.

2.1 The Notion of Internet of Things

The term Internet of Things (IoT) was first coined at the Auto ID Centre of MIT by executive

director Kevin Ashton in 1999, who used the term to describe a system of inter-connected

devices (RFID Journal, 2009). The technology of IoT has so far caught the attention of society,

industry and academy as a way of enhancing our daily activities (Ibarra-Esquer et al, 2017) and

is becoming common in everyday use. The growth of IoT has been driven by the needs of large

corporations that will benefit from the ability to code and track commodities and hence making

companies more efficient, speed up processes, reduce errors, prevent theft and incorporate

flexible organizational systems through IoT (Madakam et al, 2015). According to Madakam et

al (2015), the Internet Of Things is a technological revolution that represents the future of

computing and communications which combines a number of fields from wireless sensors to

nano technology with every object in the ecosystem tagged and used to identify, automate and

control.

Although the concept or idea of Internet of Things is over a decade old, the core technology

behind this idea originates from the Internet as the term “Internet of Things” suggests. The

Internet founded from project APRANET in 1969 by the US Defence Department, its objective

being to link specialized computers to many general purpose computer centres for the

department and some public and private sectors. Today, the Internet is a global system of

interconnected networks that use TCP/IP protocols to serve billions worldwide (Madakam et

al, 2015). It is a network that consists of government, schools, and businesses, private and

public networks that are linked by an array of electronic, optical and wireless technologies.

Another technology behind the idea of IoT is the embedded computer system which is a term

that was first coined in 1974, it is a term used to describe a small working system within a

larger system with its sole purpose being that of performing a single task (Internet of Things

9

Agenda, 2009). These systems are implemented using microcontrollers and single board

computers and have recently gained popularity as they are affordable and easy to use by

prototyping platforms such as Arduino and Raspberry Pi.

In the early 1990s Mark Weiser proposed the concept of ubiquitous computing which is an idea

that relies on advances in embedded computing technologies and deploying a ubiquitous

network of the scale of hundreds of computers per room which resemble the Internet of Things,

but at the time Weise argued that the main challenge was the design of an operating system

that will allow software to take full advantage of the networking capabilities.

With the advances in wireless communications and digital electronics, sensor nodes started

developing in the mid-90s. Sensors are capable of measuring and collecting data of their

surroundings, what they are capable of measuring is broad and depends on the use and type of

sensor, this ranges from GPS data, Temperature, Wind Speed, Acceleration, Proximity, etc.

Sensor Nodes form part of the Wireless Sensor Network a key technology in IoT, sensor nodes

record and transmit data over a network when required, and these sensors nodes are what are

referred to as “things” or objects in IoT, the term things refers to a number of objects, both

living and non-living such as a person, animal or a home appliance, mobile phone, sensors, etc.

2.2 Definition of IoT

According to Madakam et al (2015), there is no unique definition available for the Internet of

Things that is accepted by all the community of users. They argue that there are many different

groups of people including academics, researchers, practitioners, innovators, developers and

cooperate people that have defined the term in the past. Although the term’s initial use is

accredited to Kevin Ashton, they argue that the best definition of IoT would be “An open and

comprehensive network of intelligent tools and objects that have the capacity to auto-organise,

share information, data and resources, reacting and acting in-face of situations and changes in

the environment”

According to Zainab et al (2015), to understand IoT one has to go back to Mark Weiser’s 1991

vision of the future internet under the name “Ubiquitous Computing”, through his vision he

focused on how one can turn a smart liveable environment in the presence of mobile phone

technology.

10

Kevin Ashton versioned IoT as a system where through the use of RFID technology and Sensor

Technology we can build an interconnected system of devices communicating with each other

accomplishing a different number of tasks he wrote in a 1999 article for RFID Journal

“If we had computers that knew everything there was to know about things—using data they

gathered without any help from us -- we would be able to track and count everything, and

greatly reduce waste, loss and cost. We would know when things needed replacing, repairing

or recalling, and whether they were fresh or past their best. We need to empower computers

with their own means of gathering information, so they can see, hear and smell the world for

themselves, in all its random glory. RFID and sensor technology enable computers to observe,

identify and understand the world—without the limitations of human-entered data.” –

Ashton(1999).

According to Atzori et.al (2010), classified IoT into three paradigms, internet oriented, thing

oriented and sematic oriented. Between 2008 and 2009 through the Cisco Internet Business

Solutions Group IoT was defined as a set of smart objects such as home devices, mobile phones

and appliances, addressed by a unique framework, this proposed framework was cloud

computing.

The Internet of Things can also be considered as a global network which allows connection

between human to human, human to things and things to things by providing a unique identity

to each and every object communicating via the internet. In IoT sensors and actuators

embedded in physical devices linked through wired and wireless networks using one IP address

are connected to the internet. In IoT objects can sense the environment and communicate data

and can internetwork with each other without human intervention. IoT refers to the coding and

networking of everyday objects and things to render them individually machine-readable and

traceable.

A more complete definition that encompasses most fields of IoT would be one given by Ron

Van Kranenburg the founder of Council IoT in 2008 where he defined the Internet of Things

as:-

“A dynamic global network infrastructure with self-configuring capabilities based on standard

and interoperable communication protocols where physical and virtual ’Things’ have

11

identities, physical attributes, and virtual personalities and use intelligent interfaces, and are

seamlessly integrated into the information network” (Kranenburg, 2008).

2.3 IoT Architecture

According to Madakam et al.(2015), the problem with IoT is that it is vast and a broad concept

with no uniform architecture, a typical idea/concept of IoT must consist of sensors, network

communications and computer technology hence they have been many architectures and

models given by several researchers and practitioners such as the European FP7 Research

Project, IoT Forum Architecture, ITU Architecture and Qian Xiacong Zhang Architecture.

Farooq et al. (2015) argue that with an expected 25 Billion devices to be connected by the year

2020 which is a huge number, an existing architecture such as TCP/IP protocol cannot handle

a network as huge as the IoT Ecosystem hence there is a need for a new open architecture that

could address quality of service as well as various security concerns. Farooq seconds an

architecture which consists of six layers suggested by Cheng, Zhang and Sun (2012) and uses

the best features of the architectures of Internet and Telecommunications management

networks based on TCP/IP and TMN models respectively, the layers in this architecture are the

coding layer, network layer, middleware layer, application layer and business layer. However

in its simplest form a basic IoT Architecture consists of 4 key layers described below:

 Sensor Layer - this is the lowest layer, consists of smart objects, allows interconnection

of physical and digital world, allowing real-time information to be collected. They

include sensors that can measure various data such temperature, GPS co-ordinates,

Water levels and speed. In some cases, they may also have a degree of memory,

enabling them to record a certain number of measurements. A sensor can measure the

physical property and convert it into signal that can be understood by an instrument.

Sensor layer also consists of actuators that can intervene to change the physical

conditions that generate data e.g. cut power supply to a sensor recording wind speed.

 Gateway/Network Layer – Data recorded by Sensors will need to be transported to a

remote server for processing, this requires an effective, efficient, robust and high

performance network infrastructure that will operate as a transportation medium. With

a wide range of IoT services and applications available such as transactional services,

context aware applications, etc., multiple network solutions and various technologies

can be used depending on requirements. Networks can be in form of public or private

12

models and are built to support various communication requirements such bandwidth

and security. There are a number of Gateways available for use depending on the IoT

function, these include but are not limited to microprocessors and microcontrollers, the

networks that work hand in hand with these are GSM, GPRS, WSN, Wi-Fi, etc.

 Support/Management Service Layer - The Management Layer is where the

processing of information occurs, through analytics, security control, process modelling

and management of devices. The layer features business and process rule engines,

which help in decision logic and trigger interactive and automated processes depending

the data received from the sensor layer through the network/gateway layer. Data

management is also done at this layer where techniques such as data anonymisation,

integration and synchronization are used to hide details of the information while

providing only essential information that is usable for the relevant applications.

 Application Layer – This layer represents the IoT applications that cover the “smart

environments” in domains such as Supply Chain, Health care, Supply Chain and

Energy.

A representation of IoT Architecture is given in Fig 2.1.

13

Fig 2.1 IoT Architecture (Source: Patel, 2016)

2.4 Technologies of IoT

Internet of Things consists of a number of elements and objects that exist in a ubiquitous

computing system where each object can be uniquely identified and can interact with other

objects to collect data based on which automated actions are taken, this is only possible with

integration of new and effective technologies which are different but also relevant technologies.

IoT was inspired by the RFID community and RFID technology remains the foundation and

networking core of constructing the IoT. The Internet of Things includes technologies such as

RFID, Sensor technology, nano technology, and intelligent embedded technology. IoT enables

physical objects to be brought into the sphere of the cyber world, this is made possible by

technologies such as Near Field Communication (NFC), RFID and 2D barcodes which allow

objects to be identified and referred to the internet.

14

 Below are some key technologies used in Internet of Things:-

 Radio Frequency Identification (RFID) – this is a system that transmits the identity

of an object/person wirelessly using radio waves, it makes objects uniquely identifiable

as each radio wave transmits a form of serial number (Madakam et al., 2015). It is a

small transceiver microchip which can be integrated into a number of objects, it can

both be active or passive. Active tags have a battery attached to them due to which they

are always active and therefore continuously emit the data signals while Passive tags

just get activated when they are triggered. Active tags are more costly than the Passive

tags however they have a wide range of useful applications. The main components of

RFID are tag, reader, antenna, access controller, software and server. It is more reliable,

efficient, secured, inexpensive and accurate. RFID has an extensive range of wireless

applications such as distribution, tracing, patient monitoring, military apps etc.

 Internet Protocol (IP) – this is the primary network protocol used on the internet,

developed in the 1970s. IP is the principle communications protocol suite for TCP/IP,

the two versions of Internet Protocol (IP) are in use IPv4 and IPv6, IPv6 is 21st century

Internet Protocol, it supports around 2128 address (Bicknell, 2009).

 Wireless Sensor Network – is a bi-directional wirelessly connected network of sensors

in a multi-hop fashion, it is built from a number of several nodes scattered in a sensor

field each node connected to another sensor node which can collect object specific data

such as temperature, acceleration, wind speed, etc. Sensor nodes may not have a global

ID because of the large amount of overhead and large number of sensors. WSN based

on IoT have made remarkable attention in areas such as military, healthcare, precision

agriculture and manufacturing (Farooq, 2015).

 Network Technologies – Networking technologies play a very important role in IoT,

they are the ones responsible for the connection and communication between

object/nodes. Choosing a network transmission type depends on a number of factors

such as efficiency, cost and distance. For wide-rage transmission networks. 3G and 4G

are use as in mobile transmission, but for short range we might require a cheaper

medium such as Bluetooth or Zigbee. There are a number of network technologies that

IoT Systems and devices use, these include Wi-Fi, Bluetooth, 2G, 3G, 4G, Zigbee and

NFC just to name a few.

 Cloud Computing - One cannot separate Cloud Computing and the Internet of Things,

they both represent ubiquitous computing, and they both use the distributed computing

15

concept. According to Gartner (2012), 25 million device interconnected by the year

2020, the cloud seems to be a technology that can be the most effective solution to store,

analyse and manage data for the Internet of Things (Farooq et al., 2015). Cloud

Computing is considered a standard framework for IoT, integrating while IoT

represents real world and small things, but it is limited storage in addition to traditional

problems in the network such as scalability and privacy; in other side, cloud computing

has virtually unlimited capabilities and processing power. Cloud computing interfaced

with a large number of smart objects using millions of sensors can be a large benefit to

IoT in large scale processing and analysing of data.

2.5 IoT Challenges

The Internet of Things (IoT) is a relatively new technology/field and as with most new

technology, there exists limitations by which benefits can be achieved and a new approach may

come with unique additional challenges. According to Jung, Cho & Kang (2014) IoT has a

number of challenges, these include the fact that there is no standard architecture in IoT,

vendors are keen on developing objects to achieve financial gain, but do not comply with other

manufacture objects hence there is no set standard. They also mention that IoT Networks are

heterogeneous, this makes managing IoT network security a tough task since these devices use

different communication protocols over different types of network e.g. GSM, WAN and

Bluetooth. The implementation of IoT is marred with critical issues such as questions over

security and privacy, since the objects have limited hardware capabilities, it is almost an

impossible task to deploy host based security mechanisms, and this is pushing developers

towards anomaly detection and protection techniques.

2.5.1 Security in the Internet of Things

There are 3 main security goals in IoT, these are data confidentiality, availability and integrity.

Unlike the Internet, IoT is to be applied at critical areas of a society, e.g. medical services,

healthcare, military, and intelligent transportation hence the need for security as high

availability and dependability is a must. The basic IoT security architecture is divided into 4

levels/layers and each level has its function. Figure 2.2 shows a typical IoT Security

architecture and security requirements at each level.

16

Fig 2.2 Security Requirements at each level (Source: Suo, 2012)

 Sensor / Perceptual Layer – this layer consists of sensors and computers with

relatively lower power consumption and storage. It is difficult to set up security but

attacks such as the denial of service can cause problems in this layer, hence the need to

employ a defence mechanism. To protect against illegal access of these nodes or sensors

in this layer and maintain the confidentiality of information being transmitted

lightweight encryption methods such as Hash algorithms are used ensure that security

is applied and performance and power consumption is not wasted by avoiding use of

complex algorithms (Suo et al, 2012).

 Network Layer – this layer is vulnerable to attacks such as Man-In-The-Middle attack,

and DOS attack, hence there is a need for a security mechanism at this level. There is

need to establish confidentiality and integrity usually by use of complex algorithm and

intrusion detection systems.

 Middleware/Support Layer – this layer uses technologies such as cloud computing

and virtualization, both these are ripe to various attacks, hence there is a need for strong

encryption algorithms and anti-virus systems and Intrusion Detection Systems. Mass

data processing and intelligent decision is done at this layer hence there is a need to

recognize information/data that might be malicious.

 Application Layer – in this layer, password management and access control are of

importance, there is need for authentication at this layer to prevent issues such as wrong

17

disclosure of information, data privacy and access control are the main concerns in this

layer.

2.6 Intrusion Detection in IoT

During a Network Intrusion such as Dos and Man in The Middle attacks, illegitimate traffic

masks itself among the legitimate traffic to deplete some vital system resource and ultimately

render the whole network or system unavailable. This makes it substantially harder to filter

out the illegitimate traffic without substantially affecting the legitimate traffic. There are two

strategies that can be adopted help detect Intrusions in a system, and help filter illegitimate

traffic or requests from legitimate ones; these are namely

i. Anomaly detection

ii. Signature based detection

Anomaly Detection

Anomaly-based detection is basically concerned with identifying behaviours or events that

might be anomalous with respect to normal behaviour (Modi et al., 2013). Anomaly-based

detection techniques builds on the principle that traffic distribution of a service will change

under an attack. Anomaly based detection first analyses traffic based on a traffic model the

system defines as normal. The system will go through a training phase to define the normal

behaviour before the system enters the detection phase. Since anomaly intrusion detection

compares traffic against the normally defined behaviour, the system has the ability to detect

unknown attacks. However, anomaly based detection depends on training and learning on a set

of normal data. The problem lies in if that particular training data contains malicious software

or content the system might be unable to detect these content when it enters the detection phase.

There are a number of approaches inside of data collection, processing and filtering within

anomaly detection techniques. Whereas, statistical analysis and machine learning are two of

the more common approaches.

Signature Based Detection

Signature based detection techniques is able to detect attacks based on signatures of known

attacks. It involves searching network traffic for a series of malicious bytes or packet

sequences, it is easy to develop and understand if we know what network behaviour we want

to identify. This approach is characterized by high detection rates and low false positives. A

slight deviation or variation in the intrusive behaviour may however by-pass the detection

18

system. It is thus to that end that signature-based engines are an efficient solution for the

detection of known attacks. The only problem with this approach is that it cannot detect

unknown attacks, hence there is a need for constantly updating the signature base (Jyothsna &

Prasad, 2011).

2.6.1 How do Network Intrusions pose a threat to IoT?

As stated earlier on in the chapter an intrusion is when legitimate access to a service or

resources on a target node is disrupted by malicious and illegitimate requests or flow of data.

Below we review how this form of cyber-attack can pose a threat to the IoT network:-

 The Internet is not designed to police intermediate traffic. Its end-to-end design make

the intermediate network simple and optimized to ensure the fastest packet forwarding

service while leave the complexity of packet processing to the hosts on the two ends of

the communication. When proper detecting and preventive mechanism are missing on

the receiver, the system becomes vulnerable to malicious packets streamed from the

sender. In the IoT network, end devices are usually not equipped with high

computational resources for implementing complex security algorithm and usually

limited in power supply, which makes them not intelligent enough to detect and avoid

network attack (Suo et al, 2012).

 The number of services available on one IoT network component is limited, which

means only certain number of requests could be processed at a certain given time, one

at a time. When malicious packets taking a large portion of the total requests, chances

that legitimate requests being temporarily blocked becomes larger.

 IoT workflow is designed to be highly dependent on a number of connected devices

over a network, a single point of failure would render the whole system unavailable and

useless, for example, once DDoS attack brings down the serving device on a IoT

network, the other IoT devices whose functions rely on the this blocked device will be

also blocked from serving their client devices, which causes impairment of a local

network (Zhang & Green, 2015).

