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Preface and Acknowledgments 

The idea for the graduate level version of this book grew over decades of teaching 
introductory and intermediate quantitative methods classes for graduate students in 
Political Science and Public Policy at the University of Oklahoma, Texas A&M, and the 
University of New Mexico. Despite adopting (and then discarding) a wide range of 
textbooks, we were frustrated with inconsistent terminology, misaligned emphases, 
mismatched examples and data, and (especially) poor connections between the 
presentation of theory and the practice of data analysis. The cost of textbooks and the 
associated statistics packages for students seemed to us to be, frankly, outrageous. So, we 
decided to write our own book that students can download as a free PDF, and to couple it 
with R, an open-source (free) statistical program, and data from the Meso-Scale Integrated 
Socio-geographic Network (M-SISNet), a quarterly survey of approximately 1,500 
households in Oklahoma that is conducted with support of the National Science Foundation 
(Grant No. IIA-1301789). Readers can learn about and download the data here. 

The idea of the undergraduate level of this book floated about amongst these various 
individuals until Fall 2019 when now Professor Wehde used the graduate level text in his 
undergraduate research methods course. He realized that, at times, the language of the text 
was at a higher level than necessary to introduce undergraduates in Political Science to 
research methods and statistics. This new version of the text omits large portions of the 
original text that focused on calculus and linear algebra, expands and reorganizes the 

http://crcm.ou.edu/epscordata/


content on the software system by shifting to Excelnd includes guided study questions at 
the end of each chapter. He also proposed shifting the software over to Microsoft Excel 
which, while not free, is present in almost every workplace in 2020 when the book was 
revised. This version reflects that shift to Excel. 

By intent, this book represents an open-ended group project that changes over time as new 
ideas and new instructors become involved in teaching graduate and the undergraduate 
methods in the University of Oklahoma Political Science Department and beyond. The first 
edition of the book grew from lecture notes and slides that Hank Jenkins-Smith used in his 
methods classes. The second edition was amended to encompass material from Gary 
Copeland’s introductory graduate methods classes. The fourth (and a half) edition (this 
one!) was updated by Wesley Wehde, who currently manages and uses the book in his 
introductory quantitative methods courses for undergraduates in the East Tennessee State 
Political Science Department. The development of this version of the text was supported by 
an OER Award from the Sherrod Library at ETSU, as well. At this stage, Tracey Bark, now a 
professor at Auburn University Montgomery, was brought on as a co-author due to her 
expertise in using Excel in Research Methods. 

In addition to instructors, the graduate assistants who co-instruct the methods courses are 
an essential part of the authorship team. The tradition started with Dr. Matthew Nowlin, 
who assisted in drafting the first edition in . Dr. Tyler Hughes and Aaron Fister were 
instrumental in implementing the changes for the second edition. Dr. Wesley Wehde was 
responsible for much of the third and 4.5 edition and Josie Davis did most of the work on 
the fourth edition. 

Copyright 

This work is licensed under a Creative Commons Attribution 4.0 International License (CC 
BY 4.0). 

CHAPTER ONE: Theories and Social Science 

The focus of this book is on using quantitative empirical research to test hypotheses and 
build theory in political science and public policy. Quantitative means the book focuses on 
research that relies on data that can be quantified, or represented by numbers, as opposed 
to qualitative, or represented primarily by words. Empirical means this text focuses on 
research that involves measuring phenomenon in the real world using the scientific 
method as opposed to anecdotes or other types of evidence. Testing hypotheses and 
building theory means this text focuses on research that uses logic, and statistical 
techniques, to arrive at reasonable conclusions about the world or potential states of the 
world. 

The book is designed to be used by undergraduate students in introductory courses to 
research methods, statistics, and quantitative analysis in the social sciences. It is important 
to note that quantitative analysis is not the only – or even the most important – kind of 
analysis undertaken in political science and public policy research. Qualitative analysis, 
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including ethnographic studies, systematic cases analyses, focus groups, archival studies, 
and qualitative elite interviews (to name only a few approaches) are of critical importance 
for understanding social and political phenomena. With that understanding in mind, this 
book and the associated courses focus on the development and application of systematic 
analysis, hypothesis testing and theory building using quantitative data and modeling. 
Specifically, we focus on developing research design, univariate analysis, and a basic 
understanding of linear regression modeling and analysis. Throughout we provide 
applications and examples using the Excel statistical platform. 

The Scientific Method 

Empirical research, as outlined in this book, is based on the scientific method. Science is a 
particular way that someepistemologists believe we can understand the world around us. 
Science, as a method, relies on both logic, as captured by theory, and empirical observation 
of the world to determine whether the theory we have developed conforms to what we 
actually observe. We seek to explain the world with our theories, and we test our theories 
by deducing and testing hypotheses. When a working hypothesis is supported, we have 
more confidence in our theory. When the null hypothesis is supported, it undermines our 
proposed theory. 

Science seeks a particular kind of knowledge and has certain biases. When we are engaging 
in scientific research we are interested in reaching generalizations. Rather than wanting to 
explain why President Trump’s approval dropped, we are interested in explaining why 
presidential approval drops across various presidents, or, better yet, how economic 
conditions affect presidential approval. These generalizations should be logical (which is 
nothing more than saying they should be grounded in a strong theory) and they should be 
empirically verified (which, we will see means that we have tested hypotheses deduced 
from our theory). We also look for generalizations that are causal in nature. Scientists 
actively seek explanations grounded in causation rather than correlation. Scientific 
knowledge should be replicable – meaning that other scholars should be able to reach the 
same conclusions that you do. There should be inter-subjective agreement on scientific 
findings – meaning that people, with different personal experiences and biases, should still 
reach the same conclusion. 

Scientists also tend to prefer simple explanations to complex ones. They have a bias that 
says the world is pretty simple and that our theories should reflect that belief. Of course, 
people are complex, so in the social sciences it can be dangerous to look only for the 
simplest explanation as most concepts we consider have multiple causes. 

Theory and Empirical Research 

This book is concerned with the connection between theoretical claims and empirical data. 
It is about using statistical modeling; in particular, the tool of regression analysis, which is 
used to develop and refine theories. We define theory broadly as a set of interrelated 
propositions that seek to explain and, in some cases, predict an observed phenomenon. 

Theory: A set of interrelated propositions that seek to explain and predict an observed phenomenon. 



Theories contain three important characteristics that we discuss in detail below. 

Characteristics of Good Theories 

• Coherent and internally consistent 

• Causal in nature 

• Generate testable hypotheses 

Coherent and Internally Consistent 

The set of interrelated propositions that constitute a well structured theory are based on 
concepts. In well-developed theories, the expected relationships among these concepts are 
both coherent and internally consistent. Coherence means the identification of concepts 
and the specified relationships among them are logical, ordered, and integrated. An 
internally consistent theory will explain relationships with respect to a set of common 
underlying causes and conditions, providing for consistency in expected relationships (and 
avoidance of contradictions). For systematic quantitative research, the relevant theoretical 
concepts are defined such that they can be measured and quantified. Some concepts are 
relatively easy to quantify, such as the number of votes cast for the winning Presidential 
candidate in a specified year or the frequency of arrests for gang-related crimes in a 
particular region and time period. Others are more difficult, such as the concepts of 
democratization, political ideology or presidential approval. Concepts that are more 
difficult to measure must be carefully operationalized, which is a process of relating a 
concept to an observation that can be measured using a defined procedure. For example, 
political ideology is often operationalized through public opinion surveys that ask 
respondents to place themselves on a Likert-type scale of ideological categories. 

Concepts and Variables 

A concept is a commonality across observed individual events or cases. It is a regularity 
that we find in complex world. Concepts are our building blocks to understanding the 
world and to developing theory that explains the world. Once we have identified concepts 
we seek to explain them by developing theories based on them. Once we have explained a 
concept we need to define it. We do so in two steps. First, we give it a dictionary-like 
definition, called a nominal definition. Then, we develop an operational definition that 
identifies how we can measure and quantify it. 

Once a concept has been operationalised and possibly quantified, it is employed in 
modeling as a variable. In statistical modeling, variables are thought of as either 
dependent or independent variables. A dependent variable, 𝑌, is the outcome variable; 
this is the concept we are trying to explain and/or predict. The independent variable(s), 
𝑋, is the variable(s) that is used to predict or explain the dependent variable. The expected 
relationships between (and among) the variables are specified by the theory. 

Measurement 

When measuring concepts, the indicators that are used in building and testing theories 
should be both valid and reliable. Validity refers to how well the measurement captures 



the concept. Face validity, for example, refers to the plausibility and general acceptance of 
the measure, while the domain validity of the measure concerns the degree to which it 
captures all relevant aspects of the concept. Reliability, by contrast, refers to how 
consistent the measure is with repeated applications. A measure is reliable if, when applied 
to the repeated observations in similar settings, the outcomes are consistent. 

Assessing the Quality of a Measure 

Measurement is, in quantitative research, the process of assigning numbers to the 
phenomenon or concept that you are interested in. Measurement is straight-forward when 
we can directly observe the phenomenon. One agrees on a metric, such as inches or 
pounds, and then figures out how many of those units are present for the case in question. 
Measurement becomes more challenging when you cannot directly observe the concept of 
interest. In political science and public policy, some of the things we want to measure are 
directly observable: how many dollars were spent on a project or how many votes the 
incumbent receives, but many of our concepts are not observable: is issue X on the public’s 
agenda, how successful is a program, or how much do citizens trust the president. When 
the concept is not directly observable the operational definition is especially important. 
The operational definition explains exactly what the researcher will do to assign a number 
for each subject/case. 

In reality, there is always some possibility that the number assigned does not reflect the 
true value for that case, i.e., there may be some error involved. Error can come about for 
any number of reasons, including mistakes in coding, the need for subjective judgments, or 
a measuring instrument that lacks precision. These kinds of error will generally produce 
inconsistent results; that is, they reduce reliability. We can assess the reliability of an 
indicator using one of two general approaches. One approach is a test-retest method where 
the same subjects are measured at two different points in time. If the measure is reliable 
the correlation between the two observations should be high. We can also assess reliability 
by using multiple indicators of the same concept and determining if there is a strong inter-
correlation among them using statistical formulas such as Cronbach’s alpha or Kuder-
Richardson Formula 20 (KR-20). 

We can also have error when our measure is not valid. Valid indicators measure the 
concept we think they are measuring. The indicator should both converge with the concept 
and discriminate between the concept and similar yet different concepts. Unfortunately 
there is no failsafe way to determine whether an indicator is valid. There are, however, a 
few things you can do to gain confidence in the validity of the indicator. First, you can 
simply look at it from a logical perspective and ask if it seems like it is valid. Does it have 
face validity? Second, you can see if it correlates well with other indicators that are 
considered valid, and in ways that are consistent with theory. This is called construct 
validity. Third, you can determine if it works in the way expected, which is referred to as 
predictive validity. Finally, we have more confidence if other researchers using the same 
concept agree that the indicator is considered valid. This consensual validity at least 
ensures that different researchers are talking about the same thing. 



Measurement of Different Kinds of Concepts 

Measurement can be applied to different kinds of concepts, which causes measures of 
different concepts to vary. There are three primary levels of measurement; ordinal, 
interval, and nominal. Ordinal level measures indicate relative differences, such as more 
or less, but do not provide equal distances between intervals on the measurement scale. 
Therefore, ordinal measures cannot tell us how much more or less one observation is than 
another. Imagine a survey question asking respondents to identify their annual income. 
Respondents are given a choice of five different income levels: $0-20,000, $20,000-50,000, 
$50,000-$100,000, and $100,000+. This measure gives us an idea of the rank order of 
respondents’ income, but it is impossible for us to identify consistent differences between 
these responses. With an interval level measure, the variable is ordered and the 
differences between values are consistent. Sticking with the example of income, survey 
respondents are now asked to provide their annual income to the nearest ten thousand 
dollar mark (e.g., $10,000, $20,000, $30,000, ect.). This measurement technique produces 
an interval level variable because we have both a rank ordering and equal spacing between 
values. Ratio scales are interval measures with the special characteristic that the value of 
zero (0) indicates the absence of some property. A value of zero (0) income in our example 
may indicate a person does not have a job. Another example of a ratio scale is the Kelvin 
temperature scale, because zero (0) degrees Kelvin indicates the complete absence of heat. 
Finally, a nominal level measure identifies categorical differences among observations. 
Numerical values assigned to nominal variables have no inherent meaning, but only 
differentiate one ``type" (e.g., gender, race, religion) from another. 

Theories and Causality 

Theories should be causal in nature, meaning that an independent variable is thought to 
have a causal influence on the dependent variable. In other words, a change in the 
independent variable causes a change in the dependent variable. Causality can be thought 
of as the ``motor" that drives the model and provides the basis for explanation and 
(possibly) prediction. 

The Basis of Causality in Theories 

1. Time Ordering: The cause precedes the effect, 𝑋 → 𝑌 

2. Co-Variation: Changes in 𝑋 are associated with changes in 𝑌 

3. Non-Spuriousness: There is not a variable 𝑍 that causes both 𝑋 and 𝑌 

To establish causality we want to demonstrate that a change in the independent variable is 
a necessary and sufficient condition for a change in the dependent variable (though more 
complex, interdependent relationships can also be quantitatively modeled). We can think 
of the independent variable as a treatment, 𝜏, and we speculate that 𝜏 causes a change in 
our dependent variable, 𝑌. The ``gold standard’’ for casual inference is an experiment 
where a) the level of 𝜏 is controlled by the researcher and b) subjects are randomly 
assigned to a treatment or control group. The group that receives the treatment has 
outcome 𝑌1 and the control group has outcome 𝑌0; the treatment effect can be defined as 
𝜏 = 𝑌1 − 𝑌0. Causality is inferred because the treatment was only given to one group, and 



since these groups were randomly assigned other influences should wash out. Thus the 
difference 𝜏 = 𝑌1 − 𝑌0 can be attributed to the treatment. 

Given the nature of social science and public policy theorizing, we often can’t control the 
treatment of interest. For example, our case study in this text concerns the effect of political 
ideology on views about the environment. For this type of relationship, we cannot 
randomly assign ideology in an experimental sense. Instead, we employ statistical controls 
to account for the possible influences of confounding factors, such as age and gender. Using 
multiple regression we control for other factors that might influence the dependent 
variable.1 

Generation of Testable Hypothesis 

Theory building is accomplished through the testing of hypotheses derived from theory. In 
simple form, a theory implies (sets of) relationships among concepts. These concepts are 
then operationalized. Finally, models are developed to examine how the measures are 
related. Properly specified hypotheses can be tested with empirical data, which are derived 
from the application of valid and reliable measures to relevant observations. The testing 
and re-testing of hypotheses develops levels of confidence that we can have for the core 
propositions that constitute the theory. In short, empirically grounded theories must be 
able to posit clear hypotheses that are testable. In this text, we discuss hypotheses and test 
them using relevant models and data. 

As noted above, this text uses the concepts of political ideology and views about the 
environment as a case study in order to generate and test hypotheses about the 
relationships between these variables. For example, based on popular media accounts, it is 
plausible to expect that political conservatives are less likely to be concerned about the 
environment than political moderates or liberals. Therefore, we can pose the working 
hypothesis that measures of political ideology will be systematically related to measures 
of concern for the environment – with conservatives showing less concern for the 
environment. In classical hypothesis testing, the working hypothesis is tested against a null 
hypothesis. A null hypothesis is an implicit hypothesis that posits the independent 
variable has no effect (i.e., null effect) on the dependent variable. In our example, the null 
hypothesis states ideology has no effect on environmental concern. 

Theory and Functions 

Closely related to hypothesis testing in empirical research is the concept of functional 
relationships – or functions. Hypotheses posit systematic relationships between variables, 
and those relationships are expressed as functions. For example, we can hypothesize that 

 

1 This matter will be discussed in more detail in the multiple regression section. 



an individual’s productivity is related coffee consumption (productivity is a function of 
coffee consumption).2 

Functions are ubiquitous. When we perceive relational order or patterns in the world 
around us, we are observing functions. Individual decisions about when to cross the street, 
whether to take a nap, or engage in a barroom brawl can all be ascribed to patterns (the 
``walk" light was lit; someone stayed up too late last night; a Longhorn insulted the Sooner 
football team). Patterns are how we make sense of the world, and patterns are expressed as 
functions. That does not mean the functions we perceive are always correct, or that they 
allow us to predict perfectly. However, without functions we don’t know what to expect; 
chaos prevails. 

In mathematical terms, a function relates an outcome variable, 𝑦, to one or more inputs, 𝑥. 
This can be expressed more generally as: 𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, . . . 𝑥𝑛), which means 𝑦 is `a 
function of the 𝑥’s, or, 𝑦 varies as a function of the 𝑥’s. 

Functions form the basis of the statistical models that will be developed throughout the 
text. In particular, this text will focus on linear regression, which is based on linear 
functions such as 𝑦 = 𝑓(𝑥) = 5 + 𝑥, where 5 is a constant and 𝑥 is a variable. This type of 
function is the basis of the linear models we will develop, therefore these models are said 
to have a linear functional form. 

However, non-linear functional forms are also common. For example, 𝑦 = 𝑓(𝑥) = 3 − 𝑥2 is 
a quadratic function, which is a type of polynomial function since it contains a square term 
(an exponent). This function is non-linear because the changes in 𝑦 are not consistent 
across the full range of 𝑥. 

Examples of Functions in Social Science Theories 

As noted, functions are the basis of statistical models that are used to test hypotheses. 
Below are a few examples of functions that are related to social science theories. 

• Welfare and work incentives 

– Employment = 𝑓(welfare programs, education level, work experience,…) 

• Nuclear weapons proliferation 

– Decision to develop nuclear weapons = 𝑓(perceived threat, incentives, 
sanctions,…) 

• ``Priming’’ and political campaign contributions 

– Contribution($) = 𝑓(Prime (suggested $), income,…) 

• Successful program implementation 

 

2 The more coffee, the greater the productivity – up to a point! Beyond some level of 
consumption, coffee may induce the jitters and ADD-type behavior, thereby undercutting 
productivity. Therefore the posited function that links coffee consumption to productivity 
is non-linear, initially positive but then flat or negative as consumption increases. 



