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Abstract: Understanding molecular mechanisms underlying the complexity of allosteric regulation
in proteins has attracted considerable attention in drug discovery due to the benefits and versatility
of allosteric modulators in providing desirable selectivity against protein targets while minimizing
toxicity and other side effects. The proliferation of novel computational approaches for predicting
ligand–protein interactions and binding using dynamic and network-centric perspectives has led to
new insights into allosteric mechanisms and facilitated computer-based discovery of allosteric drugs.
Although no absolute method of experimental and in silico allosteric drug/site discovery exists, current
methods are still being improved. As such, the critical analysis and integration of established approaches
into robust, reproducible, and customizable computational pipelines with experimental feedback could
make allosteric drug discovery more efficient and reliable. In this article, we review computational
approaches for allosteric drug discovery and discuss how these tools can be utilized to develop consensus
workflows for in silico identification of allosteric sites and modulators with some applications to pathogen
resistance and precision medicine. The emerging realization that allosteric modulators can exploit distinct
regulatory mechanisms and can provide access to targeted modulation of protein activities could open
opportunities for probing biological processes and in silico design of drug combinations with improved
therapeutic indices and a broad range of activities.

Keywords: Allostery; allosteric modulators; network analysis; MD-TASK; drug resistance;
precision medicine

1. Introduction

Allosteric regulation is often a mechanism of choice for proteins and biomolecular assemblies to
operate in complex signalling cascades and to modulate their activity levels, adapting to binding partners
in the cellular environment during signal transduction, catalysis, and gene regulation [1–5]. The advances
in X-ray crystallography, Nuclear Magnetic Resonance (NMR), and biophysical techniques have enabled
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numerous detailed investigations of large protein systems and conformational dynamic processes at atomic
resolution [6–19]. These developments have facilitated the integration of computational and experimental
studies of allosteric regulation, eventually leading to new conceptual outlooks and attempts to develop
a unified theory of this allosteric phenomenon. The thermodynamics-based conformational selection
model of allosteric regulation has been particularly fruitful in explaining a wide range of experiments by
assuming that a statistical ensemble of preexisting conformational states and communication pathways
is inherent to any protein system and can be modulated through allosteric ligand perturbations [20–26].
While great leaps have been made in the field of molecular modelling, NMR spectroscopy, and X-ray
crystallography, it should be noted that no single method can provide allostery information for all cases
due to the complexity and incomplete understanding of allosteric phenomena.

Understanding molecular mechanisms of allosteric regulation in proteins has attracted considerable
attention in both academia and industry owing to the importance of discovering allosteric modulators of
therapeutically important targets [27]. These efforts are motivated by fundamental differences in structural
and evolutionary diversity between active and allosteric sites even among structurally similar proteins of
the same family. While active sites for structurally related proteins and protein families are often highly
conserved and present a formidable challenge for design of selective modulators, allosteric binding is
typically more dynamic and structurally and evolutionarily diverse, thereby often alleviating conceptual
difficulties in the design of target-specific therapies and addressing lingering problems of toxicity and side
effects [28]. Another important incentive for the development of allosteric drugs is that, while traditional
orthosteric drugs usually inhibit protein activity, allosteric modulators may not only inhibit but also
increase protein activity (allosteric activators) [29]. In the last decade, drug discovery has been shifting its
focus toward targeting allosteric sites in order to improve compound selectivity [28–33]. Allosteric drugs
also feature distinct physicochemical properties, adding further freedom for discovery of novel active
compounds, and can often be combined with orthosteric drugs into synergistic drug cocktails to modulate
and improve enzyme activities, specificity, and pharmacological profiles.

While orthostery-based therapies have enhanced the quality of life for patients, they have brought
forth many daunting challenges for which allostery may provide new solutions. Drug discovery against
more diverse protein targets can result in less toxic and more specific therapies. The incorporation
of dynamic and network analysis tools has proven their effectiveness in drug discovery studies of
several target proteins [32–35] and offer a promising direction for the analysis of large datasets [36].
With the maturation of open-source projects, the availability of cheaper computation, and large datasets,
in silico simulations are a very attractive venture for early-stage drug discovery as they offer cost-effective
drug development. The integration of such approaches into robust, reproducible, and customizable
workflows should make in silico allosteric drug discovery more efficient and reliable. In this review article,
we discuss how the integration of state-of-the-art structural, dynamic, and network-based approaches
for simulation of ligand–protein binding can provide a comprehensive methodological framework for
advancing computer-aided discovery of allosteric sites and allosteric modulators of protein functions
and mechanisms.

2. Part I: Overview of Allostery and Allosteric Drugs

2.1. What Is Allostery?

Allostery is generally defined as a reversible functional and conformational modulation at one site
resulting from a remote perturbation in a protein [27,37,38]. These remote events can be instantiated from
both covalent (residue mutations and chemical reactions) and non-covalent (intermolecular interactions)
events and are well-summarized by Nussinov and Tsai [27]. The phenomenon is also extended to include
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entropic changes, which may prevail even when no conformational change may be apparent [39–41].
Allostery-driven conformational changes are not expressed as two discrete conformational transitions
but rather exist as an equilibrium comprising a population of various conformations [42]. More generally,
allostery is an inherent property of biomacromolecules [43] and its dysfunction is linked to the cause of
several diseases [27]. Two examples of inherent allosteric mechanisms include the protein binding by
a hormone to drive conformational changes that affect protein–protein interactions in signalling cascades
and small molecules regulating catalytic activity by binding at loci far from an active site [44].

2.2. Understanding Allosteric Mechanisms Using Existing Approaches

Allosteric effects are not easily detectable by any single method as they can take many forms,
and a diverse pool of conformational samples is often needed to expose these rare events [41,45–47].
Current understanding of the details of allosteric mechanisms is still fragmentary [48]. However,
the recent experimental breakthroughs in NMR technologies have enabled structural studies of large
protein systems and conformational dynamic processes at atomic resolution, providing unique insights
into allosteric mechanisms [12,14,15,17,18]. While studies of allosteric regulation often emphasize
thermodynamic aspects of the mechanism and incorporate a population-shift conformational selection
paradigm, the critical role of conformational dynamics delineated in NMR studies led to the development
of the “dynamics-driven” framework of allosteric phenomenon. In dynamics-driven allostery, effector
ligands can induce allosteric effects through global redistribution of protein fluctuations and can propagate
signals through dynamic modulation of functional motions even in the absence of visible structural
changes [5,13,49–52]. Recent time-resolved infrared spectroscopy experiments have indicated that allosteric
transitions occur on multiple timescales. A time-dependent view of allosteric communication revealed
that allostery can be manifested by hierarchical propagation of structural and dynamical changes,
suggesting a high degree of conformational heterogeneity of the ensemble of communication routes
in proteins [53,54]. Relaxation dispersion NMR methods have also enabled the detection of rapid
conformational exchanges between ground and excited states occurring on the µs–ms timescale that
facilitated characterization of hidden excited states that play a significant role in dynamic modulation
of protein function and allosteric mechanisms [14,15]. Structural identification and characterization of
lowly populated states by high-pressure NMR can allow for detection of reversible transitions under
thermodynamic equilibrium conditions that are functionally relevant for allosteric mechanisms [55,56].
Pressure-dependent chemical shifts may also measure redistributions in conformational entropy and
specify dynamic allosteric mechanisms, offering an exciting experimental platform for design of allosteric
modulators specifically targeting lowly populated functional states [55–57].

Allosteric interactions and communications can be conveniently described and characterized by
dynamic networks of interactions between components of biological systems. The organization and
evolution of dynamic residue interaction networks in proteins allows for formation of ensembles of
pathways that transmit signals by propagating conformational fluctuations and functional motions
between distant sites. Recent years have witnessed the development of various approaches that investigate
NMR chemical-shift perturbations to identify allosteric networks in proteins [58–63].