19

2.7 Conclusion

This chapter gave an introduction to the Internet of Things and its technologies. The underlying

concepts were stated and comprehensive definitions were provided. The essential

characteristics, architectures and technologies were outlined. Security challenges and the

vendor security mechanisms were discussed in this chapter. Finally, the chapter ended by

discussing the issue of Intrusion detection in IoT. The information presented is essential in

order to appreciate and understand the case-study area of this study.

20

Chapter 3: Machine Learning in IoT

The focal point of this study revolves around the concept of threat detection and mitigation in

IoT Security Architectures by use of Machine Learning Algorithms. This Chapter introduces

the sub-field of Computer Science, named Machine Learning. The Chapter reviews supervised

and un-supervised methods of machine learning, a full literature review of various machine

learning algorithms is presented including those that will be used in developing the proposed

Anomaly Detection Model. In this chapter we review existing literature on data mining, and

machine learning algorithms. Much attention is placed on the accuracy and performance of

these particular algorithms. We carefully review previous work done by academia and industry

in various case studies. The aim is to identify the approaches that will best suit this study.

3.1 Definition of Machine Learning

Machine Learning is a subfield of Computer Science and is a type of Artificial Intelligence that

has evolved from a field of pattern recognition to computational theory (Mahdavinejad et al.,

2018). It is used in the field of Computer Security to detect anomalies and changes in traffic

and learn on making future predictions based on earlier observed data. Machine Learning

provides Machines with the ability to learn without being explicitly programmed, to achieve

this machine learning approaches go through a training phase before making decisions on new

data.

Machine Learning is a field that has been around since the 1960s, Bell (2016) claims that

Machine Learning was originally defined by Arthur Samuel an engineer at IBM as

“Field of study that gives computers the ability to learn without being explicitly programmed”

Tom Mitchell the chair of Machine Learning at Carnegie Mellon University, provided another

definition of Machine Language in 1997 as:-

“A computer program is to learn from experience E with respect to some class of tasks T and

performance P, if its performance at its tasks in T, as measured by P, improves with the

experience E”

Mitchell’s (1997) definition can be broken down as meaning, it can be said that a computer

program that runs a set of tasks is learning if the performance on those particular tasks improves

with experience. Therefore a system has the ability to accept inputs, process and analyse data

systematically to find patterns and then undertake predictions is a system that is capable of

21

learning, with more and more learning the predictions that the system can produce become

more accurate.

There are three main categories of learning in Machine Learning, namely supervised,

unsupervised and reinforcement training.

3.1.1 Learning in Machine Learning

According to Shalev-Shwartz and Ben-David (2014), although learning is important it is not

the ultimate goal, the ultimate goal is to produce a system that can automatically and correctly

detect meaningful patterns in data.

 Supervised Learning – in supervised learning labelled data is used the system is

trained with labelled data, it (the system) is presented with labelled data in-order for it

to build a knowledge base based on that particular data so it is able to recognize

unlabelled data or data that does not exist in the built knowledge base. This would mean

that the training phase should be able to determine if a certain packet A is either a

normal packet or an abnormal packet. The system classifies new data based on known

behaviour, inspect different attributes and then determine which category the packet

falls into. The main objective of supervised learning is to learn how to predict the

appropriate output vector from a given input vector (Mahdavinejad et al, 2018).

 Unsupervised Learning – unlike in supervised learning, this approach uses unlabelled

data to learn normal data distribution. Unsupervised learning allows us to look at the

data with little to none known idea of what the result should look like. This approach

requires a machine to conduct systematic processing and analyse data, before breaking

it down to groups with similar features based on attributes chosen previously.

According to Chapelle (2006), it is assumed that data should follow a certain pattern or

structure. Based on that particular structure we should be able to classify new data and

detect anomalies in the data pattern.

3.2 Machine Learning Algorithms

A ML Algorithm is the driving force behind deciding which packets of data to accept or not to,

in supervised and unsupervised learning (Kongshavn Rønning, 2017). An algorithm is a

number of finite rules that have to be followed so as to solve a particular problem (Basu, 2013).

22

In Machine learning there are a number of algorithms which have similar functions, there can

be split into a number of categories as mentioned in the sections that follow.

3.3 Classification Algorithms

Algorithms that implement classification are called classifiers. Classifiers can classify data into

several pre-defined categories, but however it is normally done by classifying data into normal

and abnormal. Classification will often run on a set of training data where the category is

known, this is a form of supervised learning (Kongshavn Rønning, 2017). Below are some of

the common and relevant classification techniques.

3.3.1 Naïve Bayes Algorithm

This is an algorithm that is bases itself on the Bayes theorem, for one to fully understand the

algorithm they have to be familiar with the Bayes theorem and the probability theory.

Heckerman (1996) states that probability is the degree of belief in an event occurring and it can

be expressed on a linear scale with a range from 0 to 1. There are two schools of thought in

interpreting probability: Frequentism and Bayesianism. Frequentism interprets probability as a

measure of the frequency of trials while Bayesianism views probability as a measure of the

outcome of a trial.

Naïve Bayes model is a very simplified Bayesian probability model. The mode is based on

assigning an event to a class that have the posterior probability. During training, the method

stores a probalististic summary for each class, this summary contains the conditional

probability of each attribute value, as well as the prior probability of the class. Each time the

algorithm enters a new instance, it updates the probabilistic stored with that specific class.

When the system now is given an unclassified object, the classifier uses a function to check

which of the pre-defined classes the object is likely to belong to. Below is the function of the

Naïve Bayes rule that is used:-

𝑷𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚 =

𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅. 𝒑𝒓𝒊𝒐𝒓

𝒆𝒗𝒊𝒅𝒆𝒏𝒄𝒆

(3.1)

23

Prior is the previous knowledge about that specific class. Given that in a training set of 70

fruits 30 are apple and 40 are bananas, it is more likely that the new fruit is a banana. This gives

a prior probability of
30

70
 for an apple and prior probability of

40

70
 for a banana. The likelihood or

probability supports that the next fruit might belong to a certain group. The algorithm can

further be written in this way

𝑷(𝑩|𝑨) =

𝑷(𝑨│𝑩). 𝑷(𝑩)

𝑷(𝑨)

(3.2)

Where;

P(B) is the probability or marginal probability of B

P(B | A) is the conditional probability of B given A. It is also known as the posterior probability

because it is dependent on the specified value of A.

P(A | B) is the conditional probability of A given B.

 P(A) is the prior or marginal probability of Y, acts as a constant.

Note: posterior probability is a probability value that has been revised by using additional

information that is later obtained.

 Bayes theorem is a description of an observer’s belief of an event B is updated by occurrence

of event A. Bayes theorem is used to compute inverse probability, which means that if P(B|A)

is known, the probability of P(A|B) can be computed.

In Naïve Bayes an input vector of Z = (Z1……, Zm), Naïve Bayes classifies assume

independence between feature and attributes of Z given the class variable t (Mahdavinejad et

al, 2018). By use of Bayes’ theorem we have

24

 𝑷(𝒕 = 𝒄|𝒁𝟏, … … … , 𝒁𝒎) =
𝑷(𝒁𝟏, … … . . , 𝒁𝒎 | 𝒕 = 𝒄)𝑷(𝒕 = 𝒄)

𝑷(𝒁𝟏, … … … . . , 𝒁𝒎)

(3.2)

And by application of the independence assumption and some simplifications, we have

𝑷(𝒕 = 𝒄|𝒁𝟏, … … … … . 𝒁𝒎)∞𝑷(𝒕 = 𝒄) ∏ 𝑷(𝒁𝒋|𝒕 = 𝒄)

𝑴

𝒋=𝟏

(3.3)

Therefore, the form of the classification task is

𝒚 = 𝒂𝒓𝒈 𝒎𝒂𝒙 𝑷(𝒕 = 𝒄) ∏ 𝑷(𝒁𝟏|𝒕 = 𝒄)

𝑴

𝒋=𝟏

(3.4)

Where y denotes the predicted class label for z. Different Naïve Bayes classifiers use different

approaches and distributions to estimate 𝑷(𝒕 = 𝒄) and𝑷(𝒁𝒋|𝒕 = 𝒄).

Naive Bayes classifications are often robust to attributes that are irrelevant as the classification

mechanism takes into account evidence from many attributes to make the final verdict. The

disadvantage of Naïve Bayes is that it requires a strong independent assumptions of data.

3.3.2 K-Nearest Neighbours

KNN is a case based supervised learning algorithm which stores all its training data for

classification, it is used for classification and regression. The algorithm introduced by

Dasarathy in 1991 , it is an algorithm that reads a set of labelled training set, and then it is used

to classify an unlabelled testing set, and then it is used to classify an unlabelled testing set.(I.

Hmeidi et al, 2008). In KNN, the aim is to classify a new dataset by looking at the “K” given

data points in a training set that are the closest to it in the particular input space. To find K-

nearest neighbours of the new dataset, the algorithm will use a distance metric, such as

Euclidean distance, Mahalanobis distance or hamming distance. Given N training vectors, K-

NN identifies the K nearest neighbours of any new vector. For example, if K is 3 and a new

object is in the close proximity of two objects of class Y and one objects of class X, the object

25

will be classified into belonging to class Y. An example of K-nearest neighbour classification

can be seen in Fig 3.1, here two of the closed objects belong to the green class, while only one

belongs to the red class hence the unknown object which is white will be classified into the

green class.

Fig 3.1 KNN Classification (Source: Kongshavn Rønning, 2017)

KNN is simple to implement, but its limitation is that it requires storing the entire training set,

which makes it too costly. As a result of simplicity, certain issues besides storing the entire

training set arise, that limit the performance of KNN for examples selecting the right distance

measure, number of neighbours and larger part vote to combining class labels is not that

effective.

KNN is implemented in different scenarios and utilized for a number of tasks such as Wireless

Sensor Networks, Intrusion Detection for IoT systems and indoor positioning systems. KNN

is robust simple as Naïve Bayes. To formulate the KNN Algorithm, let the input vector be x

and its K nearest neighbour be Nk (x), the predicted label for x be y and the class variable be a

discrete vendor variable of t

𝑷(𝒕 = 𝒄|𝒙, 𝑲) =

𝟏

𝑲
 ∑ 𝟏(𝒕𝟏 = 𝒄)

𝒊 ∈𝑵𝒌 (𝒙)

(3.4)

 𝒚 = 𝒂𝒓𝒈𝒄𝒎𝒂𝒙 𝑷(𝒕 = 𝒄|𝒙, 𝑲) (3.5)

26

i.e., the input vector x will be labelled by the mode of its neighbours labels.

In K-NN, there are several ways to compute the amount of distance between data points, it all

depends on the type of the features in the data. For real-valued features where (𝒙𝒊 ∈ ℝ𝑫):

Euclidean distance is commonly used (Mahdavinejad et al, 2018).

𝒅(𝒙𝒊, 𝒙𝒋) = √ ∑ (𝒙𝒊𝒎 − 𝒙𝒋𝒎)𝟐

𝑫

𝒎=𝟏

 = √||𝒙𝒊||𝟐 + ||𝒙𝒋||𝟐 − 𝟐𝒙𝒊
𝑻𝒙𝒋

(3.6)

Simplification of the distance in-between points in 2 dimension.

||𝒙𝒊|| = √∑ 𝒙𝒊𝒎
𝟐𝑫

𝒎=𝟏 is the norm of x, or length of x.

𝒙𝒊
𝑻𝒙𝒋 = ∑ 𝒙𝒊𝒎𝒙𝒋𝒎

𝑫
𝒎=𝟏 is the dot (or inner) product of 𝑥𝑖 and 𝑥𝑗

The dot product computes the similarity between two vectors (orthogonal vectors have dot

product of 0, parallel vectors have a high dot product.

Hamming distances are binary valued, they count the number of features where the two

examples disagree, so for hamming distance we use

𝒅(𝒙𝒊, 𝒙𝒋) = ∑ ||(𝒙𝒊𝒎

𝑫

𝒎=𝟏
≠ 𝒙𝒋𝒎)

(3.7)

3.3.3 Support Vector Machine Classifiers (SVM)

SVMs were introduced by Vladimir Vapnik, they use a supervised learning approach which

can be used for both classification and regression tasks. It is a method of creating a set of

27

functions from a set of labelled training data. SVMs are non-probalistic binary classifiers that

separate both classes of the training set with maximum margin, then the predicted label of a

new, unseen data point is determined based on which side of the hyperplane it falls.

Fig 3.2 SVM Classification

In Fig 3.2 data is plotted in n-dimensional space (where n is the number of features we have)

with each value of a particular coordinate. Then, we perform classification by finding the

hyperplane that separates two particular classes.

Support Vectors are data points that lie close to the surface, they are data points that are difficult

to classify, and they have a direct bearing on optimum location of the decision surface.

SVM looks at extremes of data sets and draws a decision boundary which is the hyperplane at

near extreme points in the dataset (Danilo Bzdok et al, 2017). The question then lies in which

hyperplane can be used to get the best results as shown in Fig 3.3.

28

Fig 3.3 SVM Basic Concepts

SVMs work are used in datasets that can be linearly separated; give a dataset is not linearly

separable, that particular dataset will be transformed into a higher dimensional space, so that a

maximum-margin can be plotted. The problem with using this technique of transforming the

dataset into a higher dimensional feature space is that it is expensive computationally. This

particular problem can be avoided by applying what is called a “kernel trick” which would

reduce the computational cost. The kernel trick or function makes use of a function that takes

inputs as vectors in the original space and returns the dot product of the vectors in the feature.

(Yazici, Basurra & Gaber, 2018). A disadvantage of Support Vector Machines is that they do

not directly provide probability estimates, but they have proven to be versatile in specifying

decision functions when using different kernels. They provide high precision, making them

applicable to datasets with a large number of features, they are highly used in studying the air

quality in urban areas of cities, image interpolation, as well as for medical classification which

require low false positive and high precision rates.

3.4 Clustering Algorithms

In some cases it is not always possible to have sufficient knowledge about the data to efficiently

classify new and unknown data, algorithms can use distance or similarity among data samples

as a means to classify new data. Clustering is a method where data is divided into groups or

clusters of similar objects. The purpose of clustering is to represent a set of unlabelled data into

29

a set of natural hidden data structures. Most clustering algorithms require input of how many

clusters you would want. Below are some of the clustering algorithms:-

3.4.1 K-Means Algorithm

This algorithm aims to divide N observations in K clusters or groups, where each observation

belongs to a cluster with the nearest mean. This approach can be used with KNN classification,

where K-means clustering is used to obtain clusters before KNN is used to classify new and

unknown data from already existing clusters (Kongshavn Rønning, 2017).

K-means is used as an iterative solution to find the local minimal solution. This algorithm can

be called the K-means algorithm or Lloyd’s Algorithm. However, Lloyd’s algorithm is based

on the observation that the optimal placement of a mean is at the centroid of the associated

cluster. The approach begins with choosing the different cluster centres or means. When the

cluster centers have been chosen, the algorithm follows two steps; the first step determines

which data belongs to which cluster via nearest distance calculation from the different points

to the different means. The position of the cluster centers is then recomputed and moved based

on finding the nearest center from all points in a cluster. The K-means algorithm will follow

these two steps until convergence is reached. Even though this technique is able to find the

local minimal solution, it’s not necessary the global minimal solutions, as the Lloyd’s algorithm

does not specify the initial starting placement of the clustering centers. This is a serious

weakness as the iterative technique is sensitive to the initial starting positions of the cluster

centers. In other terms, how well the clustering is, heavily depends on where the initial cluster

centers are set. There is currently no known efficient and widely accepted solutions to this

problem. However, in order to obtain optimal clusters or solutions using the k-means algorithm,

the algorithm is often ran several times with different starting positions for the cluster centers

(Mahdavinejad et al , 2018). However, it is important to acknowledge that this is not an ideal

solutions and several other techniques have been proposed. Among these solutions is an

approach that tries to find a better starting condition so the algorithm can converge to a better

local minimal. This can be done by trying to calculate different vector areas where the density

is strongest, before setting these areas as the starting positions.

3.4.2 Density-based Spatial Clustering of applications with Noise (DBSCAN)

DBSCAN is a density-clustering algorithm which builds clusters based on points that are

closely linked together, the purpose of the DBSCAN is to group a given unlabelled data set

30

based on the density of its data points. Using this particular algorithm in a model, groups of

dense data points (data points with many close neighbours) are considered as clusters and data

points in regions with low-density are considered as outliers (Kriegel et al, 2011). The

algorithm takes two parameters; minpts and distance d. If a point Y can reach minpts in a radius,

based on distance d, point Y is considered a core-point. If point Y then have a path 𝑝1,

𝑝2,…………..,𝑝𝑛−1, 𝑝𝑛 to point N, where each point between point Y and point N is a core-

point, all points 𝑝𝑥 on the path needs to be density-reachable to 𝑝𝑥+1. Density-reachable means

𝑝𝑥 need to have 𝑝𝑥+1 within distance d. These core-points on the

path 𝑝1,𝑝2,…………..,𝑝𝑛−1, 𝑝𝑛, including the points that is density-reachable to a core-point

in this path, is considered as a cluster. Points that are density-reachable to a core-point, but is

not considered as a core-point because it doesn’t contain minpts within radius d are considered

outliers of a cluster.