– Implementation = 𝑓(clarity of law, level of public support, problem 
complexity,…) 

Try your hand at this with theories that are familiar to you. First, identify the dependent 
and independent variables of interest; then develop your own conjectures about the form 
of the functional relationship(s) among them. 

Theory in Social Science 

Theories play several crucial roles in the development of scientific knowledge. Some of 
these include providing patterns for data interpretation, linking the results of related 
studies together, providing frameworks for the study of concepts, and allowing the 
interpretation of more general meanings from any single set of findings. Hoover and Todd 
(2004) provide a very useful discussion of the role of theories in ``scientific thinking" – find 
it and read it! 

The Role of Theory in Social Science 

Adapted from The Elements of Social Scientific Thinking by Kenneth Hoover and Todd Donovan (2004, 37) 

• Theory provides patterns for the interpretation of data 

• Theory links one study with another 

• Theory supplies frameworks within which concepts acquire significance 

• Theory allows us to interpret the larger meaning of our findings 

Perhaps, in the broadest sense, theories tie the enterprise of the social (or any) science 
together, as we build, revise, criticize and destroy theories in that collective domain 
referred to as ``the literature." 

Outline of the Book 

The goal of this text is to develop an understanding of how to build theories by testing 
hypotheses using empirical data and statistical models. There are three necessary 
ingredients of strong empirical research. The first is a carefully constructed theory that 
generates empirically testable hypotheses. Once tested, these hypothesis should have 
implications for the development of theory. The second ingredient is quality data. The data 
should be valid, reliable, and relevant. The final ingredient is using the appropriate model 
design and execution. Specifically, the appropriate statistical models must be used to test 
the hypotheses. Appropriate models are those that are properly specified, estimated, and 
use data that conforms to the statistical assumptions. This course focuses on model design 
and execution. 

As noted, this text uses political ideology and views on the environment as a case study to 
examine theory building in the social sciences.3 The text is organized by the idealized steps 

 

3 As you may have already realized, social scientists often take these steps out of order … 
we may ``back into" an insight, or skip a step and return to it later. There is no reliable 
cookbook for what we do. Rather, think of the idealized steps of the scientific process as an 



of the research process. As a first step, this first chapter discussed theories and hypothesis 
testing, which should always be (but often are not!) the first consideration. The second 
chapter focuses on research design and issues of internal and external validity. Chapter 3 
examines data collection methods. Chapter 4 covers specific ways to understand how the 
variables in the data are distributed. This is vital to know before doing any type of 
statistical modeling. The sixth chapter covers inference and how to reach conclusions 
regarding a population when you are studying a sample. The seventh chapter explores how 
to understand basic relationships that can hold between two variables including cross 
tabulations, covariance, correlation, and difference of means tests. These relationships are 
the foundation of more sophisticated statistical approaches and therefore understanding 
these relationships is often a precursor to the later steps of statistical analysis. The eighth 
through tenth chapters focus on bivariate ordinary least squares (OLS) regression, or OLS 
regression with a dependent variable and one independent variable. This allows us to 
understand the mechanics of regression before moving on the third section (chapters 
eleven to thirteen) that cover multiple OLS regression.  

As a final note, this text makes extensive use of Excel. The steps to reproduce all of the 
examples is included in the text in such a way that readers should be able to replicate the 
results themselves. The data used for the examples is available as well. You can find it here. 

Study Questions 
1) What are the three necessary components of well-constructed, empirical research? 

2) What will be the case study used throughout this book? 

3) Identify dependent and independent variables of interest to you; then develop your 
own conjectures about the form of the functional relationship(s) among them. 

4) What factor denotes a ratio level of measurement as a subset of interval 
measurements? 

5) Define null hypothesis. 

CHAPTER TWO: Research Design 

Research design refers to the plan to collect information to address your research question. 
It covers the set of procedures that are used to collect your data and explain how your data 
will be analyzed. Your research plan identifies what type of design you are using. Your plan 
should make clear what your research question is, what theory or theories will be 
considered, key concepts, your hypotheses, your independent and dependent variables, 
their operational definitions, your unit of analysis, and what statistical analysis you will 
use. It should also address the strengths and weaknesses of your particular design. The 

 

important heuristic that helps us think through our line of reasoning and analysis – often 
after the fact – to help us be sure that we learned what we think we learned from our 
analysis. 
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major design categories for scientific research are experimental designs and observational 
designs. The latter is sometimes referred to as a correlational research design. 

Overview of the Research Process 

Often scholars rely on data collected by other researchers and end up, de facto, with the 
research design developed by the original scholars. But if you are collecting your own data 
this stage becomes the key to the success of your project and the decisions you make at this 
stage will determine both what you will be able to conclude and what you will not be able 
to conclude. It is at this stage that all the elements of science come together. We can think 
of research as starting with a problem or a research question and moving to an attempt to 
provide an answer to that problem by developing a theory. If we want to know how good 
(empirically accurate) that theory is we will want to put it to one or more tests. Framing a 
research question and developing a theory could all be done from the comforts of your 
backyard hammock. Or, they could be done by a journalist (or, for that matter, by the 
village idiot) rather than a scientist. To move beyond that stage requires more. To test the 
theory, we deduce one or more hypotheses from the theory, i.e., statements that should be 
true if the theory accurately depicts the world. We test those hypotheses by systematically 
observing the world—the empirical end of the scientific method. It requires you to get out 
of that hammock and go observe the world. The observations you make allow you to accept 
or reject your hypotheses, providing insights into the accuracy and value of your theory. 
Those observations are conducted according to a plan or a research design. 

Internal and External Validity 

Developing a research design should be more than just a matter of convenience (although 
there is an important element of that which we will discuss at the end of this chapter). Not 
all designs are created equally and there are trade-offs we make when opting for one type 
of design over another. The two major components of an assessment of a research design 
are its internal validity and its external validity. Internal validity basically means we can 
make a causal statement within the context of our study. We have internal validity if, for 
our study, we can say our independent variable caused our dependent variable. To make 
that statement we need to satisfy the conditions of causality we identified previously. The 
major challenge is the issue of spuriousness. We have to ask if our design allows us to say 
our independent variable makes our dependent variable vary systematically as it changes 
and that those changes in the dependent variable are not due to some third or extraneous 
factor, often called an ommitted variable. It is worth noting that even with internal validity, 
you might have serious problems when it comes to your theory. Suppose your hypothesis is 
that being well-fed makes one more productive. Further suppose that you operationalize 
“being well-fed” as consuming twenty Hostess Twinkies in an hour. If the Twinkie eaters 
are more productive than those who did not get the Twinkies you might be able to show 
causality, but if your theory is based on the idea that “well-fed” means a balanced and 
healthy diet then you still have a problematic research design. It has internal validity 
because what you manipulated (Twinkie eating) affected your dependent variable, but that 
conclusion does not really bring any enlightenment to your theory. 



The second basis for evaluating your research design is to assess its external validity. 
External validity means that we can generalize the results of our study. It asks whether our 
findings are applicable in other settings. Here we consider what population we are 
interested in generalizing to. We might be interested in adult Americans, but if we have 
studied a sample of first-year college students then we might not be able to generalize to 
our target population. External validity means that we believe we can generalize to our 
(and perhaps other) population(s). Along with other factors discussed below, replication is 
a key to demonstrating external validity. 

Major Classes of Designs 

There are many ways to classify systematic, scientific research designs, but the most 
common approach is to classify them as experimental or observational. Experimental 
designs are most easily thought of as a standard laboratory experiment. In an 
experimental design the researcher controls (holds constant) as many variables as possible 
and then assigns subjects to groups, usually at random. If randomization works (and it will 
if the sample size is large enough, but technically that means infinite in size), then the two 
groups are identical. The researcher then manipulates the experimental treatment 
(independent variable) so that one group is exposed to it and the other is not. The 
dependent variable is then observed. If the dependent variable is different for the two 
groups, we can have quite a bit of confidence that the independent variable caused the 
dependent variable. That is, we have good internal validity. In other words, the conditions 
that need to be satisfied to demonstrate causality can be met with an experimental design. 
Correlation can be determined, time order is evident, and spuriousness is not a problem—
there simply is no alternative explanation. 

Unfortunately, in the social sciences the artificiality of the experimental setting often 
creates suspect external validity. We may want to know the effects of a news story on views 
towards climate change so we conduct an experiment where participants are brought into 
a lab setting and some (randomly selected) see the story and others watch a video clip with 
a cute kitten. If the experiment is conducted appropriately, we can determine the 
consequences of being exposed to the story. But, can we extrapolate from that study and 
have confidence that the same consequences would be found in a natural setting, e.g., in 
one’s living room with kids running around and a cold beverage in your hand? Maybe not. A 
good researcher will do things that minimize the artificiality of the setting, but external 
validity will often remain suspect. 

Observational designs tend to have the opposite strengths and weaknesses. In an 
observational design, the researcher cannot control who is exposed to the experimental 
treatment; therefore, there is no random assignment and there is no control. Does smoking 
cause heart disease? A researcher might approach that research question by collecting 
detailed medical and lifestyle histories of a group of subjects. If there is a correlation 
between those who smoke and heart disease, can we conclude a causal relationship? 
Generally the answer to that question is ``no", because any other difference between the 
two groups is an alternative explanation (meaning that the relationship might be spurious). 
For better or worse, though, there are fewer threats to external validity (see below for 
more detail) because of the natural research setting. 



A specific type of observational design, the natural experiment, requires mention because 
they are increasingly used to great value. In a natural experiment, subjects are exposed to 
different environmental conditions that are outside the control of the researcher, but the 
process governing exposure to the different conditions arguably resembles random 
assignment. Weather, for example, is an environmental condition that arguably mimics 
random assignment. For example, imagine a natural experiment where one part of New 
York City gets a lot of snow on election day, whereas another part gets almost no snow. 
Researchers do not control the weather, but might argue that patterns of snowfall are 
basically random, or, at the very least, exogenous to voting behavior. If you buy this 
argument, then you might use this as natural experiment to estimate the impact of weather 
conditions on voter turnout. Because the experiment takes place in natural setting, external 
validity is less of a problem. But, since we do not have control over all events, we may still 
have internal validity questions. 

Threats to Validity 

To understand the pros and cons of various designs and to be able to better judge specific 
designs, we identify specific threats to internal and external validity. Before we do so, it 
is important to note that a (perhaps ``the") primary challenge to establishing internal 
validity in the social sciences is the fact that most of the phenomena we care about have 
multiple causes and are often a result of some complex set of interactions. For examples, 𝑋 
may be only a partial cause of 𝑌, or 𝑋 may cause 𝑌, but only when 𝑍 is present. Multiple 
causation and interactive affects make it very difficult to demonstrate causality, both 
internally and externally. Turning now to more specific threats, Table @ref(fig:tbl1) 
identifies common threats to internal validity and Table @ref(fig:tbl2) identifies common 
threats to external validity. 



 

Common Threats to Internal Validity 

 

Common Threats to External Validity 

Some Common Designs 

In this section we look at some common research designs, the notation used to symbolize 
them, and then consider the internal and external validity of the designs. We start with the 
most basic experimental design, the post-test only design Figure (fig:post). In this design 
subjects are randomly assigned to one of two groups with one group receiving the 



experimental treatment.4 There are advantages to this design in that it is relatively 
inexpensive and eliminates the threats associated with pre-testing. If randomization 
worked the (unobserved) pre-test measures would be the same so any differences in the 
observations would be due to the experimental treatment. The problem is that 
randomization could fail us, especially if the sample size is small. 

 

Post-test Only (with a Control Group) Experimental Design 

Many experimental groups are small and many researchers are not comfortable relying on 
randomization without empirical verification that the groups are the same, so another 
common design is the Pre-test, Post-test Design (Figure (fig:prepost)). By conducting a pre-
test, we can be sure that the groups are identical when the experiment begins. The 
disadvantages are that adding groups drives the cost up (and/or decreases the size of the 
groups) and that the various threats due to testing start to be a concern. Consider the 
example used above concerning a news story and views on climate change. If subjects were 
given a pre-test on their views on climate change and then exposed to the news story, they 
might become more attentive to the story. If a change occurs, we can say it was due to the 
story (internal validity), but we have to wonder whether we can generalize to people who 
had not been sensitized in advance. 

 

Pre-test, Post-Test (with a Control Group) Experimental Design 

A final experimental design deals with all the drawbacks of the previous two by combining 
them into what is called the Solomon Four Group Design (Figure @ref(fig:solomon)). 
Intuitively it is clear that the concerns of the previous two designs are dealt with in this 
design, but the actual analysis is complicated. Moreover, this design is expensive so while it 
may represent an ideal, most researchers find it necessary to compromise. 

 

4 The symbol R means there is random assignment to the group. X symbolizes exposure to 
the experimental treatment. O is an observation or measurement. 



 

Solomon Four Group Experimental Design 

Even the Solomon Four Group design does not solve all of our validity problems. It still 
likely suffers from the artificiality of the experimental setting. Researchers generally try a 
variety of tactics to minimize the artificiality of the setting through a variety of efforts such 
as watching the aforementioned news clip in a living room-like setting rather than on a 
computer monitor in a cubicle or doing jury research in the courthouse rather than the 
basement of a university building. 

Observational designs lack random assignment, so all of the above designs can be 
considered observational designs when assignment to groups is not random. You might, for 
example, want to consider the affects of a new teaching style on student test scores. One 
classroom might get the intervention (the new teaching style) and another not be exposed 
to it (the old teaching style). Since students are not randomly assigned to classrooms it is 
not experimental and the threats that result from selection bias become a concern (along 
with all the same concerns we have in the experimental setting). What we gain, of course, is 
the elimination or minimization of the concern about the experimental setting. 

A final design that is commonly used is the repeated measures or longitudinal research 
design where repeated observations are made over time and at some point there is an 
intervention (experimental treatment) and then subsequent observations are made (Figure 
@ref(fig:repmeas)). Selection bias and testing threats are obvious concerns with this 
design. But there are also concerns about history, maturation, and mortality. Anything that 
occurs between 𝑂𝑛 and 𝑂𝑛+1 becomes an alternative explanation for any changes we find. 
This design may also have a control group, which would give clues regarding the threat of 
history. Because of the extended time involved in this type of design, the researcher has to 
concerned about experimental mortality and maturation. 

 

Repeated Measures Experimental Design 

This brief discussion illustrates major research designs and the challenges to maximizing 
internal and external validity. With these experimental designs we worry about external 
validity, but since we have said we seek the ability to make causal statements, it seems that 
a preference might be given to research via experimental designs. Certainly we see more 



and more experimental designs in political science with important contributions. But, 
before we dismiss observational designs, we should note that in later chapters, we will 
provide an approach to providing statistical controls which, in part, substitutes for the 
control we get with experimental designs. 

Plan Meets Reality 

Research design is the process of linking together all the elements of your research project. 
None of the elements can be taken in isolation, but must all come together to maximize 
your ability to speak to your theory (and research question) while maximizing internal and 
external validity within the constraints of your time and budget. The planning process is 
not straightforward and there are times that you will feel you are taking a step backwards. 
That kind of ``progress’’ is normal. Additionally, there is no single right way to design a 
piece of research to address your research problem. Different scholars, for a variety of 
reasons, would end up with quite different designs for the same research problem. Design 
includes trade-offs, e.g., internal vs. external validity, and compromises based on time, 
resources, and opportunities. Knowing the subject matter – both previous research and the 
subject itself – helps the researcher understand where a contribution can be made and 
when opportunities present themselves. 

Study Questions 
1) Observational designs generally have higher ________ validity and lower ________ validity 

compared to experimental designs. Why? 

2) Define spuriousness, also known as omitted variable bias. 

3) Why are randomized experiments being used more and more in political science? 

CHAPTER THREE: Data Collection 

This chapter will introduce students to commonly used methods of data collection in 
political science and public policy or administration, with a particular focus on survey data. 
This chapter will begin with a brief discussion of quantitative vs. qualitative data collection 
techniques. Qualitative techniques will be described briefly, as the text primarily focuses on 
quantitative analysis techniques. It should be noted that data collection and analysis are 
two separate steps. It is possible to collect qualitative data and conduct quantitative 
analyses of this data. Next, the chapter will introduce some of the most frequently used 
types of quantitative data in political science, with as mentioned an extended discussion of 
survey methods. 

Methods of Data Collection: Quantitative and Qualitative 

Quantitative methods of data collection are those were the data are represented, often 
exclusively, by numbers. In stereotypical views of the field of economics, this means in 
numbers of dollars. One method of data collection where the data are often numbers that 
ultimately represent qualitative labels is survey methods. Qualitative methods of data 
collection are those where the final data product is primarily represented in words, images, 



or observations. These methods can often then be transformed and analyzed quantitatively 
such as through text analysis or coding procedures. 

The divide between qualitative and quantitative data collection methods is not often 
clearcut, increasingly. Many researchers are relying now on what some call mixed methods. 
At its best, this means thinkign critically about how different methodologies, both qual and 
quant, can be used systematically to answer research questions and test hypotheses. Often, 
though this may mean simply research that has both a qualitative and quantitative 
component that are systematic in isolation but not inherently related. 

Qualitative Methods of Data Collection 

In political science, and the social sciences more broadly, there are a few commonly used 
methods of qualitative data collection that merit mentioning. This section only scratches 
the surface of any of these techniques. Interested readers are encouraged to seek out more 
authoritative texts on these topics. 

The first method of qualitative data collection we will include here is elite interviews. Elite 
interviews are called as such because they focus on a population that may be hard to 
access. One concern unique to elite interviews is access to the population. One usually must 
have some kind of inside connection to interview typical elite populations such as CEOs, 
Congresspeople and other elected officials. Interviews can be structured where all 
questions are determined before hand. Semi-structured interviews are most common 
though where some pre-determined questions are asked and the researcher can follow 
interesting paths as they come up. Finally, unstructured interviews have very little 
predetermined content and are primarily exploratory and used in the early stages of 
projects. These data can actually be recorded, using a tape recorder and then transcribed, 
or may be collected through interviewer notes. Focus groups are similar to interviews but 
include group dynamics as well. 

Another method of qualitative data collection is participant observation. This requires the 
researcher to sample places or contexts of interest to observe. The data are primarily 
collected through researcher notebooks that can either be used while observing, if it is not 
obtrusive or a private context, or after the fact, as soon as possible. 