The ensembles of allosteric communications and protein residues involved in signal transmission
via population-shift or dynamics-based allostery can be experimentally examined by NMR
spectroscopy [64–66]. NMR chemical shift responses to bound ligands are commonly employed as
diagnostic tools for identifying coupled networks within allosteric proteins that could quantify potential
communication pathways [14,50,67].

NMR chemical exchange saturation transfer (CEST) experiments [68–70] can identify invisible
hidden states and characterize slow-to-intermediate conformational exchanges. NMR chemical-shift
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covariance (CHESCA) and projection (CHESPA) analyzes can identify residue interaction networks that
show correlated changes in chemical shifts due to allosteric perturbations caused by ligand binding or
mutations [71–73]. NMR chemical-shift perturbations have also been combined with Markov modelling
and network analysis to reveal the dynamic flow of communication between allosteric communities in
proteins [74].

There is increasing evidence that dynamic allostery may be a common feature in many protein
interactions, and as a result, allosteric mechanisms are no longer viewed as being mediated solely through
structural transitions that select specific stable conformational states.

Even though NMR technologies opened the doors to us to greatly understand the mechanisms of
allostery, over 80% of the structures available from the Protein Data Bank (PDB) comprise macromolecules
solved by X-ray crystallography [75]. These are a representation of the most frequent conformations
adopted by proteins from their respective pools of conformation ensembles [76]. As allosteric sites
are rarely observed in crystallographic structures, a large amount of conformational sampling may be
needed to uncover such high-energy states. For instance, cryptic (or hidden) allosteric sites sporadically
appear during conformational transitions of a protein in the presence of a bound ligand. They are
a recently discovered form of allostery whereby ligands can bind to pockets that are not present in
crystal structures [77]. These “hidden” allosteric sites are essentially invisible in crystal structures, apart
from some chanceful detection due to the stabilization of the rarer, higher-energy conformation by
certain compounds [78]. Fortunately, an abundance of computational tools have been designed over
the years to examine allosteric mechanisms in protein systems [36]. In silico conformation sampling
techniques allow us to unveil such rarely observed protein conformations [78] by simulating protein motion,
thus facilitating the discovery of potentially druggable sites [79]. Exhaustive sampling is impossible,
and highly precise quantum mechanics (QM) simulations are limited to small systems or portions of larger
systems. Coarse-grained molecular dynamics (MD), markov state models (MSMs), and elastic network
models (ENM) offer speed improvements by reducing complexity of all-atom protein representation while
maintaining topological and network integrity of protein systems that drive allosteric mechanisms and
global regulatory functions. The explored approaches have included normal mode analysis (NMA) [80–83],
MD [84], and machine learning [85]. Brown and coworkers successfully coupled full-atom MD simulations
to dynamic residue network (DRN) analysis to study allosteric effects in disease-causing variants [86].
These computational approaches will be further discussed in the second part of this review article.

2.3. Understanding the Allosteric Effects of Disease and Drug-Resistant/Sensitive Mutations—Precision Medicine

Human diseases and traits have been associated with single nucleotide polymorphisms (SNPs)
through the use of genome-wide association studies (GWAS) [87,88]. There is even considerable
genetic variation between just two random individuals, where 10,000 non-synonymous single nucleotide
polymorphisms (nsSNPs) were found to exist between their exomes [89]. These mutations have the
potential to alter distal functional sites of enzymes by means of allosteric signalling—where the dynamics
of the entire structure is transformed as a result of the mutation [90–92]. Fortunately, progress in
allosteric research has made it possible to determine allosteric molecular mechanisms in a myriad
of allosteric systems in much detail [93]. For example, network analysis is usually performed to
determine the pathways that connect the mutation and the active site and aids in the study of allosteric
communication [86,94,95]. A recent publication studied six validated non-synonymous single nucleotide
variations (nsSNVs) to identify underlying mechanisms responsible for CA-II deficiencies resulting in
the phenotype of osteopetrosis with renal tubular acidosis and cerebral calcification [96]. In this study,
Sanyanga et al. combined MD and DRN [97] analysis and showed that nsSNVs have indirect/allosteric
effects, providing greater insights into SNV mechanism of action. Hence, the study proposed taking steps
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towards the treatment of CA-II deficiencies. Further, the authors highlighted the importance of studying
missense mutation effects in proteins with combined approaches and, hence, in a broader sense, precision
medicine-related research. This computational approach is detailed in Subsection 3.3.5.

Precision medicine combines pharmacology and genomics to exploit genetic variation in the human
population in order to deliver innocuous but powerful drugs to certain groups of individuals. This
is based on the idea that an individual’s genetic makeup determines their reaction to a drug, good or
bad [88,98]. For instance, mutations can be linked to altered drug sensitivities in patients [99–101]. This
opens the door to personalized medicine, where knowledge of drug-resistant and drug-sensitive SNPs can
assist in the development of effective biomarkers [99] and allow treatments to be tailored to individual
patients [102,103]. Furthermore, understanding structural changes caused by nsSNPs would enable the
design of novel drugs to target these mutations and, thus, is key in advancing precision/personalized
medicine [104,105]. One example can be given from stroke and stroke-related medications. Clopidogrel
and Warfarin, antiplatelet/anticoagulant drugs, are widely used for primary and secondary prevention
of stroke. It has been shown that genetic polymorphisms resulting in reduced function of cytochrome
P450 2C19 (CYP2C19) were associated with increased cardiovascular risk and mortality in coronary artery
disease patients on clopidogrel treatment. A study of clopidogrel response in the Amish population
indicated that the CYP2C19*2 variant accounts for 12% of the variation in platelet aggregation after
clopidogrel treatment for 7 days [106]. A recent review identified that, among patients with ischemic
stroke and being treated with clopidogrel, carriers of CYP2C19 loss-of-function alleles (*2, *3, and *8) have
increased risk of recurrent stroke and composite vascular events compared to noncarriers [107]. Another
example can be taken from efavirenz, an antiretroviral medicine, metabolized by cytochrome P450 2B6
(CYP2B6), UDP-glucuronosyltransferase 2B7 (UGT2B7), and CYP2A6 [108]. In this study, the authors
investigated SNP associations with plasma drug levels in Zimbabwean HIV-positive patients and observed
elevated plasma levels of efavirenz, which may lead to toxicity in patients due to CYP2B6*6 and CYP2B6*18
mutations. In both cases, the molecular mechanism is not known. The integrated protocol suggested in
Part II would be a good starting point to elucidate the mechanism of the variations in drug sensitivity and
to understand the allosteric effects of the mutations.

Mutations have also been associated with drug resistance in numerous pathogenic diseases such
as influenza [109], tuberculosis [110], malaria [111], and HIV/AIDS [112]. A detailed understanding of
pathogenicity as well as drug-resistance mechanism(s) would be essential for designing novel therapies.
Sequencing the genome of pathogens can identify the drug-resistant and drug-sensitive mutations and
leads to a deeper understanding of the cognate molecular mechanisms. One example can be given from
a recent article by Sheik Amamuddy and colleagues [113]. The authors looked at eight Food and Drug
Administration (FDA)-approved drugs and the mutations of HIV protease due to drug usage. As shown
in Figure 1, the investigated mutations were interspersed within the protein (observed from collections
of variants) and were not limited to the orthosteric site. While not explicitly designed to extract out the
effects of specific allosteric mutations in the study, the method was able to expose underlying conserved
signals buried within noisy dynamic data generated from the combined effect of orthosteric and allosteric
mutations. The signals comprised a conserved and practically symmetrical lateral expansion coupled to
an inward contraction captured from an ensemble of simulations. This method can easily be adapted to
investigate allosteric events by designing an experiment-comprising allosteric loci, which in the case of HIV
protease, for instance, could be accessory DRMs (resistance mutations not in contact with the antiretroviral
drug) distal to the active site. Their approach combining MD, network analysis, and statistical calculations
indicated that, regardless of the drug used, these mutations induce a common allosteric behavior in
the protein in the presence of the drug, probably to dislodge the latter from the binding site. Hence,
understanding the allosteric behavior of the drug targets due to mutations and identifying allosteric sites
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as alternative drug targeting sites would help in the design of alternative modulatory molecules. Allosteric
modulators, as explained in the following section, would have many benefits over orthosteric drugs.