DBSCAN is a popular density-based clustering algorithm which allows clusters to expand in

any shape and form. Unlike K-means, which assume all points in a dataset are legitimate,

DBSCAN is resistant against noise, as any point which can’t satisfy the minpts criteria, and is

not connected to a core-point, is considered as an outlier in the dataset. Since DBSCAN builds

clusters based on points that are linked together, the algorithm doesn’t need to define the

amount of start-clusters. However, since the clustering algorithm needs to define minpts and

distance d this can cause several weaknesses. Either, if the dataset are not understood correctly

to choose meaningful parameters, or that it is impossible to cluster data with a high differences

in densities (Kongshavn Rønning, 2017).

In practice, DBSCAN is mostly used in large datasets as it is efficient, fast and robust against

outliers. Although it has a significant advantage over other clustering methods the DBSCAN

in the case of a data set with large differences in densities, the resulting clusters are destitute.

DBSCAN is one of the most used clustering algorithms and is used in anomaly detection in

temperature data and X-Ray crystallography (Mahdavinejad et al, 2018).

3.5 Decision Tree Algorithms (DT)

DT algorithms are known for their use of no parameters, comprehensibility, being able to

handle mixed-type data and simplicity. A DT is induced from a set of labelled training data

represented by a tuple of attribute values and a class label. Therefore due to the vast search

space, the training process is typically a top-down, greedy and recursive process starting with

31

the entire training data and an empty tree. An attribute that best partitions the training data is

chosen as the splitting attribute for the root, and the training data are then partitioned into

disjoint subsets satisfying the values of the splitting attribute. For each subset, the algorithm

proceeds recursively until all instances in a subset belong to the same class. Decision Trees

learning works considerable well on large datasets, the decision-tree algorithm has been proven

to considerable outperform the Naive Bayes algorithm on larger datasets, while Naïve Bayes

performs better than it on smaller datasets (Kohavi 1996; Domingos & Pazzani 1997).

Fig 3.4 shows an example of a Decision Tree

Fig 3.4 A simple Decision Tree

A Decision tree is constructed in two stages:

1. A growth stage

2. A prune stage

The process of construction the preliminary tree is called the ‘growth stage’, after the

preliminary tree has been built, a sub-tree is created with the least estimated error rate, this

process is known as the ‘prune stage’. The pruning process consists of removing small, deep

nodes from the preliminary tree resulting from ‘noise’ contained in the training sample that

reducing the risk of overfitting and ensuring more precise classification of unknown data

(Mahdavinejad et al , 2018).

There are a number of variants of the decision tree classifier/ algorithm, these include:-

 ID3 Algorithm

 M5 Algorithm

32

 C 4.5 and 5.0 Algorithm

 CART Algorithm

3.5.1 Iterative Dichotomiser 3 (ID3) Decision Tree Algorithm

ID3 is a supervised learning algorithm created by Ross Quinlan at the University of Sydney,

which is used to form a decision tree by calculating the entropy values. For one to understand

the ID3 algorithm, they have an understanding of the Theories of Shannon which is at the base

of ID3 and C4.5 algorithms. Shannon Entropy first defines the amount of input information

provided in an event, when a low-probability event occurs, the event carries more information

that when the event has a higher-probability value (Badr et al, 2013).

Shannon Entropy

If we are given a probability distribution P = (𝑝1, 𝑝2…...𝑝𝑛) and a sample S then the

Information carried by this distribution, also called the entropy of P is giving by:

𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑷) = − ∑ 𝒑𝒊 × 𝐥𝐨𝐠 𝒑𝒊

𝒏

𝒊=𝟏

(3.8)

Information gain G (p, T)

Entropy is a degree of randomness of data. It is used to calculate homogeneity of a data

attribute. If Entropy is zero then the sample is totally homogeneous and if it is one then the

sample is completely uncertain.

Information Gain or Gain is a decrease in entropy.

There are functions that allow us to measure the degree of mixing classes for all sample and

any position of the tree in construction. It remains to define a function to select the test that

must label the current node.

It defines the gain for a test T and a position p

33

𝑮𝒂𝒊𝒏(𝒑, 𝑻) = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝒑) − ∑(𝒑𝒋 × 𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝒑𝒋

𝒏

𝒋=𝟏

))

(3.9)

Where values (pj) is the set of all possible values for attribute T. We can use this measure to

rank attributes and build the decision tree where at each node is located the attributes with the

highest information gain among attributes not yet considered in the path from the root.

The term dichotomisation means dividing into two completely opposite things, hence the

algorithm iteratively divides attributes into two different groups which are the most dominant

attribute to construct a tree, then entropy and gain is calculated for each attribute, after that the

most dominant attributes are put up on the tree as a decision node. After that the entropy and

gain of the remaining attributes are calculated among the remaining attributes and the next

dominant attribute is found (Badr et al, 2013). This process is done until reaching a decision

for that particular branch, the process is iterative hence the term “Iterative Dichotomisation”.

34

Table 3.1 describes weather conditions that will determine the suitability of playing tennis

outside for the previous 14 days.

In the example, the classification target is “Should we Play Tennis?” which can be a “Yes” or

a “No”. Weather Attributes are outlook, temperature, humidity and wind speed. The weather

attributes have the following values:-

 Outlook = {Sunny, Rainy, Overcast}

 Temperature= {Hot, Mild, Cool}

 Humidity ={High, Normal}

35

 Wind={High, Low}

Examples of the Set S are

Table 3.1 Dataset S

We need to find the attribute that will be the root node in our decision tree, to find that we first

have to calculate our entropy. The decision column consists of 14 instances and includes values

of yes or no. There are 9 decisions labelled “yes”, and 5 decisions labelled “no”

𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺) = − ∑ 𝒑𝒊 × 𝐥𝐨𝐠 𝒑𝒊
𝒏
𝒊=𝟏

Entropy(Decision) = - p(Yes).log2p(yes) – p(no).log2p(no)

Entropy(Decision) = -(9/14).log2(9/14) – (5/14).log2(5/14) = 0.94

To calculate the dominating attribute

We take one of the Attributes and calculate its gain.

36

𝑮𝒂𝒊𝒏(𝒑, 𝑻) = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝒑) − ∑(𝒑𝒋 × 𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝒑𝒋

𝒏

𝒋=𝟏

))

Wind Factor on decision.

Gain(Decision, Wind) = Entropy(Decision) – ∑ [p(Decision|Wind) . Entropy(Decision|Wind)]

Wind attribute has two labels: low and high. We would reflect it to the formula.

Gain(Decision, Wind) = Entropy(Decision) – [p(Decision|Wind=Low).

Entropy(Decision|Wind=Low)]-[p(Decision|Wind=High).Entropy(Decision|Wind=High)

Now, we need to calculate (Decision|Wind=Weak) and (Decision|Wind=High) respectively.

There are 8 instances for low wind, there 2 “No” decisions and 6 “Yes” decisions.

Entropy(Decision|Wind=Low) = -p(2/8)*log2(2/8) – (6/8)*log2(6/8) = 0.811

There are 6 instances for High wind. Decision is 3 on each side.

Entropy(Decision|Wind=High) = -p(3/6)*log2(3/6) – (3/6)*log2(3/6) = 1

Gain(Decision, Wind) = 0.94-[(8/14)*0,811]-[(6/14)*1] = 0.048

The same calculations are performed for the remainder of the attributes.

Gain(S, Outlook) = Entropy (S) - 5/14*Entropy (S|Sun)

 - 4/14*Entropy (S|Rain)

- 5/14* Entropy (S|Overcast)

= 0.94 – 5/14*0.9710-4/14*0 – 5/14*0.9710

Gain(S, Outlook) = 0 .246

Calculation of entropies:

Entropy (S|Sun) = -2/5*log2 (2/5)-3/5* log2 (3/5) = 0.9710

Entropy (S|Rain) = -4/4*log2 (4/4)-0* log2 (0) =0

Entropy (S|Overcast) = -3/5* log2 (3/5) -/5* log2 (2/5) =0.9710

37

As well we find for the other variables:

Gain(S, Wind) = 0.048

Gain(S, Temperature) = 0.0289

Gain(S, Humidity) = 0.1515

Outlook attribute has the highest gain, so it is used as a decision attribute as the root of the tree.

As show below

Fig 3.5 ID3 Tree Construction

By continuous iterations, the final tree is shown below in Fig 3.6

38

Fig 3.6 Complete ID3 Tree

3.5.2 C4.5 and 5.0 Algorithms

The C 4.5 algorithm introduced by Ross Quinlan is an extension to the ID3 algorithm, it acts

as a solution to a shortfall by the ID3 Algorithm. As effective a classification algorithm as the

ID3 algorithm is, it has a limitation in that it is overly sensitive to features with large numbers

of value. Attributes in the ID3 must always be nominal values, the dataset must not include

missing data and the algorithm tends to fall into overfitting (Mahdavinejad et al, 2018).

To overcome this problem, the C4.5 uses “Information Gain”, which allows the algorithm to

create a more generalized model including continuous data and can handle missing through

measuring of gain ratio.

𝑮𝒂𝒊𝒏𝑹𝒂𝒕𝒊𝒐(𝒑, 𝑻) =

𝑮𝒂𝒊𝒏(𝒑, 𝑻)

𝑺𝒑𝒍𝒊𝒕𝑰𝒏𝒇𝒐(𝒑, 𝑻)

(3.10)

Where SplitInfo is:

39

𝑺𝒑𝒍𝒊𝒕𝑰𝒏𝒇𝒐(𝒑, 𝒕𝒆𝒔𝒕) = − ∑ 𝑷′ (

𝒋

𝒑
) × 𝐥𝐨𝐠(𝑷′ (

𝒋

𝒑
))

𝒏

𝒋=𝟏

(3.11)

𝑃′(
𝑗

𝑝
) is the proportion of elements present at the position p, taking the value of j-th test.

Unlike Entropy, the definition is not dependent of the distribution of examples inside the

different classes. Like in ID3 data is sorted at every node of the tree in order to determine which

is the best attribute for spliting. Gain ratio impurity method is used to evaluate the splitting

attribute (Quinlan, 1993).

On Attributes of Unknown Value

During the construction phase of the tree, it is possible to handle data for attributes that have

an unknown value by evaluating the gain or the gain ratio. By use of a decision tree it is possible

to classify the records that have unknown values by estimating the probabilities of the outcome.

The new criterion gain will be of the form:

 𝑮𝒂𝒊𝒏(𝒑) = 𝑭(𝑰𝒏𝒇𝒐(𝑻) − 𝑰𝒏𝒇𝒐(𝒑, 𝑻)) (3.12)

Where

𝑰𝒏𝒇𝒐(𝒑, 𝑻) = ∑ (𝒑𝒋 × 𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝒑𝒋))

𝒏

𝒋=𝟏

(3.13)

Info(T) = Entropy(T)

F is the number of samples in the dataset with a known value for a given or total number of

samples in a set of attribute data.

40

Below is a training set similar to the one used for the ID3 example above, but this consists of

consists of continuous values for Humidity instead of “High or Low”.

Table 3.2 Training Set with Continuous Values

Gain is calculated as in the ID3 example except for the attributes with continuous value. To

calculate gain we must sort attribute values in ascending order as follows:

{65, 70, 70, 70, 75, 78, 80, 80, 80, 85, 90, 90, 95, 96}

Then afterwards we remove the duplicates.

{65, 70, 75, 78, 80, 85, 90, 95, 96}

Gain Calculation for the attribute continuous humidity using C4.5 Algorithm

41

Table 3.3 Gain calculation for Continuous Values

 65 70 75 78 80 85 90 95 96

Inter

val

≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ >

Yes 1 8 3 6 4 5 5 4 7 2 7 2 8 1 8 1 9 0

No 0 5 1 4 1 4 1 4 2 3 3 2 4 1 5 0 5 0

Entro

py

0 0.9

61

0.8

11

0.9

71

0.7

21

0.9

91

0.

65

1 0.7

64

0.9

71

0.8

81

1 0.9

18

1 0.9

61

0 0.

94

0

Info(

S,T)

0.892 0.925 0.8950 0.85 0.838 0.915 0.929 0.892 0.94

Gain 0.048 0.015 0.045 0.09 0.102 0.025 0.011 0.048 0

Gain(S, Humidity) = 0.102

After a number of calculations, as in the ID3 example Outlook has the largest value of

Information Gain hence it becomes the root of the decision tree.

According to an experiment run on the same dataset to test accuracy of the ID3 and C 4.5

Algorithm by, the C4.5 was reasonable a more accurate classifier as compared to the ID3

algorithm

Table 3.4 Accuracy Comparison between ID3 and C 4.5

42

Fig 3.7 Comparison of Accuracy between ID3 and C 4.5

Although the C4.5 is more accurate than ID3 the algorithm has a slower execution time.

Fig 3.8 C4.5 and ID3 Execution Time

43

3.6 Artificial Neural Networks

Introduced in 1943 by McCulloc and Pitts, Artificial Neural Networks (ANN) are the artificial

representation of the working human nervous system. They are simply an interconnected web

of nodes, which are called neurons, that are connected with edges typically have a weight that

adjusts as learning continues. Fig 3.9 show a representation of ANNs

Fig 3.9 A visual representation of ANNs

 Artificial Neural Networks have two learning approaches, supervised learning and

unsupervised neural network learning. In Supervised learning, the neural network is provided

with a labelled training set which learns a mapping of outputs y from inputs x, given a labelled

set of inputs-outputs pairs.

 𝒅 = {(𝒙𝒊, 𝒚𝒊)}𝒊=𝟏
𝑵 (3.14)

Where d is the training set and N is the number of training examples. It is assumed that 𝒚𝒊 is a

categorical variable form some infinite set 𝑦𝑖 ∈ {1 … . . 𝐶}.

Multi-Layer Perceptron is an example of a supervised ANN algorithm which was used by

Biven et al (2002) to detect Network Intrusion Detection.

44

In unsupervised Neural Network learning, the ANN has an input of 𝑑 = {𝑥𝑖}𝑥=1
𝑁 that is a set of

unlabelled data and the algorithm has to find patterns in the given data. Self-Organizing Map

(S.O.M) is a type of ANN that is trained using unsupervised learning procedure to produce a

low dimensional, discretized representation of the input space of training samples referred to

as Maps.

3.7 Classification Performance of Machine Learning Algorithms

In Machine Learning the performance of an algorithm is measured by how they can accurately

classify data to detect anomalies in data being received and processed, this is achieved by

analysing data through a process called “Data Mining” which leads to the overall

“Classification” of Data as being legitimate or illegitimate. Data mining is a powerful analytic

process crafted to discover patterns and systematic relationships among variables from

different perspectives with the purpose of extracting useful information (Duda, Hart & Stork,

1997). Classification, also known as classification learning, is a major data mining technique

used to explore and find the hidden knowledge in a given dataset. A classification problem

essentially involves categorising objects into groups according to their similar observed

features (Melton et al., 1999). The problem aims to learn the relationship between the features

variables and a target variable of interest. The problem of classification has been applied in a

variety of data mining applications. Aggarwal (2014, p. 2) states the classification problem as

follows:

 “Given a set of training data points along with associated training labels, determine the class

label for an unlabelled test instance”.

Classification learning is basically a two-step process, in the first step, a classification model,

mostly known as a classifier is constructed from a predetermined set of labelled examples. This

is the training phase where a classification algorithm learns from a training set consisting of

dataset instances and their associated class labels. An instance is represented by 𝒏 attributes,

𝑿 = (𝒙𝟏, 𝒙𝟐, … … … . . 𝒙𝒏). Each instance is assumed to belong to a predefined class and is

determined by the additional dataset attribute known as the class label attribute. Because the

class label for each training instance is provided, this renders this phase as supervised learning

(Love, 2002; Sathya & Abraham, 2013).

45

The first phase of a classification task is the learning of a classifier, a mapping or function, 𝒄 =

𝒇(𝒙) that is capable of assigning an associated class label 𝒄 to a given instance 𝑿. Classification

tasks can either be binary (classifying an instance into one of the two classes) or multiclass

(classifying an instance into one of the more than two classes). Our research focuses on binary

classification. A binary classifier assigns a class 𝒄 ∈ {𝟎, 𝟏} to an instance 𝑿 based on its

attributes 𝒙 ∈ 𝑿.

In the second phase, the function is put to the test and used for classification. Classification

performance can be defined as the ability to assign a class to a novel observation (Marcot,

2012). The strength of the Machine Learning classifier largely depends on how well it

categories the test instances after the completion of the training phase.

3.7.1 Bias and Variance Trade-Off in Classification

There are a number of factors that impact the performance of machine learning classifiers. The

concept of bias and variance is inescapable with regards to the performance of classification

algorithms. When a classification model that is complex given the training dataset is inducted,

this leads to over-fitting attributed to too much variance in the model. However, if a simple

classifier is learnt, it cannot extract a true structure given the data leading to under-fitting the

data therefore there is too much bias in the model. To enhance the performance of Bayesian

network classifiers, it is imperative to minimize either bias or variance. As shown in Figure 3-

8, a bias/variance compromise has to be obtained for optimal classification performance of a

learner (Brain & Webb, 1999).

Fig 3.10 Bias-Variance Trade-Off

46

There are a number of factors that cause bias and variance and hence affecting the performance

of classification models. In this study we investigate (1) Sample Size and (2) Type of

Discretization on how they affect classification performance.

These factors, each has unique bearing of the classification performance. It is however

interesting to investigate how each factor impacts classification of the proposed model, and

algorithms. A number studies have been conducted to date however they are not conclusive or

binding. We review accordingly the literature in the following section.

3.7.2 Effect of Training Sample Size

The size training set plays a pivotal role in providing accurate probability estimates (Bielza &

Larrañaga, 2014). Using bias-variance decomposition to explain how a finite training sample

size influences classification performance of a classifier:

 Bias: a classifier inducted with 𝒏 training instances performs poorly than a classifier

trained with 𝒏 = ∞ training instances.