Document and texts are also considered qualitative data. In political science, one popular 
document to analyze is Congressional testimony. Other popular documents include 
newspapers and social media. These data are inherently qualitative. When the researcher 
relies primarily on their interpretations and quotes in analysis, then the analysis is 
qualitative as well. 

For qualitative analyses of these types of data, researchers use various theory-based coding 
techniques that help demonstrate the patterns that emerge. This can then be quantitatively 
analyzed if numbers are attached to the codes (with the exception of participant 
observation to the authors’ knowledge). This process is often done by multiple researchers 
with some overlapping samples to attempt to measure the agreement of the researchers on 
the codes present in the data. This is called inter-rater reliability which will be discussed 
again later in the text. 



Quantitative Methods of Data Collection 

The previous section documented a very small selection of qualitative methods of data 
collection with some discussion of analysis. Data that is collected in a quantitative format 
or method is, by defintion numeric. Sometimes those numbers have inherent meaning 
while other times the numbers are associated with qualitative labels. 

The most obvious type of data where the numbers have inherent meaning is financial data. 
In public policy and administration, this is often budgets from governments or nonprofit 
organizations. In finance, researchers analyze stock prices. Economics also analyze prices 
and costs in various markets. Financial data, or data collected in dollar units more broadly, 
are convenient for analysis as you will learn later in the text. Their truly continuous nature, 
often to two decimal points, is valuable for many introductory methods in social science 
research. 

Another common method of data collection that is often considered quantitative is web 
scraping. This method of data collection involves setting up a computer script (such as 
through R) to download a set of documents from the internet. As mentioned above, the 
documents themselves are qualitative. However, in web scrapping the number of 
documents is often so large that it is not logner considered qualitative data and requires 
advanced analysis techniques that are quantitative such as topic modelling or machine 
learning. 

Finally, surveys are often considered a quantitative method of data collection. Surveys are 
similar to interviews but usually more structured and applied to a larger sample. One 
important distinction is the sampling which has already been discussed. Surveys, usually 
though not always, have larger sample sizes than interview data. 

Designing Surveys 

The remainder of this chapter will introduce you to some principles for designing good, 
scientific surveys. This again should be supplemented with further reading on the topic but 
will serve as a brief introduction to curious students. 

When designing a survey, first the sample or target population must be determined. This 
decision is intertwined with research design aspects already discussed but is also 
important for considering the language used. For example, a survey targeting high school 
age children will use simpler or different language than a survey targeting a sample of the 
overall US population which in turn will use different language than a survey targeting 
university professors. 

Once the survey target population has been decided, the design of the survey can begin. At 
this stage there are many things to consider. How is the survey being programmed or 
administered? Best practices for phone surveys are very different than for online surveys. 
What software is being used to make the survey if it is online? East Tennessee State 
University has access to a program called RedCap while many universities such as the 
University of Oklahoma us a program called Qualtrics. Other commonly used survey 
programming softwares, for online surveys, include SurveyMonkey and even Google 



Sheets. Readers of this text are encourage to investigate these various softwares on their 
own. Each comes with its own sets of strengths and weaknesses that you will want to be 
familiar with before beginning the design of your survey. 

Another important decision about survey design at this stage is length and topic. No single 
survey can cover all topics so you should focus your efforts on a domain of particular 
interest to you. This can be gender roles or environmental politics or international 
relations between East Asian countries and the US. A survey that attempted to address 
easch of these domains in depth would be too long and taxing for most respondents. 
Recommended lengths vary, and depend on budgets in many cases, but 20-30 minutes is 
generally considered a rough guideline. Time to complete can be estimated by asking 
friends, family, and a small sample of the relevant population to test the survey or pilot it 
on. These observations will not be included in the final data for analysis. 

Survey Question Design 

On surveys there are many types of questions you can design and use. Some are more 
qualitative while others are more quantitative. Some have lots of flexibility while others are 
relatively rigid in design. A few general principles apply to survey design. 

One, for most questions, the answers should be exhaustive and mutually exclusive. More 
than one answer should not apply to you. If there is a question where more than one 
answer can apply, then respondents should be given the opportunity to say so. One way 
this is implemented in practice is by including a Don’t Know or Not Sure option. However, 
this has many analytical risks as how the researcher chooses to address those respondents 
who choose these options can drastically affect their conclusions. 

Two, scales should be consistent for similar questions when possible. This can lead to more 
efficient design, such as using a table in the questions, and reducing the cognitive load on 
respondents. 

Three, extraneous text or description should be minimized whenever possible. Some 
questions require lengthy set-up or vignettes and therefore are exceptions to this rule. 
However, generally, the amount of text on a survey question should be kept to a minimum. 

The list could go on and on but these three principles represent some good general rules 
for new survey designers. 

More Specifics on Question Design 

One set of relatively rigid questions is those that ask for demographics. Many researchers, 
such as those who collected the data used in this text, attempt to use the questions asked by 
the U.S. Census Bureau. For example, the way race is asked on the data used in this text is 
similar to the Census questions. In particular, the separation of Hispanic as an ethincity 
separate from the race question follows these norms. Demographic questions also provide 
a good venue to bring up survey ordering. Questions at the beginning are most likely to be 
finished. Thus, you generally want to put questions of highest importance early in the 
survey. Demographics are tricky in this regard. They are often vital for social science 
research but putting them at the beginning of the survey may lead to non-response on 



other more substantive questions. In political science, the placement of ideology and 
partisanship questions are also vital. They are key to many research questions but putting 
them early in the survey may both some respondents and cause them to stop responding as 
well. In the data for this project, most demographic questions were asked in the first pages 
while political questions were asked in the last. 

Among demographic questions we see some variety. Questions like the race question used 
in this text are what can be called closed ended questions with an open ended response as 
most options are stated by the survey. There is, however, one opended ended option that is 
Other which requires respondents to type in their race that is not in the list. A purely open 
ended demographic question is income or age. In both cases, respondents must type in (or 
on a phone survey, state) verbatim their age and income. Other open ended questions give 
respondents a text box, if online, or just time to state their answer. These questions result 
in data that is qualitative. Most other questions result in quantitative data because the 
qualitative label, say African American for race, is translated to a number that represents 
that label, say 2. These numbers can then be used in quantitative analyses. 

Choosing between close and open ended questions requires researchers to prioritize their 
research questions and desired data. Open ended questions result in more nuanced, deeper 
data but cannot be analyzed, as easily, with typical quantiative methods such as those 
taught in this text. 

These sections only scratch the surface of survey design. Other concerns include how the 
answers are formatted (radio button, slider, etc.), appropriate length of scales (5? 7? 10?), 
experimental designs (how many treatments?) and many more. Hopefully, this chapter will 
help students better understand about the complexities of data collection, either in their 
own project or for the data used in this text. So much of the work occurs before the data is 
ever even collected. 

Study Questions 
1) Design a survey question that is close-ended. Be sure to apply the principles of design 

and other recommendations from this chapter. 

2) Design a survey question that is open-ended. Be sure to apply the principles of design 
and other recommendations from this chapter. 

3) What qualitative method is most difficult to analyze quantitatively? Why? 

CHATPER FOUR: Downloading and Getting Started with Excel for 
Statistics 

This chapter will introduce you to the basics of using Excel in the textbook. In particular, 
this chapter will demonstrate how to access necessary add-ons. 



Introduction to Excel 

Excel is a Microsoft program used for many purposes though primarily for spreadsheet 
management. It can be use for budgeting, data management, and even statistical analysis – 
the topic of this book. Excel is a great tool for a number of reasons: 

• commonly found on most computers and provided by most workplaces, 

• great for visually examining data, and 

• graphical facilities for data analysis and display either on-screen or on hardcopy 

Excel is not as powerful or full featured as many of its competitors. However, its prevalence 
makes knowledge of it really valuable in the modern workplace. 

Downloading ToolPak 

Despite Excel’s many benefits, it does require an additional download or package to take 
full advantage of its statistical capabilities. In this section we will provide instructions to 
downloading this add-on called ToolPak. 

From Standalone, Desktop Based Excel 

First, you will need to cick on the File tab on the left side of the toolbar at the top of the 
screen. Then, click on Options at the bottom of the list to the left of the screen. On the left 
sidebar within the dialog box, you will choose Add-ins. After this, in the center section, 
there should be a list labelled Inactive Application Add-ins. Toward the top of this list you 
should see and click on “Analysis ToolPak – VBA” (There is also an option for “Analysis 
Toolpak”. If you only have one option, either should be fine). Then at the bottom of the 
dialog box, next to the drop-down menu labelled Manage, click Go… And then check the box 
next to “Analysis ToolPak – VBA” (or “Analysis ToolPak”). At this point, select OK. 

At this point, the ToolPak can now be found under the “Data” tab of the toolbar across the 
top of your screen. It will be located on the far right end and will be labelled “Data 
Analysis”. Clicking on the Data Analysis link will bring up a dialog box containing a list of 
functions the ToolPak can perform. 

Downloading the Data Analysis Toolpak from Office 365 

First, click on the “Insert” tab in the middle of the toolbar at the top of the screen. Then, 
select “Office Add-ins”. In the dialog box that appears, select the “STORE” tab (located at the 
top right). In the search bar on the left, type “analysis toolpak”. From the results, find 
“XLMiner Analysis ToolPak” in the list in the center of the dialog box (it should be the only 
program that comes up). Click “Add”. The ToolPak should appear as a sidebar on the right 
side of your screen with a list of options similar to the Analysis ToolPak in the standalone 
version of Excel.  

To access the ToolPak later from another device, you will need to repeat the first steps of 
this process, then go to the “MY ADD-INS” tab of the Office Add-ins dialog box.For the 



additional device, select XLMiner Analysis ToolPak (likely the only program listed) and 
then click “Add” at the bottom of the dialog box. 

Data in Excel 

Excel can handle a few different file types as data. The primary type that will be used for 
the book and accompanying course is a comma separated file, or .csv file type. A CSV is a 
convenient file type that is portable across many operating platforms (Mac, Windows, etc) 
as well as statistical/data manipulation softwares. Other common file types are text (.txt) 
and Excel files (.xls or .xlsx). Each of these can be opened easily in Excel. Some more 
advanced statistical softwares require their own data file type. These can often, with some 
care, be opened in Excel as well. 

For the purposes of the book, we will acquire our data by going here. You will then type 
your e-mail where it says Request Data. You should then receive an e-mail with the data 
attached as a .csv file. First, you will want to download this data onto your computer. We 
recommend creating a folder specifically for the book and its data (and if you’re in the class 
for your classwork). 

Data in Manipulation in Excel 

Excel is a very flexible tool for manipulating data into various subsets and forms. Excel will 
allow users to transform their data from long to wide formats, remove NA values, recode 
variables, etc. In order to make the downloaded data more manageable for the book, we are 
going to do two things. First, we want to restrict our data to one wave. The data we 
downloaded represent many waves of a quarterly survey that is sent to a panel of 
Oklahoma residents on weather, climate and policy preferences. This book will not venture 
into panel data analysis or time series analysis, as it is an introductory text, and therefore 
we simply want one cross section of data for our analysis. 

To do this, go to the Data Tab and choose Filter.  Unselect the option for Wave 12 (Fall 
2016). Then highlight the first row by clicking on the number to the left of the first column. 
Then, hit control-shift-down arrow to highlight all remaining rows. Then press F5 (or the 
Mac equivalent). This will open the Go To box. Click Special in the bottom left. Then choose 
"Visible cells only" and click okay. Then, right click on the selection and choose delete row. 
Now remove the filter and you should be left with only the observations of one wave of the 
original panel data. If this doesn't work, the Class Data Set will also be provided to students 
in the course and can be access from the original github site for the original text.  

Saving and Writing Data 

Saving or writing data that we have manipulated is a useful tool. It allows us to easily share 
datasets we have created with others. This is useful for collaboration. Additionally, this will 
be useful for the book, as our new dataset is the one that will be worked with throughout 
the book. This dataset is much smaller than the one we originally downloaded and 
therefore will allow for quicker load times as well as hopefully reduce potential confusion.  

ttp://crcm.ou.edu/epscordata/


Students using Excel should save various versions of their data if they make changes to the 
data's structure. These files should have names that are descriptive for the student or 
researcher and include the date they were saved on. This will allow the researcher student 
to go back and examine the changes they made over time. It is best to generally add on new 
variables or data without getting rid of old dat if possible, with the exception of this initial 
subset. This means you won't ever lose data you might need again someday but don't think 
you need now.  

Study Questions 

1) Do you have the ToolPak downloaded on your personal computer (laptop or desktop)? If 
not, why not?  

2) Why is Excel a useful software to learn? 

CHAPTER FIVE: Exploring and Visualizing Data 

You have your plan, you carry out your plan by getting out and collecting your data, and 
then you put your data into a file.  You are excited to test your hypothesis, so you 
immediately run your multiple regression analysis and look at your output.  You can do 
that (and probably will even if we advise against it), but before you can start to make sense 
of that output you need to look carefully at your data.  You will want to know things like 
"how much spread do I have in my data" and "do I have any outliers".  (If you have limited 
spread, you may discover that it is hard to explain variation in something that is nearly a 
constant and if you have an outlier, your statistics may be focused on trying to explain that 
one case.)  

 

In this chapter, we will identify the ways to characterize your data before you do serious 
analysis, both to understand what you are doing statistically and to error-check. 

 

Characterizing Data 

What does it mean to characterize your data? First, it means knowing **how many 
observations** are contained in your data and **the distribution** of those observations 
over the range of your variable(s). What kinds of measures (interval, ordinal, nominal) do 
you have, and what are the ranges of valid measures for each variable? How many cases of 
missing (no data) or mis-coded (measures that fall outside the valid range) do you have? 
What do the coded values represent? While seemingly trivial, checking and evaluating your 
data for these attributes can save you major headaches later. For example, missing values 
for an observation often get a special code -- say, "-99" -- to distinguish them from valid 
observations. If you neglect to treat these values properly, Excel (or any other statistics 
program) will treat that value as if it were valid and thereby turn your results into a royal 
hairball. We know of cases in which even seasoned quantitative scholars have made the 



embarrassing mistake of failing to properly handle missing values in their analyses. In at 
least one case, a published paper had to be retracted for this reason. So don't skimp on the 
most basic forms of data characterization! 

The dataset used for purposes of illustration in this version of this text is taken from a 
survey of Oklahomans, conducted in 2016, by the University of Oklahoma's Center for Risk 
and Crisis Management. The survey question wording and background will be provided in 
class. However, for purposes of this chapter, note that the measure of  `ideology` consists of 
a self-report of political ideology on a scale that ranges from 1 (strongly liberal) to 7 
(strongly conservative); the measure of the `perceived risk of climate change` ranges from 
zero (no risk) to 10 (extreme risk). `Age` was measured in years.  

It is often useful to graph the variables in your dataset to get a better idea of their 
distribution. In addition, we may want to compare the distribution of a variable to a 
theoretical distribution (typically a normal distribution). This can be accomplished in 
several ways, but we will show two here---a histogram and a density curve---and more will 
be discussed in later chapters. For now we examine the distribution of the variable 
measuring age. The red line on the density visualization presents the normal distribution 
given the mean and standard deviation of our variable. 

A histogram creates intervals of equal length, called bins, and displays the frequency of 
observations in each of the bins. To produce a histogram in Excel first go to the Insert tab 
and then charts in Excel. For a histogram, you will choose the Insert Statistic Chart which is 
the middle icon of the small icons. Then choose the first option histogram. This will result 
in a very bare bones chart such as the one below. 

 

A plot such as this should be polished before being shown to any important end audience. 
Both axes should be labeled appropriately. In this case, the X-axis (horizontal) should be 
labelled age and the y-axis (vertical) should be labelled frequency. These can be added 
using the Axis Titles menu which can be accessed by clicking on the big Plus sign to the 
right of the figure and choosing Axis Titles. Text boxes will populate on the figure and you 



can type in appropriate titles. The Chart Title should also be replaced with a general main 
title that is informative such as “Histogram of Age for Survey Respondents”. In some cases, 
this will not be necessary as you will be told to put the title in text below the figure. This 
figure can be transformed into a density function with some effort in Excel. A density plot is 
similar but instead of bars it plots a line and the y-axis is probability density instead of 
frequency.  

You can also get an overview of your data using a table known as a frequency 
distribution. The frequency distribution summarizes how often each value of your 
variable occurs in the dataset. If your variable has a limited number of values that it can 
take on, you can report all values, but if it has a large number of possible values (e.g., age 
of respondent), then you will want to create categories, or bins, to report those 
frequencies. In such cases, it is generally easier to make sense of the percentage 
distribution. The table below is a frequency distribution for the ideology variable. From 
that table we see, for example, that about one-third of all respondents are moderates. We 
see the numbers decrease as we move away from that category, but not uniformly. There 
are a few more people on the conservative extreme than on the liberal side and that the 
number of people placing themselves in the penultimate categories on either end is 
greater than those towards the middle. The histogram and density curve would, of 
course, show the same pattern. 

The other thing to watch for here (or in the charts) is whether there is an unusual 
observation. If one person scored 17 in this table, you could be pretty sure a coding error 
was made somewhere. You cannot find all your errors this way, but you can find some, 
including the ones that have the potential to most seriously adversely affect your 
analysis. 

A frequency table can be made using the Pivot Table function in Excel. First, select all of our 
data. This can be done by highlighting the first column by clicking on it then using 
ctrl+shift+down and then ctrl+shift+right. Then go to the Insert Tab. Then choose Pivot 
Table. This should pop up the Pivot Table commands on the right of the screen. From here, 
search for your preferred variable, in this case ideol. Drag and drop this to the rows field 
and the values field. Drag and drop ideol to the values field two more times. On the second 
one, click and choose Value Field Settings. Then click on Show Values As. Then from the 
dropdown menu choose % of Column Total. Repeat these steps with the third ideology and 
instead choose % of Running Total. This will return the following table.  

Row Labels 
Count of 
ideol 

Count of 
ideol2 

Count of 
ideol3 

1 122 4.79% 4.79% 

2 279 10.95% 15.74% 

3 185 7.26% 23.01% 

4 571 22.42% 45.43% 

5 328 12.88% 58.30% 

6 688 27.01% 85.32% 

7 351 13.78% 99.10% 

NA 23 0.90% 100.00% 



(blank)  0.00% 100.00% 

Grand Total 2547 100.00%  

As above, this table should be polished by removing the blank row and making nicer, more 
descriptive column titles. Having obtained a sample, and described the frequency of key 
variables, it is important to be able to characterize that sample other ways. In particular, 
it is important to understand the probability distributions associated with each variable 
in the sample. 