Figure 1. Three-dimensional mapping of variation positions for the 8 FDA-approved HIV protease
inhibitors (atazanavir (ATV), darunavir (DRV), fosamprenavir (FPV), indinavir (IDV), lopinavir (LPV),
nelfinavir (NFV), saquinavir (SQV), and tipranavir (TPV)) used to investigate the effects of drug resistance:
Coloured cartoon representations depict the fulcrum, elbow, flap, cantilever, and interface, while the
variation loci are shown as red spheres. Even though single positions are shown, some positions comprise
multiple residue variations, some of which are validated drug resistance mutations (DRMs) (as per the 2017
update [114]). Figure obtained from Reference [115].

2.4. Orthosteric versus Allosteric Drugs

Orthosteric and allosteric drugs are distinguished from each other by their molecular mechanism
of action. The former generally binds to the active site and is in competition with biological cofactors
or substrates. Alternatively, allosteric drugs and modulators can modify or obstruct the active site
when bound to an allosteric site. As allosteric binding sites are significantly less conserved compared to
orthosteric sites, the principal advantage of allosteric drugs lie in their higher specificities and thus lower
risks of toxic side effects [116–119]. In contrast, orthosteric site conservation allows an orthosteric drug
to bind not only to the intended protein but also to unintended homologous protein family members,
contributing to adverse side effects. Off-target toxicities are widespread amongst anticancer drugs in
clinical trials [120]. Allosteric sites are also highly enriched in hydrophobic residues, whereas orthosteric
sites are enriched with polar residues [43]. A study by Smith and colleagues hinted at the higher
rigidity and aromaticity of allosteric modulators [121], thus providing an additional criterion for selecting
modulators that are more likely to bind to an allosteric site. Allosteric modulators induce conformational
changes and distal effects on the orthosteric site residues [122]. Understanding the structural and molecular
mechanism of the induced effects is important for the rational design of allosteric modulators and
site identification.

Orthosteric drugs have been successfully used in therapy, for instance, to reduce viral loads in HIV
patients to undetectable levels [123]. Unfortunately, the selective pressures of drug treatment have brought
forth associated transmissible drug resistance mutations (DRMs), which render these same drugs less
effective over time, thus constraining future treatment strategies [124]. Some critically important examples
of drug resistance concerns include the emergence of extensively drug resistant tuberculosis [125], where
typical treatment options cease to work, and the recent surge of multidrug drug-resistant HIV across Africa,
America, and Asia [126]. The last report issued by the Centers for Disease Control and Prevention listed 18
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antibiotic resistant pathogens, including those resistant to many commonly prescribed antibiotics [127].
The discovery and use of novel allosteric drugs may therefore open the door for a wider array of future
therapies as their more diverse loci could alleviate selection pressures from the currently low-performing
orthosteric drugs.

Targeting allosteric sites of functional proteins in Mycobacterium tuberculosis (Mtb) has played a key
role in research towards alleviation of TB. The protein pyruvate kinase was observed to exhibit some
allosteric mechanism and deemed an attractive target of Mtb therapy [128]. Similarly, an allosteric inhibitor
was identified for the Mtb enzyme ornithine acetyltransferase [129] and yet another for the enzyme
tryptophan synthase [130]. Bacterial and viral infection agents can be targeted by looking at proteins
common to them. Rab II is a protein from the Rab family of GTPases and has been identified as important
in a number of disease-causing agents, including influenza A virus; pneumonia, caused by Chlamydia
pneumoniae; and Chlamydia trachomatis, which causes a number of sexually transmitted infections by
associating with other proteins to facilitate transport processes in the cell [131–133]. This protein has been
shown by Kumar et al. to possess allosteric-binding sites, and its allosteric inhibition would be an effective
remedy option towards eradication [134]. Another good example showcasing the relevance of allosteric
research in disease alleviation is the case of the American trypanosomiasis (Chagas disease), where pockets
with allosteric potential were identified and characterized in a cysteine protease (cruzain) in efforts to
inhibit the causative agent Trypanosoma cruzi [135].

2.5. FDA-Approved Allosteric Drugs

Protein allostery research has been ongoing for years, and our understanding of protein allosteric
modulation is strengthening [43]. Publicly available data concerning protein allosteric sites and their
modulators is steadily increasing—the AlloSteric Database (ASD) now holds over 1900 protein targets and
more than 82,000 allosteric modulators [136]. Despite continually growing investment in allosteric research,
only 19 of these modulators are approved drugs compared to the current total of more than 3700 approved
drugs [136,137], almost all of which bind to an orthosteric site [138]. This comparison exposes the difficulty
of allosteric drug discovery. The paucity of allosteric modulators most likely results from a mixture of
their reduced binding affinity, their relatively higher hydrophobicity compared to orthosteric ligands [139],
and their frequently adverse structure–activity relationships [30]. Furthermore, the discovery of initial
hit compounds is impeded by the difficulty in detecting allosteric binding sites as well as the shortage
of knowledge of allosteric interactions and their consequences for protein modulation [43]. To date, only
one approved allosteric drug has been discovered solely using in silico methods, namely enasidenib
(Table 1). Overall, there is a substantial need for the elucidation of protein–modulator interactions in
allosteric binding.
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Table 1. List of currently approved allosteric drugs [136] in alphabetical order.

Drug/Code Name Medical Condition Mechanism Enzyme Target Discovery Method 2D Structure

Carglumic Acid Acute hyper- ammonaemia Activator Carbamoyl phosphate synthetase 1 Experiments in rats, both in vivo and in vitro [140]

Cinacalcet Hyper- parathyroidism Activator G protein- coupled receptor Functional responses of cells regulated by calcium receptor
activity: PTH secretion by parathyroid cells, calcitonin secretion
by C-cells, and bone resorption by osteoclasts. [141]

Clonazepam Epilepsy Activator γ-amino- butyric acid (GABA) Perifused frog neuro- intermediate lobes [142]

Cobimetinib Melanoma Inhibitor MAPK1, MEK1 & MEK2 Structural insight—manipulation of previously known MEK
inhibitors’ structure. Ligand- binding affinity assays [143]

Cyclothiazide Hypertension Activator AMPA Receptor AMPA- and KA-induced [3H]NE release from slices of rat
hippocampus [144]

Drotaverine Irritable bowel syndrome Inhibitor L-type Ca2+ channel Saturation studies. Dissociation kinetics [145]

Enasidenib Acute myeloid leukemia Inhibitor IDH2 In silico: Binding free energy, conformational change [146]

Flurazepam Insomnia Activator GABA-A receptor Site-directed mutagenesis. Concentration-response analysis [147]
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Table 1. Cont.