 Variance: a training sample size of 𝒏 could build a classifier 𝒇 different model

performance. Also to note variance is inversely proportional to training sample size 𝒏.

47

Fig 3.11 Generic Learning Curve (Source: Figueroa, 2012)

The image depicted above is an example of a generic learning curve. Beleites et al. (2012)

explains a learning curve as ―The learning curve describes the performance of a given

classifier for a problem as function of the training sample size”.

Basically, the learning curve illustrates the relationship of computational cost and performance

with increasing training sample data. There is a general agreement in the machine learning

community that in the event of limited training sample size, classifiers cannot populate the

conditional probability tables with reliable probability estimates (Bielza & Larrañaga, 2014).

Also the larger the training sample size the joint probability distribution encoded to

approximate the sampled domain (Hastie, Tibshirani & Friedman, 2009). Which generally

means the larger the training sample the more accurate the classifier is, and if the training set

is of a small number there is a high probability of incorrectly classified data in the test set.

However the number of training set is linear to time complexity, hence it is thus crucial to have

a training sample that is adequate for the induction process.

48

Numerous research studies have been done to explore the mechanisms towards sampling the

optimum training sample data with respect to classifiers and ultimately their classification

performance. This is highly ambiguous and there is bound to be significant disparities on the

conclusions of respective publications.

Consequently this presents a gap during the learning process; the sampling of the training set

and also how the size if the training sample set is impacted by other factors that are studied in

the research i.e. discretization approach, score function etc. Furthermore traditional statistical

classifiers such as Bayesian networks are said to more sensitive to the size of training sets

compared to non-parametric classifiers such as ANNs and SVMs. Also general guidelines

suggest that the number of training instances should be at least 6 times the number of predictive

variables for optimum and accurate classification performance. Training sample sizes

adversely affects the time, space complexities of the classifiers and ultimately their

classification accuracies (Flores et al., 2011).

According to a study done by Sordo and Zeng (2005) who investigated the impact of sample

size on classification accuracy of three classification algorithms SVM, Naïve Bayes and

Decision Trees in classifying smoking data. Naïve Bayes was trained with sample size ranging

from 50 to close to 8000 instances. As the training set size increases, the classification ability

behaved asymptotically about 85%. They revealed that sample size is seemingly irrelevant with

regards to classification accuracy. They discovered that the Naïve Bayes accuracy stabilizes at

a 4000 sample size threshold and thereafter remains invariant to some degree. The results depict

that the most variation in accuracy occurs between 100 and 1000 samples.

Bennett (2012) pointed out that according to the information theory; larger sample sizes contain

more information than the smaller dataset of the same feature set. He explained this concept

mathematically using the principal formula of the information theory using equation below:

𝑯(𝑿) = ∑ 𝒑(𝒙𝒊)𝑰(𝒙𝒊) − ∑ 𝒑(𝒙𝒊) 𝐥𝐨𝐠𝒃 𝒑(𝒙𝒊)

𝒏

𝒊=𝟏

𝒏

𝒊=𝟏

(3.15)

49

Where: 𝑯(𝑿) represents the entropy value of 𝑿; 𝒑() denotes the probability distribution; 𝑰()

represents the self-information measure; 𝒃 denotes the log base which is usually 2 and lastly 𝒏

represents the sample size.

Bennett inferred from the Equation 3.15 that with the increase in 𝒏, the training sample tends

to approach the true sample size thus the probability distribution of the training sample size

tends to approach the probability distribution of true sample. Furthermore, he pointed that

increasing the sample size tends to obviate the impact of outliers and the perceived arbitrariness

embedded in small datasets.

From academia and literature we note that the training sample set plays a pivotal role in the

classification performance of machine learning classifiers. The relationship between the

sample size and classification performance must not be overlooked. It is fundamental to

determine the amount of training size that will result in optimal performance of a classifier.

Being mindful of the cost of producing a labeled dataset for supervised learning purposes, it

crucial to be able to determine that critical sample size that results in optimal performance.

This might assist in evading trial and error that will introduce subjectivity concerning the

appropriate sample size.

3.7.3 Discretization

In the field of data mining and machine learning, data pre-processing is a crucial phase that

will guarantee the success of an algorithm (Pyle & Cerra, 1999; Maletic & Marcus, 2005). Data

pre-processing entails processes; data transformation, data cleaning, data reduction.

Discretization is one of the data reduction techniques and it has attracted a lot of attention as a

pre-processing approach in data mining (Murphy, 2001; Liu et al., 2002). Most machine

learning methods approach the classification task with the assumption that example attributes

are discrete in nature. However this is not always the case as real life datasets that contain

significant information that comes in continuous format. The process of discretization converts

quantitative attributes into qualitative format. Therefore numerical attributes are transformed

into discrete or nominal attributes of finite number of partitions. Each partition is thereafter

associated with a numerical discrete value. The diagram below shows a representation of the

discretization process.

50

Fig 3.12 Discretization Process

In accordance to the definition of discretization as a process of transforming or converting a

large interval of continuous values into a set of finite values, each range of the original dataset

is associated with a value in the discrete set; there are various types of methodologies with

which this association is performed. Therefore there are at least four different axes in the

classification of discretization approaches (Dougherty, Kohavi & Sahami, 1995).

Discretization methods are classified as either:

1. Supervised or Unsupervised- is the most discussed (Dougherty, Kohavi & Sahami,

1995; Liu et al., 2002; Hall et al., 2009).

 Unsupervised methods also known as class-blind methods because they

construct the discretization structure without involving the class attribute of an

instance. This approach has possible limitations in that two data intervals of the

51

discretization structure may overlap each other with regards to the class attribute

value incorporated on both side of the interval division.

 Supervised methods involve the class attribute in the discretization structure.

With the knowledge of the class attribute, the interval division also referred to

as the cut point will be more accurate rather than have values in the same range

split in between.

2. Global or local- the frequently discussed axes (Dougherty, Kohavi & Sahami, 1995).

 Local approaches, such as the C.45 decision tree are inherent with a method of

discretization within their internal structure. These approaches discretize

subsets of the data that is within a particular section of the learning algorithm

for instance a branch of a decision tree. Therefore the discretization algorithm

is employed only on particular local instances rather than as a whole.

 Global algorithms transform all the dataset instances in a single operation. Thus

these approaches are on the front-end side of the learning phase.

3. Static or Dynamic

 Static methods are based on user input of the parameter that determines the

number of cut points to be found in the dataset. The approach takes the data as

input and determines the appropriate cut point at which to divide the data into k

intervals. Each attribute is treated independently and binned according to its

sub-intervals.

 Dynamic approaches do not determine the number of intervals beforehand;

rather the value of k will be derived from the dataset. During the discretization

process the method uses a metric to evaluate the possible numbers of the cut

point locations therefore the k assumes various values and subsequently chooses

the value that optimizes the score metric for the final discretization process.

4. Bottom-Up or Top-Down

 Bottom-Up methods initiate the discretization process by first sorting the

attribute data to be discretized and rendering each instance as a cut point. It

traverses through the data set merging the instances and clusters of instances by

getting rid of the cut points based on a certain metric. When the merging process

elapses, substitution for values occurs.

52

 Top-Down approach commences the discretization process with a single range

for all the values of the continuous attribute data and employs an approach to

determine additional cut points at which to partition the range. The binning

process elapses when a particular condition is met.

Figure 3-11 illustrates a hierarchical decomposition of the taxonomy of discretization

approaches. Various discretization approaches exist and many more are being developed. The

following subsection will discuss the discretization.

Fig 3.13 Hierarchical Representation of Discretization Methods

Empirical investigations conducted by several authors namely (Dougherty, Kohavi & Sahami,

1995), (Liu et al., 2002), (Clarke & Barton, 2000) found that in terms of classification accuracy,

supervised discretization approach outperformed their unsupervised counterparts. The

unsupervised algorithms tend to be arbitrary in terms of the division of variables. Hence the

user determines the number of partitions. Their simplicity is attributed to the fact that a user is

control of the resolution of attributes. They are preferably used in cases where ―there is not

any information to determine relationships between variables” (Hoyt, 2008, p. 6). A set-back

of unsupervised methods is in their ―class-blind approach that tend to lead to over partitioning

of the attribute values (Clarke & Barton, 2000; Hoyt, 2008).

In the following section we discuss the discretization methods used in this particular study.

53

Equal Width Discretization

Equal Width Discretization also known as Equal Width Interval Discretization (Dougherty,

Kohavi & Sahami, 1995) or fixed k-Interval Discretization (Yang & Webb, 2001) is the

simplest discretization method that is an unsupervised direct method. It divides the range of

observed attributes into k bins of equal size, where k is a parameter provided by the user

(Dougherty, Kohavi & Sahami, 1995). If an attribute x is observed to have values bounded by

𝒙𝒎𝒊𝒏 and 𝒙𝒎𝒂𝒙, then this method computes the bin width by:

 𝛿 =
𝒙𝒎𝒂𝒙− 𝒙𝒎𝒊𝒏

𝑘
 (3.16)

Then the bin boundaries or thresholds are set at 𝒙𝒎𝒊𝒏 + 𝒊𝜹, where = 𝑖 = 1, … … . . 𝑘 − 1.

This discretization method works independently of any multi-relational structure that could be

inherent in the data. It is quite usual to set this value to 5 or 10 bins (Yang & Webb, 2001),

although the optimum value for k depends on, among other factors, the dataset size. Its time

complexity is 𝑶(𝒕), being the number of data instances. For our empirical study, we will use a

EW with k value set at 10.

Equal Frequency Discretization

This discretization algorithm sorts values in an ascending order and divides the range into 𝒌

bins so that each one contains approximately the same number of training instances

(Dougherty, Kohavi & Sahami, 1995). Hence, every bin contains 𝒕 𝒌⁄ data instances with

adjacent values. This discretization method provides a more balanced discretization by causing

continuous values to be distributed into different bins. A group of data instances with identical

values must be placed in the same bin therefore it is not always possible to generate 𝒌 intervals

with exactly the same number of values. Time complexity for this algorithm is 𝑶(𝒕 𝐥𝐨𝐠 𝒕) as it

is necessary to perform an ordering of the data.

PKI Discretization

Proportional k-Interval Discretization is a discretization approach that was designed for the NB

classifier (Yang & Webb, 2001). It aims to evaluate the trade-off between discretization bias

54

and discretization variance (Boland, 2007). To explain the discretization bias and variance

concepts we adapted the discussion from (Boland, 2007; Flores et al., 2011). The error

component is categorised into bias, variance and an irreducible error. Bias is referred to as error

due to the systematic error during the induction of the classification algorithm while variance

is the error due to random variation in training data and random variation existing in the training

dataset and from the random behaviour when inducting the algorithm. Classification variance

is thus a metric to evaluate how a classification algorithm responds to variation in the training

dataset. Discretization variance is thus the impact that a discretization approach has on the

classification variance of a classification algorithm. To reduce the error, the number of intervals

and the number of training instances must be considered. Intuitively, there is a conflict between

reducing discretization bias and discretization variance. Discretization that results in fewer

intervals will reduce variance. This means that the intervals will be large and therefore will

accommodate more training instances. On the flip side, a discretization that produces more

intervals will reduce bias. This is the source of the trade-off between bias and variance.

In light of the above discussion, Yang & Webb (2001) introduced PKID so as to provide a

balance in terms of discretization bias and variance. It is similar to the EW, however, it does

not have fixed number of intervals and the algorithm determines the number of intervals based

on the number of training instances. Given that there are 𝑁 training instances with known

training attributes, PKID produces 𝑝 = √𝑁 intervals, each containing approximately 𝑡 = √𝑁

instances.

 𝒑 ∗ 𝒕 = 𝑵

(3.17)

 𝒑 = 𝒕 (3.18)

where 𝑵 represents the number of training instances, 𝒑 represents the number of bins and 𝒕

represents the number of training instances per partition.

The Choice of Discretization Method

The above reviewed discretization approaches are used in this study and can be used with a

number of classifiers. The question however remains: “Which discretization algorithm will be

55

best for a particular dataset?. The search for the best discretization for a classification task is

hard. The study attempts to investigate how the choice of discretization impacts the

classification performance. The type of discretization method whether supervised or

unsupervised, the number of bins are the pertinent features for a discretization algorithm

(Dougherty, Kohavi & Sahami, 1995; Flores et al., 2011). Each of these attributes of

discretization impacts classification performance, we study each of the attributes. García et al.

(2013) suggests that performing empirical experiments using a set of classifier models and

discretization approaches helps to identify the best performing approach. Furthermore, we

examine how the training sample size impacts the discretization process and consequently the

classification performance of machine learning classifiers.

As previously mentioned, the discretization process generally involves some form of data

reduction hence leads to information loss. Therefore it is the ultimate goal to have a

discretization approach that minimizes information loss. The selection of an optimally

performing discretization method is NP-complete (García et al., 2013). There is a wealth of

literature that discusses the use of discretization schemes, however these methods have not

been compared on how they condition the classification in terms of accuracy.

Kaya et al (2011) conducted experiments on the diagnosis of Parkinson’s disease. They did a

comparison of non-discretized and discretized data on classification performance. They

concluded that discretization does impact the classification accuracy of machine learning

techniques. Lee (2007) did a study on the relationship between the choice of discretization

approach and classification accuracy. He notes that a discretization approach incurs some form

of information loss that tends to lead to classification error. Furthermore, he alludes that poorly

discretized attributes are likely to lead to inaccurate classifications. Freitas (2002, p. 50) states

that, “In practice, discretization may either increase or decrease classification accuracy,

depending on the original data and on the data mining applied to the discretized data”. They

also mentioned that discretization is a type of abstraction process hence relevant information

tends to be lost during the process.

3.8 Related Work

According to Sherasiya and Upadhay (2016), the IoT network is similar to the Internet network

in that they are exposed to the same cyber-attacks such as Man in the Middle, Denial of Service

and Spam, but however mention that due to small computing resources using traditional

56

Internet detection and mitigation techniques to protect the IoT network would be challenging.

They propose a light weight IDS using Machine Learning, their model aims at detecting nodes

with multiple identities and is only valid in case of wireless networks, since it relies on wireless

a wireless network to disclose genuine nodes. Although effective their model is more of a

patrolling model rather than a machine learning approach and it does not detect anomaly in

payload nodes.

Granjal, Silva and Lourenço (2018) propose an anomaly detection system in CoAP Sensor

Networks as a solution to application layer and DoS attacks in 6LoWPAN and CoAP

communication environments. The algorithm used to perform the detection of intrusions is the

Support Vector Machines (SVM). SVMs are powerful classification methods that perform well

using reasonable amounts of computational resources. This is an important requirement to take

into account on these systems, which makes the use of Neural Networks infeasible due to their

excessive computational requirements and time-consuming learning process. SVMs have a

faster classification procedure, which facilitates a real time implementation, and they have the

advantage of being non-linear classifiers, based on the kernel function that is used (Granjal et

al, 2018). The Intrusion Detection mechanism was implemented using 2 different approaches

i.e. the multi-class for detecting which intrusion had been detected and binary class to detect if

there was an intrusion. For implementation they used IoT-Lab as a platform for deployment of

the experiments, collecting data and performing analysis on results.

Butun et al. (2015) approach IoT anomaly detection from a different angle focusing on IoT in

the cloud, which seems to be an extremely interesting approach due to the explosion of cloud

computing and big data technologies. The authors analyse the current challenges of security in

IoT. Firstly, the size and number of data pumped into the cloud from IoT devices is massive.

E. Hodo et al (2016) propose the use of Artificial Neural Networks as a solution to threat

classification, detection and analysis. A multi-level perceptron, a type of supervised ANN, is

trained using internet packet traces, then is assessed on its ability to thwart Distributed Denial

of Service (DDoS/DoS) attacks. Their experiment retains 99.4% classification in accuracy.

Their model demonstrates that the ANN algorithm implemented is able to successfully detect

DDoS/DoS attacks against legitimate IoT network traffic.

57

Table 3.5 Related Work

Author(s) Model Accuracy

Hodo et al (2016) Artificial Neural Network

intrusion detection system for

IoT attacks

99.4%

Granjal et al (2018) Intrusion Detection and

Prevention in CoAPWireless

Sensor Networks using

Anomaly Detection

93%

Pongle and Chavan (2015) An IDS designed to detect

wormhole attacks in IoT

devices using three

algorithms to detect

anomalies in an IoT network.

94%

Thamilarasu and Chawla

(2019)

Deep Learning Intrusion

Detection Model for the

Internet of Things

95%

Table 3.5 represents the related work reviewed, all the authors employ various machine

learning techniques to develop an intrusion detection mechanism in IoT networks with relative

success. The work carried out by these researchers proves that Machine learning techniques

can be employed to build a comprehensive defence mechanisms against attacks on IoT

Ecosystems.

3.9 Algorithm Comparison

In Section 3.9 we compare the various algorithms discussed earlier in the chapter to critical

analyse each of the algorithms strengths and weaknesses so as to determine which might be

best suited for this particular study.

58

Table 3.6 gives a graphical comparison, of Artificial Neural Networks, Support Vector

Machines, Naïve Bayes, KNN and Decision Tree Algorithms, scoring each algorithm in a

particular category.

