
RESEARCH ARTICLE

JMS: An Open Source Workflow Management
System and Web-Based Cluster Front-End for
High Performance Computing
David K. Brown, David L. Penkler, Thommas M. Musyoka, Özlem Tastan Bishop*

Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University,
Grahamstown, South Africa

* o.tastanbishop@ru.ac.za

Abstract
Complex computational pipelines are becoming a staple of modern scientific research. Often

these pipelines are resource intensive and require days of computing time. In such cases, it

makes sense to run them over high performance computing (HPC) clusters where they can

take advantage of the aggregated resources of many powerful computers. In addition to this,

researchers often want to integrate their workflows into their own web servers. In these

cases, software is needed to manage the submission of jobs from the web interface to the

cluster and then return the results once the job has finished executing. We have developed

the Job Management System (JMS), a workflowmanagement system and web interface for

high performance computing (HPC). JMS provides users with a user-friendly web interface

for creating complex workflows with multiple stages. It integrates this workflow functionality

with the resource manager, a tool that is used to control and manage batch jobs on HPC clus-

ters. As such, JMS combines workflow management functionality with cluster administration

functionality. In addition, JMS provides developer tools including a code editor and the ability

to version tools and scripts. JMS can be used by researchers from any field to build and run

complex computational pipelines and provides functionality to include these pipelines in

external interfaces. JMS is currently being used to house a number of bioinformatics pipelines

at the Research Unit in Bioinformatics (RUBi) at Rhodes University. JMS is an open-source

project and is freely available at https://github.com/RUBi-ZA/JMS.

Introduction
Computational pipelines or workflows have become an important tool for the analysis of the
vast amounts of data being generated in many scientific fields today. The computational com-
plexity of these workflows varies significantly, but can often require days of computing time
and a large amount of computing power. To speed up the execution of these jobs, the use of
parallel algorithms and high performance computing (HPC) clusters has become increasingly
common. Computer clusters offer high performance through the aggregation of resources

PLOSONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 1 / 25

OPEN ACCESS

Citation: Brown DK, Penkler DL, Musyoka TM,
Bishop ÖT (2015) JMS: An Open Source Workflow
Management System and Web-Based Cluster Front-
End for High Performance Computing. PLoS ONE 10
(8): e0134273. doi:10.1371/journal.pone.0134273

Editor: Frederique Lisacek, Swiss Institute of
Bioinformatics, SWITZERLAND

Received: February 15, 2015

Accepted: July 7, 2015

Published: August 17, 2015

Copyright: © 2015 Brown et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Data are available at
(https://github.com/RUBi-ZA/JMS). A demonstration
sever has been made available at (https://jms.rubi.ru.
ac.za/).

Funding: This work is partially supported by the
National Institutes of Health Common Fund under
grant number U41HG006941 to H3ABioNet. National
Research Foundation (NRF), South Africa, (grant
number 93690) and Rhodes University provided
student fellowship financial support. The content of
this publication is solely the responsibility of the
authors and does not necessarily represent the
official views of the funders. The funders had no role

https://github.com/RUBi-ZA/JMS
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0134273&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/RUBi-ZA/JMS
https://jms.rubi.ru.ac.za/
https://jms.rubi.ru.ac.za/


from multiple individual computers. Resource managers are software systems that are required
to manage the submission and scheduling of jobs on these clusters as well as the allocation of
resources, such as memory and processing cores, to individual jobs. Examples of this type of
software include the Torque resource manager [1] as well as the Simple Linux Utility for
Resource Management (SLURM) [2]. These systems provide fine-grained control over the
resources of a cluster, allowing users to configure and manage nodes, submit jobs, and adminis-
ter their systems. They can also be integrated with 3rd party job schedulers such as Maui [3] for
improved job scheduling capabilities. Unfortunately, in most cases, the powerful advantages of
running parallel applications on HPC clusters remain out of reach of the average user. As
computational modelling and big data analysis gain popularity in a wide range of fields, more
and more researchers are requiring the use of HPC resources. These researchers often have lit-
tle or no command-line expertise. Resource managers such as Torque and SLURM are com-
mand-based and present a steep learning curve to such users, often preventing them from
making use of the computing resources at all.

To make HPC computing more accessible to all scientists, fully-functional, click-based inter-
faces are required. One such system is CHReME [4]. CHReME provides a web-based interface to
Torque and, amongst other things, facilitates the submission, management and monitoring of
jobs on the cluster as well as user and cluster management and configuration. Unfortunately,
CHReME is a proprietary system and is not freely available. There are many examples of other
similar systems, the Moab suite of HPC applications [5] being particularly noteworthy, but the
costs involved in obtaining these systems put them out of reach of many labs. Although some
free web interfaces have been developed, these systems usually only provide accounting informa-
tion for the cluster or allow users to monitor the status of already running jobs. They do not
allow users to submit jobs or access results. An exception to this is Yabi [6]. Yabi provides an
online environment for creating workflows and manages the execution of those workflows in an
HPC environment. It supports a number of resource managers and records a detailed job history
for all jobs run through the interface. Yabi is capable of executing any tool that is available from
the command line. Administrators are able to add tools to the Yabi web interface by entering in
data describing how those tools can be run from the command line.

Resource managers are only part of the challenge, however. Jobs that are submitted to a
cluster are often part of a sequence of jobs that are being run to perform some kind of analysis.
When the output of one job becomes the input of another job, this is known as a computational
pipeline or workflow. It has become increasingly popular to use software to automate the exe-
cution of these workflows instead of micro-managing each job in the sequence. Yabi is one
such system capable of doing this. In the biological sciences, a number of additional workflow
management systems (WMS) have been developed. Two such systems, Galaxy [7] and Ergatis
[8], allow users to create workflows by piecing together a number of tools that come pre-pack-
aged with the systems. Users are also able to add additional tools by creating configuration files
describing how these tools can be run. Unfortunately, these configuration files can be difficult
for new users to master.

While WMSs like Ergatis and Galaxy manage the execution of tools and scripts directly on
the servers or clusters that they are set up on, there is another class of WMSs that creates pipe-
lines out of web services. One example of this type of WMS is Taverna [9]. Taverna takes
advantage of thousands of bioinformatics web services that have been developed over the past
few years [10] by combining them, along with local scripts, into complex pipelines. The advan-
tage of such an approach is that most of the computation is performed on the remote servers
where the web services are hosted, thus, reducing local infrastructure and maintenance costs.
Limitations of this approach include bandwidth constraints, as data must be transferred to and
from the remote servers, as well as varying reliability of the remote web services.

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 2 / 25

in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



Systems like Galaxy and Ergatis are capable of running on a cluster, but they provide no visi-
ble means of directly interacting with the underlying resource manager. In addition to this,
researchers who develop workflows often want to make these workflows available via their own
web servers. A workflow created in Galaxy, for example, can only be run from the Galaxy web
interface. In order to integrate computational pipelines into their own web servers, developers
must spend time building a user-friendly interface and managing the flow of data from the
interface to the server and then finally onto the cluster.

In this paper, we introduce the Job Management System (JMS). JMS combines the function-
ality of a web-based cluster front-end with that of a WMS. It exposes this functionality via a
RESTful web API [11], allowing developers to include an interface to workflows that have been
created within JMS in their own web servers or simply access them from within their own
scripts. JMS also provides the ability to add new tools and scripts directly via the web interface,
without any need for complicated configuration files. JMS aims to eliminate the development
barriers involved in making tools and scripts available via public web interfaces by allowing
developers to create and run these tools over a cluster without requiring the developer to have
any HPC background. Once tools have been created, a user-friendly, web-based interface is
automatically generated to facilitate the use and execution of the tools by non-IT experts.