Drug/Code Name Medical Condition Mechanism Enzyme Target Discovery Method 2D Structure

Ivermectin Parasite infestations Activator Alpha7 neuronal nicotinic acetylcholine
receptor

Mutagenesis. Cell line, culture, and recordings [148]

Ketazolam Anxiety disorder Activator GABA-A receptor Increase of GABA level in cat spinal cord and in the total brain of
mice and rats [149]

Lorazepam Anxiety disorder Activator α1-adrenergic receptor Transfection. Ligand-binding affinity assays [150]

Maraviroc HIV Inhibitor C-C chemokine receptor type 5 Displacement binding assays. Dissociation kinetics [151]

Niclosamide Neuropathic pain Inhibitor Group 1 metabotropic glutamate receptor Calcium mobilization assays. Cross-receptor selectivity
experiments. Computati- onal molecular modeling analysis.
NP-evoked mechanical hyperalgesia model in rats [152]
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Table 1. Cont.

Drug/Code Name Medical Condition Mechanism Enzyme Target Discovery Method 2D Structure

Piracetam Dementia, vertigo, cortical myoclonus,
dyslexia, and sickle cell anemia

Activator AMPA Receptor Enzyme crystallization. Crystal structure determination.
Structure analysis [153]

Rifapentine Tuberculosis Inhibitor DNA- dependent RNA polymerase Site-directed mutagenesis. In vitro transcription. RFP binding
assays [154]

Rilpivirine HIV Inhibitor HIV-1 reverse transcriptase X-ray crystallo- graphy. Molecular modeling. Optimizing lead
compounds [155]

Sirolimus Immuno- suppressive Inhibitor FK Binding Protein-12 Site-directed mutagenesis. FKBP12- Rapamycin (Sirolimus)
binding assays [156]

Ticagrelor Stroke; Acute coronary syndrome
undergoing percutaneous coronary
intervention

Inhibitor G protein- coupled receptor ATP analogue production. Platelet inhibition and patient outcome
(PLATO) trial [157]

Trametinib Melanoma Inhibitor MEK1 & MEK2 Enzymatic and cellular studies. Pharmacokinetic analysis [158]
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3. Part II: An Integrated In Silico Approach for Allosteric Drug Discovery

3.1. The Main Workflow

Central to this work, we propose an integration of in silico approaches that can be used for allosteric
drug discovery (Figures 2 and 3). The proposed workflow has been developed as a result of our research
over the last few years, as indicated below and in the sections that follow. The workflow diagram gives
a complete picture of all techniques, but in a particular case, only some of the approaches would actually
be used. Our holistic approach starts with the acquisition of a high-quality drug target and goes through
a series of approaches for allosteric site prediction before finally proceeding to the identification of allosteric
modulators. We emphasize that the structural reliability of the chosen target is of utmost importance for
the success of the subsequent steps. As done for most in silico allostery detection approaches, we start by
finding putative allosteric binding sites before zooming onto them to determine and characterize possible
binders by analyzing stabilities from conformational sampling processes. As many of the approaches and
methods are common between allosteric site and allosteric modulator identification, we will follow the
order given in Figure 2A while introducing them. Some of the approaches were shown to be in agreement
with each other (Figure 2B). These will be indicated where necessary.

Figure 2. (A) Our proposed integrated workflow for allosteric site identification, which starts with the
acquisition of a drug target and (B) different concepts and techniques from molecular simulation that can
provide correlating information to discover and characterize allosteric events in proteins.

Some examples of the use of the proposed workflow to investigate allosteric phenomena in proteins of
medical significance are as follows: (1) Perturbation response scanning (PRS) was combined with all-atom
MD and DRN to investigate the allosteric potential of remote residues to effect conformational changes [35]
and has been supplemented with docking to investigate the distal effects of ligand binding [29] in human
Hsp protein; (2) homology modelling, docking, MD, essential dynamics, and DRN were jointly used
to identify allosteric modulators of malarial Hsp, after which coarse-grained conformational sampling
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simulations coupled to residue network analysis showed corroborating results, obtained from a fraction
of the computation time required compared to the all-atom simulations [33]; and (3) allosteric effects
associated to alpha carbonic anhydrase SNVs were discovered by coupling all-atom MD to DRN—further
characterization was achieved using essential dynamics and binding free energy landscape analysis [96].
As can be observed from these examples, one has a better chance of discovering and characterizing
allosteric events by combining multiple techniques, among which simulating protein motion and coupling
to DRN appear to be very effective.

Figure 3. Our proposed integrated workflow for identifying allosteric modulators.

3.2. Allosteric Site and Modulator Prediction

3.3. Drug Target Acquisition

As a first step for in silico allosteric modulator identification, one requires a target protein.
Three-dimensional structures for the investigated target may already be available fully or in part from
the PDB [159]. In the absence of an experimental structure, a computational modelling approach, such as
homology modelling, can be used to model an entire protein. Further homology modelling may be useful
to insert non-synonymous residue variations using experimental structures as templates, but it can also be
used to impute missing ones from incomplete experimentally determined structures [86]. Over the years,
the Research Unit in Bioinformatics group developed detailed homology modelling approaches, and the
methodology is given in a number of group articles [32,33,35,160–162].

There is a long list of user-friendly web servers available for modelling protein 3D structures, some
examples of which include I-TASSER [163], ModWeb [164], Phyre2 [165], PRIMO [166], RaptorX [167],
Robetta [168], HHPred [169], and SWISS-MODEL [170]. MODELLER [171] can be used as a stand-alone
tool by the more technically inclined users or when more customised solutions are needed, such as loop
refinement or when large volumes of modelling jobs are to be calculated. As a last resort for target domains
with no detectable homologs, ab initio modelling may be an option [172,173]. However, compared to
the aforementioned target acquisition approaches (threading and homology modelling), the latter is
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accurate only for small proteins [174,175]. More recently, a command-line protein structure prediction tool
based on a recurrent neural network has been developed, showing promising accuracies and producing
models in a fraction of the time using only a position-specific scoring matrix and the target sequence
as inputs [176]. Finally, before the structure can be used in the subsequent steps, one should validate
the quality of the models via local and global metrics. ANOLEA [177], QMEAN [178], ProSA [179],
Verify3D [180], and ModFOLD [181] are a few examples used to determine local quality scores, while
z-DOPE [182], resolution, and QMEAN are a few examples of global metrics. Using the MODELLER tool,
a per-residue profile of the z-DOPE can also be obtained for pinpointing poorly modelled regions [183].
As no single evaluation criterion is perfect, one should investigate multiple metrics to ascertain the validity
of the model. As a general rule in homology modelling, (1) the template resolution should be as high as
possible, while the R-free and R-value should be minimal, as they are the residuals between experimental
diffraction data and the predicted crystallographic model, and (2) the environmental conditions should
closely match those that are to be experimented on [184], such as the presence of a co-crystallized ligand
and the receptor protonation states. Unfortunately the presence of certain molecular entities may require
some prior planning due to the incomplete transferability across certain force fields [185] for use in
downstream approaches (such as MD). Finally, given that differences in receptor conformation specify
different topologies and alter the ligand-accessible surfaces, it is clear that this plays a major role in
experimental designs aimed at discovering allosteric sites.

3.3.1. Mining Literature and Databases for Allostery Information

Before attempting to identify an allosteric site of a protein, it is good practice to determine whether the
literature already describes it from previous work. The AlloSteric Database (ASD), which hosts a collection
of known allosteric targets and their modulators, is a major source of relevant literature and annotations
pertaining to the concept of allostery [136]. The database has grown to become a central resource for
the storage, retrieval, and analysis of allosteric protein datasets [136,186,187]. It organizes information
about allosteric regulation by receptor target and modulator (activator, inhibitor, or regulator), and entries
incorporate additional annotations such as the associated interactions, sites, pathways, functions, and any
linked disorders [136]. A good example of the use of the ASD in allostery research can be drawn from
work done by Astl and Verkhivker [188]. Using information retrieved from the database, they combined
coarse-grained MD and residue interaction network to demonstrate the differential effects of allosteric
inhibitors and activators on the global dynamics and network organizations within protein systems,
comprising 300 diverse proteins and complexes. In the case of insufficient information characterizing
allostery within the chosen target protein, one can proceed to cavity-finding approaches for the discovery
and characterization of de novo allosteric sites.