Table 3.6 A comparison of machine learning algorithms (**** represents the best and *

worst) (Source: Kotsiantis, 2007)

From table 3.6 it can be noted that the ANN and SVMs are generally more accurate and faster

in-terms of speed of classification than the other algorithms in comparison, however Decision

Trees and KNN can be trained at a faster rate than both sets of algorithms and have the distinct

advantage of being able to handle discrete, binary and continuous datasets.

SVMs have been proven to be highly efficient in classifying large datasets, however these

datasets must be linearly separable. If the dataset not linearly separable it will be transferred

into a higher dimensional space so that a maximum-margin can be plotted (Yazci, Basurra &

Gaber, 2018), this is not suitable for an IoT project as this process is computationally expensive

and most IoT objects have minimal computational power and memory.

59

According to Kohavi, 1996; Domingos & Pazzani 1997, Decision Trees have been proven to

outperform Naïve Bayes Algorithms in-terms of accuracy as the Naïve Bayes performs poorly

with larger datasets. While the KNN algorithm is relatively easy to implement, it however does

require the whole training set to be stored, which is computationally expensive in large dataset

(Kongshavn Rønning, 2017), hence this may not be suitable for an IoT model.

In this study we use the C 4.5 Decision tree algorithm, which is an extension of the ID3

Decision Tree Algorithm (Mahdavinejad et al, 2015), this is because the C 4.5 Algorithm solves

one particular problem that the ID3 does not, it is better equipped at handling over-fitting and

can work on datasets that have missing values. Decision trees unlike other classification

algorithms such as Neural Networks and SVMs can be used in dealing with discrete, binary

and continuous dataset attributes hence making them unique in handling different types of

datasets.

In terms of classification accuracy the C 4.5 Decision tree is not as accurate as compared to

ANN and SVMs, hence the proposed model employs a clustering algorithm in the form of the

K-means algorithm to assist with anomaly detection. The K-Means clustering algorithm

divides data into groups, and labels each instance in the dataset. K-Means is employed to obtain

clusters with the nearest mean before employing the classification algorithm (Kongshavn

Rønning, 2017). Once clustering is complete the C 4.5 Algorithm is then used to classify the

already clustered and labeled data. Clustering increases the efficiency and accuracy of the

classification model.

3.10 Conclusion

This chapter gave a review of Machine Learning Algorithms used for classification in the

Internet of Things. The underlying concepts were stated and comprehensive definitions were

provided. Furthermore, the chapter reviewed related work, on anomaly detection and the

challenges that other researchers faced when designing models to solve the issue of intrusion

detection in IoT. The Chapter concludes by discussing the various algorithms discussed

previously in the chapter and critically analysing which ones will be suitable for this particular

study and justifying the choice of the algorithms chosen for the implementation of the proposed

model.

60

Chapter 4: Methodology and Implementation

The following Chapter discusses the research and software methodology; how the proposed

mechanism for anomaly detection in the Internet of things using K-Means clustering algorithm

and C4.5 decision tree algorithm. It also consists of the description of the type of data that is

used in implementation, building and testing this particular model, as well as the description

of how the two algorithms can detect and classify anomaly in data. Furthermore, the Chapter

also reviews the evaluation metrics and criteria by which the accuracy of our proposed model

can be measured. The proposed anomaly detection model was trained and tested using

MATLAB Math Simulator. Implementation of the proposed model consists of four stages

namely input data pre-processing, clustering, training, classification and testing. This chapter

also provides code-snippets of the MATLAB code used to implement the model, and brief

descriptions of what the snippets do.

4.1 Methodology

Kothari (1990) states that there are basically two types of research methodologies namely

quantitative and qualitative, he then points out that the former is categorized to experimental,

simulation and inferential. Inferential approach entails forming a database from which to

deduce the characteristics or relationships of the sample population (Silhavy et al., n.d.).

Experimental involves conducting empirical studies with the aim of obtaining results from a

real-world test-bed. Simulation is used for research that involves complex phenomena and

hence cannot be setup in a laboratory environment (Silhavy et al., n.d.). For the purposes of

this study, a simulation methodology was used, as the research involved implementing a

complex IoT Interconnected ecosystem and there were no actual equipment to perform the

study physically as with the experimental approach.

4.2 Model Design

The study is conducted under the framework that is shown in Fig 4.1. The purpose of the model

is to apply Machine Learning Algorithms in detecting anomaly in application level data that is

being sent and collected by IoT devices or sensors at the application layer of the IoT

Architecture. We make use of a UCI repository IoT dataset

(http://archive.ics.uci.edu/ml/machine-learning-databases/00360/AirQualityUCI.zip) which

contains readings of a gas multi-sensors deployed to measure air quality in an Italian city, this

61

dataset is used as an input that is processed systematically and predicts if data received is

normal or abnormal by use of clustering and classification algorithms. The study resorted to

the freely available dataset of the Italian city as the researchers couldn’t find a local dataset

(South Africa) that can be used for research purposes. Figure 4.1 is a representation of the

proposed model.

Fig 4.1 Proposed Intrusion and Anomaly Detection Model

The model follows the following steps;-

1. Training and Test dataset.

2. Perform input data pre-processing where data is processed to make it easy to process.

3. Model processing - this stage is concerned with the use of clustering and classifying

algorithms for supervised learning by use of k-means algorithm for clustering and C

4.5 Decision Tree for classifying.

4. Prediction - the C 4.5 algorithm is used to predict if data received or sent is normal or

abnormal.

Figure 4.2 presents the flow chart for the anomaly detection model being proposed.

62

Fig 4.2 Proposed anomaly detection model flow chart

According to the flow chart depicted in Fig 4.2, the model starts by taking input data from

sensor recordings, that data is then pre-processed before being passed on to the clustering

algorithm. Data is then split into training and testing data, the training data is used to construct

a decision tree using the C 4.5 algorithm. After the decision tree is constructed, the testing data

was used to test the tree which classified data into normal or abnormal.

4.3 Input Data

To obtain a labelled dataset for intrusion detection and anomaly detection in IoT is not easy, as

there are not many. There are a number of non-IoT datasets available such as the KDD Cup

1999 dataset. For this study we used a dataset acquired from UCI IoT repository that contains

the readings from multiple gas sensor devices deployed to measure the quality of air in an

63

Italian city. The dataset has 9358 instances of timed responses from chemical sensors

embedded in an Air Quality Multi-sensor Device in an Italian city. According to the

explanation notes of the dataset, data was recorded for a period of a year with each sensor

readings collected hourly. The sensors collected concentrations of the following gases

Hydrogen Carbons, CO, Benzene, Nitrogen Oxide (NOx) and Nitrogen Dioxide (NO2) (De

Vito et al.,2008).

The dataset is freely available, but requires pre-processing before it can be used.

4.3.1 Data Pre-processing

The dataset obtained contains over a million readings in a Microsoft csv file, which is

computationally expensive for the sensors in the IoT network. The dataset contains unnecessary

attribute data such as date, time and sensor id, these were removed in the pre-processing stage

and for the purposes of this study, only temperature and humidity sensor readings were used.

Taking such an approach is advantageous as;

1. The data will become labelled and known to the trainer or teacher of the model,

2. This overcomes the problem of obtaining a labelled dataset for the Internet of

Things at a pricey cost.

The resulting dataset that was used for training consisted of two attributes, namely Carbon

Monoxide concentration and Nitrogen Oxide levels.

Input data before pre-processing

64

Fig 4.3 Dataset before and after initial data pre-processing

4.4 Clustering

Clustering is the splitting of a given dataset into a number of groups in such a way that the

elements in each resulting group are of the similar attributes and are similar to each other, these

particular groups are known as Clusters (Aggarwal and Reddy, 2013).

There are a number of clustering methods; centroid-based, distribution based, density based

clustering. Centroid-based clustering is mostly applied to Intrusion Detection and represents

each cluster of data by a central vector called a “centroid”. For the purpose of this study, K-

Means Clustering algorithm was used.

In K-means, an unlabelled dataset is divided into k “clusters”, where data points belonging to

the same cluster must have similarities, the distance between data points is used as a

measurement for level of similarity. The clustering algorithm seeks to find a set of k cluster

centres, such that the distances between data points and their nearest centre are minimized.

65

The input data in this study clustered groups into 2. K-means clustering technique randomly

picks two records from input data and then starts to fetch other records in the same dataset and

compare them with any two randomly selected records by calculating the distance between

them (Aggarwal and Reddy, 2013).

Fig 4.4 K-Means Clustering Illustration with k=3

Algorithm 1 : Basic K-means Algorithm

1. Select K points as the initial centroids.

2. Repeat

3. Form K Clusters by assigning all points to the closest centroid

4. Re-compute the centroid of each cluster.

5. Until The centroids don’t change

Using the K-means algorithm the centroids can be found using the following formulas

(Aggarwal & Reddy, 2013):

𝒎𝒌 =

∑ 𝒓𝒌𝒏𝒙𝒏𝒏

∑ 𝒓𝒋𝒏𝒋,𝒏

(4.1)

66

Where
𝒓𝒌𝒏 =

𝐞𝐱𝐩(−𝜷𝒅(𝒙𝒏, 𝒎𝒌))

∑ 𝐞𝐱𝐩 (−𝜷𝒅(𝒙𝒏, 𝒎𝒋))𝒋

(4.2)

𝑑(𝑎, 𝑏) is the Euclidean distance between a and b.

4.5 Classification

Decision Tree (DT) Algorithms is one of the most widely used algorithms in classification

(Quinlan, 2014). A DT is built in two phases, namely a growth phase and a prune stage. The

construction of the preliminary tree is called the ‘growth phase’. After building the preliminary

tree, a sub tree is then constructed, this process is called pruning. The tree structure is made up

of nodes and branches, each leaf of the tree represents a class, and in this case there are 2

classes, that is normal or abnormal. The classes are extracted as a result from data clustering

using K-means algorithm, each branch represents a conjunction leading to a class label

(Quinlan, 2014).

For the purpose of this study, the chosen decision tree algorithm is the C 4.5 algorithm. The C

4.5 algorithm is used to generate the decision tree. The algorithm was first proposed by Ross

Quinlan (1986). The C 4.5 algorithm is given a set of training data of already classified sample.

The input in the clustering process in split into two groups;

 Training set – this will contain records that have been classified to normal and abnormal

 Testing set – this will contain records that will be used for testing the model built in

training.

With the training set used as an input, the C 4.5 constructs the tree. Each node on the tree

consists of a temperature and humidity value. The algorithm builds the tree leaves by use of

class attributes: normal and abnormal, this happens through the use of if statements (Quinlan,

2014).

67

The basic pseudo code for C 4.5 algorithm is as follows (Nor .S., et al, 2017):

Fig 4.5 C 4.5 Algorithm

4.6 Implementation

For the implementation and testing of the proposed Intrusion/Anomaly Detection Model, we

use MATLAB (see 4.6.1 for description). In our MATLAB program we implement a number

of functions stated in table 4.1:

Table 4.1 MATLAB functions used in Intrusion Detection Model

Program/Function Description

Clustering.m This file implements Clustering, as the main

program, it accepts input data from a

Microsoft excel file, converts that particular

data into a MATLAB matrix, the program

calls the KM.m file which contains the

function that implements the clustering,

clustering the input data to form centroids,

and then saves the clustered data in a

68

Microsoft excel file, a csv file that MATLAB

can process.

KM.m This file contains the function that actually

implements the K-Means Algorithm. The

function in the file accepts input data in form

of a matrix and derives centroids based on the

value of K clusters, then it returns the result.

Classification.m This MATLAB file accepts the results from

Clustering.m in the form of a matrix and

splits the data into two parts, one will be the

training set the other the testing set. The file

calls the C 4.5 Algorithm which will use the

data to produce a decision tree.

C4-5.m This file implements the C4.5 Decision tree

algorithm. It accepts a matrix consisting of

the training set, which has cluster ids

identifying which centroid each row belongs

to. The file calls the build_tree.m file to

construct the decision tree.

Build_tree.m This is the file that is called to implement the

construction of the tree, constructing the

decision tree based on information-theoretic

criteria.

Use_dt.m This MATLAB uses the decision tree that is

built by the C 4.5 algorithm, and applies the

testing matrix. The data compares the results

of classification with the input cluster ID

from the testing dataset. The function then

produces results for True Negative, True

Positive, False Positive and False Negative.

The code files presented above are available in Appendix A.

69

4.6.1 Tools chosen

This study proposed a classification model that uses K-Means Clustering and C 4.5 Decision

Tree Algorithm as an intrusion detection mechanism that classifies data as normal or abnormal.

To determine how the model measures against other classification algorithms, a few algorithms

that have been used in intrusion detection models where chosen. These algorithms were chosen

according to their well-known performance as found in a number of literature sources as

discussed in Chapter 3. The algorithms are: the Naïve Bayes Classifier and Multi-Layer

Perceptron Artificial Neural Network. The proposed Model that uses K-Means and C 4.5

Algorithm is implemented in MATLAB Math Simulator and both the Naïve Bayes and MLP

ANN are implemented in WEKA due to its vast functions that allow implementation of both

algorithms.

MATLAB

MATLAB is a high level performance language that is used for mathematics, statistics and

technical computing. It manages to integrate computation, simulations, visualization, and

programming in a Graphic User Interface environment where problems and solutions are

expressed in familiar mathematical notation. The basic data element of MATLAB is the matrix

which is an array that does not require dimensioning, a simple integer value is considered as a

matrix of one column and one row.

WEKA

Waikato Environment for Knowledge Analysis (WEKA) was used in this study to implement

the Naïve Bayes algorithm and Multi-Layer Perceptron Artificial Neural Network, this is a tool

specifically made for machine learning purposes by the University of Waikato in New Zealand.

WEKA Tool has a collection of Machine Learning algorithms and data pre-processing tools

that can be used by researchers and practitioners (Hall et al., 2009). This includes algorithms

for clustering, classification and regression. The graphical user interfaces and visualization

options in WEKA can be used for data exploration and algorithm evaluation. WEKA supports

data pre-processing in different file formats such as ARFF (which is the native file format of

WEKA), Matlab, CSV, ASCII files and many more (Bouckaert et al., 2010).

70

Other tools

During the implementation process, a number of different data mining tools were considered

but some did not have the proper evaluation methods for the particular algorithms in question.

IBM SPSS Statistics was used in evaluation and testing for accuracy by use of Friedman’s

ANOVA Test. Some of the notable tools that were not used are R and Orange. R although a

powerful, data mining and statistical analysis tool, it was not used in this study as R required a

rather steep learning curve. Orange was not used in the study as it does not support widgets for

statistical testing and reporting capabilities are limited to exporting visual data models (Rangra

et al, 2016).

The mentioned tools are run on a Windows 7 Workstation with 4GB of RAM

4.6.2 Input Data Pre-processing

As stated earlier we used an air quality dataset from the UCI Machine Learning Repository. To

process the data, we used only the Temperature and Humidity recordings for our training and

testing set, hence some of the measured attributes such as the gas concentrations and date and

time were be removed from the dataset.

After removal of the unwanted data from the dataset, the new dataset was used as input data as

shown in Fig 4.1, with attributes of Temperature and Humidity only.

4.6.3 K Means Algorithm

K-Means algorithm was implemented through the KM.m file in our MATLAB directory. The

function accepts 2 inputs:

1. Input data or dataset for clustering.

2. Number of groups or clusters i.e K value

The function then returns matrix of clustered data using:

 Function[M] = KM(x,K)

71

The function is called in the main program Clustering.m. The program Clustering.m initially

imports data from our dataset which is a Microsoft Excel file on the MATLAB directory.

 inputdata = “AirQualityDataset.csv’

MATLAB processes the data in the excel file and puts it in a matrix where data is stored in

MATLAB’s memory for clustering.

Fig 4.6 Input data representation as a MATLAB Matrix

The data matrix is mapped to the KM function by use of

 C = KM(M, K)

 M is the matrix and K=2 i.e. the number of clusters that the algorithm had to create. The

records in the input data were clustered and each record received a clustering id to determine

which group or cluster that particular record belonged to. The results of the clustered data were

then recorded to an external excel file using csvwrite.

 csvwrite(results,R)

72

An example of the resulting excel file and matrix representation are shown below:

Fig 4.7 Clustered Data saved in Microsoft Excel Sheet.

Fig 4.8 Matrix Representation after clustering.

4.6.4 C4.5 Algorithm

C4.5 DT classifies data based on probabilities. Classification.m contains the program that was

used to call the C4.5 Algorithm, using the C4.5 function which implemented the classification.

Before constructing the tree, data from clustering was divided into 2 parts. One became the

training data and the other the testing data. The program first read data from the clustered data

csv by use of

DATA = ClusteredData.csv

CDATA = csvread(DATA)

73

Classification divided data into 2 matrices:

Fig 4.8 Matrix representation during classification.

4.7 Model Evaluation

There are a number of evaluation metrics that can be used to determine the performance of

classification algorithms and models. They can be based on accuracy, speed, robustness and

scalability. In this study, the classification performance of the Anomaly Detection classifier

under study was examined during the testing stage, where the models were tested on our

dataset. The classification ability was measured by its predictive accuracy. Binary classification

was performed and the speed of the classifier was measured. A confusion matrix was the most

appropriate way to present the binary classification results. It is a technique that is used to

74

describe and evaluate the performance of the model (Kurniawan, Rosmansyah, & Dabarsyah,

2015). In Binary classifications, there are four possible outcomes;

 True Positive (TP) – in this scenario the classifier predicts that there are anomalies in

given data and that particular data is actually abnormal, then the attempt is said to be

true positive (TP). The model would have correctly classified an intrusion as intrusive.