Central Tendency 

Measures of central tendency are useful because a single statistic can be used to describe 
the distribution. We focus on three measures of central tendency: the mean, the median, 
and the mode. 

Measures of Central Tendency 

The Mean: The arithmetic average of the values 

The Median: The value at the center of the distribution 

The Mode: The most frequently occurring value 

We will primarily rely on the mean, because of its efficient property of representing the 
data. But medians – particularly when used in conjunction with the mean - can tell us a 
great deal about the shape of the distribution of our data. We will return to this point 
shortly. 

Level of Measurement and Central Tendency 

The three measures of central tendency – the mean, median, and mode – each tell us 
something different about our data, but each has some limitations as well (especially when 
used alone). Knowing the mode tells us what is most common, but we do not know how 
common and, using it alone, would not even leave us confident that it is an indicator of 
anything very central. When rolling in your data, it is generally a good idea to roll in all the 
descriptive statistics that you can to get a good feel for them. 

One issue, though, is that your ability to use any statistic is dependent on the level of 
measurement for the variable. The mean requires you to add all your observations 
together. But you cannot perform mathematical functions on ordinal or nominal level 
measures. Your data must be measured at the interval level to calculate a meaningful mean. 
(If you ask Excel to calculate the mean student id number, it will, but what you get will be 
nonsense.) Finding the middle item in an order listing of your observations (the median) 
requires the ability to order your data, so your level of measurement must be at least 
ordinal. Therefore, if you have nominal level data, you can only report the mode (but no 
median or mean), so it is critical that you also look beyond central tendency to the overall 
distribution of the data. 

Moments 



In addition to measures of central tendency, “moments” are important ways to characterize 
the shape of the distribution of a sample variable. Moments are applicable when the data 
measured is interval type (the level of measurement). The first four moments are those 
that are used most often. 

The First Four Moments 

 1. Expected Value: The expected value of a variable, E(X) is its mean.  

  𝐸(𝑋) =  �̅� =
Σ𝑋𝑖

𝑛
 

2. Variance: The variance of a variable concerns the way that the observed values 
are spread around either side of the mean.  

𝑠𝑥
2 =

Σ(𝑋 − �̅�)2

𝑛 − 1
 

3. Skewness: The skewness of a variables is a measure of its asymmetry.  

𝑆 =
Σ(𝑋 − �̅�)3

𝑛 − 1
 

4. Kurtosis: The kurtosis of a variable is a measure of its peakedness.  

𝐾 =
Σ(𝑋 − �̅�)4

𝑛 − 1
 

 

The First Moment – Expected Value 

The expected value of a variable is the value you would obtain if you could multiply all 
possible values within a population by their probability of occurrence. Alternatively, it can 
be understood as the mean value for a population variable. An expected value is a 
theoretical number, because we usually cannot observe all possible occurrences of a 
variable. The mean value for a sample is the average value for the variable X, and is 
calculated by adding the values of X and dividing by the sample size n. In Excel, this can be 
achieved by typing into an empty cell =AVERAGE(range of data) and highlighting the 
variable for which you would like to calculate a mean. 

The Second Moment – Variance and Standard Deviation 

The variance of a variable is a measure that illustrates how a variable is spread, or 
distributed, around its mean. The population variance is expressed as 𝜎𝑥

2while the sample 
variance is presented the same but replacing the lower-case sigma with a lowercase s.  

Variance is measured in squared deviations from the mean, and the sum of these squared 
variations is termed the total sum of squares. Why squared deviations? Why not just sum 
the differences? While the latter strategy would seemingly be simpler, it would always sum 



to zero. By squaring the deviations we make them all positive, so the sum of squares will 
always be a positive number. 

Total Sum of Squares is the squared summed total of the variation of a variable around its 
mean. 

This can be expressed as: 

𝑇𝑆𝑆𝑥 = ∑(𝑋𝑖 −  𝑋)̅̅ ̅2 

Therefore, 

𝑠𝑥
2 =

𝑇𝑆𝑆𝑥

𝑛 − 1
 

The square root of the variance is called the standard deviation𝜎𝑥 . The sample s.d. is 
expressed as:  

𝑠𝑥 = √
Σ(𝑋−�̅�)2

𝑛−1
.  

This can be calculated in Excel using =VAR.S(Range of the Variable) and = STDEV.S(Range 
of Variable). The .S versions are used because we are working with a sample and not a 
population.  

The Third Moment – Skewness 

Skewness is a measure of the asymmetry of a distribution. Specifically, skewness refers to 
the position of the expected value (i.e., mean) of a variable distribution relative to its 
median. It is calculated as: 

𝑆 =

Σ(𝑋 − �̅�)3

𝑛 − 1

(√
Σ(𝑋 − �̅�)2

(𝑛 − 1)
)

3  

When the mean and median of a variable are roughly equal, then the Mean ~~ Median; the 
distribution is approximately symmetrical and S = 0. This means an equal proportion of the 
variable lies on either side of the mean. However, if the Mean > Median then the variable 
has a positive skew and S > 0. If the Median > Mean the then S < 0 and the variable has a 
negative skew.  



 

  



 

The Fourth Moment – Kurtosis  

The kurtosis of a distribution refers to the the peak of a variable (i.e., the mode) and the 
relative frequency of observations in the tails. It is calculated:  

𝐾 =

Σ(𝑋 − �̅�)4

(𝑛 − 1)

(
Σ(𝑋 − 𝑋)̅̅ ̅2

(𝑛 − 1)
)

2  

In general, higher kurtosis is indicative of a distribution where the variance is a result of 
low frequency yet more extreme observed values. In addition, when K<3, the distribution is 
platykurtic, which is flatter and/or more “short-tailed” than a normal distribution. When K 
> 3, the distribution is leptokurtic, which is a slim, high-peak and long tails. For a normal 
distribution, K = 3. 

Order Statistics 

Apart from central tendency and moments, probability distributions can also be 
characterized by order statistics. Order statistics are based on the position of a value in an 
ordered list. Typically, the list is ordered from low values to high values. 

Order Statistics 



Summaries of values based on position in an ordered list of all values. Types of order 
statistics include the minimum value, the maximum value, the median, quartiles, and 
percentiles. 

• Minimum Value: The lowest value of a distribution 

• Maximum Value: The highest value of a distribution 

• Median: The value at the center of a distribution 

• Quartiles: Divides the values into quarters 

• Percentiles: Divides the values into hundredths 

Median 

The median is the value at the center of the distribution, therefore 50% of the observations 
in the distribution will have values above the median and 50% will have values below. For 
samples with a n-size that is an odd number, the median is simply the value in the 
middle.  For example, with a sample consisting of the observed values of 1,2,3,4,5. the 
median is 3. Distributions with an even numbered n-size, the median is the average of the 
two middle values. The median of a sample consisting of the observed values 
of 1,2,3,4,5,6  would be (3+4)/2 or 3.5.  

The median is the order statistic for central tendency. In addition, it is more “robust” in 
terms of extreme values than the mean. Extremely high values in a distribution can pull the 
mean higher, and extremely low values pull the mean lower. The median is less sensitive to 
these extreme values. The median is therefore the basis for “robust estimators”, to be 
discussed later in this book. 

Quartiles 

Quartiles split the observations in a distribution into quarters. The first quartile, Q1, 
consists of observations whose values are within the first 25% of the distribution. The 
values of the second quartile, Q2, are contained within the first half (50%) of the 
distribution, and is marked by the distribution’s median. The third quartile, Q3, includes 
the first 75% of the observations in the distribution. 

The interquartile range (IQR) measures the spread of the ordered values. It is calculated by 
subtracting Q1from Q3, or IQR = Q3-Q1. 

We can visually examine the order statistics of a variable with a boxplot. A boxplot displays 
the range of the data, the first and third quartile, the median, and any outliers. This can be 
done in Excel using the Insert tab, Charts, Statistic Chart, Box and Whisker Chart. For our 
data, for age, the chart below is created with a few modifications including using gray-scale 
(this color scheme is greatly preferred to the default). 



 

Percentiles 

Percentiles- list the data in hundredths. For example, scoring in the 99th percentile on the 
GRE means that 99% of the other test takers had a lower score. Percentiles can be 
incorporated with quartiles (and/or other order statistics) such that: - First Quartile: 25th 
percentile - Second Quartile: 50th percentile (the median) - Third Quartile: 75th percentile. 
These can be found in Excel by choosing an open cell and typing in:  

= PERCENTILE.EXC(range of data,0.25) 

= PERCENTILE.EXC(range of data,0.5) 

= PERCENTILE.EXC(range of data,0.75). 

The second part of this function can range anywhere between 0 and 1 to acquire any 
percentile, not just quartiles. We can also find the minimum and maximum of the data or 
variable using similar functions: 

=MIN(Range of data) 

=MAX(Range of data). 

Summary 

It is a serious mistake to begin your data analysis without understanding the basics of your 
data. Knowing their range, the general distribution of your data, the shape of that 
distribution, their central tendency, and so forth will give you important clues as you move 
through your analysis and interpretation and prevent serious errors from occurring. 
Readers also often need to know this information to provide a critical review of your work. 

Overall, this chapter has focused on understanding and characterizing data. We refer to the 
early process of evaluating a data set as rolling in the data – getting to know the 
characteristic shapes of the distributions of each of the variables, the meanings of the 



scales, and the quality of the observations. The discussion of central tendency, moments, 
and order statistics are all tools that you can use for that purpose. As a practicing scholar, 
policy analyst, or public administration practitioner, this early stage in quantitative 
analysis is not optional; a failure to carefully and thoroughly understand your data can 
result in analytical disaster, excruciating embarrassment, and maybe even horrible 
encounters with the Killer Rabbit of Caerbannog. 

Think of rolling in the data, then, as your version of the Holy Hand Grenade of Antioch. 

Study Questions 

1. Define the mean using both mathematical notation and words. 

2. What measures of central tendency can be applied to continuous (interval and ratio) 
data? Which measures of central tendency can be applied to ordinal data? Which 
measures of central tendency can be applied to nominal/categorical data? 

3. Why is digging into the data and the distribution of your data an important first (or 
early) step in your analysis? 

4. What are the third and fourth moments of a distribution? What do they tell us? 

 

CHAPTER SIX: Inference 

This chapter considers the role of inference—learning about populations from samples—
and the practical and theoretical importance of understanding the characteristics of your 
data before attempting to undertake statistical analysis. As we noted in the prior chapters, 
it is a vital first step in empirical analysis to “roll in the data.” 

Inference: Populations and Samples 

The basis of hypothesis testing with statistical analysis is inference. In short, inference—
and inferential statistics by extension—means deriving knowledge about a population from 
a sample of that population. Given that in most contexts it is not possible to have all the 
data on an entire population of interest, we therefore need to sample from that 
population.1 However, in order to be able to rely on inference, the sample must cover the 
theoretically relevant variables, variable ranges, and contexts. 

Populations and Samples 

In doing statistical analysis we differentiate between populations and samples. The 
population is the total set of items that we care about. The sample is a subset of those items 
that we study in order to understand the population. While we are interested in the 
population we often need to resort to studying a sample due to time, financial, or logistic 
constraints that might make studying the entire population infeasible. Instead, we use 
inferential statistics to make inferences about the population from a sample. 
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Sampling and Knowing 

Take a relatively common – but perhaps less commonly examined – expression about what 
we “know” about the world around us. We commonly say we “know" people, and some we 
know better than others. What does it mean to know someone? In part it must mean that 
we can anticipate how that person would behave in a wide array of situations. If we know 
that person from experience, then it must be that we have observed their behavior across a 
sufficient variety of situations in the past to be able to infer how they would behave in 
future situations. Put differently, we have “sampled” their behavior across a relevant range 
of situations and contexts to be confident that we can anticipate their behavior in the 
future.2 Similar considerations about sampling might apply to “knowing” a place, a group, 
or an institution. Of equal importance, samples of observations across different 
combinations of variables are necessary to identify relationships (or functions) between 
variables. In short, samples – whether deliberately drawn and systematic or otherwise – 
are integral to what we think we know of the world around us. 

Sampling Strategies 

Given the importance of sampling, it should come as little surprise that there are numerous 
strategies designed to provide useful inference about populations. For example, how can 
we judge whether the temperature of a soup is appropriate before serving it? We might stir 
the pot, to assure uniformity of temperature across possible (spoon-sized) samples, then 
sample a spoonful. A particularly thorny problem in sampling concerns the practice of 
courtship, in which participants may attempt to put “their best foot forward” to make a 
good impression. Put differently, the participants often seek to bias the sample of relational 
experiences to make themselves look better than they might on average. Sampling in this 
context usually involves (a) getting opinions of others, thereby broadening (if only 
indirectly) the size of the sample, and (b) observing the courtship partner over a wide 
range of circumstances in which the intended bias may be difficult to maintain. Put 
formally, we may try to stratify the sample by taking observations in appropriate “cells” 
that correspond to different potential influences on behavior – say, high stress 
environments involving preparation for final exams or meeting parents. In the best 
possible case, however, we try to wash out the effect of various influences on our samples 
through randomization. To pursue the courtship example (perhaps a bit too far!), 
observations of behavior could be taken across interactions from a randomly assigned 
array of partners and situations. But, of course, by then all bets are off on things working 
out anyway. 

 

Sampling Techniques 

When engaging in inferential statistics to infer about the characteristics of a population 
from a sample, it is essential to be clear about how the sample was drawn. Sampling can be 
a very complex practice with multiple stages involved in drawing the final sample. It is 
desirable that the sample is some form of a probability sample, i.e., a sample in which 
each member of the population has a known probability of being sampled. The most direct 
form of an appropriate probability sample is a random sample where everyone has the 
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same probability of being sampled. A random sample has the advantages of simplicity (in 
theory) and ease of inference as no adjustments to the data are needed. But, the reality of 
conducting a random sample may make the process quite challenging. Before we can draw 
subjects at random, we need a list of all members of the population. For many populations 
(e.g. adult US residents) that list is impossible to get. Not too long ago, it was reasonable to 
conclude that a list of telephone numbers was a reasonable approximation of such a listing 
for American households. During the era that landlines were ubiquitous, pollsters could 
randomly call numbers (and perhaps ask for the adult in the household who had the most 
recent birthday) to get a good approximation of a national random sample. (It was also an 
era before caller identification and specialized ringtones, which meant that calls were 
routinely answered, therefore decreasing - but not eliminating - concern with response 
bias.) Of course, telephone habits have changed and pollsters find it increasingly difficult to 
make the case that random dialing of landlines serves as a representative sample of adult 
Americans. 

Other forms of probability sampling are frequently used to overcome some of the 
difficulties that pure random sampling presents. Suppose our analysis will call upon us to 
make comparisons based on race. Only 12.6% of Americans are African-American. Suppose 
we also want to take into account religious preference. Only 5% of African-Americans are 
Catholic, which means that only .6% of the population is both. If our sample size is 500, we 
might end up with three Catholic African-Americans. A stratified random sample (also 
called a quota sample) can address that problem. A stratified random sample is similar to a 
simple random sample, but will draw from different subpopulations, strata, at different 
rates. The total sample needs to be weighted, then, to be representative of the entire 
population. 

Another type of probability sample that is common in face-to-face surveys relies on cluster 
sampling. Cluster sampling initially samples based on clusters (generally geographic units, 
such as census tracts) and then samples participants within those units. In fact, this 
approach often uses multi-level sampling where the first level might be a sample of 
congressional districts, then census tracts, and then households. The final sample will need 
to be weighted in a complex way to reflect varying probabilities that individuals will be 
included in the sample. 

Non-probability samples, or those for which the probability of inclusion of a member of 
the population in the sample is unknown, can raise difficult issues for statistical inference; 
however, under some conditions, they can be considered representative and used for 
inferential statistics. 

Convenience samples (e.g., undergraduate students in the Psychology Department subject 
pool) are accessible and relatively low cost, but may differ from the larger population to 
which you want to infer in important respects. Necessity may push a researcher to use a 
convenience sample, but inference should be approached with caution. A convenience 
sample based on “I asked people who came out of the bank” might provide quite different 
results from a sample based on “I asked people who came out of a payday loan 
establishment”. 



Some non-probability samples are used because the researcher does not want to make 
inferences to a larger population. A purposive or judgmental sample relies on the 
researcher’s discretion regarding who can bring useful information to bear on the subject 
matter. If we want to know why a piece of legislation was enacted, it makes sense to sample 
the author and co-authors of the bill, committee members, leadership, etc., rather than a 
random sample of members of the legislative body. 

Snowball sampling is similar to a purposive sample in that we look for people with certain 
characteristics but rely on subjects to recommend others who meet the criteria we have in 
place. We might want to know about struggling young artists. They may be hard to find, 
though, since their works are not hanging in galleries so we may start with a one or more 
that we can find and then ask them who else we should interview. 

Increasingly, various kinds of non-probability samples are employed in social science 
research, and when this is done it is critical that the potential biases associated with the 
samples be evaluated. But there is also growing evidence that non-probability samples can 
be used inferentially - when done very carefully, using complex adjustments. Wang, et 
al. (2014) demonstrate that a sample of Xbox users could be used to forecast the 2012 
presidential election outcome. 3 An overview of their technique is relatively simple, but the 
execution is more challenging. They divided their data into cells based on politically and 
demographically relevant variables (e.g., party id, gender, race, etc.) and ended up with 
over 175,000 cells - poststratification. (There were about three-quarters of a million 
participants in the Xbox survey). Basically, they found the vote intention within each cell 
and then weighted each cell based on a national survey using multilevel regression. Their 
final results were strikingly accurate. Similarly, Nate Silver, with FiveThirtyEight, has 
demonstrated remarkable ability to forecast based on his weighted sample of polls taken 
by others. 

Sampling techniques can be relatively straightforward, but as one moves away from simple 
random sampling, the sampling process either becomes more complex or limits our ability 
to draw inferences about a population. Researchers use all of these techniques for good 
purposes and the best technique will depend on a variety of factors, such as budget, 
expertise, need for precision, and what research question is being addressed. For the 
remainder of this text, though, when we talk about drawing inferences, the data will be 
based upon an appropriately drawn probability sample. 