3.3.2. Cavity-Finding Approaches

Pockets/cavities present in proteins might be functionally important and have been recognized as
conventional sites for ligand binding [189]. For those targets that are not well characterized for such
pockets, the identification of these sites is thus a starting point for potential allosteric-site prediction and
structure-based drug design, with the effects of ligand binding confirming allostery [190]. There is a wide
array of freely available cavity-finding tools, mostly in the form of web servers which use a variety of
approaches to provide potential starting points for the discovery allosteric sites. The methods employed
include, amongst others, the use of NMA, energy evaluations, machine learning, and MD simulations.
As features characteristic to allostery are not completely understood, no single predictive method can be
exhaustive and it is best to utilize a combination of approaches to increase the level of support for the
potential sites. Some of the most recent cavity-finding approaches are summarized in Table 2.

http://mdl.shsmu.edu.cn/ASD/
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3.3.3. Blind Docking

Small-molecule docking to a target protein can give us an indication as to whether and how strongly
a ligand might bind to a certain surface, but limiting the search space to a primary binding site (i.e., targeted
docking) can be oblivious to allosteric pockets. In blind docking (BD), the whole protein surface is scanned
for putative binding sites and is especially useful when one has not been determined a priori [191–193].
Several studies have used BD for allosteric site identification, for which we give some examples in this
section. Iorga and colleagues have used BD of three known allosteric modulators to reveal putative binding
sites from the acetylcholine-binding protein and in homology-modelled human nicotinic receptors [194].
Grant and coworkers identified potential allosteric pockets on the Ras protein catalytic domain via BD of
267 putative ligands from PubChem BioAssay database [195]. Pavlovicz and colleagues used BD to identify
negative allosteric sites on the numan α4β2 and α3β4 neuronal nicotinic acetylcholine receptors [196].
Jin and colleagues used BD with tyrosine phosphatase 1B to reveal a hydrophobic and less conserved
allosteric site in contrast to its negatively charged but highly conserved active site [197]. Based on this
study, an alternative drug-design strategy was proposed. Lastly, a study by Chen and colleagues employed
BD to explore a specific allosteric site for non-peptidic inhibitors located behind the catalytic triad of the
dengue virus-2 NS2B-NS3 protease [198].
Due to the increased search space, stochastic strategies are typically used to make the exploration of the
larger target surface computationally tractable [199]. One way to overcome this limitation is to divide the
search surface [200] and/or to increase the search exhaustiveness.

In their pioneering paper introducing BD using AutoDock, Hetényi and van der Spoel recommended
over 100 independent docking runs with flexible ligands [192], which would be analogous to the
exhaustiveness parameter in AutoDock Vina, for example. Further, in a comprehensive study evaluating
ten common docking programs [201–210], Wang and colleagues showed that these tools correctly predicted
the ligand poses even though the binding energies could not be estimated accurately [211]. As BD involves
a larger volume to scan, the docking process can be limited by efficiencies of the sampling algorithms and
complexity of the scoring functions [193]. A more accurate estimation of the ligand-binding energy was
achieved via quantum mechanical (QM) and semi-empirical QM-based rescoring schemes [212,213]. This
rescoring scheme was successfully applied to HIV-1 protease (with 22 ligands) [214], cyclin-dependent
kinase 2 (with 31 ligands) [215], and casein kinase 2 (with 23 halogenated ligands) [216].

Key regions important for the stability of subtilisin (an industrially important serine protease) were
determined using PRS, in which the covariance matrix was obtained from equilibrated portions of MD
trajectories [217]. PRS was, for the first time, applied to large, flexible proteins by Penkler et al. (2017),
determining key residues involved in allosteric control in the 70 kDa heat shock protein (Hsp70) [218]
using an implementation of the PRS algorithm available from the MD-TASK package [97]. More recently,
the same approach was coupled with DRN to determine potential effector residue loci promoting
allosterically driven conformation interconversions in human Hsp90 [35] before targeting the same sites
(at the C-terminus) by high-throughput virtual screening for druggable pockets [29]. After Penkler’s work
showcased the application of PRS to highly dynamic proteins, Amusengeri and Tastan Bishop employed
a similar workflow in their work in Hsp72 and Hsc70 to search for allosteric modulators [32] from the
South African natural compounds database (SANCDB) [219]. While linearly impacting a protein allows us
to promptly assess the likelihood of transitioning from a static starting state to a target state, measuring
and summarising topological changes from conformational sampling processes opens up a new avenue
for the detection and characterization of allosteric effects, which we describe in the next section focussed
on the application network analysis in assessing protein dynamics.
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Table 2. Web servers for the prediction of allosteric sites.

Web Server and URL Functionality Input Output

AlloDriver [220] Identifies potential driver mutations implicated in cancer and
maps them to binding sites.

A list of annotated cancer-related mutations. Returns a list of ranked driver mutations annotated by residue loci,
scores and binding site (allosteric and orthosteric), amongst many
other features.

AlloFinder [221] AlloFinder identifies possible allosteric sites via dynamic
perturbations and algorithms present in Allosite. It also screens
for possible binders against the identified sites. Protein-ligand
complexes are then scored using Alloscore algorithms.

The receptor PDB file and a ligand library. Displays protein-ligand complex for docked ligands within the
putative allosteric site. Further, a table reports the volume of
the predicted allosteric site, the perturbation score, the drug-like
score, the allosteric site score and the AlloScore score. Additionally,
the top 100 potential allosteric ligands are ranked according to their
Alloscore. Finally, the predicted site and the predicted ligands are
mapped using allosterome data.

AlloPred [82] Uses NMA to identify potential allosteric pockets. The receptor PDB file and active site
residues.

Displays protein structure and a list of pockets with Allopred and
Fpocket rankings as well as NMA effect per residue.

Alloscore [222] Uses a linear combination of non-bonded interaction terms,
a deformation term and geometric features to predict the binding
affinities of protein-ligand interactions.

The receptor PDB file and a pre-docked
ligand MOL2 file.

File with potential ligands and their allosteric interactions
(hydrogen bonds, van der Waals, hydrophobic interactions and
Alloscore values).

AlloSigMA [223] Calculates energetics of allosteric signalling resulting from ligand
binding, mutations or a combination of the two.

The receptor PDB file. The allosteric free energy profile, colouring residues according
to difference in free energy between the ligand bound and the
apo-protein.

Allosite 2.0 [85] Predicts allosteric sites by means of pocket-based analysis and
support vector machine (SVM) classifier algorithms.

The receptor PDB file. Window showing the structure and identified potential allosteric
sites. Pockets can be viewed on the displayed protein structure.
Properties of the pocket include: (i) Its volume, (ii) Total
solvent-accessible surface area (SASA), (iii) Polar SASA and (iv)
Druggability score

AllosMod [84] Makes use of MD simulations and energy landscapes to identify
allosteric conformational changes.

The receptor PDB file and its sequence. Returns a zipped file of further input files to be MD-run by the user
via MODELLER and analysed using a provided Python script.

Cavity (Submodule of
CavityPlus) [190]

Identifies cavities and provides their respective drug scores. The receptor PDB file. Displays the structure, potential cavities and constituting
residues with their respective drug scores, which determine
cavity druggability.

CorrSite (Submodule of
CavityPlus) [190]

Identifies possible allosteric sites from those picked up by
CavityPlus on the basis of correlated motion between allosteric
and orthosteric cavities.