 True Negative (TN) – here the classifier would have predicted correctly that there are

no anomalies in the input data, then the prediction is a true negative (TN). The model

would have correctly classified a normal event as normal.

 False Positive (FP) – here the classifier wrongly predicts that there is an anomaly in

data while the data is actually normal, then the attempt is said to be false positive (FP).

The model would have incorrectly classified a normal event as intrusive. The purpose

of most anomaly detection models is to reduce the false positives to a minimum.

 False Negative (FN) - The model would have incorrectly classified intrusive behaviour

as normal.

Table 4.2 Confusion Matrix for Classification

Actual Classification

Abnormal Normal

Abnormal True Positive (TP) False Negative (FN)

Normal False Positive (FP) True Negative(TN)

Table 4.2 is a graphic format to depict the confusion matrix. The classification problem is

solved by further processing information extracted from the confusion matrix. The accuracy of

the model can be calculated by the following formula (Ashour, W. and Fyfe, C. ,2007):

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =

𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵

(4.3)

Accuracy is the measure of the total number of events that are correctly classified including

normal and intrusive events.

The misclassification rate of the proposed model i.e. how often the model or classifier got it

wrong can be calculated as follows (Ashour & Fyfe, 2007):

75

𝑴𝒊𝒔𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 =

𝑭𝑷 + 𝑭𝑵

𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵

(4.4)

The recall rate or True Positive (Ashour & Fyfe, 2007):

 𝑻𝑷 𝑹𝒂𝒕𝒆

=
𝑻𝑷

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒂𝒄𝒕𝒖𝒂𝒍 𝒂𝒃𝒏𝒐𝒓𝒎𝒂𝒍 𝒓𝒆𝒄𝒐𝒓𝒅𝒔 𝒊𝒏 (𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵)

(4.5)

The false positive rate can be calculated by use of the following formula (Ashour & Fyfe,

2007):

𝑭𝑷 𝑹𝒂𝒕𝒆 =

𝑭𝑷

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒏𝒐𝒓𝒎𝒂𝒍 𝒓𝒆𝒄𝒐𝒓𝒅𝒔 𝒊𝒏 (𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵)

(4.6)

Specificity or TN Rate of the model can be calculated as follows (Ashour & Fyfe, 2007):

𝑻𝑵 =

𝑻𝑵

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒂𝒄𝒕𝒖𝒂𝒍 𝒏𝒐𝒓𝒎𝒂𝒍 𝒓𝒆𝒄𝒐𝒓𝒅𝒔 𝒊𝒏(𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵)

(4.7)

 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏

=
𝑻𝑷

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒂𝒃𝒏𝒐𝒓𝒎𝒂𝒍 𝒓𝒆𝒄𝒐𝒓𝒅𝒔 𝒊𝒏(𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵)

(4.8)

The prevalence of the classifier is calculated using the below formula (Ashour & Fyfe, 2007):

 𝒂𝒄𝒕𝒖𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒂𝒃𝒏𝒐𝒓𝒎𝒂𝒍 𝒓𝒆𝒄𝒐𝒓𝒅𝒔 𝒊𝒏 (𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵)

𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵

(4.9)

The above equations were used to evaluate the proposed intrusion detection model and compare

the results.

76

4.7.1 Accuracy Estimation Methodologies

Accuracy is the most widely used measure for performance evaluation of classification models.

The estimation methodologies that are were used in this study were based on accuracy metrics

such as hit rates, error rates, etc. Estimating accuracy is important as it is necessary to verify if

a model is reliable for future predictions and when more than one model or classification

algorithm is involved, there is a need to have some kind of measurement or metric that can be

used to choose the most efficient and accurate model among a given number (Olson, 2008).

The study, made use of three methodologies, the Holdout, K-fold cross validation and ROC

Curves. Brief descriptions of those methodologies are given below:-

 Holdout - The Holdout method involves splitting the training and test sample. This

methodology is one of the simplest and most commonly used practice among the

evaluation methodologies. Data is randomly split into two subsets, i.e. training and

testing. According to Olson et al (2008), the most common split ratio that is used is

generally selecting the training set from two-thirds of the data and testing data is the

remaining third. After the data is divided into training and testing, a classification model

is built through inducing, using the training data. Later on, this model is used to

calculate the performance of the model constructed. This technique is used when there

is sufficient data to split between training and testing set.

 K-Fold Cross Validation – This method is used when the amount of available data or

dataset is small or limited and it is too risky to divide the data into two subsets, hence

there is a need to consider other methods. A method that can be used is the k-fold cross

validation or rotation estimation. In cross validation, a fixed given number “k” is chosen

as the number of folds that are to be used. The dataset is divided into k mutually

exclusive subsets of almost the same size. Given that we split data D into k subsets {𝐷1,

2,…,𝐷k}, each of these subsets is said to be a fold . The procedure of k-fold cross

validation is as follows; each and every value of Dx is used as the testing set while the

rest become part of the training set, this is repeated and iterated fold by fold till all folds

have been used as a testing set for at-least once. After all the iterations are done and

tested, accuracy rates are calculated and added, then divided by total number of folds

to find the classification rate.

 Receiver Operating Curves (ROC) – these are based on the confusion matrix often

used for visualising classifier performance.

77

4.8 Conclusion

This chapter has outlined the methods used and data techniques implemented in our study. The

conceptual framework followed for the experiments was presented. A section was devoted for

the description of the intrusion dataset used as our training set and testing set. MATLAB, our

simulation software set up was introduced and algorithms for anomaly detection were

discussed and implemented. This chapter also stated the performance evaluation criteria used

to assess the performance of the proposed intrusion detection model and classifier. The

following Chapter presents the findings and results of the experiments done and their respective

discussions and findings.

78

Chapter 5: Results and Analysis

This chapter presents and discusses the results from the implementation described in Chapter

four. The chapter goes through an evaluation of the proposed anomaly Intrusion detection

model in the IoT environment. The chapter contains a number of calculated performance

metrics for the proposed model from the results obtained in chapter four. The performance

metrics are the values that can be calculated using the number of correct and incorrect

classifications predicted by the model, these include overall accuracy, precision,

misclassification rate, sensitivity, specificity and prevalence. This chapter further explores how

the classifier performance and accuracy are affected by the choice of evaluation methodology,

the sample size and the type of discretization approach. We further perform tests such as the

Friedman’s ANOVA and Wilcoxon test on statistical data gathered from particular

experiments in this chapter to have sound conclusions.

5.1 Results

The model as described in chapter four, was implemented in MATLAB and the experiment

began with clustering the input data. The results after clustering were recorded in a csv file and

a graphical presentation is shown in Fig 5.1 and 5.2 which show input before and after

clustering

Fig 5.1 Input data before clustering

79

Fig 5.2 Data after Clustering

As shown in Fig 5.1 all the data belongs to one class or cluster, this is represented in the figure

in green colour. After clustering input data using the K-Means algorithm, data was split into

two groups, one shown in green and the other in red. This shows that this particular data belongs

to class 1 and the other data belongs to class 2 respectively.

After running the Clustering file, data was saved to an external csv file with each row having

a cluster id which determines which cluster each row belongs to. Saved data then became ready

for classification. For the purpose of this study, 6177 samples were used for training and 3181

used for testing. After running the classifier on test data, the model reported the evaluation

parameters of the confusion matrix, as shown in table 5.1.

80

Table 5.1 Confusion Matrix

Test Data = 3181 Predicted Anomalies in Data Predicted Normal Data

Actual anomalies(1182) TP=1123 FN=59

Actual Normalies (1999) FP=52 TN=1947

From the Confusion matrix in Table 5.1 we note that the test-set consists of 3181 instances or

records and from those 3181 instances, the actual normal data is 1999 instances consisting of

52 false positives (FP) and 1947 true negatives (TN) and the abnormal data has 1182

instances consisting of 1123 true positives (TN) and 59 false negatives (FN).

The model was tested using labelled dataset consisting of 3181 records, which consisted of

34% of the original input dataset. Each record in testing dataset constitutes three values;

Temperature, Humidity and ID. The Temperature and Humidity are the readings that were

originally obtained from the IoT sensors for Air Quality dataset (see chapter 4). The Clustering

ID is a binary integer value which can only be either “1” or “2”. These particular values

represent the cluster to which each recording (i.e. Temperature and Humidity) belong to. The

Clustering ID values were obtained as a result of running the K-Means algorithm 10 times

against input dataset which consists of 9358 records.

C4.5 decision tree was trained using labelled training dataset consisting of 6177 records (i.e.

66% of input dataset). It then was tested against testing dataset, without giving it the clustering

id which shows which cluster each of the records in the testing dataset belong to. In other

words, C4.5 was tested against test dataset that does not contain labels. Since the number of

records in the unlabelled test dataset is 3181, the model produced 3181 predictions in a form

of “1” and “2”. The resulting predictions were compared with the clustering id of each of the

records in the labelled test dataset, and the results are show below:

The total number of predicted anomalies that were actually anomalies was 1123. Therefore,

the true positive (TP) value of the model is:

𝑇𝑃 = 1123

The total number of predicted normalities that were actually normalities was 1947.

Therefore, the true negative (TN) value of the model is:

𝑇𝑁 = 1947

81

The total number of predicted anomalies that were actually normalities was 52. Therefore,

the false positive (FP) value of the model is:

𝐹𝑃 = 52

The total number of the predicted normalities that were actually anomalies was 4. Therefore,

the false negative (FN) value of the model is:

𝐹𝑁 = 59

For one to be able to calculate the performance metrics for the proposed model such as overall

accuracy, sensitivity, misclassification rate, prevalence, specificity and precision, the following

actual values are important:

 The total number of records in the testing dataset = 3181

 The total number of normalities in the testing dataset = 1999

 The actual number of anomalies in the testing = 1182

Therefore, to calculate the overall accuracy of the proposed model we use:

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =

𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵

=

1123+1947

3181
 = 0.9651

The overall accuracy of the proposed model is 0.9651.

The misclassification rate of the model, in producing the wrong prediction is calculated as

follows:

𝑴𝒊𝒔𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 =

𝑭𝑷 + 𝑭𝑵

𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵

=

52+59

3181
 = 0.03489

82

After calculation, the misclassification rate for the proposed model is equal to 0.03489.

The detection rate or precision of the proposed model is calculated as follows:

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒂𝒃𝒏𝒐𝒓𝒎𝒂𝒍 𝒓𝒆𝒄𝒐𝒓𝒅𝒔 𝒊𝒏(𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵)

=

1123

1182
 = 0.950

The False Positive rate of the proposed model is:

𝑭𝑷 𝑹𝒂𝒕𝒆 =
𝑭𝑷

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒏𝒐𝒓𝒎𝒂𝒍 𝒓𝒆𝒄𝒐𝒓𝒅𝒔 𝒊𝒏 (𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵)

=

59

1999
= 0.00291

The prevalence of the model:

 𝒂𝒄𝒕𝒖𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒂𝒃𝒏𝒐𝒓𝒎𝒂𝒍 𝒓𝒆𝒄𝒐𝒓𝒅𝒔 𝒊𝒏 (𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵)

𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵

=

1182

3181
= 0.372

The specificity of the model in reading and identifying normal readings:

𝑻𝑵 =

𝑻𝑵

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒂𝒄𝒕𝒖𝒂𝒍 𝒏𝒐𝒓𝒎𝒂𝒍 𝒓𝒆𝒄𝒐𝒓𝒅𝒔 𝒊𝒏(𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵)

=

1947

1999
= 0.974

83

5.1.1 Choice of Evaluation Methodology

As discussed in Chapter 4, for the purpose of this study we use 4 Evaluation Methodologies.

To evaluate the classification accuracy of the proposed model, K-Means Clustering and C 4.5

Decision Tree are used. Furthermore, Naïve Bayes and Multi-Perceptron Artificial Neural

Network are used. The Evaluation Methodologies chosen are the Hold out 66/34, the Hold out

50/50, 10-Fold Cross Validation and 5-Fold Cross Validation. Table 5.2 provides results and

analysis of the performance of our model compared to the other two algorithms based on the

evaluation method chosen for this experiment, a common discretization method in the form of

Equal Frequency with 10 bins is used.

Table 5.2 Classification Accuracy based on Evaluation Methodology

ML Algorithm 5-Fold CV 10-Fold CV Holdout -50/50 Holdout 66/34

C 4.5 + K-Means 87.79 87.83 87.64 87.52

Naïve Bayes 86.53 86.48 85.83 86.07

MLP ANN 94.44 93.40 91.96 89.69

84

Fig 5.3 Classification Accuracy vs Evaluation Methodology

Table 5.2 and Fig 5.3 depict the classification accuracy of our proposed model compared with

other classification algorithms based on choice of evaluation methodology. As can be noted

from the diagram above, the Artificial Neural Network has a higher classification rate than the

Naïve Bayes and the proposed model regardless of the evaluation methodology chosen. We

ran a Friedman’s ANOVA test to analyse if there is a variance of statistical significance due to

evaluation methodology chosen. The results of the Friedman’s test gave a value of 𝒑 = 𝟎. 𝟎𝟔

i.e.𝒑 > 𝟎. 𝟎𝟓, which means we must retain the null-hypothesis where was the hypothesis

stated, I might have missed it but I browsed through chapter 1 and could not find any stated

hypothesis as the distribution from each evaluation is similar or the same. However from the

Friedman’s individual mean ranks we notice that there is no statistical difference between the

5-Fold Cross Valuation and the 10-Fold Cross Valuation. However, there is a difference

between the 2 sets of Cross-Validation and the Hold out Evaluation Methodologies, this is

shown in Appendix B. A Wilcoxon post-hoc test is done and it proves that although the

85

distribution is the same between 2 Holdout methodologies, it is different between the Holdout

and Fold Cross Validation methodologies.

5.1.2 Sample Size

Of the 9358 samples used in this dataset, 6200 which is 66% were dedicated for training. If the

classification performance remains invariant while the training set is reduced, then it is possible

to curb the duration of the training session and computational costs (Brain & Webb, 1999). In

this second set of experiments, we studied the impact of the training sample size on the

classification performance of the intrusion detection model. The dataset is divided into ten

subsets of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%. The purpose of

dividing the size of the dataset set is crucial in inducting accurate probability estimates.

Therefore we chose to start to generate the training set size at 10% of the total dataset so as to

have an equal and normal distribution over 10 different points.

Table 5.3 Classification Accuracy on Various training sets.

Percentage C 4.5 + K-Means Naïve Bayes MLP ANN

10% 95.00% 86.35% 95.93%

20% 96.30% 86.93% 96.24%

30% 96.33% 87.06% 96.36%

40% 96.31% 87.17% 96.31%

50% 96.40% 87.50% 96.36%

60% 96.44% 87.60% 96.33%

70% 96.40% 87.60% 96.3%

80% 96.70% 87.90% 96.7%

90% 97.75% 87.71% 97.11%

100% 98.9% 88.38% 100%

In table 5.3 the proposed model and the comparison algorithms are trained with varying training

set sample sizes to determine the effect of the amount of training data on the overall

classification accuracy of the algorithms.

86

Fig 5.4 Classification Accuracy on Various training sample size

Fig 5.4 depicts the classification accuracy on various training sample size. Friedman’s ANOVA

test was used to test if there was a statistical significance in using different training sample size.

The Friedman’s test gave 𝑝 = 0.03 which is 𝒑 < 0.05, this shows there is a significant

difference with change of sample size. The details are shown in Appendix C.

5.1.3 Discretization Approach

Discretization is a process that occurs during data pre-processing as discussed in Chapter 3.

There are a number of discretization approaches or algorithms. For the purpose of this study,

we used 3 discretization algorithms to process our input data, these were the Equal Width (EW),

Equal Frequency (EF) and the Proportional k-Interval Algorithm (PKI).

In our first experiment, the 3 classifiers being explored were trained with an equal fixed training

sample size of 66%, the remainder of the data set was used for testing the classification

accuracy of the algorithms.

87

Table 5.4 Classification Accuracy based on Discretization Approach.

Classifier EW EF PKI

C 4.5 + K-Means 81.64% 96.51% 87.52%

Naïve Bayes 81.64% 87.43% 86.07%

MLP ANN 79.34% 96.51% 89.69%

In Table 5.4, classification accuracy of each classifier is represented based on 3 discretization

approaches. According to the experiment, with equal width discretization (EW), the proposed

model (C 4.5 and K-Means) and the Naïve Bayes Classifier have a higher classification

accuracy (81.64%) as compared to the MLP ANN. However with equal frequency

discretization (EF) and Proportional k-Interval discretization (PKI) the MLP ANN averages a

higher classification accuracy as compared to the other 2 classifiers with 96.51% and 89.69%

respectively.

Fig 5.5 Classification Accuracy based on Discretization Approach.

Fig 5.5 depicts classification accuracy as per discretization approach. As shown, the MLP

Artificial Neural Network and the proposed model that uses C 4.5 and K-Means are on

average more accurate in classification more that the Naïve Bayes, with the Naïve Bayes

88

classifier only more accurate than the MLP ANN when using equal width discretization

(EW).