Although the functionality of JMS is applicable to any scientific field, it is currently being
tailored towards bioinformatics with the introduction of bioinformatics related tools, work-
flows and result editors. The system is being developed for use by the H3Africa Consortium
[12]. As part of this Consortium, numerous groups around Africa have received funding to
purchase high-end servers for use in computationally intensive bioinformatics analyses. JMS
can be used to assist these groups with the initial setup stage as well as managing and monitor-
ing their servers and developing and managing tools and workflows. Reporting tools will allow
groups to monitor their cluster usage and report back to funders and other stakeholders on
their activities. JMS will further provide a work environment to share tools, scripts and work-
flows between collaborating groups. In these ways, JMS can be expected to enhance progress
towards the Consortium’s scientific goals.

System Design & Features

Implementation Details
JMS was developed using the Django web framework [13] on the Linux distribution, Ubuntu
12.04. The web server chosen to host the system was Apache2. JMS requires a relational data-
base to store user, workflow and job information. During development, a SQLite database was
used, but in production we recommend a more heavyweight option such as MySQL. Since the
Django object relational mapper (ORM) handles the database interactions, any other Django
supported database management system (DBMS) can be used. Support for resource managers
is added via the development of plugins. Currently plugins for Torque and SLURM exist and a
plugin for the Univa Grid Engine (UGE) [14] (previously known as the Sun Grid Engine [15])
is being developed. The Torque resource manager was initially used to handle job submissions
and scheduling during development. Previous HPC systems, such as WImpiBLAST [16], have
similarly integrated Torque into their architectures. The JMS interface is web-based and was
developed using the Knockout.js [17] and Bootstrap [18] frameworks.

Architecture
There are two ways in which one can describe JMS architecture. The first is by looking at the
JMS application itself. This will be referred to as the software architecture of JMS. The second is

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 3 / 25



by looking at how JMS slots into the existing HPC cluster architecture. This will be referred to
as the system architecture.

1.1 Software Architecture. The JMS web application has been developed using the Django
web framework (Fig 1A), and provides a web-based interface andWMS for the Torque
resource manager. The application adopts the traditional, three-tiered architecture commonly
used for web applications and consists of a presentation layer, application layer, and a data
storage layer.

The presentation layer is responsible for receiving user input and passing it on to the appli-
cation layer. JMS provides a user-friendly web interface that has been built using the Knockout.
js and Bootstrap frameworks. The interface is responsive, meaning that it adapts according to
the size of the screen. As such, JMS is user-friendly on a wide range of devices and allows users
to monitor and manage jobs on their mobile device when out of the office.

Interaction between the web interface and the server is achieved by sending AJAX requests
to a RESTful web API. AJAX allows data to be sent to and retrieved from the server without
requiring entire pages to be reloaded. Apart from saving bandwidth, this provides a smoother
and more fluid user experience. Using a web API to expose the functionality provided by the
application layer allows developers to interact with JMS programmatically. This also means
that 3rd party developers will be free to create their own, custom interfaces for JMS without
needing to modify any JMS code. Similarly, it will allow us to develop additional interfaces for
other platforms in the future e.g. mobile apps and desktop clients. The RESTful web API also
makes it easy to include workflows that have been set up via JMS in external web interfaces.

Fig 1. JMS System Architecture. A) JMS has been developed as a Django web application. The project consists of three modules, a background service,
an impersonator server and a SQL database. The background service is used to update job history in the database. The impersonator server forms part of
the security system and allows the JMS to impersonate users on the cluster. The jobsmodule is the main module and is responsible for interfacing with the
resource manager as well as providing theWMS functionality. The usersmodule is responsible for handling user authentication and security. It also provides
basic social networking functions. Both these modules expose their functionality via a RESTful web API. The interface module makes use of these web APIs
to provide a web-based interface for the system. B) JMS forms part of a broader architecture. It provides an interface for external web servers to run jobs on a
cluster. Authentication is done via the Linux authentication system so that users have the same permissions they would have if they were to log into the
server via SSH.

doi:10.1371/journal.pone.0134273.g001

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 4 / 25



This negates the need to create entirely new systems each time a researcher wants to provide a
web portal to a newly developed tool or workflow.

The application layer consists of two Django modules (or apps), namely, the usersmodule
and the jobsmodule, and is responsible for performing tasks based on input received from the
presentation layer. The usersmodule is responsible for user management and authentication
and performs a number of security functions, which will be discussed later. It is also responsible
for providing the collaboration features built into JMS. The jobsmodule is the biggest module
in JMS and is responsible for providing all functionality related to creating and managing
workflows, submitting, managing and monitoring jobs and job history, and managing, inter-
acting and configuring resource manager settings via resource manager plugins (discussed
later).

In addition to the two Django modules, the application layer also includes a background ser-
vice and what we have called the Impersonator Server. The purpose of the background service
is to continuously poll the underlying resource manager to ensure that job history is kept up-
to-date in the JMS database. The Impersonator Server is used to allow JMS to spawn processes
on the cluster as another user. This is discussed in more detail in section 5.

The data storage layer is responsible for storing job, workflow, and user details as well as
resource manager configuration data and settings. The system was designed and built using the
SQLite DBMS, but, because the Django ORM handles interactions with the database, SQLite
can easily be substituted by any other relational DBMS supported by the Django framework.

1.2 System Architecture. JMS is installed and configured as a separate component on top
of an existing HPC cluster to form a two-tier system architecture (Fig 1B). This means that the
existing HPC software (e.g. Torque, SLURM, UGE, etc) can remain as is and does not need to
be modified or adjusted in any way. In an effort to make JMS compatible with as many resource
managers as possible, we have devised a custom plugin architecture. Using this architecture,
adding support for additional resource managers becomes as trivial as writing a Python wrap-
per for the resource manager. If Python wrappers already exist for the resource manager, this
becomes even easier. These wrappers, which we will refer to as plugins, must follow three sim-
ple rules.

Firstly, plugins must inherit from our base resource manager class (BaseResourceManager.
py). This class provides a handful of important functions required by JMS, but also requires
plugins to override a number of unimplemented functions.

Secondly, a number of predefined objects have been created to serve as the outputs for the
base functions that plugins must override. Essentially, plugins must populate these objects with
data from the resource manager and return them to JMS. By doing this, JMS receives an object
or list of objects that it knows how to deal with. It doesn’t matter that the content of the objects
may differ depending on the underlying resource manager, because the objects also contain
metadata that describes what type of data they hold. This allows JMS to adapt its interface to
best suit the data.

And lastly, plugins must be copied and pasted into a specific folder where JMS knows to
look for them. To use a plugin, the plugin name must then simply be specified in the JMS set-
tings.py file.

Currently, plugins for Torque and SLURM have been developed and development of a
plugin for UGE is underway. Using this architecture, we will be able to quickly increase the
number of supported resource managers.

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 5 / 25



Features
JMS provides features for three types of users, namely, developers, administrators, and
researchers. These features fall under a range of categories and are described below.