PDB file of a proposed orthosteric site or
predetermined cavities obtained from the
Cavity tool.

Displays the structure with mapped orthosteric and allosteric sites.
Cavities are labelled with their corresponding correlation scores to
the orthosteric site.

CovCys (Submodule of
CavityPlus) [190]

Identifies druggable cysteine residues for covalent allosteric
ligand design.

Cavities identified by the Cavity web server. Maps any of the selected sites onto the protein structure and
displays a table of Cys residues labelled by cavity ID, targetability,
pKa value, exposure and their pocket binding affinity.

http://mdl.shsmu.edu.cn/ALD/
http://mdl.shsmu.edu.cn/ALF
http://www.sbg.bio.ic.ac.uk/allopred/home
http://mdl.shsmu.edu.cn/alloscore/
http://allosigma.bii.a-star.edu.sg/home/
http://mdl.shsmu.edu.cn/AST/Allosite/index.jsp
https://modbase.compbio.ucsf.edu/allosmod/
http://www.pkumdl.cn:8000/cavityplus/index.php
http://www.pkumdl.cn:8000/cavityplus/index.php
http://www.pkumdl.cn:8000/cavityplus/index.php
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Table 2. Cont.

Web Server and URL Functionality Input Output

DynOmics ENM [83] Predicts allosteric communication using ENM. The receptor PDB file. (i) JSmol window showing structure color-coded by the size
of motions driven by the slowest two modes, lowest mobility
(blue) to highest mobility (red) regions, (ii) Molecular motions
animation, (iii) Mapped RMSF, (iv) 3D and 2D display of selected
modes, (v) Cross correlations between residue fluctuations, and (vi)
Inter-residue contact maps

MCPath [224] Identifies regions in a protein structure which may function in
allosteric communication using a Monte Carlo-based approach.

The receptor PDB file and pathway data
(initial residue index, length and number
of paths).

List of all pathways ranked according to their probabilities and
populated pathways. 3D structure onto which the top three
populated pathways and their residues are mapped.

PARS [81] Uses NMA to identify possible allosteric pockets which,
upon binding of a ligand, cause a regulatory effect in the protein.

The receptor PDB file and its sequence. Table with identified pockets ranked according to their potential as
allosteric sites.

SPACER [80] Combines ENM and docking to predict allosteric communication. The receptor PDB file. List of ligand binding sites, for which the following can be explored:
(i) Local closeness - the output structure is colored according to
surface local closeness values, (ii) Binding leverage - quantifies the
cost of the binding site deformation in the presence of a ligand,
and (iii) Characteristics of the communication strength between
a putative allosteric site and another binding site.

STRESS [225] Identifies allosteric hotspot residues which result in large protein
conformational changes when bound by a small ligand.

The receptor PDB file. Ranked list of predicted sites each with an index of the binding site
obtained from Monte Carlo simulations, a binding leverage score
and their respective residues.

https://dyn.life.nthu.edu.tw/oENM/
http://safir.prc.boun.edu.tr/clbet_server/
http://bioinf.uab.cat/cgi-bin/pars-cgi/pars.pl
http://allostery.bii.a-star.edu.sg/
https://github.com/gersteinlab/STRESS
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3.3.4. Perturbation Response Scanning

By factoring out the bound small molecule, to instead perturb single residues from a receptor and to
record the linear response, is a rapid way of approximating biological perturbations in proteins. These
perturbation events can be instantiated by various intrinsic and extrinsic factors, which may in turn have
far-reaching effects [27,36]. In perturbation response scanning (PRS), a series of uniformly distributed
forces are sequentially applied to each residue of an equilibrated protein conformation to estimate the
agreement with a desired target state [226]. The perturbation is obtained from the dot product between
a covariance matrix and a force vector. The covariance matrix can be obtained from various models of
interatomic potential such as those used in MD [29] or by inverting a Hessian matrix [227] as typically done
in ENM [226]. The uniform force vector impacts a given residue multiple times, and a correlation consensus
is obtained for that residue’s overall effect against a targeted conformation. The algorithm is sequentially
applied to each residue of the protein to yield a correlation value in each case. The PRS algorithm has
been successfully used to uncover mechanisms of allostery in various experiments. For instance, Gerek
and Ozkan used PRS to compare allosteric transitions in two PDZ domain proteins (proteins linked to
cancer and to Alzheimer’s and Parkinson’s diseases) by perturbing inverted Hessian matrices obtained
from ENM models [228].

3.3.5. Interaction Networks in Proteins Dynamics

The Usefulness of Network Theory in Investigating Protein Dynamics and Allostery

As reviewed recently by Liang and coworkers, the last decade has produced an array of various tools
that bridge multiple interdisciplinary concepts for the study of protein dynamics and allostery regulatory
mechanisms [36]. More specifically, in allosteric signalling, the perception and long-distance relay of
the trigger signal is associated with the rewiring of an intricately connected network of non-covalently
interacting protein residues [36]. This ultimately leads to directly observable conformational changes
and/or to entropic changes, where no conformational change is seen. Simplifying the protein topology
as a network of nodes connected by edges to represent the residues and their interaction (or strength
of interaction), respectively [23,229,230], allows for the investigation at various levels of the allosteric
effects, which are otherwise convoluted with protein entropy. The increasingly popular integration
of network theory for protein dynamic analysis thus plays a major role in robustly deconvoluting
complex relational behaviours into a more interpretable and quantifiable form [230–240]. Several studies
have pointed out the tremendous usefulness of modelling and analyzing proteins as dynamic entities
oscillating between various allosteric states in order to extract meaning from the complexity of allosteric
regulation [29,80,81,94,224,241–245].

Dynamic Residue Network Analysis

Networks are typically represented by either an adjacency matrix or an edge list [36]. In static
networks, a binary contact is inferred between each protein residue pair (defined by C-alpha or C-beta
atoms) using a defined cut-off distance (i.e., 6.7Å). The DRN approach extends this idea by computing the
time-averaged version of static contact networks using MD simulation data [97]. Different variations of
time-averaged networks have been used to investigate allosteric effects in various proteins, for instance,
in characterizing (1) the dynamics of catalysis in Cyclophilin A variants [95], (2) in characterizing the
effects of damaging non-synonymous SNVs of the renin–angiotensinogen complex [86] and carbonic
anhydrase 2 [96], and (3) in investigating cross-domain allostery in human heat shock proteins [29,32].
The MD-TASK package was the first downloadable tool packaging a set of nonconventional methods
meant to analyze MD simulations. These comprise a set of freely available Python scripts aimed at
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computing DRN metrics in addition to other scripts used for carrying out MD analysis [97]. More
specifically, these network metrics comprise the time-averaged versions of both betweenness centrality
(BC) and averaged shortest path (L), calculated for each protein residue (node) using MD trajectory
data. While BC measures the number of geodesics (shortest paths between two nodes) going through
an intervening node [246], L averages the number of geodesics inbound to a node. Both metrics gain
robustness in predicting medium-to-long-distance relational information from averaged information across
conformational ensembles. By computing the average geodesics between every residue pair, L would
effectively be maximized when a structure is compact and minimized otherwise. As BC is evaluated for
intervening residues linking pairs of residues, it gives a good indication of the importance of that residue
for information flow within the protein. Penkler et al. for the first time showed that there is correlation
between BC and 1/RMSF (root mean square fluctuation) as well as between BC and 1/L [35]. Interestingly,
the article also highlighted a high correlation between PRS hot spot residues and residues with high BC
values. This correlation, later, was also identified in other studies [32]. More recently, Kimuda coupled
DRN to the molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) analysis and principal
components analysis (PCA) to identify 18 novel potential inhibitors of pteridine reductase 1 in Trypanosoma
brucei—the causative agent of Human African Trypanosomiasis—five of which inhibited the pathogen’s
growth in vitro [247].