According to the Friedman test as detailed in Appendix D, there was a statistically significant

difference in classification performance of the classifiers over different discretization

approaches, using the value of p= 0.050. To confirm the Friedman’s test outcome, the study

conducted multiple comparisons using other methods. Wilcoxon Post host test was used for

pairwise comparisons as detailed in Appendix D. There are 3 pairs of comparison, (Equal

Frequency – Equal Width; Equal Frequency – K-Proportional Interval; K-Proportional Interval

– Equal Width) all 3 pairs show a statistical significant difference with change of discretization

approach as 𝒑 > 𝟎. 𝟎𝟓 (𝒁 = −𝟏. 𝟔𝟎𝟒; 𝒑 = 𝟎. 𝟏𝟎𝟗).

Table 5.5 C 4.5 + K-Means Classification Accuracy on various discretization approaches

Percentage EW EF PKI

10% 82.48 94.95 87.23

20% 82.27 92.29 87.64

30% 82.28 96.34 87.56

40% 82.17 96.31 87.69

50% 82.09 96.37 87.62

60% 81.88 96.45 87.41

70% 81.83 96.40 87.49

80% 82.36 96.69 88.24

90% 81.62 97.76 86.75

100% 78.79 98.94 90.42

89

Fig 5.6 Classification Accuracy of C.45 + K-Means on different sample size.

Table 5.6 Classification Accuracy of Naïve Bayes on different sample size.

Percentage EW EF PKI

10% 82.42 86.94 83.15

20% 82.27 88.18 84.58

30% 82.29 87.07 85.34

40% 82.17 88.90 85.68

50% 82.09 87.52 85.85

60% 81.88 87.12 85.81

70% 81.83 87.67 86.46

80% 82.36 87.97 86.64

90% 81.62 87.71 86.43

100% 78.79 88.29 87.23

90

Fig 5.7 Classification accuracy of Naïve Bayes on different sample size

Table 5.7 Classification accuracy of MLP ANN on different sample sizes

Percentage EW EF PKI

10% 79.94 95.94 89.53

20% 82.27 96.29 91.08

30% 82.29 96.37 92.21

40% 79.78 96.31 92.34

50% 79.71 96.37 91.96

60% 81.88 96.34 89.69

70% 81.83 96.26 90.07

80% 82.36 96.69 91.45

90% 81.62 97.44 91.23

100% 79.78 100 90.33

91

Fig 5.8 Classification Accuracy MLP ANN on different sample size

5.1.4 Speed of Classification

During the process of training, a classifier is trained on a certain sample size of data. During

this process a classification algorithm builds a model based on binary rules, this model then

gets used during the testing. . Most IoT devices have little computational power, and they are

deployed in critical system such as heart rate sensors and gas monitors hence efficiency and

high availability are crucial. When designing, developing and deploying an anomaly detection

model for IoT, it is imperative that the model be fast, efficient and use as little computation

power as possible. The study conducted an experiment on the efficiency and speed of learning

for 3 classifiers listed in Table 5.8. This experiment uses a fixed discretization approach in the

form of the Equal Width discretization algorithm. . The time taken to build the model for each

of the classifiers at different evaluation methodologies was recorded, the results are shown in

Table 5.8.

92

Table 5.8 Speed of Model Building and Testing

Evaluation

Methodology

C 4.5 + K-Means Naïve Bayes MLP ANN

Holdout 66/34 0.01 0.01 33.65

Holdout 50-50 0.05 0.03 35.62

5- Fold Cross

Validation

0.05 0.03 35.33

10-Fold Cross

Validation

0.02 0.01 34.76

As it can be noticed from table 5.8, the Multi-Layer Perceptron Neural Network takes a

considerable longer amount of time to build models and classify data as compared to the Naïve

Bayes and C 4.5 and K-Means Algorithm, this is due to the complexity required in building an

Artificial Neural Network, as shown in Appendix E. The experiment also gave solid evidence

of the Speed of Classifiers as stated in Chapter 3 (see Table 3.6).

5.1.5 Receiver Operating Characteristics (ROC)

In the study we constructed an ROC Curve for the proposed model and then compared it with

ROC Curve of the Naïve Bayes Classifier and Multi-Perceptron Artificial Neural Network.

Fig 5.9 ROC C45+K- Means Algorithm

93

To construct the ROC Curve we trained the dataset with a 10-Fold Cross Validation Method,

the Area under the Curve for our particular model is 0.9929 which shows that our model is

highly accurate as the maximum threshold can only be 1.

Fig 5.10 Comparison of ROC Curves of Multiple Classifiers.

In Fig 5.10 we compare the ROC Curves of the Naïve Bayes and Multi-Perceptron Artificial

Neural Network with the proposed model. As can be noted, the Artificial Neural Network has

a curve similar to the proposed model, and calculations reveal that its AUC is 0.9945 which is

slightly better than that of our proposed model, which achieved 0.9929 as indicated earlier.

However, the Naïve Bayes Classifier falls short as Figure 5.10 shows.

5.2 Discussion and Analysis

The following subsection is dedicated to discussing the results presented in section 5.1. It

should be noted that the results outlined are based on the effects of a particular parameter

(Sample Size, Discretization, Speed and Type of Evaluation Methodology s) under

investigation and also how it behaves varied while other parameters remain invariant. For

instance, in one of the experiments conducted on how the choice of discretization approach,

various methods were used to assess how they impact the classification performance while the

factors such as evaluation methodology and training sample size remain constant. Furthermore,

we investigated the behaviour of discretization methods when varying the training sample size.

94

The goal of this empirical study was to exhaust the entire factors under study in how they affect

the performance in classification for the proposed model.

5.2.1 Choice of Evaluation Methodology

In Machine Learning accuracy is the most widely used measure for performance evaluation of

classification models. In this study we used different techniques to induce the model with

training data from the dataset to build a model and also use test data on that particular model

to test its classification performance. We made use of four evaluation methodologies, these

were the Hold out 66/34, Hold out 50/50, the 10-Fold Cross Validation and 5 Fold Cross

Validation. In the Hold out 66/34, the dataset during induction was divided into two parts,

based on a 66% and 34% ratio, the 66% being used for training and building the model, while

the rest was used for testing the model, in the Hold out 50/50, training data and testing data

was divided equal parts from the original dataset. In k-Fold Cross Validation, data was divided

into equal folds either 10 or 5 depending on the number of folds set during induction. An

empirical experiment was conducted where we used a statistical approach in the Friedman’s

Analysis of Variance test to test if the different evaluation methodologies, had a statistical

significance in the in the accuracy of the classifiers, the results of that are presented in an IBM

SPSS file in Appendix B.

5.2.2 Size of Training Set/ Sample Size

This section dealt with the analysis of how varying training sample sizes affects the

classification performance. In Classification against training sample size graph it can be

observed that the classification accuracy chances with a change in training sample size, it is

more vivid with the Naïve Bayes Classifier, as it gradually increases proportional to an increase

in training sample size. From the observations there is generally an improvement in predictive

classification performance as we traverse the graph from 10% to 100% of the total training set.

By using Friedman’s test we get a 𝑝 value of less than 0.05 which shows that there is a statistic

difference with change in training set or sample size.

95

5.2.3 Type of Discretization

This part of the empirical study analysed the impact of the choice of discretization algorithm

on the classification performance. Figure 5.4 depicts the classification accuracy of the each

classifier under study against the discretization method used in pre-processing prior to training.

The different line graphs correspond to how the 3 classifiers behaved for the 3 discretization

approaches tested. The discretization methods are represented on the x-axis. It is observed that

the classification accuracy followed an irregular exponential curve with each change of

discretization approach. It is noted that there is a statistical significance in accuracy carried

with each discretization approach.

5.3.4 ROC Curves

Anomaly based intrusion detection models are characterized by their level of accuracy , hence

most evaluation methods used in machine learning are based on classification accuracy, this

approach yields accurate evaluation results, however there are problems with this particular

approach;-

 There may be different costs associated with false positive and false negative errors.

 Training Data may not reflect true class distribution.

To solve these problems Machine Learning uses the Receiver Operating Characteristic (ROC)

approach. ROC Curve is a graph that shows the performance of a classification model at all

classification thresholds. ROC curves assess predictive behaviour independent of error costs

and class distributions. The ROC Curve is constructed from True Positive Rate and False

Positive Rate. The Area under the Curve (AUC-ROC) is a performance measurement for

classification at various threshold settings. ROC is a probabilistic curve and the degrees of

specificity is called AUC. The higher the AUC the better the model is at binary classification.

In this study a ROC Curve was constructed for the proposed model and AUC was calculated.

This particular ROC Curve is compared with the Naïve Bayes and MLP ANN, as shown in Fig

5.10, has a better specificity rate than the Naïve Bayes, but is similar with the Multi Perceptron

Artificial Neural Network.

96

5.3 Conclusion

This chapter outlined the performance and accuracy of the proposed anomaly detection model

under individual and collective configurations. Each experiment was described and discussed

in detail and thereafter detailed analysis of the outcomes of the experiments was conducted.

Observations and conclusions were drawn based on the results of the experiments performed.

The closing chapter of this dissertation is for consolidating the findings discovered in this

chapter and outlining the future studies that can be explored in this research.

97

Chapter 6 – Conclusion and Recommendations

Our research has been an investigation to answer the critical question: How can Machine

Learning Algorithms be used as a solution to secure the Internet of Things? The study proposes

an anomaly detection model, which can be used as a form of Intrusion Detection Mechanism.

However the question remains: How resilient and effective is this solution as compared to

other solutions, to answer this question an empirical investigation was done to investigate how

the size of a training set, type of discretization approach and learning method individual and

collectively affect the classification performance of this model in distinguishing between

normal and anomaly data? We made use of a generic dataset measuring Air Quality from the

UCI repository to explore this question in-depth by performing several experiments. This

closing chapter aims to show how the findings of the research tally with the research questions

outlined in the first chapter. The chapter also provides a comprehensive synopsis of the

highlights of the research. Further, we close this chapter by describing areas of possible

further exploration for this study.

6.1 Purpose and Findings

The purpose of this study is to analyse how various threats can impact security and privacy in

the Internet of Things, and to develop an effective lightweight Intrusion and Anomaly

Detection Model for IoT to help detect threats in the environment. The study seeks to employ

Machine Learning and Data Mining algorithms to implement an anomaly detection model for

the Internet of Things. The ultimate quest of the machine learning and data mining community

is to implement optimal performing classification models. Therefore we proposes use of the C

4.5 Decision Tree and K-Means Clustering Algorithms as an anomaly detection model in data

being transmitted in between devices in an IoT network. In the study we hypothesized the

impact of speed of learning, training sample, training methodology and sample size.

The proposed model which uses C 4.5 Decision Tree and K-Means Clustering has an accuracy

of 96.51%, falls short of related work done by E. Hodo et al (2016) which has a classification

accuracy of 99.4%. Hodo suggests the use of a Multi-Perceptron Layer Artificial Neural

Network in detecting DoS on Network Layer Systems. However Hodo et al (2016) does not

take into account the computational costs of training and testing a MLP ANN classifier. Similar

98

work was conducted by Granjal, Silva and Lourenço (2018) who propose an anomaly detection

system for the application layer using Support Vector Machines (S.V.Ms), their experiment

had an accuracy of 93% which falls short of the proposed model in-terms of classification

accuracy. The domain for the application of this experiment is in intrusion detection for the

Internet of Things.

6.2 Empirical findings vs Research questions

1) What are the security challenges and vulnerabilities being faced in IoT security

implementations and what tentative security measures can be used help improve security?

The research introduced the concept of IoT in Chapter 2. The Internet of Things is used in areas

such as health care, home automation, smart cities, modern agriculture which are making our

everyday life easier. However, there exist challenges in terms of security that come about with

this technology, as there is no set standard architecture for this technology with manufacturers

keen on producing their own various objects for financial gain, as security is not the main

concern. Attacks such as DoS and DDoS have arisen an example is the Mirai DDoS Malware

that used IoT security vulnerabilities to render a number of Fortune 500 websites being

unavailable such as Netflix and Twitter.

2) Can Data mining and Machine learning techniques be used as an effective way to develop

a comprehensive defence mechanism against attacks on an IoT Network?

The research firstly discussed the concepts of Machine Learning Algorithms in Chapter 3. A

few definitions were presents to explain the concept. The use of Machine Learning algorithms

were justified for classification tasks because of the following advantages:

 Probability theory.

 Graphical structure.

 Ability to fuse expert knowledge and data to construct models.

 Its support for missing data during induction.

99

3) Can Data mining and Machine learning techniques be used as an effective way to develop

a comprehensive defence mechanism against attacks on an IoT Network?

In Chapter 3, under Related Work, we review research work done by previous academia in

using Machine Learning approaches in Intrusion detection and at the beginning of Chapter 3,

when introducing the concept of Machine Learning, we review a number Machine Learning

algorithms and how they are trained and tested in order to classify data, which is the core

functionality of an intrusion detection system i.e. to classify data as normal and abnormal.

4) Which Machine learning and Data mining algorithms can be best implemented to

effectively develop an efficient self-learning program/system to detect anomalies in data

being transmitted in an IoT ecosystem?

In Chapter 3, we dived into Machine Learning, and reviewed a number of Machine Learning

Algorithms. We compared the algorithms strengths and weaknesses and how they can be can

they be implemented as in an anomaly detection model specifically for IoT. During

Implementation we compared the Multi-Layer Perceptron Artificial Neural Network (MLP

ANN), Naïve Bayes and the proposed model which uses K-Means Clustering and C 4.5

Decision Tree Algorithm. The algorithms’ performance metrics where measured, and

evaluation methodologies where implemented to determine which of these algorithms can be

used to train and test a model on a given dataset more effectively. From the findings of the

research the K-Means and C 4.5 Decision Tree Algorithms proved to be accurate and more

efficient in terms of false positive rate and speed of training and testing than its competition on

this particular instance.

6. 3 Implications and Limitations

This study supports the notion that machine learning and data mining algorithms are the most

effective method of designing and implementing anomaly detection models for the Internet of

Things. However the study is limited to designing a model that can be used for anomaly

detection using machine learning and data mining algorithms and does not focus on improving

the algorithms themselves. The model is designed to be implemented for data exchange

between IoT devices at application level. Lightweight algorithms in the form of K-Means and

C 4.5 Algorithm can be trained at relatively low computation cost as compared to more

complex algorithms such as the MLP ANN as shown in Chapter 5 while testing for speed of

100

learning. However the MLP ANN is more accurate at detecting anomalies, hence in areas were

computational costs are not a cause for concern, it might be deployed as is the case with Hodo

el at’ (2016) experiment (Section 3.8)

6.4 Recommendations and Future work

The proposed model makes use of data mining and machine learning algorithms to detect

anomalies in IoT data at application level. This model can be implemented in IoT systems that

can tolerate a misclassification rate of 2.1% where anomalies that remain undetected do not to

lead to catastrophic scenarios such as loss of life, data and assets. Throughout the course of this

study it is noted that generally Artificial Neural Networks have a higher classification rate of

any of the compared classifiers in Chapter 5 its only achilles heel being the speed of training

and testing, as it is a complex algorithm making it computationally expensive.

6.5 Conclusion

Machine Learning Algorithms have been used in a wide-range of applications. The focal point

of this research has been to apply them and Data Mining techniques in detecting DoS attacks

in IoT environments. Literature provides numerous advantages that make Machine Learning

Algorithms the best techniques to be used in anomaly detection, they have proven to be

excellent in classification, clustering and regression tasks. This research embarked on the

analysis of the impact of evaluation models, training sample size and discretization algorithms

on the classification performance of classifiers in detecting potential attacks in IoT

environments. The hope of the researcher is that this study will provide sound ecosystem

modelling choices for researchers intending to apply machine learning in any field of study.

Poor choices of the sample size, discretization technique will have adverse effects on the

classification accuracy of chosen classifier.

101

References

Aggarwal, C.C. 2014. Data Classification Algorithms and Applications. New York, USA:

CRC Press.

Aggarwal, Charu C., Naveen, A., & Amit, S. 2013. The Internet of Things: A Survey from the

Data-Centric Perspective, Managing and Mining Sensor Data.

Alkasassbeh, M., Al-Naymat ,G., Hassanat, A. & Almseidin, M. 2016. Detecting Distributed

Denial of Service Attacks Using Data Mining Techniques. (IJACSA) International Journal of

Advanced Computer Science and Applications, Vol. 7, No. 1, 2016.

An Internet of Things Reference Architecture. 2016. 1st ed. Symantec, pp.1-22.

Attaway, S. 2013. Matlab: A Practical Introduction to Programming and Problem Solving (3rd

Eds.). Butterworth-Heinemann.

Atzori, L., Iera, A. & Morabito, G. 2010. The internet of things: a survey, Comput. Netw.

54(15) (2010) 2787–2805.

Badr . A comparative Study of decision tree ID3 and C 4.5. (IJACSA) International Journal of

Advanced Computer Science and Applications, Special Issue on Advances in Vehicular Ad Hoc

Networking and Applications.

Bell, J. 2014. Machine Learning: Hands-On for Developers and Technical Professionals. John

Wiley & Sons.

Bhattacharyya, D.K. & Kalita, J.K. 2014. Network Anomaly Detection A Machine Learning

Perspective. CRC Press.

Bielza, C. & Larrañaga, P. 2014. Discrete Bayesian Network Classifiers: A Survey. ACM

Computing Surveys (CSUR). 47(1).

Buczak, A. L. & Guven, E. 2015. A Survey of Data Mining and Machine Learning

Burbidge, R. & Buxton, B. An Introduction to Support Vector Machines for Data Mining.

UCL: Computer Science Dept. 2001.