1.3 Job Management. JMS allows users to submit new jobs to the cluster, monitor and
manage jobs while they run, and obtain the results of the jobs once they are complete. It does
this by interfacing with the underlying resource manager, as well as the WMS, which will be
discussed in the following section.

JMS allows users to upload or create scripts to be submitted to the cluster and then request
resources such as required memory, number of cores, and the wall-time to be allocated to the
job. Based on these inputs, JMS generates a job script and submits it to the resource manager to
be executed. JMS is capable of running any program or script that can be executed from the
command-line. Jobs can then be monitored until their completion. What the JMS monitors
will be dependent on the resource manager plugin, but will usually include the resources used,
the input and output streams of the job, and the working directory of the job. The exit status of
the job combined with the output stream can be used to determine whether execution was suc-
cessful, and, if not, what went wrong. On completion, the user can access the results of a job,
either from the output and error streams, or by downloading the resultant files from the work-
ing directory. All results can be accessed via the web interface via the Job History tab.

Real-time monitoring of jobs is done by interfacing with the resource manager plugin.
Using the Torque plugin as an example, the ‘qstat’ command is used to check for updates on
the job. This command is polled continuously by the background service to update job details.
Data returned is parsed and stored in the JMS database in order to keep a permanent record of
all jobs.

In addition to monitoring the status of jobs, JMS provides users with job management func-
tionality. Users may delete jobs from their job history, cancel running jobs, suspend or hold
jobs before or after they start running, and, in future, users will be able to make requests to
alter jobs. Because alteration requests may include requests for additional resources, they
require an admin user’s approval. If a non-admin user makes a request for an alteration to one
of their jobs, the request will be forwarded to an admin user to be granted or denied.

1.4 Workflow Management. In addition to interfacing with the underlying resource man-
ager, JMS provides functionality allowing users to build and execute complex computational
pipelines or workflows. Using the JMS model of a workflow, a workflow is made up of a set of
stages. Each stage represents a tool that has been added to JMS.

A tool can be any command-line utility that is already installed on the cluster or a custom
script or executable that is uploaded by the user. For each tool, users provide JMS with a num-
ber of details including the command that would be used to run the tool or script from the ter-
minal, the parameters that the command can take, the resources that should be allocated to the
tool by the resource manager, and the expected outputs that the tool will generate. All these
details are entered into the system via the web interface (Fig 2) and then stored in the database
backend. No complicated configuration files are required. Furthermore, scripts and executables
that are uploaded by users are automatically stored in a strict directory hierarchy that is man-
aged by JMS. In addition to uploading scripts, users can create new scripts from scratch via the
web interface. Scripts can also be edited via the web interface using a web-based code editor
that has been incorporated in JMS. This allows users to update their scripts without needing to
re-upload them and introduces a unique ability to troubleshoot scripts and workflows without
ever having to leave the web interface. Developers can test their workflows and check the out-
put streams for error messages. They can then edit their scripts based on any error messages
returned. Simple bugs, such as syntax errors, often return a message that includes the line

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 6 / 25



number in the script that the error is located on. The developer can then open the script for
editing within the browser and fix the mistake before running the workflow again. There is no
need to download the script to fix the bug and then upload the updated script again. The code
editor is user friendly and provides syntax highlighting for most languages, automatic indenta-
tion, and word completion functionality, which often makes it a superior alternative to devel-
oping on one’s own machine.

JMS provides a simple to use workflow creation interface (Fig 3). A canvas is provided, simi-
lar to that provided by Galaxy, where tools can be arranged into complex pipelines. Tools can
be added to the canvas from a list on the left hand side of the interface (depending on the size
of your screen). Once on the canvas, they can be rearranged and dependencies can be created
between them by dragging and dropping.

Fig 2. The tool creation interface. JMS provides a user-friendly tool creation interface. Users can name and describe their tools, enter the command and
parameters that would be needed to run the tools, specify the expected outputs that the tools would produce, specify the resources that should be allocated
to the tool on the cluster, and publish new versions of the tool.

doi:10.1371/journal.pone.0134273.g002

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 7 / 25



JMS makes it easy for users to develop complex workflows by creating conditional stages.
This is done by setting conditions on stage dependencies. When a dependency is created
between two stages by dragging and dropping a line between those stages, a condition can be
set for that dependency. For example, given three stages, A, B, and C, a user can set B to run if
A completes successfully and C to run if A fails (Fig 4A). The JMS extends this further by
allowing users to create dependencies based on the exit status of a stage. For example, B exe-
cutes if the exit status of the job is 1 and C executes if the exit status of the job is 2 (Fig 4B).
Users can take advantage of this functionality by manually setting the exit status of their scripts
based on some condition. Using exit statuses to create conditional forks was chosen as it pro-
vides limitless possibilities for what developers can do with it. For example, a developer can cre-
ate a script that has the sole purpose of exiting with a specific status based on user input. If the
user is given a list of options, and chooses option 2, the script can accept that input, exit with a
status of 2, and JMS will then execute whichever tool was dependant on that stage exiting with
a status of 2. Using this logic, there is no workflow that cannot be created within JMS.

JMS also allows for certain stages in a workflow to run in parallel while others are required
to run sequentially. For example, if we have stages A to E, we could have a scenario where B
and C are dependent on A executing successfully, D is dependent on B and C executing suc-
cessfully, and E is dependent on D exiting with a status code of 5 (Fig 4C). In such a case, all
stages would wait while A executes. On successful completion of A, B and C would both exe-
cute and run in parallel. On successful completion of both B and C, D would begin execution.
If D exits with a status code of 5, stage E will begin executing. In this example we see that cer-
tain stages must execute sequentially, while others (B and C) may execute in parallel.

Fig 3. The workflow creation interface.Workflows can be created by double clicking on tools in the list on the left-hand side of the page and arranging them
on the canvass provided. Relationships/stage dependencies can be created between tools by dragging a line from one tool to another. Stages can be edited
by double clicking on the tool on the canvas.

doi:10.1371/journal.pone.0134273.g003

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 8 / 25



Workflows and tools can be selected and executed from the respective ‘Workflows’ and
‘Tools’ tabs of the JMS interface (Fig 5). To run a tool or workflow, JMS provides an automati-
cally generated web interface. This interface allows users to enter in values for each of the
parameters specified during the creation of the tools. Although other WMS also provide auto-
matically generated interfaces, JMS goes a step further by allowing these interfaces to be inte-
grated into other web servers. A JavaScript plugin is currently under development that will
automate the process of generating an interface for a 3rd party website.

Some workflows may consist of a number of different stages, each of which requires a num-
ber of different parameter values to be input. To make the process of inputting parameters
faster and easier, as well as more consistent, JMS allows users to create input profiles. An input
profile can be defined as a set of default inputs for a tool or workflow. Users can create multiple
input profiles for each tool or workflow. This is especially useful when a user wants to run a
workflow multiple times, where each time only one or two parameters need to be changed. In
such a case, an input profile can be created that automatically fills in values for the parameters
that are to remain constant so that the user only needs to fill in values for the parameters that
will change. Input profiles can also assist novice users by providing them with default inputs
for advanced parameters, while expert users will still be free to modify these values.

Although input profiles will significantly speed up the rate at which multiple jobs can be
submitted, this may still not be good enough for cases when hundreds or thousands of jobs
need to be submitted at once. JMS caters for these cases by allowing users to submit batch jobs.
Batch jobs require the user to generate a batch file consisting of rows of parameters, where each
row represents a single job. JMS reads in the file and submits each job, one at a time.