So How is it That We Know? 

So why is it that the characteristics of samples can tell us a lot about the characteristics of 
populations? If samples are properly drawn, the observations taken will provide a range of 
values on the measures of interest that reflect those of the larger population. The 
connection is that we expect the phenomenon we are measuring will have 
a distribution within the population, and a sample of observations drawn from the 
population will provide useful information about that distribution. The theoretical 
connection comes from probability theory, which concerns the analysis of random 
phenomena. For present purposes, if we randomly draw a sample of observations on a 
measure for an individual (say, discrete acts of kindness), we can use probability theory to 
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make inferences about the characteristics of the overall population of the phenomenon in 
question. More specifically, probability theory allows us to make inference about the shape 
of that distribution – how frequent are acts of kindness committed, or what proportion of 
acts evidence kindness? 

In sum, samples provide information about probability distributions. Probability 
distributions include all possible values and the probabilities associated with those values. 
The normal distribution is the key probability distribution in inferential statistics. 

The Normal Distribution 

For purposes of statistical inference, the normal distribution is one of the most important 
types of probability distributions. It forms the basis of many of the assumptions needed to 
do quantitative data analysis, and is the basis for a wide range of hypothesis tests. A 
standardized normal distribution has a mean, μ, of 0 and a standard deviation (s.d.), σ, of 1. 
The distribution of an outcome variable, Y, can be described: 

Y∼N(μy, σ2) 

Where ~ stands for “distributed as”, N indicates the normal distribution, and the mean μy 
and variance σ2 are the parameters. The probability function of the normal distribution is 
expressed below: 

The Normal Probability Density Function: The probability density function (PDF) of a 
normal distribution with mean μ and standard deviation σ: 

𝑓(𝑥) =
1

𝜎√2𝜋
 𝑒
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The Standard Normal Probability Density Function: The standard normal PDF has 
a μ=0 and σ=1 is represented in equation and graphical form below: 

𝑓(𝑥) =
1
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Note that the tails go to ±∞±∞. In addition, the density of a distribution over the range of x 
is the key to hypothesis testing. With a normal distribution, ∼68%∼ of the observations 
will fall within 1 standard deviation of the mean, ∼95% will fall within 2 standard 
deviations, and ∼99.7%within 3 standard deviations. This is illustrated below: 



 

Figure ~68%, 1 standard deviation

 

Figure: 95%, 2 standard deviations 



 

Figure, 99.7%, 3 standard deviations 

 

The normal distribution is characterized by several important properties. The distribution 
of observations is symmetrical around the mean μ; the frequency of observations is highest 
(the mode) at μ, with more extreme values occurring with lower frequency; and only the 
mean and variance are needed to characterize data and test simple hypotheses. 

The Properties of the Normal Distribution 

• It is symmetrical around its mean and median, μ 

• The highest probability (aka “the mode”) occurs at its mean value 

• Extreme values occur in the tails 

• It is fully described by its two parameters, μ and σ2 

If the values for μ and σ2are known, which might be the case with a population, then we can 
calculate a Z-score to compare differences in μ and σ2 between two normal distributions or 
obtain the probability for a given value given μ and σ2. The Z-score is calculated: 

𝑍 =
𝑌 − 𝜇𝑦

𝜎
 

Therefore, if we have a normal distribution with a μ of 70 and a σ2 of 9, we can calculate a 
probability for i=75. First, we calculate the Z-score, then we determine the probability of 
that score based on the normal distribution. In Excel, this can be done using the simple 
math commands at first. To find the probability or p-value of this in Excel, type into an 



empty cell, =NORM.DIST(75,70,3,TRUE). This returns a probability of 0.95221 which 
means observation is just outside of 2 standard deviations away. To calculate the sorts of p-
values used later in the book, simply calculate 1-0.95221 = 0.04779 which is less than the 
cut-off of 0.05.  

Standardizing a Normal Distribution and Z-scores 

A distribution can be plotted using the raw scores found in the original data. That plot will 
have a mean and standard deviation calculated from the original data. To utilize the normal 
curve to determine probability functions and for inferential statistics we will want to 
convert that data so that it is standardized. We standardize so that the distribution is 
consistent across all distributions. That standardization produces a set of scores that have a 
mean of zero and a standard deviation of one. A standardized or Z-score of 1.5 means, 
therefore, that the score is one and a half standard deviations about the mean. A Z-score of -
2.0 means that the score is two standard deviations below the mean. 

As the formula above indicated, standardizing is a simple process. To move the mean from 
its original value to a mean of zero, all you have to do is subtract the mean from each score. 
To standardize the standard deviation to one all that is necessary is to divide each score the 
standard deviation. 

The Central Limit Theorem 

An important property of samples is associated with the Central Limit Theorem (CLT). 
Imagine for a moment that we have a very large (or even infinite) population, from which 
we can draw as many samples as we’d like. According to the CLT, as the n-size (number of 
observations) within a sample drawn from that population increases, the more the 
distribution of the means taken from samples of that size will resemble a normal 
distribution. This is illustrated in the Figure below. Also note that the population does not 
need to have a normal distribution for the CLT to apply. Finally, a distribution of means 
from a normal population will be approximately normal at any sample size. 

 



Populations, Samples and Symbols 

It is important to note that, by convention, the symbols used for representing population 
parameters and sample statistics have different notation. These differences are shown in 
Table below. In short, population parameters are typically identified by using Greek letters 
and sample statistics are noted by English letters. Unless otherwise noted, the notation 
used in the remainder of this chapter will be in terms of samples rather than populations. 

 

Inferences to the Population from the Sample 

Another key implication of the Central Limit Theorem that is illustrated in the previous 
figure is that the mean of repeated sample means is the same, regardless of sample size, 
and that the mean of sample means is the population mean (assuming a large enough 
number of samples). Those conclusions lead to the important point that the sample mean is 
the best estimate of the population mean, i.e., the sample mean is an unbiased estimate of 
the population mean. The previous figure also illustrates as the sample size increases, the 
efficiency of the estimate increases. As the sample size increases, the mean of any 
particular sample is more likely to approximate the population mean. 

When we begin our research we should have some population in mind - the set of items 
that we want to draw conclusions about. We might want to know about all adult Americans 
or about human beings (past, present, and future) or about a specific meteorological 
condition. There is only one way to know with certainty about that population and that is 
to examine all cases that fit the definition of our population. Most of the time, though, we 
cannot do that – in the case of adult Americans it would be very time-consuming, 
expensive, and logistically quite challenging, and in the other two cases it simply would be 
impossible. Our research, then, often forces us to rely on samples. 

Because we rely on samples, inferential statistics are probability based. As the previous 
figure illustrates, our sample could perfectly reflect our population; it could be (and is 
likely to be) at least a reasonable approximation of the population; or the sample could 
deviate substantially from the population. Two critical points are being made here: the best 
estimates we have of our population parameters are our sample statistics, and we never 
know with certainty how good that estimate is. We make decisions (statistical and real 
world) based on probabilities. 

Confidence Intervals 



Because we are dealing with probabilities, if we are estimating a population parameter 
using a sample statistic, we will want to know how much confidence to place in that 
estimate. If we want to know a population mean, but only have a sample, the best estimate 
of that population mean is the sample mean. To know how much confidence to have in a 
sample mean, we put a confidence interval" around it. A confidence interval will report 
both a range for the estimate and the probability the population value falls in that range. 
We say, for example, that we are 95% confident that the true value is between A and B. 

To find that confidence interval, we rely on the standard error of the estimate. The 
previous figure plots the distribution of sample statistics drawn from repeated samples. As 
the sample size increases, the estimates cluster closer to the true population value, i.e., the 
standard deviation is smaller. We could use the standard deviation from repeated samples 
to determine the confidence we can have in any particular sample, but in reality we are no 
more likely to draw repeated samples than we are to study the entire population. The 
standard error, though, provides an estimate of the standard deviation we would have if we 
had drawn a number of samples. The standard error is based on the sample size and the 
distribution of observations in our data: 

𝑆𝐸 =
𝑠

√𝑛
 

where s is the sample standard deviation, and n is the size (number of observations) of the 
sample. 

The standard error can be interpreted just like a standard deviation. If we have a large 
sample, we can say that 68.26% of all of our samples (assuming we drew repeated 
samples) would fall within one standard error of our sample statistic or that 95.44% would 
fall within two standard errors. 

If our sample size is not large, instead of using z-scores to estimate confidence intervals, we 
use t-scores to estimate the interval. T-scores are calculated just like z-score, but our 
interpretation of them is slightly different. The confidence interval formula is: 

𝑋 ± 𝑆𝐸𝑥 ∗ 𝑡 

 
To find the appropriate value for t, we need to decide what level of confidence we want 
(generally 95%) and our degrees of freedom (df), which is n−1. We can find a confidence 
interval with EXCEL using the regular math functions. Use the AVERAGE function to 
calculate your mean. Then calculate your standard error by first using the STDEV.S function 
to calculate s then divide by SQRT(n). Then multiple the SE by your t-values. For a 95% 
confidence interval, this is 1.96.  

The Logic of Hypothesis Testing 

We can use the same set of tools to test hypotheses. In this section, we introduce the logic 
of hypothesis testing. In the next chapter, we address it in more detail. Remember that 
a hypothesis is a statement about the way the world is and that it may be true or false. 
Hypotheses are generally deduced from our theory and if our expectations are confirmed, 



we gain confidence in our theory. Hypothesis testing is where our ideas meet the real 
world. 

Due to the nature of inferential statistics, we cannot directly test hypotheses, but instead 
we can test a null hypothesis. While a hypothesis is a statement of an expected 
relationship between two variables, the null hypothesis is a statement that says there is no 
relationship between the two variables. A null hypothesis might read: 
As X increases, Y does not change. (We will discuss this topic more in the next chapter, but 
we want to understand the logic of the process here.) 

Suppose a principal wants to cut down on absenteeism in her school and offers an incentive 
program for perfect attendance. Before the program, suppose the attendance rate was 
85%. After having the new program in place for a while, she wants to know what the 
current rate is so she takes a sample of days and estimates the current attendance rate to 
be 88%. Her research hypothesis is: the attendance rate has gone up since the 
announcement of the new program (i.e., attendance is great than 85%). Her null hypothesis 
is that the attendance rate has not gone up since the announcement of the new program 
(i.e. attendance is less than or equal to 85%). At first it seems that her null hypothesis is 
wrong (88%>85%), but since we are using a sample, it is possible that the true population 
value is less than 85%. Based on her sample, how likely is it that the true population value 
is less than 85%? If the likelihood is small (and remember there will always be some 
chance), then we say our null hypothesis is wrong, i.e., we reject our null hypothesis, but 
if the likelihood is reasonable we accept our null hypothesis. The standard we normally use 
to make that determination is .05 – we want less than a .05 probability that we could have 
found our sample value (here 88%), if our null hypothesized value (85%) is true for the 
population. We use the t-statistic to find that probability. The formula is: 

𝑡 = 𝑥 −
𝜇

𝑠𝑒
 

To test the hypothesis that our mean for risk perceptions of climate change (glbcc_risk) is 
different from zero in EXCEL you will need a workbook that looks like the following: 

 

count 2536 `=COUNT(EJ1:EJ2548)

mean 5.945977918 `=AVERAGE(EJ1:EJ2548)

std dev 3.071251117 `=STDEV.S(EJ1:EJ2548)

st. err 0.060987482 `=L2570/SQRT(L2568)

hypothetical mean 0 0

alpha 0.05 0.05

tails 1 1

df 2535 `=L2568-1

t stat 97.49505513 `=(L2569-L2573)/L2571

p value 0 `=T.DIST.RT(L2577,L2576)

t crit 1.64545494 ~=T.INV(1-L2574,L2576)

sig yes ~=IF(L2578<L2574,"yes","no")



The first column labels each row. The second is the output from the equations/functions 
that are typed in the third column. As you can see, our p-value is 0 (not technically, but 
rounded because it is so small) and therefore less that 0.05 and therefore significant. 
Meaning the mean of glbcc_risk which is 5.9 is different from 0. 

Some Miscellaneous Notes about Hypothesis Testing 

Before suspending our discussion of hypothesis testing, there are a few loose ends to tie up. 
First, you might be asking yourself where the .05 standard of hypothesis testing comes 
from. Is there some magic to that number? The answer is no"; .05 is simply the standard, 
but some researchers report .10 or .01. The p value of .05, though, is generally considered 
to provide a reasonable balance between making it nearly impossible to reject a null 
hypothesis and too easily cluttering our knowledge box with things that we think are 
related but actually are not. Even using the .05 standard means that 5% of the time when 
we reject the null hypothesis, we are wrong - there is no relationship. (Besides giving you 
pause wondering what we are wrong about, it should also help you see why science deems 
replication to be so important.) 

Second, as we just implied, anytime we make a decision to either accept or reject our null 
hypothesis, we could be wrong. The probabilities tell us that if p=0.05, 5% of the time when 
we reject the null hypothesis, we are wrong because it is actually true. We call that type of 
mistake a Type I Error. However, when we accept the null hypothesis, we could also be 
wrong – there may be a relationship within the population. We call that a Type II Error. As 
should be evident, there is a trade-off between the two. If we decide to use a p value of .01 
instead of .05, we make fewer Type I errors – just one out of 100, instead of 5 out of 100. 
Yet that also means that we increase by .04 the likelihood that we are accepting a null 
hypothesis that is false – a Type II Error. To rephrase the previous paragraph: .05 is 
normally considered to be a reasonable balance between the probability of committing 
Type I Errors as opposed to Type II Errors. Of course, if the consequence of one type of 
error or the other is greater, then you can adjust the p value. 

Third, when testing hypotheses, we can use either a one-tailed test or a two-tailed test. 
The question is whether the entire .05 goes in one tail or is split evenly between the two 
tails (making, effectively, the p value equal to .025). Generally speaking, if we have a 
directional hypothesis (e.g., as X increases so does Y), we will use a one-tail test. If we are 
expecting a positive relationship, but find a strong negative relationship, we generally 
conclude that we have a sampling quirk and that the relationship is null, rather than the 
opposite of what we expected. If, for some reason, you have a hypothesis that does not 
specify the direction, you would be interested in values in either tail and use a two-tailed 
test. 

Differences Between Groups 

In addition to covariance and correlation (discussed in the next chapter), we can also 
examine differences in some variable of interest between two or more groups. For example, 
we may want to compare the mean of the perceived climate change risk variable for males 
and females. First, we can examine these variables visually. 



As coded in our dataset, gender (gender) is a numeric variable with a 1 for male and 0 for 
female. To do this, we first need to remove non-valid responses from our data in EXCEL.  

a. Sort data from smallest to largest: Click on the Home tab on the toolbar at the 
top of your screen, select “Sort & Filter” on the far right side, then choose 
“Sort Smallest to Largest” from the drop-down menu that appears 

b. Copy the segment with valid responses and paste into a new column or 
spreadsheet 

i. Never delete the data! Always copy and paste when using this type of 

analysis so you do not lose valuable information you may need later.  

This is especially important if you are only using a few variables of a 

larger dataset. 

c. Repeat this process for each column of data you are planning to use 

2. Highlight the copied data to create a pivot table 

3. Click on “Insert” tab on the toolbar at the top of the screen 

4. Select “Pivot Table” on the far left side 

5. Create pivot table on new worksheet 

6. In the sidebar on the right side of your screen, click and drag the name of the 

independent variable to the quadrant labelled “rows” (just as you would for a 

means comparison table made on paper). 

7. Click and drag the name of the dependent variable to the quadrant labelled 

“Values” 

a. Make sure the quadrant says “Average” of variable (the program will 

sometimes default to “Sum” of variable) 

b. To switch between these two, click on the small arrow next to the variable 

name and select “Value Field Settings…” at the bottom of the pop up menu 

c. “Average” is the third option in the list at the center of the dialog box 

8. Click and drag the ID variable into the Values quadrant 

a. Make sure this variable is set to “Count” to determine how many 

observations fall into each category 

b. This should automatically change your “Columns” quadrant to “Σ Values” 

9. If there is no control variable, this will result in all the information needed for your 

mean comparison table 

a. If you do have a control variable, add it to the Filters quadrant. This should 

add a small blue bar in the top left corner of the spread sheet. 

b. Click on the funnel icon of this bar to limit pivot table information to a 

single value of the control variable by de-selecting unneeded values.  Repeat 

this process for each value of the control variable to fill in all columns of 

your mean comparison table. 

For gender and climate change risk perceptions, you should end up with a  table that looks 
like this:  



 

The sheet created for this can also be used to conduct the corresponding t-test to tell if 
these means, 6.1 for Females and 5.6 for Males, are statistically different from each other. 
To do this, you simply need to have one column that is the risk perception variable for 
Females (0) and one for Males (1). Then: 

1. Open Data Analysis ToolPak 
2. Select t-Test: Two Sample Assuming Unequal Variances 

a. Unlikely to ever use equal variance option 
b. Paired t-test is for Before-After studies 

3. Input appropriate arrays of cells into Variable 1 Range and Variable 2 Range from 
the columns you created in step 3 

a. Be sure to include the column titles in the areas you highlight 
4. Hypothesized Mean Difference refers to the difference proposed by the null 

hypothesis, so input a zero here 
5. Make sure the box next to “Labels” is checked 

a. If it is not checked, Excel will likely return an error message that your 
selected area includes non-numeric data 

6. Alpha refers to level of significance, which automatically populates with 0.05 
7. Select an output range (either new worksheet or highlighted range on current 

worksheet) 
8. Click OK 

a. Test will return a table of information about the variables, with the values 
relevant to the t-test toward the bottom 

i. “t Stat” is the t-statistic just like we calculated by hand in class 
ii. “t Critical one-tail” and “t Critical two-tail” are the critical values 

against which your statistic is being compared, for one- and two-tailed 
tests 

9. P(T<=t) refers to the probability value for one- or two-tailed tests 
a. If this value is less than the designated level of significance (likely 0.05), your 

relationship is significant and you can reject the null 
b. If this value is greater than the designated level of significance, your 

relationship is not significant and you cannot reject the null 
This should create output in a new sheet that looks like this:  
 

Row Labels Average of glbcc_risk

0 6.134259259

1 5.670576735

(blank)

Grand Total 5.947140039



 

From this output, we can see that the p-value for both the one and two tail tests is less than 
0.05 which suggests there is a statistically significant difference in means for climate 
change risk perceptions by gender. Specifically, males have lower risk perceptions than 
females. The null hypothesis is always that there is no relationship or difference. We test 
this hypothesis and if the p-value is less than our cut-off (0.05) then we reject the null! This 
is a double negative so it is a positive in result. We could thus phrase our finding as such: 
Therefore, we reject the null hypothesis and concluded that there are differences (on 
average) in the ways that males and females perceive climate change risk. 