Butun, I., Morgera, S. & Sankar, R. 2013. A Survey of Intrusion Detection Systems in Wireless

Sensor Networks. Communications Surveys Tutorials, IEEE.

102

Chen, F., Deng, P., Wan, J., Zhang, D., Vasilakos, A. & Rong, X. 2015. Data Mining for the

Internet of Things: Literature Review and Challenges. International Journal of Distributed

Sensor Networks. 2015;2015:1-14.

Demˇsar, J. 2006. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of

Machine Learning Research. 7:1–30.

Farooq, M., Waseem, M., Khairi, A. & Mazhar, S. 2015. A Critical Analysis on the Security

Concerns of Internet of Things (IoT). International Journal of Computer Applications, 111(7),

pp.1-6.

Fayyad, U.M. & Irani, K.B. 1993. Multi-Interval Discretization of Continuos-Valued

Attributes for Classification Learning. In Proceedings of the International Joint Conference on

Uncertainty in AI. San Francisco, CA: Morgan Kaufmann.

Gartner .2013. Forecast: The Internet of Things, Worldwide, 2013. Retrieved from:

http://www.gartner.com/document/2625419?ref=QuickSearch&sthkw=G00259115.

Hajare, S. A. 2016. Detection of Network Attacks Using Big Data Analysis. In International

Journal on Recent and Innovation Trends in Computing and Communication, vol. 4, issue 5,

pp. 86-88.

Haunsheng, N. & Hong L. 2012. Advances in Internet Of Things Vol.2.

Hodo, E. 2016. Threat analysis of IoT networks using artificial neural network intrusion

detection system. In International Symposium on Networks, Computers and Communications

(ISNCC), pp. 1-6.

Jian, A., Xiao-Lin, G. & Xin H. ”Study on the Architecture and Key Technologies for Internet

of Things,” in Advances in Biomedical Engineering, Vol.11, IERI-2012, pp. 329-33

Jog, V. & Murugan, T. 2016. A Critical Analysis on the Security Architectures of Internet of

Things: The Road Ahead. Journal of Intelligent Systems.

Jung-Tae, K. 2016. Analyses and Security Requirements for Smart Home Network Based on

Internet of Things.

Kothari, C.R. 1990. Research Methodology Methods and Techniques. 2nd ed. New Delhi,

India: New Age International.

Kozlov, D., Veijalainen, J. & Ali, Y. 2012. Security and Privacy Threats in IoT Architectures.

http://www.gartner.com/document/2625419?ref=QuickSearch&sthkw=G00259115

103

Lee, C.H. 2007. A Hellinger-based discretization method for numeric attributes in

classification learning. Knowledge-Based Systems.

Lin, H. & Bergmann, N. 2016. IoT Privacy and Security Challenges for Smart Home

Environments. Information, 7(3), p.44.

Mahdavinejad. 2015. Machine Learning for the Internet of Things: a survey.

Methods for Cyber Security Intrusion Detection. In IEEE Communications Surveys &

Tutorials, vol. 18, issue 2, pp. 1153-1176.

Pajouh, H. H., Javidan, R., Khayami, R. & Ali, D. 2016. A Two-layer Dimension Reduction

and Two-tier Classification Model for Anomaly-Based Intrusion Detection in IoT Backbone

Networks.

Patel, K.2016. Internet of Things-IOT: Definition, Characteristics, Architecture, Enabling

Technologies, Application & Future Challenges International Journal of Engineering Science

and Computing, May 2016.

Philokypros, P. 2018. A Signature-based Intrusion Detection System for the Internet of Things.

Roman, R., Zhou, J. & Lopez, J. 2006. Applying intrusion detection systems to wireless sensor

networks. In Proceedings of IEEE Consumer Communications and Networking Conference,

pages 640–644, 2006.

Sai Ram, K. & Gupta, A. 2016. IOT based Data Logger System for weather monitoring using

Wireless sensor networks. International Journal of Engineering Trends and Technology, 32(2),

pp.71-75.

Sang, Y. & Gao, X. 2013. Security Issues and Protective Measures of the Internet of Things

Architecture. Advanced Materials Research, 765-767, pp.1007-1010.

Security Intelligence. 2017. Lessons from the Dyn DDoS Attack. [Online] Available at:

https://securityintelligence.com/lessons-from-the-dyn-ddos-attack/ [Accessed 1 Jul. 2017].

Shalev-Shwartz, S. & Ben-David, S. 2014. Understanding Machine Learning: From Theory to

Algorithms. Cambridge University Press.

Sherasiya, T. & Upadhyay, H. 2016.Intrusion Detection System for Internet of Things. In

IJARIIE-ISSN(O), vol. 2, issue. 3 (2016)

104

Shyu, M., Chen, S., Sarinnapakorn, K., & Chang, L. (2003). A novel anomaly detection scheme

based on principal component classifier. In Paper presented at the proceedings of ICDM’03.

Tayyaba, K. 2017. IoT Security against DDoS attacks using Machine Learning Algorithms,

International Journal of Scientific and Research Publications, Volume 7, Issue 6, June 2017.

Tsai.2009. Expert Systems with Applications 36 11994–12000

Vasilomanolakis, E., Daubert, J. & Luthra, M. (n.d.). On the Security and Privacy of Internet

of Things Architectures and Systems.

Vapnik, V. 1998. Statistical learning theory. New York: John Wiley.

Vijayalakshmi, A. & Arockiam. L. 2016. – A Study on Security Issues and Challenges in IOT.

Wang, W., Guan, X., & Zhang, X. 2004. A novel intrusion detection method based on principle

component analysis in computer security. In Paper presented at the proceedings of the

international symposium on neural networks.

Weber .R, ”Internet of Things–New security and privacy challenges,” Elsevier Computer Law

& Security Review, vol. 26, no. 1, pp. 23–30,2010.

Weiser, M. 1999. The computer for the 21st century, Mob. Computer. Communication. Rev. 3

(3) (1999) 3–11.

Zhao, K. & Ge, L. 2016. A Survey on the Internet of Things Security. In 9th International

Conference on Computational Intelligence and Security (CIS). DOI: 10.1109/CIS.2013.145.

Zheng .Z, Wang .J, Zhu .Z, “A General Anomaly Detection Framework for Internet of Things,”

in Proc. 41st IEEE/IFIP International Conference on Dependable Systems and Networks, Hong

Kong, June 27-30, 2011.

105

Appendix A – Matlab code for proposed model

Classification.m

Data = 'clusteredData.csv';

CData = csvread(Data);

%Ouput evaluation variables.

TP=0;

TN=0;

FP=0;

FN=0;

%take out data for training.

train_data = CData(1:6650,1:2)'

train_targets = CData(1:6650,3)'

%take out data for testing.

test_data = CData(6651:9357,1:2)'

test_targets = CData(6651:9357,3)'

%call C4.5 classification method to create the tree.

[tree, discrete_dim] = C4_5(train_data, train_targets, 1)

disp('Classify test samples using the tree')

%use the tree built using training data to examin the test data. Input: test data, number of

records in test

%data, tree, discrete_dim indicates number of classes i.e. 2, 1 or 2.

result = use_tree(test_data, 1:size(test_data,2), tree, discrete_dim, unique(train_targets));

%transpose the matrix result'

%restore the result to its orginial state.

result1 = result';

test_data=test_data'

test_targets1=test_targets'

[S,dim] = size(test_targets1);

desResult = zeros(S,1);

figure(1)

for i = 1:S

if test_targets1(i,1) == 1 && result1(i,1) == 1

TP = TP+1;

plot(test_data(i,1), test_data(i,2), '*g')

hold on

elseif test_targets1(i,1) == 2 && result1(i,1) == 2

TN = TN+1;

plot(test_data(i,1), test_data(i,2), 'om')

106

hold on

elseif test_targets1(i,1) == 1 && result1(i,1) == 2

FN = FN+1;

plot(test_data(i,1), test_data(i,2), 'xr')

hold on

elseif test_targets1(i,1) == 2 && result1(i,1) == 1

FP = FP+1;

plot(test_data(i,1), test_data(i,2), '+y')

hold on

end

end

title('Test data after classification')

grid on

axis equal

for i = 1:S

if result1(i,1) == 1

desResult(i,1) = 'A';

else

desResult(i,1) = 'N';

end

end

classifiedReslut = [test_data test_targets' result']

dlmwrite('classifiedReslut.txt', classifiedReslut, 'delimiter', '\t');

dlmwrite('NormalAbnormalclassifiedReslutReslut.txt', desResult, 'delimiter', '\t');

disp('True Negative')

TN

disp('True Positive')

TP

disp('False Negative')

FN

disp('False Positive')

FP

disp('Detection Rate')

DetectionRate = (TP) / (TP+FP)

disp('False Alarm')

FalseAlarm = (FP) / (FP+TN)

disp('Accuracy')

Accuracy = (TP+TN) / (TP+TN+FP+FN)

K.m

% This code takes as input parameters, the real dataset that we need to

% cluster and the number of clusters that we need. It returns the prototypes

% values

function [m] = KM(x,K)

MM=1;

NN=MM+2;

U=1;

UU=0;

107

[dataLen,dim]=size(x);

dataLen;

dim;

m = rand(K,dim)*1;

d=zeros(dataLen,K);

flag=zeros(dataLen,1);

targets = zeros(K,1);

%this is to run the K-means 10 times.

for k=1:K

for n=1:dataLen

d(n,k)=norm(x(n,:)-m(k,:));

end

end

[mins,I] =min(d');

I(1,1)

d;

for n=1:dataLen

flag(n) = 1;

end

%trying to find best represntative clusters.

flag;

for k=1:K

num=0;

den=0;

for n=1:dataLen

val1=0;

val2=0;

if ((d(n,k) - mins(1,n) < 0.00001) && flag(n,1) ==1)

% if(0)

flag(n,1)=0;

if mins(1,n) ~= 0

for L=1:K

val1 = val1 + d(n,L)^(-MM);

val2 = val2 + d(n,L)^(-MM);

end

val1=val1-mins(1,n)^(-MM);

val2=val2-mins(1,n)^(-MM);

val1 = val1 * NN * mins(1,n)^(NN-2);

val2 = val2 * NN * mins(1,n)^(NN-2);

val1= -1*(NN-MM) * mins(1,n)^(NN-MM-2) - val1;

val2= -1*(NN-MM) * mins(1,n)^(NN-MM-2) - val2;

else

val1 = mins(1,n)^(NN-MM-2)*(MM-NN);

val2 = mins(1,n)^(NN-MM-2)*(MM-NN);

end

val1 = val1 * x(n,:);

num = num + val1;

den = den + val2;

else

108

val1= val1 + x(n,:) * (U* MM * mins(1,n)^(NN-0.01)/d(n,k)^(MM+2));

val2= val2 + (U* MM * mins(1,n)^(NN-0.01)/d(n,k)^(MM+2));

num = num + val1;

den = den + val2;

end

end

m(k,:) = num/den;

targets(k,1)= I(1,1)

end

 targets

 m

Make_tree.m

function tree = make_tree(patterns, targets, inc_node, discrete_dim, maxNbin, base)

[Ni, L] = size(patterns);

Uc = unique(targets);

tree.dim = 0;

tree.split_loc = inf;

if isempty(patterns),

return

end

if ((inc_node > L) | (L == 1) | (length(Uc) == 1)),

H = hist(targets, length(Uc));

[m, largest] = max(H);

tree.Nf = [];

tree.split_loc = [];

tree.child = Uc(largest);

return

end

for i = 1:length(Uc),

Pnode(i) = length(find(targets == Uc(i))) / L;

end

Inode = -sum(Pnode.*log(Pnode)/log(2));

delta_Ib = zeros(1, Ni);

split_loc = ones(1, Ni)*inf;

for i = 1:Ni,

data = patterns(i,:);

Ud = unique(data);

Nbins = length(Ud);

if (discrete_dim(i)),

P = zeros(length(Uc), Nbins);

for j = 1:length(Uc),

for k = 1:Nbins,

indices = find((targets == Uc(j)) & (patterns(i,:) == Ud(k)));

P(j,k) = length(indices);

end

end

Pk = sum(P);

P = P/L;

109

Pk = Pk/sum(Pk);

info = sum(-P.*log(eps+P)/log(2));

delta_Ib(i) = (Inode-sum(Pk.*info))/-sum(Pk.*log(eps+Pk)/log(2));

else

P = zeros(length(Uc), 2);

[sorted_data, indices] = sort(data);

sorted_targets = targets(indices);

I = zeros(1, L-1);

for j = 1:L-1,

 P(:, 1) = hist(sorted_targets(1:j) , Uc);

P(:, 2) = hist(sorted_targets(j+1:end) , Uc);

Ps = sum(P)/L;

P = P/L;

Pk = sum(P);

P1 = repmat(Pk, length(Uc), 1);

P1 = P1 + eps*(P1==0);

info = sum(-P.*log(eps+P./P1)/log(2));

I(j) = Inode - sum(info.*Ps);

end

[delta_Ib(i), s] = max(I);

split_loc(i) = sorted_data(s);

end

end

[m, dim] = max(delta_Ib);

dims = 1:Ni;

tree.dim = dim;

Nf = unique(patterns(dim,:));

Nbins = length(Nf);

tree.Nf = Nf;

tree.split_loc = split_loc(dim);

if (Nbins == 1)

H = hist(targets, length(Uc));

[m, largest] = max(H);

tree.Nf = [];

tree.split_loc = [];

tree.child = Uc(largest);

return

end

if (discrete_dim(dim)),

for i = 1:Nbins,

indices = find(patterns(dim, :) == Nf(i));

tree.child(i) = make_tree(patterns(dims, indices), targets(indices), inc_node,

discrete_dim(dims), maxNbin, base);

end

else

 indices1 = find(patterns(dim,:) <= split_loc(dim));

indices2 = find(patterns(dim,:) > split_loc(dim));

if ~(isempty(indices1) | isempty(indices2))

tree.child(1) = make_tree(patterns(dims, indices1), targets(indices1), inc_node,

discrete_dim(dims), maxNbin, base+1);

110

tree.child(2) = make_tree(patterns(dims, indices2), targets(indices2), inc_node,

discrete_dim(dims), maxNbin, base+1);

else

H = hist(targets, length(Uc));

[m, largest] = max(H);

tree.child = Uc(largest);

tree.dim = 0;

end

end

Use_tree.m

function targets = use_tree(patterns, indices, tree, discrete_dim, Uc)

targets = zeros(1, size(patterns,2));

if (tree.dim == 0)

targets(indices) = tree.child;

return

end

dim = tree.dim;

dims= 1:size(patterns,1);

if (discrete_dim(dim) == 0),

in = indices(find(patterns(dim, indices) <= tree.split_loc));

targets = targets + use_tree(patterns(dims, :), in, tree.child(1), discrete_dim(dims), Uc);

in = indices(find(patterns(dim, indices) > tree.split_loc));

targets = targets + use_tree(patterns(dims, :), in, tree.child(2), discrete_dim(dims), Uc);

else

Uf = unique(patterns(dim,:));

for i = 1:length(Uf),

if any(Uf(i) == tree.Nf)

 in= indices(find(patterns(dim, indices) == Uf(i)));

 targets = targets + use_tree(patterns(dims, :), in, tree.child(find(Uf(i)==tree.Nf)),

discrete_dim(dims), Uc);

end

end

end

111

Appendix B

Wilcoxon Test

112

Appendix C – Friedman ANOVA Test on Sample Size

113

Appendix D

Wilcoxon Test

114

115

Appendix E – Artificial Neural Network Training

	Abstract
	Statement of Original Authorship
	Plagiarism Declaration
	Acknowledgements
	List of Figures
	List of Tables
	List of Acronyms
	TABLE OF CONTENTS
	Chapter 1: Introduction
	1.1 Background
	1.2 Problem Statement
	1.3 Aim and Objectives
	1.4 Research Questions
	1.5 Scope
	1.6 Justification
	1.7 Methodology
	1.8 Expected Results and Contributions
	1.9 Dissertation structure
	1.10 Conclusion

	Chapter 2: The Internet of Things
	2.1 The Notion of Internet of Things
	2.2 Definition of IoT
	2.3 IoT Architecture
	2.4 Technologies of IoT
	2.5 IoT Challenges
	2.6 Intrusion Detection in IoT
	2.7 Conclusion

	Chapter 3: Machine Learning
	3.1 Definition of Machine Learning
	3.2 Machine Learning Algorithms
	3.3 Classification Algorithms
	3.4 Clustering Algorithms
	3.5 Decision Tree Algorithms (DT)
	3.6 Artificial Neural Networks
	3.7 Classification Performance of Machine Learning
	3.8 Related Work
	3.9 Algorithm Comparison
	3.10 Conclusion

	Chapter 4: Methodology and Implementation
	4.1 Methodology
	4.2 Model Design
	4.3 Input Data
	4.4 Clustering
	4.5 Classification
	4.6 Implementation
	4.7 Model Evaluation
	4.8 Conclusion

	Chapter 5: Results and Analysis
	5.1 Results
	5.2 Discussion and Analysis
	5.3 Conclusion

	Chapter 6 – Conclusion
	6.1 Purpose and Findings
	6.2 Empirical findings vs Research
	6. 3 Implications and Limitations
	6.4 Recommendations and Future
	6.5 Conclusion

	References
	Appendix A – Matlab code
	Appendix B
	Appendix C – Friedman ANOVA
	Appendix D
	Appendix E – Artificial Neural Network