The job history stored for tools and workflows is also enriched by JMS. In addition to the
cluster-related information obtained from the resource manager, all the data for each stage of
the workflow run is stored. This includes all the parameter values that were entered by the user,
as well as a snapshot of the working directory after each sequential stage. By storing these
details, JMS is able to rerun a workflow from almost any stage.

Checkpoints are stages within a workflow that a job can be repeated from. Users can specify
which stages should be regarded as checkpoints during workflow creation. When JMS reaches

Fig 4. Workflow patterns. A) Stage B is executed if stage A executes successfully, else stage C executes. B) Stage B will only execute if stage A exits with a
status code of 1 and stage C will only exit if stage A exits with a status code of 2. If the status code is neither 1 nor 2, the job fails. C) All other stages wait while
stage A executes. On successful completion of A, stage B and C execute in parallel. If both stages execute successfully, stage D executes. If stage D exits
with a status code of 5, stage E executes.

doi:10.1371/journal.pone.0134273.g004

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 9 / 25



that stage during execution of a workflow, it will create a snapshot of the working directory at
that point in time. To repeat a job from a checkpoint, JMS simply restores the working direc-
tory to the state it was in at that point in time and resubmits jobs using the job history details
stored in the database. Not all stages are eligible to be checkpoints, however. Only a stage that
does not run in parallel with any other stages can be used as a checkpoint. This is because it is
only possible to restart a job from a point where all forks in a workflow have converged (Fig 6).
A snapshot of a directory taken at the beginning of a stage will be in the required state to repeat
that particular stage, but will not necessarily be in the correct state to repeat a stage that is cur-
rently busy executing in parallel.

A robust versioning system has been incorporated in JMS (Fig 7). A single tool to can have
multiple versions. When users first create a tool, a development version is also created. This
version is what the user is editing and updating via the web interface. Once the user is happy
with the state of their tool, they can publish an official version. This new version is essentially a
snapshot of the development version of the tool at that point in time. Everything about the tool

Fig 5. Workflows. The workflow tab displays all workflows that the logged in user has access to. From here, the user can create new workflows and edit, run,
or share existing workflows. Workflows can also be imported and exported from this interface.

doi:10.1371/journal.pone.0134273.g005

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 10 / 25



including any scripts that have been uploaded are copied and stored separately to the develop-
ment version. From that point in time, that version of the tool can never again be edited. The
user can, however, continue developing and editing the development version or even revert the
development version back to one of the previously published versions, and, when ready, pub-
lish a new version. Once again, the new version will be a snapshot of the development version
at that point in time. As such, the user is always working on the development version of the
tool and can never affect any changes to older versions of the tool. This becomes vitally impor-
tant if a specific version of a tool is used by a workflow.

Workflows use the same versioning system as tools whereby the user is always working on
the development version and creates snapshots of the development version at certain points in
time to create versions. This allows different versions of a workflow to use different versions of
tools. As with tool versioning, once a particular version has been published, it can never again
be edited.

JMS encourages developers to use the Semantic Versioning specification [19] for numbering
versions. This specification describes a version number using the format MAJOR.MINOR.
PATCH, where a major version number change requires an update that makes incompatible
changes to the API, a minor version number change is used when an update adds functionality
that is backward compatible, and a patch number change is a bug fix.

JMS versioning can be best used in combination with a system such as GNUmodules. In
such a case, a tool version within JMS could load a GNUmodule for a specific version of soft-
ware. The next version of the tool within JMS could be set to load a different GNUmodule and
thus a different software version.

1.5 Dashboard. JMS provides a dashboard containing detailed status information (Fig 8).
Amongst other things, the dashboard provides users with summary information depicting the
current state of the cluster. This information includes how many nodes are online/offline, the
proportion of processors being used across the whole cluster, the number of jobs currently run-
ning or waiting to run, and the amount of disk space still available.

The dashboard also allows users to check the state of each node in the cluster as well as the
current queue of jobs submitted to the cluster. The specific information displayed here will
depend on the resource manager plugin being utilised. If users have sufficient privileges, they
will be able to cancel the job directly from the queue.

Fig 6. Checkpoints. In the example workflow depicted here, stages that are eligible to act as checkpoints are coloured in green. Only stages that are not
running in parallel with any other stages can be used as checkpoints.

doi:10.1371/journal.pone.0134273.g006

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 11 / 25



1.6 Access Control & Collaboration. JMS provides a number of ways to facilitate collabo-
ration between researchers and research groups. Once a user has created a tool or workflow, it
can be shared with other users in the system (Fig 9). The creator of the tool or workflow can
assign administrator privileges to certain users. Administrators have all the permissions that
the creator has except for the ability to remove the creator as an administrator. Administrators
can assign permissions to other users. These permissions include the ability to execute the tool
or workflow, export and download the tool or workflow to be imported into another instance
of JMS, edit the development version of the tool or workflow, and publish a new version of the
tool or workflow. Tools and workflows can also be made public, which means that all users on
the system will have permission to run them.

As alluded to above, JMS provides functionality for workflows to be exported to a com-
pressed file and downloaded. These files can be kept as a backup or distributed to other
researchers who can import them into their own JMS instances. In this way, JMS can facilitate
collaboration and sharing between researchers working on different systems.

Fig 7. Tool versioning interface.Users may publish a new version of a tool by adding a release or revert the development version to an older version by
selecting the version and clicking on the “Revert” button.

doi:10.1371/journal.pone.0134273.g007

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 12 / 25



In addition to sharing workflows, JMS allows users to share their jobs and results with other
users on the same JMS instance. This means that researchers can work independently on differ-
ent tasks and later share their results and analyses with one another.

1.7 Cluster Configuration. In addition to interfacing with the underlying resource man-
ager to provide job management functionality, JMS also provides cluster configuration func-
tionality. This allows administrators to set up and manage queues, configure server settings,
and add compute nodes (Fig 10). The exact functionality provided by this page will be depen-
dent on the resource manager plugin being used. In addition, package management functional-
ity can be enabled by enabling Ansible [20] support in the JMS settings.py file. Ansible must be
installed on the master node of the cluster.

Fig 8. Dashboard. The JMS home page is a dashboard displaying status information for the cluster. The above diagram is a screenshot of the dashboard
when the Torque plugin is being used.

doi:10.1371/journal.pone.0134273.g008

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 13 / 25



Installation
JMS requires a relational DBMS and web server of choice to be installed on the host machine.
The system has been tested with SQLite and MySQL DBMSs and the Apache2 web server. A

Fig 9. Sharing tools and workflows. The creator of a tool along with any administrators can assign permission to other users on the system.

doi:10.1371/journal.pone.0134273.g009

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 14 / 25



supported resource manager also needs to be installed to facilitate the submission and schedul-
ing of jobs. Lastly, some form of shared storage needs to be accessible across all nodes on the
cluster. With the prerequisites installed, JMS can be downloaded from the GitHub repository
(https://github.com/RUBi-ZA/JMS). Alternatively, the project can be cloned using a git client
(http://git-scm.com/). Once downloaded, JMS can be set up like any Django project. Detailed
installation instructions and documentation are available on the JMS GitHub page.