Summary 

In this chapter we gained an understanding of inferential statistics, how to use them to 
place confidence intervals around an estimate, and an overview of how to use them to test 
hypotheses. In the next chapter we turn, more formally, to testing hypotheses using 
crosstabs and by comparing means of different groups. We then continue to explore 
hypothesis testing and model building using regression analysis. 

Study Questions 

1. What is a hypothesis? What is a null hypothesis? Which one of these do we test? 

2. Which type of error do we specify with our p-value () cut-offs? 

3. Define probability sample; give at least two different examples of probability 
samples. 

4. Why is rigorous and thoughtful sampling important? Give at least two reasons or 
examples of why analysts must carefully consider the type of sample for their 
research questions. 

t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2

Mean 6.134259 5.74925669

Variance 8.891956 9.801152721

Observations 1512 1009

Hypothesized Mean Difference 0

df 2088

t Stat 3.083016

P(T<=t) one-tail 0.001038

t Critical one-tail 1.645584

P(T<=t) two-tail 0.002076

t Critical two-tail 1.961101



CHAPTER SEVEN: Association of Variables  
The last chapter focused on the characterization of distributions of a single variable. We 
now turn to the associations between two or more variables. This chapter explores 
ways to measure and visualize associations between variables. We start with how to 
analyze the relations between nominal and ordinal level variables, using cross-
tabulation in EXCEL. Then, for interval level variables, we examine the use of the 
measures of covariance and correlation between pairs of variables. Next, we examine 
hypothesis testing between two groups, where the focus in on how the groups differ, on 
average, with respect to an interval level variable. Finally, we discuss scatterplots as a 
way to visually explore differences between pairs of variables. 

Cross-Tabulation 

To determine if there is an association between two variables measured at the nominal 
or ordinal levels, we use cross-tabulation and a set of supporting statistics. A cross-
tabulation (or just crosstab) is a table that looks at the distribution of two variables 
simultaneously. Table below provides a sample layout of a 2 X 2 table. 

 

As Table above illustrates, a crosstab is set up so that the independent variable is on the 
top, forming columns, and the dependent variable is on the side, forming rows. Toward 
the upper left hand corner of the table are the low, or negative, variable categories. 
Generally, a table will be displayed in percentage format. The marginals for a table are 
the column totals and the row totals and are the same as a frequency distribution would 
be for that variable. Each cross-classification reports how many observations have that 
shared characteristic. The cross-classification groups are referred to as cells, so Table 
above is a four-celled table. 

A table like Table above provides a basis to begin to answer the question of whether our 
independent and dependent variables are related. Remember that our null hypothesis 
says there is no relationship between our IV and our DV. Looking at Table above , we 
can say of those low on the IV, 60% of them will also be low on the DV; and that those 
high on the IV will be low on the DV 40% of the time. Our null hypothesis says there 
should be no difference, but in this case, there is a 20% difference so it appears that our 
null hypothesis is incorrect. What we learned in our inferential statistics chapter, 
though, tells us that it is still possible that the null hypothesis is true. The question is 



how likely is it that we could have a 20% difference in our sample even if the null 
hypothesis is true?1 

We use the chi square statistic to test our null hypothesis when using crosstabs. To 
find chi square (χ2χ2), we begin by assuming the null hypothesis to be true and find the 
expected frequencies for each cell in our table. We do so using a posterior methodology 
based on the marginals for our dependent variable. We see that 53% of our total sample 
is low on the dependent variable. If our null hypothesis is correct, then where one is 
located on the independent variable should not matter: 53% of those who are low on 
the IV should be low on the DV and 53% of those who are high on the IV should be low 
on the DV. Tables with the Null Hypothesis as Percentages and as Counts illustrate this 
pattern. To find the expected frequency for each cell, we simply multiply the expected 
cell percentage times the number of people in each category of the IV: the expected 
frequency for the low-low cell is .53∗200=106=; for the low-high cell, it is .47∗200=94=; 
for the low-high cell it is .53∗100=53; and for the high-high cell, the expected frequency 
is .47∗100=47.  

The formula for the chi square takes the expected frequency for each of the cells and 
subtracts the observed frequency from it, squares those differences, divides by the 
expected frequency, and sums those values: 

Χ2 = Σ
(𝑂 − 𝐸)2

𝐸
 

where: 

χ2 = The Test Statistic 

∑ = The Summation Operator 

O = Observed Frequencies 

E = Expected Frequencies 

 

Null-Hypothesis as Percentages 

https://bookdown.org/wwwehde/qrm_textbook_updates/association-of-variables.html#fn1


 

Null Hypothesis as Counts 

The table below provides those calculations. It shows a final chi square of 10.73. With that 
chi square, we can go to a chi square table to determine whether to accept or reject the null 
hypothesis. Before going to that chi square table, we need to figure out two things. First, we 
need to determine the level of significance we want, presumably .05. Second, we need to 
determine our degrees of freedom. We will provide more on that concept as we go on, but 
for now, know that it is the number of rows minus one times the number of columns minus 
one. In this case we have (2−1)(2−1)=1 degree of freedom. 

 

The Table at the end of this chapter is a chi square table that shows the critical values for 
various levels of significance and degrees of freedom. The critical value for one degree of 
freedom with a .05 level of significance is 3.84. Since our chi square is larger than that we 
can reject our null hypothesis - there is less than a .05 probability that we could have found 
the results in our sample if there is no relationship in the population. In fact, if we follow 
the row for one degree of freedom across, we see we can reject our null hypothesis even at 
the .005 level of significance and, almost but not quite, at the .001 level of significance. 

Having rejected the null hypothesis, we believe there is a relationship between the two 
variables, but we still want to know how strong that relationship is. Measures of 
association are used to determine the strength of a relationship. One type of measure of 
association relies on a co-variation model as elaborated upon in previous sections. Co-
variation models are directional models and require ordinal or interval level measures; 
otherwise, the variables have no direction. Here we consider alternative models. 

If one or both of our variables is nominal, we cannot specify directional change. Still, we 
might see a recognizable pattern of change in one variable as the other variable varies. 
Women might be more concerned about climate change than are men, for example. For that 
type of case, we may use a reduction in error or a proportional reduction in error (PRE) 



model. We consider how well we predict using a naive model (assuming no relationship) 
and compare it to how much better we predict when we use our independent variable to 
make that prediction. These measures of association only range from 0−1.0, since the sign 
otherwise indicates direction. Generally, we use this type of measure when at least one our 
variables is nominal, but we will also use a PRE model measure, R2, in regression 
analysis. Lambda is a commonly used PRE-based measure of association for nominal level 
data, but it can underestimate the relationship in some circumstances. 

Another set of measures of association suitable for nominal level data is based on chi 
square. Cramer’s V is a simple chi square based indicator, but like chi square itself, its 
value is affected by the sample size and the dimensions of the table. Phi corrects for sample 
size, but is appropriate only for a 2 X 2 table. The contingency coefficient, C, also corrects 
for sample size and can be applied to larger tables, but requires a square table, i.e., the 
same number of rows and columns. 

If we have ordinal level data, we can use a co-variation model, but the specific model 
developed below in Section 6.3 looks at how observations are distributed around their 
means. Since we cannot find a mean for ordinal level data, we need an 
alternative. Gamma is commonly used with ordinal level data and provides a summary 
comparing how many observations fall around the diagonal in the table that supports a 
positive relationship (e.g. observations in the low-low cell and the high-high cells) as 
opposed to observations following the negative diagonal (e.g. the low-high cell and the 
high-low cells). Gamma ranges from −1.0to +1.0.  

Crosstabulations and their associated statistics can be calculated using EXCEL. In this 
example we continue to use the Global Climate Change dataset (ds). The dataset includes 
measures of survey respondents: gender (female = 0, male = 1); perceived risk posed by 
climate change, or glbcc_risk (0 = Not Risk; 10 = extreme risk), and political ideology (1 = 
strong liberal, 7 = strong conservative). Here we look at whether there is a relationship 
between gender and the glbcc_risk variable. The glbcc_risk variable has eleven categories; 
to make the table more manageable, we recode it to five categories. This recode can be 
done using =IF() commands in EXCEL. Specifically, if we want 0-1 to now = 1, 2-3 to = 2, 4-6 
to =3, 7-8 =4, and 9-10 to = 5 we need this function:  

=IF(C2<2,1,IF(OR(C2=2,C2=3),2,IF(AND(C2>=4,C2<=6),3,IF(OR(C2=7,C2=8),4,IF(OR(C2=9,
C2=10),5,0))))) 

We can use similar Pivot Tables to those taught elsewhere to get this  (rows: recoded 
variable; columns: gender; values: count of recoded – changing this last option to % of 
column would also be useful and is the next table).  

 



 

Count of 
recode_glbcc_risk Column Labels   

Row Labels 0 1 
Grand 
Total 

1 8.86% 13.10% 10.57% 

2 11.57% 15.15% 13.02% 

3 31.75% 27.47% 30.02% 

4 21.83% 20.33% 21.22% 

5 25.99% 23.95% 25.17% 

Grand Total 100.00% 100.00% 100.00% 

  
To actually test for a relationship, follow the below steps: 
 

1. Create a cross-tab using the pivot table method 
2. Calculate expected frequencies for each cell 
3. Translate into a table of observed and expected frequencies 

a. This table should be outside of pivot table layout in standalone cells 
b. Result will look similar to a cross-tab, with IV categories in the columns and 

DV categories in the rows 
c. Need two copies of each category of the DV in this table (one for actual and 

one for expected) 
i. It does not matter which is placed on top, either way will work 

(formula returns same result either way) 
ii. Make sure they are appropriately labelled so you know which is which 

4. Insert the “CHISQ.TEST” formula 
a. Highlight appropriate arrays for actual and expected range 

i. Actual range is observed frequencies portion of the table 
ii. Expected range is expected frequencies portion of the table 

5. Formula will return a single number—this is your p-value 
a. If less than designated significance level (most likely 0.05), chi square is 

statistically significant and you can reject the null 
b. If greater than designated significance level, chi square is not statistically 

significant and you cannot reject the null 
 

The following set up can be used to test this hypothesis. The actual counts are from the 
count Pivot Table above. The Expected counts are calculated by multiplying the proportion 

Count of recode_glbcc_risk Column Labels

Row Labels 0 1 Grand Total

1 134 134 268

2 175 155 330

3 480 281 761

4 330 208 538

5 393 245 638

Grand Total 1512 1023 2535



by the sum of the actual so: 0.596 * (175+155) will give us the expected count for Male with 
the second level of risk and so on. In this case, that bottom cell is our p-value. The 
CHISQ.TEST function is used to return this. The first argument is the array of actual values 
and the second is array of expected values.  
 

 

In this case, we return a p-value less that 0.05 therefore we reject the null hypothesis. Thus, 
we have evidence that there is a relationship between gender and climate change risk 
perceptions.  

Covariance 

Covariance is a simple measure of the way two variables move together, or “co-vary”. The 
covariance of two variables, X and Y, can be expressed in population notation as: 

𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝜇𝑥)(𝑌 − 𝜇𝑦)] 

Therefore, the covariance between X and Y is simply the product of the variation 
of X around its expected value, and the variation of Y around its expected value. The sample 
covariance is expressed as: 

𝑐𝑜𝑣(𝑋, 𝑌) =
Σ(𝑋 − �̅�)(𝑌 − �̅�)

𝑛 − 1
 

Covariance can be positive, negative, or zero. If the covariance is positive both variables 
move in the same direction, meaning if X increases Y increases or if X decreases Y decreases. 
Negative covariance means that the variables move in opposite directions; 
if X increases Y decreases. Finally, zero covariance indicates that there is no covariance 
between X and Y. 

Correlation 

Correlation is closely related to covariance. In essence, correlation standardizes covariance 
so it can be compared across variables. Correlation is represented by a correlation 
coefficient, ρ, and is calculated by dividing the covariance of the two variables by the 
product of their standard deviations. For populations it is expressed as: 

ExpectedMale ExpectedFemale

159.8485207 108.1514793 Proportion Male Proportion Female

196.8284024 133.1715976 0.596449704 0.403550296

453.8982249 307.1017751

320.8899408 217.1100592

380.5349112 257.4650888

ActualMale ActualFemale

134 134

175 155

480 281

330 208

393 245

0.000226947



𝜌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑥𝜎𝑦 
 

For samples it is expressed as: 

𝑟 =

𝛴(𝑋 − �̅�)(𝑌 − �̅�)
𝑛 − 1
𝑠𝑥𝑠𝑦

 

Like covariance, correlations can be positive, negative, and zero. The possible values of the 
correlation coefficient r, range from -1, perfect negative relationship to 1, perfect positive 
relationship. If r=0, that indicates no correlation. Correlations can be calculated in EXCEL, 
using a few different methods.  

Option 1 

1. In an empty cell, insert the function CORREL or PEARSON.  These can be found by 
searching “correlation” in the “Insert Function” dialog box or in the Statistical 
functions category under the “More Functions” menu. 

a. Remember both of these functions are performing the same calculation, so 
you will only need to use one of them. 

2. This should cause a new dialog box to pop up on your screen. 
3. In the box labeled “Array 1,” highlight the label and data for your first variable.  In 

the box labeled “Array 2,” highlight the label and data for your second variable. 
a. It does not matter which variable goes into which box, as correlation is an 

association measure rather than a causal one.  It will return the same answer 
either way. 

b. Make sure you do not include any additional information in this range for 
either variable, such as descriptive statistics of the variable, as this will cause 
the formula to return incorrect results. 

4. Click OK or press Enter on the keyboard to complete the function. 
5. The number in the cell is your correlation coefficient (r). 

Or  
Option 2 

1. On the Data tab of the toolbar at the top of the screen, select Data Analysis to open 
the ToolPak dialog box. 

2. Scroll through the list, select Correlation, and click OK. 
3. In the “Input Range” box, select all of the data you want to correlate. The range 

should include both variables and their labels in row 1. 
a. This function will also allow you to select more than two variables if you 

need to do so. 
4. Make sure the box next to “Labels in First Row” is checked. 
5. Select an output range for the correlation table (the default is to create a new sheet). 
6. Click OK to complete the function and generate the correlation table. 
7. The correlation coefficient (r) for the two variables is listed in the box at the 

intersection of the two variable names. 
 



In order to get a p-value so that we can say something about the statistical significance of a 
correlation, we must follow other steps. This is important because this lets us compare the 
correlation to a zero to tell us if the correlation is “real” that is statistically different from 
zero or not. Follow these steps: 
 

1. Open the Data Analysis ToolPak (located on the Data tab of the toolbar). 

2. Scroll through the list of options, select Regression, and click OK. 

3. In the “Input Y Range” box, highlight the first variable you are using, including its 

label in the first row.  In the “Input X Range” box, highlight the second variable 

you are using, including its label in the first row. 

a. It does not matter which variable goes into which box, as correlation is an 

association measure rather than a causal one.  It will return the same 

answer either way. 

b. Make sure you do not include any additional information in this range for 

either variable, such as descriptive statistics of the variable, as this will 

cause the formula to return incorrect results. 

4. Check the box next to “Labels.” 

5. Choose your output location for the results (the default is to create a new sheet). 

6. Click OK to complete the function, which should generate several tables. 

7. The p-value of the correlation is listed in two places: 

a. In the second table, labelled “ANOVA” the p-value is listed in the rightmost 

column, “Significance F.” 

b. In the third table (at the bottom of the output), the p-value is listed in the 

fifth column from the left, titled P-value.  The number you are looking for 

will be the bottom row of the table, and should be the same as the number 

in the Significance F column of the ANOVA table. 

8. Compare this p-value to the significance level (0.05) to determine statistical 

significance. 

We can do this for income and ideology and get the following results. 

 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.040880495

R Square 0.001671215

Adjusted R Square 0.001234118

Standard Error 59822.10832

Observations 2286

ANOVA

df SS MS F Significance F

Regression 1 13682902669 13682902669 3.823444654 0.050662018

Residual 2284 8.17372E+12 3578684644

Total 2285 8.1874E+12

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 64076.94853 3576.047579 17.91837136 2.76301E-67 57064.30788 71089.58918 57064.30788 71089.58918

ideol 1410.289834 721.2419377 1.955363049 0.050662018 -4.067894173 2824.647563 -4.067894173 2824.647563



The multiple R row will tell us the correlation that should be equal to if we use one of the 
first methods (=CORREL or =PEARSON). Then the p-value to interpret is described in the 
steps above. We can see in this example the p-value is 0.0506. This p-value is NOT less than 
0.05 so we FAIL to reject the null hypothesis. Thus, we find no statistically significant 
correlation between income and ideology.  

Scatterplots 

As noted earlier, it is often useful to try and see patterns between two variables. We 
examined the density plots of males and females with regard to climate change risk, then 
we tested these differences for statistical significance. However, we often want to know 
more than the mean difference between groups; we may also want to know if differences 
exist for variables with several possible values. For example, here we examine the 
relationship between ideology and perceived risk of climate change. This can be done using 
the Insert, Charts, and Scatter option which is the last of the small icons. Below is the 
relationship between ideology (7= Strongly Conservative) and climate change risk 
perceptions.  

 

When we look at this, it isn’t very useful because our data points are all plotted over each 
other. In EXCEL, we can jitter our points using the following function: A2 + ((RAND() - 0.5) 
* 0.9. This adds a small random amount to our data then subtracts 0.5 to sometimes make 
the small amount added negative and then scales it. In this case, we use 0.9 because the 
interval between our actual data is equal to 1. The resulting figure is below: 
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This figure is much better and suggests a potential negative relationship between ideology 
and climate change risk perceptions. Conservatives have lower risk perceptions of climate 
change. We can also plot a line over this that we will eventually calculate in the coming 
chapters and in fact have already learned with the Regression command from the ToolPak: 
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This is done through the add chart element Linear Trend and then formatting the line to be 
solid and black so that it can be seen over the blue points. Note that the regression lines 
both slope downward, with average perceived risk ranging from over 8 for the strong 
liberals (ideology=1) to less than 5 for strong conservatives (ideology=7). This illustrates 
how scatterplots can provide information about the nature of the relationship between two 
variables. We will take the next step – to bivariate regression analysis – in the next chapter. 