In a new approach developed by Sheik Amamuddy and coworkers, a statistically guided network was
able to show two coupled conformational changes associated with antiretroviral (ARV) drug resistance,
using one-tailed t-tests on collections of residue pairwise distances determined from ensembles of protease
structures sampled by MD [113]. Despite the presence of a multitude of nsSNVs and selected DRMs,
situated at multiple loci within the viral drug target, they were able to reproducibly detect these motions
in HIV proteases with a high degree of conservation across 8 FDA-approved inhibitors despite the chaotic
nature of protein dynamics. This technique, which combines t-tests and the degree centrality, may hold
a lot of promise for the analysis of alternate phenotypes (such as in the study of drug resistance) and
may be invaluable in the characterization of allosteric effects. The recently published statistically guided
network construction technique proved highly sensitive in detecting distinct motions from ensembles
comprising hundreds of drug-resistant and drug-sensitive HIV protease variants, whereby present nsSNVs
were dispersed within the protein structures [113]. The calculation of the degree centrality in this approach
is very attractive for making inferences from batches of comparable protein variants, with potential
applications in comparing allosteric effects between alternate pairs of a given phenotype.

Coevolution and Residue Interaction Networks

A functional site that mediates communication pathways and determines organization of the residue
interaction networks often coincides or tightly couples with coevolving residues. Statistical coupling
analysis (SCA), mutual information (MI) model, and covariance-based approaches have employed
sequence-based analysis of residue coevolution in homologous families to show that functional residues
in residue networks are connected via strong evolutionary relationships [248–255] Coevolution of
protein residues can reflect correlated functional dynamics of these sites in mediating residue–residue
contacts [256], protein folding transitions [257], and allosteric signalling in protein complexes [258].
Coevolving residues could also form direct communication paths in the interaction networks with
connections weighted according to dynamic couplings and coevolutionary interaction strengths between
nodes [259–261]. Structurally stable and quasi-independent modules of physically interacting coevolving
residues (protein sectors) appeared to play a key role in mediating protein stability and long-range
interactions [250,251]. Several computational methods have been developed to evaluate the extent
of mutual information and coevolutionary dependencies between residue pairs [252,253,262–264].
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Computational analysis of residue interaction networks and community analysis have shown that
local dynamic modules anchored around functional residues can serve as building blocks to connect
distant functional regions and to mediate allosteric conformational transitions [94,252,265–268]. Dynamic
and coevolutionary residue correlations may also act as synchronizing forces that determine modular
organization of allosteric interaction networks and enable efficient allosteric regulation [94,269,270]. These
results have motivated the development of novel community-based methods for modelling ensembles of
allosteric communication pathways in protein structures [94,269,270]. Using this computational framework,
it was found that efficient allosteric communications in various signalling proteins could be controlled by
structurally stable functional centers that exploit dynamically coupled residues in their local communities
to propagate cooperative structural changes.
After having scanned the structure of interest using the allosteric site prediction approaches to obtain
various sources of support for putative ligand binding sites, a consensus can be drawn before proceeding
to the identification of allosteric modulators.

3.3.6. Conformational Sampling

Molecular Dynamics

MD is an invaluable tool in the hands of protein allostery researchers [44]. MD experiments simulate
biological protein movement at various levels of theory, for which molecular mechanical approximations
(coupled to Newton’s second law of motion) [271] are the most common for relatively large solvated
protein systems. At the junction between the quantum and coarse-grained atomic models, all-atom
MD simulations provide a good trade-off between accuracy and speed for conformational sampling,
producing quality spatiotemporal data associated to protein action. To investigate allostery, a researcher
would typically dock a prospective binder against a protein of interest before characterizing any ligand or
protein changes. For such work, conventional methods of analysis can be supplemented by DRN (Part II,
Section 3.3.5). These methods can also be used to study the allosteric effects of protein variants. Utilizing
sequence data, it is possible to elucidate the mechanisms associated with disease-causing sequence variants
using protein dynamics and allosteric regulations [36,272]. All-atom MD may not be able to sample enough
conformations under reasonable computation time in the case of rare events or for changes that occur
over longer periods. Coarse-graining simulations and accelerated sampling approaches are the next best
approaches and are discussed in the next section.

Coarse-Grained Simulations and Stochastic Markov State Models

Coarse-grained models are computationally effective and enable simulations of long timescales
for large allosteric systems and assemblies, thereby allowing for observation of allosteric structural
and dynamic changes [33]. Functional and large-scale flexibility changes in allosteric systems can be
predicted using several popular coarse-grained methods such as CABS-flex [273–276], NMSim [277],
and FlexServ [278]. CABS-flex uses a coarse-grained model in combination with an efficient
search protocol [274,275] and allows the generation of trajectories that can accurately recapitulate
the all-atom MD simulations for long-time processes [274,275,279]. NMSim is a computationally
efficient alternative to all-atom MD simulations and can be employed for sampling of large
conformational space and pathway generation [277]. FlexServ method and server provides access
to three coarse-grained algorithms for simulations of protein flexibility: discrete dynamics, NMA,
and Brownian Dynamics [278]. These coarse-grained approaches provide robust and efficient means
for simulation and analysis of large conformational changes and allosteric transitions in protein systems
that otherwise are difficult to observe in all-atom MD simulations. ENM are a type of coarse-grained
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NMA, which can substantially reduce the computational demands to efficiently explore protein dynamics
around a single energy minimum by simplifying interatomic interactions as spring-connected nodes
(protein Cβ and/or Cα atoms) [227,280,281,281–284]. Several studies involving this approach have
verified its success in identifying functionally relevant protein conformations [175,285–292]. Further,
coarse-grained NMA [293–295] and ENM integrated with the information-based Markovian theory of
signal propagation [296–303] have provided a generalized formalism of allosteric communication pathways
in proteins.

Given the complexity of thermodynamic and kinetic factors underlying allosteric regulatory events,
stochastic MSMs [304–310] have become increasingly useful states-and-rates network models with the
software infrastructure [311–314] for describing the probability of transitions between functional states
during allosteric events [77,315,316]. Combined with MD simulations, MSM approaches can provide
detailed network connectivity maps of states on the free-energy landscape and can estimate the effect
of allosteric perturbations on the conformational equilibrium and kinetics of allosteric transitions. Rare
transition events between long-lived states are a key feature of allosteric proteins that are difficult to
observe in direct MD simulations because of the long simulation timescales needed. To circumvent these
limitations, MSMs can be built from multiple shorter simulations yet describe long timescale dynamics
accurately. While protein structure network models describe allosteric interactions between residue nodes,
MSM network maps are markedly different by representing discrete protein states as the system nodes.
The connections between Markovian state modeling and network-centric analysis of protein structure have
never been rigorously explored for understanding of allosteric processes, leaving a significant conceptual
void in the current knowledge and the existing repertoire of computational approaches. The integration
of the experiment-informed Markovian modeling of protein dynamics and the information-theoretical
description of dynamic flows and entropy transfer in the networks of protein states represents an interesting
and promising avenue for further exploration of allostery. Flow-based model methods [317–325] operate
through a stochastic walk on the dynamics of the network rather than on its topological structure, where
communities consist of dynamically interconverting conformations among which the dynamic flow can
persist for a long time and define functionally significant states. The apparatus of the map equation can
reveal modular patterns in the dynamic flows of allosteric proteins, allowing to map conformational
transformations between allosteric states and to reconstruct regulatory mechanisms.

In the following section, we describe some analysis strategies that have shown their efficacy in
investigation of allosteric effects using data obtained from conformational sampling.