Security
JMS uses a custom security and authentication system to authenticate directly against the
Linux operating system on the master node of the cluster (or any node that jobs can be submit-
ted to the cluster from). As such, users who have an account on the host machine are able to

Fig 10. Cluster configuration settings. The settings page can be accessed by both normal users and administrators. Normal users are unable to make any
changes on this page, however. Administrators can configure server settings, manage queues and add and remove compute nodes. The exact settings
displayed on this page are directly dependant on the underlying resource manager plugin. Optionally, if Ansible support has been configured, administrators
can install packages across nodes on the cluster.

doi:10.1371/journal.pone.0134273.g010

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 15 / 25

https://github.com/RUBi-ZA/JMS
http://git-scm.com/


log into JMS using the same username and password. This allows JMS to assume the logged in
user’s identity when running processes on the cluster. It also means that these processes then
have the same permissions as if the user had submitted the job directly from the command
line. Although being able to SSH into the system means that a user will be able to log in to JMS,
this is not true the other way around. Accounts can be created that can access JMS, but are not
capable of using SSH to log in to the host.

The JMS authentication system is agnostic to the underlying authentication system of the
machine it is running on. As such, it supports authentication methods such as LDAP out of the
box. In order to achieve this, we have developed the Impersonator server. The Impersonator
server is a lightweight web server, which has been developed using the Python Twisted frame-
work [21]. It runs as a separate entity to JMS and is only accessible from the local host i.e. the
host that JMS is running on. In addition, valid user credentials must be supplied in every
request to the Impersonator server, even if the user is already logged in to the server.

The sole purpose of the Impersonator server is to authenticate users and to receive requests
from JMS to launch processes as those users. Communication between JMS and the imperson-
ator server is secured using public key encryption. When a user logs in (Fig 11A), their creden-
tials are immediately encrypted using the Impersonator’s public key. From that moment

Fig 11. Impersonator Server. A) The login process– 1) credentials are received from the web interface and encrypted using the public key. 2) Encrypted
credentials are sent to the Impersonator server where they are decrypted using the private key. 3) Decrypted credentials are used to authenticate the user. 4)
The OS responds to the authentication request. 5) The Impersonator server returns the response to the JMS server. 6) If successfully authenticated, the
encrypted credentials on the JMS side are stored in the database. 7) The user is redirected to the JMS home page. B) Executing a command– 1) Request is
sent from interface. 2) Encrypted credentials are fetched from database. 3) Based on the user request, a command is formulated and sent to the
Impersonator server along with the encrypted credentials. 4) The Impersonator server decrypts the credentials and attempts to authenticate the user. 5) The
OS responds to the authentication request. 6) A process is spawned in the users name and the command is run. 7) Output from the command is returned. 8)
Output from the command is transferred back to the JMS server, which parse is and acts accordingly. 9) A response is sent to the user.

doi:10.1371/journal.pone.0134273.g011

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 16 / 25



onwards, user credentials will never be in unencrypted form on the JMS server. The encrypted
credentials are encoded and sent to the Impersonator server, where they are once again
decoded and then decrypted using the private key, which only the Impersonator server has
access to. The Impersonator server can then use these credentials to authenticate the user. On
successful authentication, a success message is returned to JMS. The user credentials are then
stored in the JMS database in encrypted form. Whenever JMS needs to run a command as a
user (Fig 11B), it can send these encrypted credentials, along with the command it needs to
run, to the Impersonator server. Once again, the Impersonator will decrypt the credentials to
ensure they are still valid and then execute the command. On successful execution, the results
are returned to JMS.

Results & Discussion
A demonstration sever has been made available at https://jms.rubi.ru.ac.za/. Please note that
some functionality will not be available on this server.

1. Comparison with Other Software
When comparing JMS to other popular tools in the HPC domain, we found five features that
distinguished it. The first of these features is the ability to write and edit code directly in the
web browser. This feature lets developers create and troubleshoot their workflows directly
within their browsers, potentially saving considerable time during the development phase.

The second distinguishing feature was JMS input profiles. When considering whether sys-
tems supported input profiles, we required that the users be allowed to create multiple sets of
default inputs. Simply allowing a user to set the default inputs for a workflow did not qualify in
this regard.

Thirdly, JMS provides administrator users with the ability to manage the cluster from the
web interface. This includes configuring server and queue settings as well as adding additional
nodes to the configuration. Additional functionality is dependent on the underlying resource
manager.

Fourth, a major feature of JMS and one of the original reasons for developing it is its ability
to easily and quickly make tools and workflows available via external interfaces. The same code
used to generate the interface for a tool within JMS can be used to generate an interface for an
external web server.

Lastly, JMS was the only one of the systems tested that provided a comprehensive dash-
board. Although most systems provided users with some sort of job queue, JMS is the only sys-
tem that displays detailed information about the status of the underlying cluster.

A summarised comparison of JMS to other similar and freely available systems is provided
in Table 1. Because the aims of JMS do not necessarily align exactly with those of other systems,
it is difficult to compare features without seeming slightly biased. For example, in Table 1, JMS
is the only system to have cluster configuration features and a dashboard. This hails from the
fact that JMS is a combination of a cluster front-end and a workflow management system. A
system such as Galaxy is a focused workflow management system and, as such, one would not
expect it to have these features. Galaxy does, however, have more extensive workflow features.
Notably, it is able to convert job history into a workflow. This provides non-IT experts with an
extremely easy means of creating workflows and is something that sets Galaxy apart from
other systems. For the most part, shortcomings of JMS amount from the fact that it is a new
system. As such, it has only a small user base and library of tools and workflows. As the system
matures with time, these facets will be rectified. That said, one of the main goals of JMS is to be

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 17 / 25

https://jms.rubi.ru.ac.za/


a platform for developers to create and house new tools and workflows that will be made public
via external web servers. In this regard, JMS stands out from the rest.

As can be seen in Table 1, JMS has both advantages and disadvantages. The lack of a large
base of tools and workflows may put off end-users, but the incorporation of development tools
may attract developers. There is, however, no reason that JMS cannot be run alongside other
systems. In fact, one attractive option may be to run a WMS such as Galaxy alongside JMS on
the same cluster. Galaxy is established with many existing tools and workflows and a large user
base. However, jobs run on the cluster via Galaxy will still be picked by JMS and included in
the JMS job history. The JMS job history stores cluster usage details that are used to generate
reports and statistics that may be useful for purchasing and funding purposes. In addition,
while users who are more comfortable using Galaxy to run jobs can continue to use Galaxy,
developers can use JMS to build tools and workflows and make them public via external web
interfaces. In this way, JMS can be seen to complement existing systems.

2. Use Cases
Below we provide two structural bioinformatics pipelines as examples of how JMS is currently
being used within our group. However, JMS is not limited to running purely scientific work-
flows. An example currently under development is a submission pipeline for a database of nat-
ural compounds. Once it is public, users will be allowed to upload compounds to the database
via the JMS-managed workflow.

2.1 Protein-ligand docking. A pipeline for in silico docking experiments using Autodock4
[22] has been developed using the JMS workflow tool. The following is a description of how the
workflow was designed and how it could be implemented within JMS.