End of Chapter Chi-Square Table referenced ear 

 

Study Questions 



1. What is the first step in any association of variables analysis? 

2. Chi-square statistics are used for assessing the existence of a relationship in cross-
tabs. This method is therefore most useful for variables of what level of 
measurement? 

3. What is the range of possible values for correlation? Explain what a negative, 
positive, and zero correlation mean in. 

4. Correlation does NOT imply causation. Why? Why are correlations still very 
important in social science research? 

CHAPTER EIGHT: The Logic of Ordinary Least Squares 
Estimation 

This chapter begins the discussion of ordinary least squares (OLS) regression. OLS is the 
“workhorse” of empirical social science and is a critical tool in hypothesis testing and 
theory building. This chapter builds on the discussion in Chapter 6 by showing how OLS 
regression is used to estimate relationships between and among variables. 

Theoretical Models 

Models, as discussed earlier, are an essential component in theory building. They simplify 
theoretical concepts, provide a precise way to evaluate relationships between variables, 
and serve as a vehicle for hypothesis testing. As discussed in Chapter 1, one of the central 
features of a theoretical model is the presumption of causality, and causality is based on 
three factors: time ordering (observational or theoretical), co-variation, and non-
spuriousness. Of these three assumptions, co-variation is the one analyzed using OLS. The 
oft repeated adage, ‘correlation is not causation’ is key. Causation is driven by theory, but 
co-variation is the critical part of empirical hypothesis testing. 

When describing relationships, it is important to distinguish between those that 
are deterministic versus stochastic. Deterministic relationships are “fully determined” such 
that, knowing the values of the independent variable, you can perfectly explain (or predict) 
the value of the dependent variable. Philosophers of Old (like Kant) imagined the universe 
to be like a massive and complex clock which, once wound up and set ticking, would permit 
perfect prediction of the future if you had all the information on the starting conditions. 
There is no “error” in the prediction. Stochastic relationships, on the other hand, include an 
irreducible random component, such that the independent variables permit only a partial 
prediction of the dependent variable. But that stochastic (or random) component of the 
variation in the dependent variable has a probability distribution that can be analyzed 
statistically. 

Deterministic Linear Model 

The deterministic linear model serves as the basis for evaluating theoretical models. It is 
expressed as: 



𝑌𝑖 = 𝛼 + Β𝑋𝑖 

A deterministic model is systematic and contains no error therefore Y is perfectly 
predicted by X.  This is illustrated in the figure below α and β are the model parameters, 
and are constant terms. β is the slope, or the change in Y over the change in X.  α is the 
intercept, or the value of Y when X is zero. 

 

Given that in social science we rarely work with deterministic models, nearly all models 
contain a stochastic, or random, component. 

Stochastic Linear Model 

The stochastic, or statistical, linear model contains a systematic component, Y=α+β and a 
stochastic component called the error term. The error term is the difference between the 
expected value of Yi and the observed value of Yi; Yi−μ. This model is expressed as: 

𝑌𝑖 = 𝛼 + Β𝑋𝑖 + 𝜖𝑖 

where ϵi is the error term. In the deterministic model, each value of Y fits along the 
regression line, however in a stochastic model the expected value of Y is conditioned by the 
values of X. This is illustrated in the Figure below.  



 

 Assumptions about the Error Term 

There are three key assumptions about the error term; a) errors have identical 
distributions, b) errors are independent, and c) errors are normally distributed.1 

Error Assumptions 

• Errors have identical distributions 

o 𝐸(𝜖𝑖
2) =  𝜎𝑖

2 

• Errors are independent of X and other 𝜖𝑖 

o 𝐸(𝜖𝑖) = 𝐸(𝜖|𝑥𝑖) = 0 

And 

o (𝜖𝑖) ≠ 𝐸(𝜖𝑗), 𝑓𝑜𝑟 𝑖 ≠ 𝑗 

• Errors are normally distributed 

o 𝜖𝑖~ 𝑁(0, 𝜎𝑖
2) 
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Taken together these assumptions mean that the error term has a normal, independent, 
and identical distribution (normal i.i.d.). However, we don’t know if, in any particular case, 
these assumptions are met. Therefore, we must estimate a linear model. 

Estimating Linear Models 

With stochastic models we don’t know if the error assumptions are met, nor do we know 
the values of α and β; therefore we must estimate them, as denoted by a hat (e.g., 𝛼 ̂is the 
estimate for α). The stochastic model as shown in the equation below is estimated as: 

𝑌𝑖 =  �̂� +  Β̂𝑋𝑖 + 𝜖𝑖 

where 𝜖𝑖 is the residual term, or the estimated error term. Since no line can perfectly pass 
through all the data points, we introduce a residual, ϵ, into the regression equation. Note 

that the predicted value of Y is denoted  �̂�. 

Residuals 

Residuals measure prediction errors of how far observation Yi is from predicted �̂�. This is 
shown in the figure below.  

 

The residual term contains the accumulation (sum) of errors that can result from 
measurement issues, modeling problems, and irreducible randomness. Ideally, the residual 



term contains lots of small and independent influences that result in an overall random 
quality of the distribution of the errors. When that distribution is not random – that is, 
when the distribution of error has some systematic quality – the estimates of �̂� 𝑎𝑛𝑑 Β̂ may 
be biased. Thus, when we evaluate our models we will focus on the shape of the 
distribution of our errors. 

What’s in ϵ? 

Measurement Error 

• Imperfect operationalizations 

• Imperfect measure application 

Modeling Error 

• Modeling error/mis-specification 

• Missing model explanation 

• Incorrect assumptions about associations 

• Incorrect assumptions about distributions 

Stochastic “noise” 

• Unpredictable variability in the dependent variable 

The goal of regression analysis is to minimize the error associated with the model 
estimates. As noted, the residual term is the estimated error, or overall miss" (e.g., Yi− 𝑌 ). 
Specifically, the goal is to minimize the sum of the squared errors, ∑ϵ2. Therefore, we need 
to find the values of �̂� 𝑎𝑛𝑑 Β̂ that minimize ∑ϵ2. 

Note that for a fixed set of data each possible choice of values for �̂� 𝑎𝑛𝑑 Β̂ corresponds to a 
specific residual sum of squares, ∑ϵ2. This can be expressed by the following functional 
form: 

𝑆(�̂� , Β̂) =  ∑ 𝜖𝑖
2 = ∑(𝑌𝑖 − 𝑌�̂�)

2
=  ∑(𝑌𝑖 −  �̂� −  Β̂𝑋𝑖)

2    

𝑛

𝑖=1

 

Minimizing this function requires specifying estimators for �̂� 𝑎𝑛𝑑 Β̂ such that 𝑆(�̂� , Β̂) =

Σ𝜖2 is at the lowest possible value. Finding this minimum value requires the use of calculus, 
which will be discussed in the next chapter. Before that we walk through a quick example 
of simple regression. 

 

An Example of Simple Regression 



The following example uses a measure of peoples’ political ideology to predict their 
perceptions of the risks posed by global climate change. OLS regression can be done using 
the Data Analysis ToolPak in Excel following these steps:  

1. Select the variables you will be using for your analysis.  It is best to copy them to a 
new spreadsheet or file before you begin working with them. 

a. If you are performing a multivariate analysis, make sure all independent 
variables are in columns next to each other, with no gaps or other data in 
between. 

2. Remove any non-valid responses (i.e., “don’t know”, “not applicable”, etc.) from your 
data before performing any statistical analysis.  The easiest way to do this is by 
sorting each variable and deleting the rows containing non-valid measurements. 

3. On the toolbar at the top of the screen, click the Data tab. 

4. To the far right of the screen should be a link to Data Analysis.  Clicking this will 
open the Toolpak dialog box. 

5. Select Regression from the list of Analysis Tools and click OK to open a dialog box 
for the regression input. 

6. In the Input Y Range box, highlight your dependent variable.  Select only the rows 
that contain data, as the function will not run if the entire column of the spreadsheet 
is selected. (E.g., If you have 2,841 observations, your selection should only contain 
2,842 rows—one for each observation and the title row.) 

a. It is extremely important that you put the variables into the right boxes at 
this stage, or the function will return the wrong results. This box should only 
ever have one variable in it. 

b. Be sure to include the column title in your selection. 

7. In the Input X Range box, highlight the columns containing your independent 
variable(s) and any control variables you are including in your analysis.  Select only 
the rows that contain data, as the function will not run if the entire column of the 
spreadsheet is selected. (E.g., If you have 2,841 observations, your selection should 
only contain 2,842 rows—one for each observation and the title row.) 

a. Be sure to include the column titles in your selection. 

8. Make sure the box next to Labels is checked. This tells Excel the first row contains 
variable names and will make the interpretation of results easier. 

9. Select a range for the output data. 

a. The default is to create a new worksheet, or you can select a range within 
your current worksheet.  Either will work, so use whichever you prefer. 



10. Click OK to complete the function and perform the regression analysis. 

The output should look like this where the dependent variable it risk perceptions of global 
warming on a 11 point scale and the independent or explanatory variable is ideology on a 
seven point scale (7 = Strongly Conservative):  

 

If you are using Office 365, the steps are slightly different:  

1. Select the variables you will be using for your analysis. 

a. If you are performing a multivariate analysis, make sure all independent 

variables are in columns next to each other, with no gaps or other data in 

between. 

2. Remove any non-valid responses (i.e., “don’t know”, “not applicable”, etc.) from 

your data before performing any statistical analysis.  The easiest way to do this is 

by sorting each variable and deleting the rows containing non-valid 

measurements. 

a. Make sure you highlight all columns of data before sorting in order to 

expand the selection and maintain each observation.  If you forget this step, 

the program will only sort the column you are in and will produce wrong 

results. 

3. On the toolbar at the top of the screen, click the Insert tab. 

4. In the middle of the toolbar, select Office Add-Ins. 

5. Find XLMiner Analysis Toolpak and click Add to open the toolpak functions on a 

sidebar. 

6. From this menu, select Linear Regression.  This should expand the list to give 

space for inputting variables into the regression model. 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.590170574

R Square 0.348301306

Adjusted R Square 0.348041768

Standard Error 2.479022199

Observations 2513

ANOVA

df SS MS F Significance F

Regression 1 8247.376032 8247.376 1342.008 9.2575E-236

Residual 2511 15431.47872 6.145551

Total 2512 23678.85476

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 10.8186624 0.141889452 76.24712 0 10.54043008 11.09689473 10.54043008 11.09689473

X (ideol) -1.046346348 0.028562616 -36.6334 9.3E-236 -1.102355044 -0.990337652 -1.102355044 -0.990337652



7. In the Input Y Range box, highlight your dependent variable.  Select only the rows 

that contain data, as the function will not run if the entire column of the 

spreadsheet is selected. (E.g., If you have 2,841 observations, your selection should 

only contain 2,842 rows—one for each observation and the title row.) 

a. It is extremely important that you put the variables into the right boxes at 

this stage, or the function will return the wrong results. This box should 

only ever have one variable in it. 

b. Be sure to include the column title in your selection. 

8. In the Input X Range box, highlight the columns containing your independent 

variable(s) and any control variables you are including in your analysis.  Select only 

the rows that contain data, as the function will not run if the entire column of the 

spreadsheet is selected. (E.g., If you have 2,841 observations, your selection should 

only contain 2,842 rows—one for each observation and the title row.) 

a. Be sure to include the column titles in your selection. 

9. Make sure the box next to Labels is checked. This tells Excel the first row contains 

variable names and will make the interpretation of results easier. 

10. Select a range for the output data by selecting a cell on the current worksheet. 

(This is different from the standalone version of Excel, in which you can place the 

regression output on a separate worksheet.) 

11. Click OK to complete the function and perform the regression analysis.  This 

should produce the same set of tables generated by the regression function in the 

standalone version of Excel. 

Once you have the output, you can interpret it as follows: 

1. The adjusted R-squared for your model is in the third row of the first table of output. 
This will tell you the percentage of the variation in the DV that is explained by the 
variable(s) in your model. 

a. Remember there will only be one value of adjusted R-squared for each 
model, regardless of the number of variables included. 

2. The rest of the data you need to look at is in the third table of output. The column 
titles should include Coefficients, Standard Error, and P-value. 

3. The intercept coefficient is the a in the regression formula, and the coefficient of the 
omitted category if using dummy variables. 

4. All other variables will be listed in subsequent rows, with their respective 
coefficients (b in the regression formula) in the second column of the table.  You can 
plug these into the formula along with the intercept value to determine the equation 
of the regression line. 

5. Standard errors can be found in the third column of the table (immediately to the 
right of the coefficients). 



6. P-values are located in the fifth column of the same table, which includes a p-value 
for each variable in the model.  These tell you whether each variable has a 
statistically significant impact on the dependent variable. 

a. If the p-value listed is less than 0.05, the relationship IS statistically 
significant and you CAN reject the null hypothesis for that variable. 

b. If the p-value listed is greater than 0.05, the relationship IS NOT statistically 
significant and you CANNOT reject the null hypothesis for that variable. 

Study Questions 

Interpret the bivariate regression output coefficients substantively.  

OLS regression is the process of minimizing what value? Draw a diagram illustrating this 
concept. Option Two: Copy and Paste the figure from this chapter and interpret it.  

CHAPTER NINE: Bi-Variate Hypothesis Testing and Model Fit 
The previous chapters discussed the logic of OLS regression and how to derive OLS 
estimators. Now that simple regression is no longer a mystery, we will shift the focus to bi-
variate hypothesis testing and model fit. We recommend that you try the analyses in the 
chapter as you read. 

Hypothesis Tests for Regression Coefficients 

Hypothesis testing is the key to theory building. This chapter is focused on empirical 
hypothesis testing using OLS regression, with examples drawn from the accompanying 
class dataset. Here we will use the responses to the political ideology question (ranging 
from 1=strong liberal, to 7=strong conservative), as well as responses to a question 
concerning the survey respondents’ level of risk that global warming poses for people and 
the environment.1 

Using the data from these questions, we posit the following hypothesis: 

H1: On average, as respondents become more politically conservative, they will be less 
likely to express increased risk associated with global warming 

The null hypothesis, H0, is β=0, posits that a respondent’s ideology has no relationship with 
their views about the risks of global warming for people and the environment. Our working 
hypothesis, H1, is β<0. We expect β to be less than zero because we expect a negative slope 
between our measures of ideology and levels of risk associated with global warming, given 
that a larger numeric value for ideology indicates a more conservative respondent. Note 
that this is a directional hypothesis, since we are positing a negative relationship. Typically, 
a directional hypothesis implies a one-tailed test where the critical value is 0.05 on one side 
of the distribution. A non-directional hypothesis, β≠0 does not imply a particular direction, 
it only implies that there is a relationship. This requires a two-tailed test where the critical 
value is 0.025 on both sides of the distribution. 

https://bookdown.org/wwwehde/qrm_textbook_updates/bi-variate-hypothesis-testing-and-model-fit.html#fn1


The above output tests this hypothesis. So, using our example data, we tested the working 
hypothesis that political ideology is negatively related to perceived risk of global warming 
to people and the environment. Using simple OLS regression, we find support for this 
working hypothesis, and can reject the null. 

Coefficient of Determination: R2 

The most often used measure of goodness of fit for OLS models is R2. R2 is derived from 
three components: the total sum of squares, the explained sum of squares, and the residual 
sum of squares. R2 is the ratio of ESS (explained sum of squares) to TSS (total sum of 
squares). 

Components of R2R2 

• Total sum of squares (TSS): The sum of the squared variance of Y 

• Residual sum of squares (RSS): The variance of Y not accounted for by the model 

• Explained sum of squares (ESS): The variance of Y accounted for in the model. It is 
the difference between the TSS and the RSS. 

• R2: The proportion of the total variance of Y explained by the model, or the ratio 
of ESS to TSS 

The components of R2 are illustrated in Figure below. As shown, for each observation Yi, 
variation around the mean can be decomposed into that which is “explained” by the 
regression and that which is not. In Figure below the deviation between the mean of Y and 
the predicted value of Y,  �̂�, is the proportion of the variation of Yi that can be explained (or 
predicted) by the regression. That is shown as a blue line. The deviation of the observed 
value of Yi from the predicted value  �̂�(aka the residual, as discussed in the previous 
chapter) is the unexplained deviation, shown in red. Together, the explained and 
unexplained variation make up the total variation of Yi around the mean ,  �̂�. 



 

Visualizing Bivariate Regression 

We have actually already done this when we built the scatterplot before. However, we must 
note that because the line is an estimate we actually have a realm of uncertainty around it. 
This would typically be represented by error bars or a “ribbon plot”; however, Excel does 
not have this functionality built in. This means it is especially important we leave the points 
in the scatterplot on the graph so that we have some visualization of the uncertainty. Not 
every single point falls along or even necessarily very close to that line. This is also why the 
R2 measure is useful.  



 

Summary 

This chapter has focused on two key aspects of simple regression models: hypothesis 
testing and measures of the goodness of model fit. With respect to the former, we focused 
on the residual standard error and its role in determining the probability that our model 
estimates, B and A, are just random departures from a population in which β and α are 
zero. We showed, using Excel, how to calculate the residual standard errors 
for A and B and, using them, to calculate the t-statistics and associated probabilities for 
hypothesis testing. For model fit, we focused on model covariation and correlation, and 
finished up with a discussion of the coefficient of determination – R2. So you are now in a 
position to use simple regression, and to wage unremitting geek-war on those whose 
models are endowed with lesser R2s. 

Study Questions 

1. What is the typical null hypothesis for a regression coefficient? If the p-value is less 
than 0.05, how do we interpret this coefficient? 