3.3.7. Trajectory Analysis

After performing preliminary quality checks on the simulated protein dynamics data, conventional
metrics such as the root mean square deviation (RMSD), residue root mean square fluctuation
(RMSF), radius of gyration (Rg), and geometry calculations (distances and angles) can be
performed to infer the stabilities (or instabilities) within protein–ligand complexes for the previously
docked compounds [29,32,233,326,327]. Distal effects of interfacial residue variations within the
renin–angiotensinogen complex were uncovered by Brown and colleagues using RMSF alongside BC [86].
Dynamic cross correlation (DCC) is an additional option for characterizing the residue motions sampled
from MD simulations, an example of which can be found from work done by Bowerman and Wereszczynski
to characterize the allosteric effects of a thrombin antagonist [328]. An implementation of a DCC
algorithm is available from MD-TASK. For a bird’s eye view of the distribution and clustering of sampled
conformations, essential dynamics (ED) can be supplemented with energies in free-energy landscape
(FEL) calculations to analyze the stability of protein complexes under various conditions [329,330].



Int. J. Mol. Sci. 2020, 21, 847 21 of 39

More specifically, it has been used by Amusengeri and Tastan Bishop to investigate the effects of allosteric
ligand binding in human heat shock proteins [32].

As each of the aforementioned methods highlights different facets of simulated protein dynamics,
we provide some details about their principles and the types of information that can be retrieved using
such techniques. In each case, the proteins or complexes are assumed to be free from periodic boundaries
and corrected from rotational and translational effects. In the following section, we describe several
approaches that can be used for analyzing results obtained from simulated protein dynamics.

RMSD

The root mean square deviation evaluated between a target and a given reference structure gives
an idea of the overall deviation of all atoms of the structure from those of the reference. The RMSD
evaluated at time ti is calculated as shown below, where N is the number of atoms, m is the atomic mass,
x is the generalized coordinate, and tre f is the frame used as reference, being generally the frame at t = 0:

RMSD(ti) =

√√√√ 1
N

N

∑
j=1

mj[xj(ti)− xj(tre f )]2 (1)

For an MD simulation, it is important that the structures are properly aligned such that correct
distances are evaluated. As it is often the case that trajectory-specific topologies are used in independent
simulations, care should be applied when interpreting and comparing pairs of such systems, for instance,
in an allosteric modulator-bound and a modulator-free protein or in a wild-type and a variant, as each
protein may have a slightly different starting conformation as reference. Work by Penkler and Tastan Bishop
comparing allosteric effects from ligand-bound and ligand-free Hsp90α clearly suggests the presence of
multiple receptor conformations, as seen from the multimodal distribution of RMSD data [29].

RMSF

While RMSD calculates an average obtained from a collection of atom coordinates, an RMSF value is
computed for each atom as the standard deviation of atomic fluctuations recorded over time. For each
atom, the RMSF gives an estimate of its variability around its time-averaged value, once more from aligned
conformations. Comparing RMSF values for homologous residue positions across two systems thus allows
for the local inspection of differential residue flexibility, given an allosteric perturbation.

RMSF(xi) =

√√√√ 1
T

T

∑
j=1

[xi(tj)− x̄i)]2 (2)

As an example of the use of RMSF for the detection and partial characterization of allosteric
effects, Brown and coworkers observed increased rigidities across several deleterious variants of the
renin-angiotensinogen complex with respect to the wild-type complex at sites distal to the dimer interface
where known nsSNVs had been introduced [86].
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Radius of Gyration

In the calculation of Rg, radii are first computed between each atomic (rj) center of mass (COM) and
the molecular COM (Ri), before computing the RMSD to give an indication of the degree of compactness
for a protein at a given frame i.

Rg(ti) =

√√√√ 1
N

N

∑
j=1

mj[rj(ti)− R(ti)]2 (3)

A higher averaged radius hints at a less compact structure. For instance, a residue mutation situated
at the interface between two interacting protein surfaces may destabilize them and increase the Rg value.
Unless the protein conformational changes are large enough, one may not always find significantly
different Rg distributions. In such cases, one may focus on more localized regions, such as an individual
domain for example. Sheik Amamuddy and coworkers used Rg distributions as one of their methods to
investigate drug-resistance-related changes from ensembles of drug-resistant and drug-susceptible HIV
protease structures of the B subtype [113].

Dynamic Cross Correlation

In essence, DCC performs pairwise correlations of atomic motion, generally by normalizing the
covariance matrix over the product of the respective standard deviations of atomic fluctuations recorded
over time for each atom pair. Provided the simulations are not too short, this allows one to compare
motions that trend apart or together within a single system. As for the other metrics, it can be used to
compare analogous systems that have experienced a given allosteric perturbation to determine correlative
properties from the experiment.

Geometry Calculations

Geometry calculations comprise the calculations of distances, bond angles, and dihedrals.
For example, one may compare the domain–domain distance in a multi-domain protein or the inter-residue
distances resulting from the introduction of a non-synonymous residue mutation or the binding of
a ligand at a site away from the active site. In an experiment investigating allostery-related effects in
the redox-dependent conformational dynamics in the multidomain human protein disulphide isomerase
(hDPI), Karamzadeh and coworkers computed several geometric features, such as the inter-domain angles
and distances, torsion angles, and pairwise residue distances in order to build machine-learning classifiers
able to discriminate between the redox states [331].

Essential Dynamics and Free-Energy Landscape

The application of ED to analyze protein behaviour mainly focuses on the dominant modes of motion,
which are obtained by decomposing the covariance matrix and by ranking the eigenvectors (principal
components) in descending order of the corresponding eigenvalues [292,332]. By plotting the first two
or three principal components against each other, we obtain a general idea of the distribution for all
generated conformations obtained from a conformational sampling experiment, as exemplified from ED
analyzes for various proteins [333–336]. On the resulting figure, one may obtain conformationally distinct
clusters of the simulated proteins or complexes. When supplemented with energy levels, the 3D FEL plot
effectively highlights areas of low and high energies, which typically correspond to the metastable and
transitory states respectively. According to the principle of minimal frustration, troughs in the landscape
are generally populated by the more native conformations [337]. Given an allosteric signal, the population
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of protein conformations can be shifted to an alternate state against an otherwise higher energy barrier.
The FEL is thus a very important tool in investigating the allosteric effect, when conformational changes
are present, as exemplified by a case study showcasing the application of computational methods to
discover allosteric modulators in malarial proteins [33], and in the characterization of Discorhabdin N as
potential allosteric modulators of anticancer drug targets [32].

4. Conclusions

While we have gained important insights into the function of allosteric proteins, the quantitative
characterization of these highly dynamic and often elusive processes continues to present formidable
technical and conceptual challenges. Allosteric events in biological systems occur on different spatial and
temporal scales and involve a complex interplay of thermodynamic and dynamic changes that are difficult
to observe, simulate, and interpret.

Experimental studies of protein systems indicate that allosteric regulation may involve a combination
of the classical models of allostery, i.e., conformational selection, dynamic allostery, and induced fit.
An understanding, at the structural level, of the relationships between protein robustness, allosteric drug
binding, and disease may be of use in the development of theoretical and experimental approaches
bridging structure-based network analysis of protein targets with modelling of protein interaction
networks and pathways. The complexity and diversity of these processes require innovative theoretical and
data-driven approaches that can bridge advances in structural and quantitative biology in transformative
yet practical ways. The development of novel integrated research strategies should address these
challenges by strengthening and advancing the interface between molecular biophysics, network biology,
and data science. We argue that the next breakthrough in the discovery of allosteric drugs may require
such integration of traditional biophysical approaches with systems biology and experiment-guided
machine-learning tools to bridge a detailed microscopic analysis with macroscopic modelling of allosteric
phenomena in cellular networks and signalling pathways.
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