As previously described, workflow design incorporates custom script uploads. This particu-
lar workflow was designed based on Autodock4 scripts made freely available by Autodock
Tools (ADT). Virtual docking with Autodock4 is a multi-staged process consisting of 6 specific
steps (Fig 12); 1) Receptor preparation, 2) Ligand preparation, 3) Grid map parameterization,
4) Grid map generation, 5) Docking parameterization, and 6) Docking run. All of these steps,
bar step 6 are completed in preparation for docking, generating input and reference files.
Except for steps 1 and 2, each step must be executed sequentially, each being dependent of the

Table 1. Comparison of JMSwith similar tools in the HPC domain.

Features Galaxy Ergatis Taverna WImpiBLAST Yabi JMS

Job management Yes Yes Yes Yes Yes Yes

Workflow management Yes Yes Yes No Yes Yes

File upload/download/view Yes Yes Yes Yes Yes Yes

Development tools No No No No No Yes

Support for multiple resource managers Yes No Not applicable No Yes No

REST API Yes No Yes No Yes Yes

Input profiles No No No No No Yes

Batch jobs Yes No No No No Yes

Cluster configuration No No No No No Yes

Dashboard No No No No No Yes

Make tools public via external web interfaces No No No No No Yes

Job history to workflow Yes No No No No No

Existing user base and external testing Yes Yes Yes Yes Yes No

Library of existing tools and workflows Yes Yes Yes Yes Yes No

doi:10.1371/journal.pone.0134273.t001

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 18 / 25



successful completion of the preceding step. Given this logical flow, docking with Autodock4
lends itself towards complete automation, and the JMS workflow design tool and job scheduler
provides a suitable platform for which to design such a pipeline.

As indicated in Fig 12, stage 1 and 2, ligand and protein preparation respectively, are inde-
pendent of one another and as such, both steps are executed simultaneously. On execution the
user is prompted to upload PDB files of the protein receptor and ligand respectively. From this
initial file upload, the system is instructed to name all output files based on the names of these
PDB files. Once receptor and ligand preparation is completed successfully, the execution of
step 3 (Prepare GPF) is initiated. This step provides the user with an opportunity to specify
their desired docking simulation space, as defined by the gridbox in Autodock4, by prompting
the user for three parameters, viz. grid center coordinates, grid spacing (Å), and number of
points (npts). These values are written into a grid parameter file (receptor-ligand.gpf) and are
required as input for step 4 (Autogrid). Another parameter that can be specified at this stage of
the docking process, are the ligand atom types. These have been set to include all atom types,
for simplicity’s sake. On successful execution of Autogrid, several grid map files are generated
and are required as input for the final docking run in step 6. Prior to the actual docking run,
computational docking parameters must be specified. Again the user is prompted to upload
their specific parameters. Should the user have no parameter file of their own, a default param-
eter template stored on the system can be used. Once complete a docking parameter file (recep-
tor-ligand.dpf) is generated and passed as input to step 6. Should every stage prior to docking

Fig 12. Protein-ligand docking workflow. Schematic flow diagram, showing the logical flow of staged
processes in the JMSmolecular docking pipeline. Each stage is related to a step required in preparation of
small molecule docking with Autodock4. Indicated are each stage as well as the ADT scripts used to execute
each respective process. The process requires the protein receptor and ligand of interest in PDB file format,
and on completion returns a docking log file containing all docking results.

doi:10.1371/journal.pone.0134273.g012

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 19 / 25



in the workflow execute successfully, the docking run will be initiated. Molecular docking is a
time consuming computational task, and depending on the user specified docking parameters,
could take several hours. Progress of the docking can be followed through the Job History page,
allowing for the monitoring of every stage in the process. Once complete, the user is granted
access to a central working directory, where all generated and uploaded files can be viewed,
including the all-important docking log file (receptor-ligand.dlg).

This case-study demonstrates how a potential user can execute, accurate and timeous dock-
ing experiments, using JMS as a platform from which to run the experiment as a single pipe-
line. User input is kept to a minimum only requiring the upload of two PDB files and several
elementary parameters. By using JMS, the docking process is hugely simplified and, given
access to a cluster with a large number cores, docking run times can be greatly reduced, making
the JMS Autodock4 molecular docking pipeline not only simple to use, but also very efficient.

2.2 Molecular dynamics. JMS is used to house a pipeline that utilizes GROMACS 4.5.5
software [23] to perform molecular dynamics (MD) on a protein-ligand complex or apo (pro-
tein only) structure (Fig 13). This pipeline can be used in conjunction with the docking pipeline
described above or for protein-ligand complexes prepared using other docking programs. The
complex is split into separate coordinate files. All line entries in the protein-ligand complex file
starting with the word “ATOM” and “HETAM” are transferred into separate protein and
ligand pdb files respectively by a python script (Ligand_separator.py) This is necessary as the
ligands atoms have to be parameterized using an external tool—ACPYPE [24,25]—for

Fig 13. Molecular dynamics workflow.GROMACS is used to perform molecular dynamics simulations on the results from protein-ligand docking.

doi:10.1371/journal.pone.0134273.g013

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 20 / 25



GROMACS to recognize them. Corresponding topology files for both the protein and ligand
which represent a static description of all atoms and interactions in a system are generated
using the GROMACS utility named pdb2gmx (for proteins) and ACPYPE for the ligand. In the
case of the protein, the user is prompted to choose a force field (http://md.chem.rug.nl/
cgmartini/index.php/blog/265-comparingforcefields) and water model suitable for the system.
Using a Perl script, the protein generated coordinate file (.gro) file is combined with that of the
ligand. In case of an apo structure, the system bypasses the ACPYPE tool and is taken straight
into the pdb2gmx tool. The resulting coordinate file is then solvated in a box (type and size
specified by user depending on the size of the protein) using the editconf and genbox tools.
From this point, the topology file (.top) is automatically updated to cater for all added mole-
cules in the system. The system is then neutralized by adding counter ions (Na+ or Cl-) via the
genion tool depending on the net charge. The system energy is subsequently minimized up to a
user defined tolerance (emtol) to avoid steric clashes and failure “blowing up”. Parameters
such as the type of integrator, maximum stem size (emstep) and number of steps (nsteps) can
always be changed depending on user preferences within the em.mdp template using the
grompp andmdrun tools. Other parameters that describe how to find the neighbours of each
atom and how to calculate interactions can also be changed depending on the user preference.
Using the canonical (NVT) and isothermal-isobaric (NPT) ensembles as per predefined values
by the user within the nvt and npt parameter files, the system is equilibrated using the most
appropriate algorithms. The equilibrated system is then subjected to a production run whose
time length is defined by user within the md.mdp parameter file. The final MD trajectory is
analyzed using GROMACS in-house tools that have been automated via Perl and Python
scripts. These include RMSD (root mean square deviation), RMSF (root mean square fluctua-
tions), rG (radius of gyration) and protein-ligand interaction fingerprint using LIGPLOT+
(ref). Users may also develop additional tools to analyse the data and incorporate them into the
pipeline.

GROMACS usually requires that users input parameters directly into the parameter files
and then feed these files to the command-line utilities as input. JMS allows tools to be added
that automatically generate these parameter files based on user input. It then generates a web-
based input page for these tools. By incorporating these tools at the beginning of the MD pipe-
line, users can perform molecular dynamics simulations without ever needing to deal with the
complex parameter files.

2.3 SANCDB Submission Pipeline. The South African Natural Compounds Database
(SANDB) [26] is a publically available database of natural compounds that have been isolated
within South Africa. The database is a populated by manually searching through literature to
find compounds. This process is labour intensive and, as such, compounds can easily be
missed. To ease the burden, a submission pipeline has been developed and incorporated into
the SANCDB web interface (https://sancdb.rubi.ru.ac.za). The purpose of the pipeline is to gen-
erate a user friendly interface that allows researchers to upload their own natural compounds
to the database (Fig 14). Researchers are able to input details such as the compound formula,
SMILES [27], publications in which the compound has been isolated, compound names,
organisms from which the compound has been isolated, identifiers of the compound in other
database such as ZINC [28], DrugBank [29], and ChEMBL [30], classifications of the com-
pound, and the known uses for the compound. The interface to handle all this input is dynami-
cally generated by JMS and is the first stage in the workflow.

The next stage in the submission pipeline is the ‘Format Conversion’ stage. During this
stage, the SMILES that were input by the user are used to generate compound files in 3 addi-
tional formats, namely, PDB, SDF, and MOL2, using Open Babel [31]. A number of additional
calculations and functions are performed during this stage including calculating properties

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 21 / 25

http://md.chem.rug.nl/cgmartini/index.php/blog/265-�comparingforcefields
http://md.chem.rug.nl/cgmartini/index.php/blog/265-�comparingforcefields
https://sancdb.rubi.ru.ac.za/


such as the atomic mass of the compound and generating a 2D image of the compound to be
displayed on the website.

The final stage of the pipeline is the ‘Minimization’ stage. In this stage, the PDB file gener-
ated during the previous stage is minimized using GAMESS [32]. Both the original and mini-
mized version of the compound are made available in the SANCDB website.

Once the submitted compound has been through all the required stages, it is primed and
ready to be manually checked by a database curator. If everything worked, the compound can
be made publically available. All the steps in this process are run via JMS and as such, a com-
plete job history is kept.

Future Work & Conclusion
JMS provides three distinct categories of functionality. Firstly, it provides a web interface to an
HPC resource manager with the aim of making the resource manager much easier to work

Fig 14. The SANCDB submission pipeline generated interface. The SANCDB interface, including modals and select lists, is generated using the same
methods used to generate interfaces within JMS. All submissions are managed via JMS and a detailed job history of the process is stored within the JMS
database.

doi:10.1371/journal.pone.0134273.g014

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 22 / 25



with. In order to achieve this, it employs the use of resource manager plugins which interface
with the underlying resource manager to provide job and cluster monitoring and management
functionality.

Secondly, JMS provides a fully functional workflow management system, which integrates
directly with the resource manager. The WMS provides advanced scheduling and dependency
abilities, input profiles, batch jobs, and, we believe, a far easier way of building and managing
tools than existing systems provide. Workflows can then be created via an intuitive drag and
drop interface, similar to what is used in Galaxy.

Lastly, JMS allows workflows to be integrated into other, external websites via its RESTful
web API. This functionality is demonstrated via the use of JMS to provide a submission pipe-
line for SANCDB. Using JMS, researchers are able to create workflows via the click-based web
interface and then easily integrate these workflows into their own sites. This functionality sub-
stantially reduces the effort of creating web interfaces for computational pipelines. Further, we
believe that JMS will facilitate the sharing of information and computational techniques within
H3Africa collaborations and help with the setting up and managing of cluster related infra-
structure. The inclusion of resource manager administration features means that JMS is useful
to both casual users, who simply want to run jobs over their cluster, and system administrators,
who can use it for monitoring and managing the cluster.

JMS is still under active development, and there are a number of features that will soon be
introduced. Currently, workflows can only be made up of command-line utilities and custom
scripts. A feature will soon be added that allows a workflow to be made up of other workflows
in addition to script and command-line utilities. This will reduce duplication of effort when
creating large workflows that require results that can be obtained from existing workflows.

Currently, when workflows are exported, a compressed file is created containing the
required custom scripts and details needed to recreate the workflow on another system
(excluding tools that need to be installed on the system). This file can then be manually
imported into another JMS instance via the workflow page. In future, users will be able to
transfer workflows directly from one instance of JMS to another. The only input that will be
required is the URI-based address of the system to transfer to as well as the user on that system
who will gain ownership of the workflow. That user will then receive a notification that a work-
flow has been sent to them and will simply need to accept the transfer. We hope that this fea-
ture will help facilitate collaboration between groups. In line with this, we will also develop a
repository of tools and workflows, similar to what is found in Galaxy. Users will be able to
upload their tools and workflows to the repository, where they can be made available for down-
load by any connected JMS instances.

Long-term plans for JMS will, for the most part, be focused on adding and improving
administrative features. Currently, JMS must be installed on the master node of a cluster. In
future, JMS will be extended to allow it to manage multiple clusters in remote locations. In line
with this, we will also provide advanced scheduling functionality that will let users schedule
workflows across multiple clusters. This will allow JMS to operate over and manage whole
grids of clusters.

In addition to this, we will develop JMS apps for smartphones that will allow normal users
to monitor and submit jobs from their mobile devices as well as allow admin users to receive
status notifications and requests for resources. Although the JMS interface has been design to
be responsive–it adjusts its layout according to the size of the screen it is being viewed on—
mobile apps have the added benefit of allowing notifications to be sent to the user even if that
user is not currently using the app. This will allow administrators to instantly respond to notifi-
cations and/or requests for additional resources. The mobile apps will also keep administrators

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 23 / 25



up-to-date on the current state of the cluster and notify them when, for example, a node goes
offline.

Lastly, because we store snapshots of jobs at each stage, a single job can end up taking a lot
of storage space. In future, JMS will allow admin users to set up an automatic backup and
archiving solution, whereby old jobs are compressed and copied to an external location.

In conclusion, JMS aims to provide a user-friendly interface that allows both novice and
advanced users to benefit from the advantages of high performance computing. The system
has been open-sourced and is available on GitHub at https://github.com/RUBi-ZA/JMS. JMS
has been designed to be extendible and, as such, we encourage any and all community contri-
butions to the project.

Acknowledgments
We would like to thank Professor Philip Machanick and Rowan Hatherley for their valuable
time and advice.

Author Contributions
Conceived and designed the experiments: DKB OTB. Wrote the paper: DKB DLP TMMOTB.
Developed the software: DKB. Constructed the pipelines for case studies: DKB DLP TMM.

References
1. Adaptive Computing Enterprises Inc. Torque [Internet]. 2015. Available: http://www.

adaptivecomputing.com/products/open-source/torque/

2. Jette M, Grondona M. SLURM: Simple Linux Utility for Resource Management. ClusterWorld Confer-
ence and Expo CWCE. 2003. pp. 44–60. doi: 10.1007/10968987

3. Jackson D, Snell Q, Clement M. Core Algorithms of the Maui Scheduler. Job Sched Strateg Parallel
Process. 2001; 2221: 87–102. doi: 10.1007/3-540-45540-X_6

4. Misra G, Agrawal S, Kurkure N, Pawar S, Mathur K. CHReME: AWeb Based Application Execution
Tool for using HPC Resources. International Conference on High Performance Computing.
2011. pp. 12–14.

5. Adaptive Computing Enterprises Inc. Adaptive Computing products [Internet]. 2015. Available: http://
www.adaptivecomputing.com/products/hpc-products/

6. Hunter AA, Macgregor AB, Szabo TO, Wellington CA, Bellgard MI. Yabi: An online research environ-
ment for grid, high performance and cloud computing. Source Code for Biology and Medicine. 2012. p.
1. doi: 10.1186/1751-0473-7-1 PMID: 22333270

7. Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehensive approach for supporting accessible, repro-
ducible, and transparent computational research in the life sciences. Genome Biol. 2010; 11: R86. doi:
10.1186/gb-2010-11-8-r86 PMID: 20738864

8. Orvis J, Crabtree J, Galens K, Gussman A, Inman JM, Lee E, et al. Ergatis: A web interface and scal-
able software system for bioinformatics workflows. Bioinformatics. 2010; 26: 1488–1492. doi: 10.1093/
bioinformatics/btq167 PMID: 20413634

9. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, et al. The Taverna workflow
suite: designing and executing workflows of Web Services on the desktop, web or in the cloud. Nucleic
Acids Res. 2013;41. doi: 10.1093/nar/gkt328

10. Bhagat J, Tanoh F, Nzuobontane E, Laurent T, Orlowski J, RoosM, et al. BioCatalogue: a universal cat-
alogue of web services for the life sciences. Nucleic Acids Res. 2010; 38: W689–94. doi: 10.1093/nar/
gkq394 PMID: 20484378

11. Tilkov S. A Brief Introduction to REST. InfoQ Explores. 2010: 127.

12. The H3Africa Consortium. Research capacity. Enabling the genomic revolution in Africa. Science.
2014; 344: 1346–8. doi: 10.1126/science.1251546 PMID: 24948725

13. Foundation DS. Django [Internet]. 2015. Available: https://www.djangoproject.com/

14. Univa Corporation. Univa Grid Engine [Internet]. 2015. Available: http://www.univa.com/

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 24 / 25

https://github.com/RUBi-ZA/JMS
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
http://dx.doi.org/10.1007/10968987
http://dx.doi.org/10.1007/3-540-45540-X_6
http://www.adaptivecomputing.com/products/hpc-products/
http://www.adaptivecomputing.com/products/hpc-products/
http://dx.doi.org/10.1186/1751-0473-7-1
http://www.ncbi.nlm.nih.gov/pubmed/22333270
http://dx.doi.org/10.1186/gb-2010-11-8-r86
http://www.ncbi.nlm.nih.gov/pubmed/20738864
http://dx.doi.org/10.1093/bioinformatics/btq167
http://dx.doi.org/10.1093/bioinformatics/btq167
http://www.ncbi.nlm.nih.gov/pubmed/20413634
http://dx.doi.org/10.1093/nar/gkt328
http://dx.doi.org/10.1093/nar/gkq394
http://dx.doi.org/10.1093/nar/gkq394
http://www.ncbi.nlm.nih.gov/pubmed/20484378
http://dx.doi.org/10.1126/science.1251546
http://www.ncbi.nlm.nih.gov/pubmed/24948725
https://www.djangoproject.com/
http://www.univa.com/


15. GentzschW. Sun Grid Engine: Towards creating a compute power grid. Proceedings- 1st IEEE/ACM
International Symposium on Cluster Computing and the Grid, CCGrid 2001. 2001. pp. 35–36. doi: 10.
1109/CCGRID.2001.923173

16. Sharma P, Mantri SS. WImpiBLAST: Web interface for mpiBLAST to help biologists perform large-
scale annotation using high performance computing. PLoS One. 2014; 9. doi: 10.1371/journal.pone.
0101144

17. Knockout.js [Internet]. 2015. Available: http://knockoutjs.com/

18. Bootstrap [Internet]. 2015. Available: http://getbootstrap.com/

19. Preston-Werner T. Semantic Versioning 2.0.0 [Internet]. Available: http://semver.org/

20. Ansible. Ansible is Simple IT Automation [Internet]. 2015. Available: http://www.ansible.com/

21. Kinder K. Event-driven programming with Twisted and Python. Linux J. 2005; 2005: 6.

22. Morris GM, Ruth H, LindstromW, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDock-
Tools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009; 30: 2785–2791.
doi: 10.1002/jcc.21256 PMID: 19399780

23. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, et al. GROMACS 4.5: A high-through-
put and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013; 29: 845–854.
doi: 10.1093/bioinformatics/btt055 PMID: 23407358

24. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general Amber
force field. J Comput Chem. 2004; 25: 1157–1174. doi: 10.1002/jcc.20035 PMID: 15116359

25. Wang J, WangW, Kollman PA, Case DA. Automatic atom type and bond type perception in molecular
mechanical calculations. J Mol Graph Model. 2006; 25: 247–260. doi: 10.1016/j.jmgm.2005.12.005
PMID: 16458552

26. Hatherley R, Brown DK, Musyoka TM, Penkler DL, Faya N, Lobb KA, et al. SANCDB: A South African
Natural Compound Database. J Cheminform. 2015; 7:29 doi: 10.1186/s13321-015-0080-8 PMID:
26097510

27. Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology
and encoding rules. J Chem Inf Comput Sci. 1988; 28: 31–36. doi: 10.1021/ci00057a005

28. Irwin JJ, Shoichet BK. ZINC—A free database of commercially available compounds for virtual screen-
ing. J Chem Inf Model. 2005; 45: 177–182. doi: 10.1021/ci049714+ PMID: 15667143

29. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, et al. DrugBank: A knowledgebase for
drugs, drug actions and drug targets. Nucleic Acids Res. 2008; 36. doi: 10.1093/nar/gkm958

30. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, et al. The ChEMBL bioactivity data-
base: An update. Nucleic Acids Res. 2014; 42. doi: 10.1093/nar/gkt1031

31. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An Open
chemical toolbox. J Cheminform. 2011; 3. doi: 10.1186/1758-2946-3-33

32. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, et al. General atomic and
molecular electronic structure system. J Comput Chem. 1993; 14: 1347–1363. doi: 10.1002/jcc.
540141112

Job Management System (JMS)

PLOS ONE | DOI:10.1371/journal.pone.0134273 August 17, 2015 25 / 25

http://dx.doi.org/10.1109/CCGRID.2001.923173
http://dx.doi.org/10.1109/CCGRID.2001.923173
http://dx.doi.org/10.1371/journal.pone.0101144
http://dx.doi.org/10.1371/journal.pone.0101144
http://knockoutjs.com/
http://getbootstrap.com/
http://semver.org/
http://www.ansible.com/
http://dx.doi.org/10.1002/jcc.21256
http://www.ncbi.nlm.nih.gov/pubmed/19399780
http://dx.doi.org/10.1093/bioinformatics/btt055
http://www.ncbi.nlm.nih.gov/pubmed/23407358
http://dx.doi.org/10.1002/jcc.20035
http://www.ncbi.nlm.nih.gov/pubmed/15116359
http://dx.doi.org/10.1016/j.jmgm.2005.12.005
http://www.ncbi.nlm.nih.gov/pubmed/16458552
http://dx.doi.org/10.1186/s13321-015-0080-8
http://www.ncbi.nlm.nih.gov/pubmed/26097510
http://dx.doi.org/10.1021/ci00057a005
http://dx.doi.org/10.1021/ci049714+
http://www.ncbi.nlm.nih.gov/pubmed/15667143
http://dx.doi.org/10.1093/nar/gkm958
http://dx.doi.org/10.1093/nar/gkt1031
http://dx.doi.org/10.1186/1758-2946-3-33
http://dx.doi.org/10.1002/jcc.540141112
http://dx.doi.org/10.1002/jcc.540141112