2. What is the range of R-squared values? How do we interpret R-squared across this 
range? 

3. What is the interpretation of A (or alpha, also known as the intercept or constant)? 
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CHAPTER ELEVEN: THE LOGIC OF MULTIPLE REGRESSION 

 

The logic of multiple regression can be readily extended from our earlier discussion of 
simple regression. As with simple regression, multiple regression finds the regression line 
(or regression plane" with multiple independent variables) that minimizes the sum of the 
squared errors. This chapter discusses the theoretical specification of the multiple 
regression model, the key assumptions necessary for the model to provide the best linear 
unbiased estimates (BLUE) of the effects of the Xs on Y, the meaning of the partial 
regression coefficients, and hypothesis testing. Note that the examples in this chapter 
continue to use the class data set. 

Theoretical Specification 

As with simple regression, the theoretical multiple regression model contains 
a systematic component — Y=α+β1Xi1+β2Xi2+…+βkXikY=α+β1Xi1+β2Xi2+…+βkXik and 
a stochastic component—ϵi. The overall theoretical model is expressed as: 

Y=α+β1Xi1+β2Xi2+…+βkXik+ϵi 

Where α is the constant and each X, denoted by the numeric subscript, is a different 
independent or explanatory variable and ϵi is the error term.  

Partial Effects 

As noted in Chapter 1, multiple regression controls" for the effects of other variables on the 
dependent variables. This is in order to manage possible spurious relationships, where the 
variable Z influences the value of both X and Y. Figure below illustrates the nature of 
spurious relationships between variables. 

 



 

To control for spurious relationships, multiple regression accounts for the partial 
effects of one X on another X. Partial effects deal with the shared variance between Y and 
the X’s. This is illustrated in Figure below. In this example, the number of deaths resulting 
from house fires is positively associated with the number of fire trucks that are sent to the 
scene of the fire. A simple-minded analysis would conclude that if fewer trucks are sent, 
fewer fire-related deaths would occur. Of course, the number of trucks sent to the fire, and 
the number of fire-related deaths, are both driven by the magnitude of the fire. An 
appropriate control for the size of the fire would therefore presumably eliminate the 
positive association between the number of fire trucks at the scene and the number of 
deaths (and may even reverse the direction of the relationship, as the larger number of 
trucks may more quickly suppress the fire). 



 

In the figure above, the Venn diagram on the left represents how two variables X1 and X2 
can contribute to explaining Y (overlap with Y) and also overlap with each other some. The 
part a multiple regression will give us an estimate of is the overlap between X1 and Y (for 
the coefficient on X1) and X2 and Y (for the coefficient on X2) that is unique (meaning not 
the middle part where all three overlap). This middle part is what is “controlled for” but the 
estimates that are left are the partial effects. The Venn diagram on the right presents a less 
optimal estimation because the middle overlap is so large – larger than either of the 
pairwise overlaps (X1 and Y and X2 and Y).  

To estimate multiple regression in Excel, we follow the steps from before but simply add a 
column to the input X range. Thus, we might be interested in the effect of ideology on 
climate change risk perceptions after we have accounted for (“controlled for”) age. The 
output for this regression is below: 



 

From this output, we can see that the coefficient on ideology is still negative and significant 
when controlling for age. If we compare it to the regression output above, the coefficient is 
ever so slightly less negative going from -1.046 to -1.042 when we account for age. To 
interpret this, you can say “When accounting for age, the effect of ideology on risk 
perceptions of climate change is -1.042.” Or “When all else is held constant, the effect of 
ideology on risk perceptions about global warming is -1.04.” Substantively, you might say, 
that a one-point increase in ideology, that is becoming more conservative, is associated 
with a one-point decrease in risk perceptions about global warming.  

Summary 

The use of multiple regression, when compared to simple bivariate regression, allows for 
more sophisticated and interesting analyses. The most important feature is the ability of 
the analyst (that’s you!) to statistically control for the effects of all other IVs when 
estimating any B. In essence, we clean" the estimated relationship between any X and Y of 
the influence of all other Xs in the model. Hypothesis testing in multiple regression requires 
that we identify the independent variation in each X, but otherwise the estimated standard 
error for each BB is analogous to that for simple regression. 

So, maybe it’s a little more complicated. But look at what we can observe! Our estimates 
from the examples in this chapter show that age, income and education are all related to 
political ideology, but even when we control for their effects, ideology retains a potent 
influence on the perceived risks of climate change. Politics matter. 

Study Questions 

1. Define partial effects. 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.590596213

R Square 0.348803886

Adjusted R Square 0.348285005

Standard Error 2.478559712

Observations 2513

ANOVA

df SS MS F Significance F

Regression 2 8259.276561 4129.638 672.2228 1.6155E-234

Residual 2510 15419.57819 6.143258

Total 2512 23678.85476

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 11.09606367 0.244640101 45.35668 0 10.61634656 11.57578079 10.61634656 11.57578079

ideol -1.042747841 0.028674087 -36.3655 5.8E-233 -1.098975133 -0.986520548 -1.098975133 -0.986520548

age -0.004871978 0.003500432 -1.39182 0.1641 -0.011736008 0.001992052 -0.011736008 0.001992052



2. How do we interpret coefficients in multiple regressions? Provide an example. 

3. What is the null hypothesis for coefficients in multiple regression? 

CHAPTER TWELVE: MULTIPLE REGRESSION AND MODEL BUILDING 

 

This book focuses on the use of systematic quantitative analysis for purposes of building, 
refining and testing theoretical propositions in the policy and social sciences. All of the 
tools discussed so far – including univariate, bi-variate, and simple regression analysis – 
provide means to evaluate distributions and test hypotheses concerning simple 
relationships. Most policy and social theories, however, include multiple explanatory 
variables. Multiple regression extends the utility of simple regression by permitting the 
inclusion of two or more explanatory variables. This chapter discusses strategies for 
determining what variables to include (or exclude) in the model. 

Model Building 

Model building is the process of deciding which independent variables to include in the 
model.1 For our purposes, when deciding which variables to include, theory and findings 
from the extant literature should be the most prominent guides. Apart from theory, 
however, this chapter examines empirical strategies that can help determine if the addition 
of new variables improves overall model fit. In general, when adding a variable, check for: 
a) improved prediction based on empirical indicators, b) statistically and substantively 
significant estimated coefficients, and c) stability of model coefficients—do other 
coefficients change when adding the new one – particularly look for sign changes. 

Theory and Hypotheses 

The most important guidance for deciding whether a variable (or variables) should be 
included in your model is provided by theory and prior research. Simply put, knowing the 
literature on your topic is vital to knowing what variables are important. You should be 
able to articulate a clear theoretical reason for including each variable in your model. In 
those cases where you don’t have much theoretical guidance, however, you should use 
model parsimony, which is a function of simplicity and model fit, as your guide. You can 
focus on whether the inclusion of a variable improves model fit. In the next section, we will 
explore several empirical indicators that can be used to evaluate the appropriateness of 
variable inclusion. 

Empirical Indicators 

When building a model, it is best to start with a few IV’s and then begin adding other 
variables. However, when adding a variable, check for: 

• Improved prediction (increase in adjusted R2) 

• Statistically and substantively significant estimated coefficients 

https://bookdown.org/wwwehde/qrm_textbook_updates/multiple-regression-and-model-building.html#fn1


• Stability of model coefficients 

o Do other coefficients change when adding the new one? 

o Particularly look for sign changes for estimated coefficients. 

 

Coefficient of Determination: R2 

R2 was previously discussed within the context of simple regression. The extension to 
multiple regression is straightforward, except that multiple regression leads us to place 
greater weight on the use of the adjusted R2. Recall that the adjusted R2 corrects for the 
inclusion of multiple independent variables; R2 is the ratio of the explained sum of squares 
to the total sum of squares (ESS/TSS). 

R2 is expressed as: 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
 

However, this formulation of R2 is insensitive to the complexity of the model and the 
degrees of freedom provided by your data. This means that an increase in the number 
of kk independent variables, can increase the R2. Adjusted R2 penalizes the R2 by correcting 
for the degrees of freedom. It is defined as: 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 −

𝑅𝑆𝑆
𝑛 − 𝑘 − 1

𝑇𝑆𝑆
𝑛 − 𝑘 − 1

 

The R2 of two models can be compared, as illustrated by the following example. The first 
(simpler) model consists of basic demographics (age, education, and income) as predictors 
of climate change risk. The second (more complex) model adds the variable measuring 
political ideology to the explanation. 

As can be seen by comparing the model results, the more complex model that includes 
political ideology has a higher R2 than does the simpler model. This indicates that the more 
complex model explains a greater fraction of the variance in perceived risks of climate 
change. However, we don’t know if this improvement is statistically significant. In order to 
determine whether the more complex model adds significantly to the explanation of 
perceive risks, we can utilize the F-test. 

Risks in Model Building 

As is true of most things in life, there are risks to consider when building statistical models. 
First, are you including irrelevant X’s? These can increase model complexity, reduce 
adjusted R1, and increase model variability across samples. Remember that you should 
have a theoretical basis for inclusion of all of the variables in your model. 



Second, are you omitting relevant X’s? Not including important variables can fail to capture 
fit and can bias other estimated coefficients, particularly when the omitted X is related to 
both other X’s and to the dependent variable Y. 

Finally, remember that we are using sample data. Therefore, about 5% of the time, our 
sample will include random observations of X’s that result in B’s that meet classical 
hypothesis tests – resulting in a Type I error. Conversely, the B’s may be important, but the 
sample data will randomly include observations of X that result in estimated parameters 
that do not meet the classical statistical tests – resulting in a Type II error. That’s why we 
rely on theory, prior hypotheses, and replication. 

Evils of Stepwise Regression 

Almost all statistical software packages permit a number of mechanical “search strategies” 
for finding IVs that make a statistically significant contribution to the prediction of the 
model dependent variable. The most common of these is called stepwise regression, 
which may also be referred to as forward, backward (or maybe even upside down!) 
stepwise regression. Stepwise procedures do not require that the analyst think – you just 
have to designate a pool of possible IVs and let the package go to work, sifting through the 
IVs to identify those that (on the basis of your sample data) appear to be related to the 
model dependent variable. The stepwise procedures use sequential F-tests, sequentially 
adding variables that “improve the fit” of the mindless model until there are no more IVs 
that meet some threshold (usually p<0.05) of statistical significance. These procedures are 
like mechanically wringing all of the explanation you can get for Y out of some pool ofXX. 

You should already recognize that these kind of methods pose serious problems. First and 
foremost, this is an atheoretical approach to model building. But, what if you have no 
theory to start with – is a stepwise approach appropriate then? No, for several reasons. If 
any of the candidate X variables are strongly correlated, the inclusion of the first one will 
“use up” some of the explanation of the second, because of the way OLS calculates partial 
regression coefficients. For that reason, once one of the variables is mechanically selected, 
the other will tend to be excluded because it will have less to contribute to Y. Perhaps more 
damning, stepwise approaches are highly susceptible to inclusion of spuriously related 
variables. Recall that we are using samples, drawn from the larger population, and that 
samples are subject to random variation. If the step-wise process uses the classical 0.05 
cut-off for inclusion of a variable, that means that one time in twenty (in the long run) we 
will include a variable that meets the criterion only by random chance.2 Recall that the 
classical hypothesis test requires that we specify our hypothesis in advance; step-wise 
processes simply rummage around within a set of potential IVs to find those that fit. 

There have been notable cases in which mechanical model building has resulted in 
seriously problematic “findings” that have very costly implications for society. One is 
recounted in the PBS Frontline episode called “Currents of Fear”.^[The program was 
written, produced and directed by Jon Palfreman, and it was first broadcast on June 13, 
1995. The full transcript can be found here. The story concerns whether electromagnetic 
fields (EMFs) from technologies including high-voltage power lines cause cancer in people 
who are exposed. The problem was that “cancer clusters” could be identified that were 
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proximate to the power lines, but no laboratory experiments could find a connection. 
However, concerned citizens and activists persisted in believing there was a causal 
relationship. In that context, the Swedish government sponsored a very ambitious study to 
settle the question. Here is the text of the discussion from the Frontline program: 

… in 1992, a landmark study appeared from Sweden. A huge investigation, it enrolled 
everyone living within 300 meters of Sweden’s high-voltage transmission line system over 
a 25-year period. They went far beyond all previous studies in their efforts to measure 
magnetic fields, calculating the fields that the children were exposed to at the time of their 
cancer diagnosis and before. This study reported an apparently clear association between 
magnetic field exposure and childhood leukemia, with a risk ratio for the most highly 
exposed of nearly 4. 

The Swedish government announced it was investigating new policy options, including 
whether to move children away from schools near power lines. Surely, here was the proof 
that power lines were dangerous, the proof that even the physicists and biological 
naysayers would have to accept. But three years after the study was published, the Swedish 
research no longer looks so unassailable. This is a copy of the original contractor’s report, 
which reveals the remarkable thoroughness of the Swedish team. Unlike the published 
article, which just summarizes part of the data, the report shows everything they did in 
great detail, all the things they measured and all the comparisons they made. 

When scientists saw how many things they had measured – nearly 800 risk ratios are in the 
report – they began accusing the Swedes of falling into one of the most fundamental errors 
in epidemiology, sometimes called the multiple comparisons fallacy. 

So, according to the Frontline report, the Swedish EMF study regressed the incidence of 
nearly 800 possible cancers onto the proximity of its citizens to high-voltage power lines. 
In some cases, there appeared to be a positive relationship. These they reported. In other 
cases, there was no relationship, and in some the relationship was negative - which would 
seem to imply (if you were so silly as to do so) that living near the high voltage lines 
actually protected people from cancer. But only the positive relationships were included in 
the reports, leading to a false impression that the study had confirmed that proximity to 
high-voltage lines causes cancer. Embarrassing to the study authors, to put it mildly. 

 Summary 

This chapter has focused on multiple regression model building. The keys to that process 
are understanding (a) the critical role of theory and prior research findings in model 
specification, and (b) the meaning of the partial regression coefficients produced by OLS. 
When theory is not well-developed, you can thoughtfully employ nested F-tests to evaluate 
whether the hypothesized inclusion of an X variable meaningfully contributes to the 
explanation of Y. But you should avoid reliance on mechanical model-building routines, like 
step-wise regression, because these can lead you down into statistical perdition. None of us 
want to see that happen! 

Study Questions 



1. Why is adjusted R-squared a better measure of goodness of fit than regular R-
squared in multiple regression? 

2. How can we use fit statistics to help use build and assess out theoretical model? 

CHAPTER THIRTEEN: Topic in Multiple Regression 

 

Thus far we have developed the basis for multiple OLS regression using matrix algebra, 
delved into the meaning of the estimated partial regression coefficient, and revisited the 
basis for hypothesis testing in OLS. In this chapter we turn to one of the key strengths of 
OLS: the robust flexibility of OLS for model specification. First we will discuss how to 
include binary variables (referred to as dummy variables") as IVs in an OLS model. Next we 
will show you how to build on dummy variables to model their interactions with other 
variables in your model. Finally, we will address an alternative way to express the partial 
regression coefficients – using standardized coefficients – that permit you to compare the 
magnitudes of the estimated effects of your IVs even when they are measured on different 
scales. As has been our custom, the examples in this chapter are based on variables from 
the class data set. 

Dummy Variables 

Thus far, we have considered OLS models that include variables measured on interval level 
scales (or, in a pinch and with caution, ordinal scales). That is fine when we have variables 
for which we can develop valid and reliable interval (or ordinal) measures. But in the policy 
and social science worlds, we often want to include in our analysis concepts that do not 
readily admit to interval measure – including many cases in which a variable has an “on - 
off”, or “present - absent” quality. In other cases we want to include a concept that is 
essentially nominal in nature, such that an observation can be categorized as a subset but 
not measured on a “high-low” or “more-less” type of scale. In these instances we can utilize 
what is generally known as a dummy variable, but are also referred to as indicator 
variables, Boolean variables, or categorical variables. 

What the Heck are “Dummy Variables”? 

• A dichotomous variable, with values of 0 and 1; 

• A value of 1 represents the presence of some quality, a zero its absence; 

• The 1s are compared to the 0s, who are known as the referent group"; 

• Dummy variables are often thought of as a proxy for a qualitative variable. 

Dummy variables allow for tests of the differences in overall value of the YY for different 
nominal groups in the data. They are akin to a difference of means test for the groups 
identified by the dummy variable. Dummy variables allow for comparisons between an 



included (the 1s) and an omitted (the 0s) group. Therefore, it is important to be clear about 
which group is omitted and serving as the comparison category." 

It is often the case that there are more than two groups represented by a set of nominal 
categories. In that case, the variable will consist of two or more dummy variables, with 0/1 
codes for each category except the referent group (which is omitted). Several examples of 
categorical variables that can be represented in multiple regression with dummy variables 
include: 

• Experimental treatment and control groups (treatment=1, control=0) 

• Gender (male=1, female=0 or vice versa) 

• Race and ethnicity (a dummy for each group, with one omitted referent group) 

• Region of residence (dummy for each region with one omitted reference region) 

• Type of education (dummy for each type with omitted reference type) 

• Religious affiliation (dummy for each religious denomination with omitted 
reference) 

The value of the dummy coefficient represents the estimated difference in Y between the 
dummy group and the reference group. Because the estimated difference is the average 
over all of the Y observations, the dummy is best understood as a change in the value of the 
intercept (A) for the dummied" group. This is illustrated in following figure. In this 
illustration, the value of YY is a function of X1 (a continuous variable) and X2 (a dummy 
variable). When X2 is equal to 0 (the referent case) the top regression line applies. 
When X2=1, the value of Y is reduced to the bottom line. In short, X2 has a negative 
estimated partial regression coefficient represented by the difference in height between 
the two regression lines. 

 



For a case with multiple nominal categories (e.g., region) the procedure is as follows: (a) 
determine which category will be assigned as the referent group; (b) create a dummy 
variable for each of the other categories. For example, if you are coding a dummy for four 
regions (North, South, East and West), you could designate the South as the referent group. 
Then you would create dummies for the other three regions. Then, all observations from 
the North would get a value of 1 in the North dummy, and zeros in all others. Similarly, East 
and West observations would receive a 1 in their respective dummy category and zeros 
elsewhere. The observations from the South region would be given values of zero in all 
three categories. The interpretation of the partial regression coefficients for each of the 
three dummies would then be the estimated difference in Y between observations from the 
North, East and West and those from the South. 

Now let’s walk through an example of a regression model with a dummy variable and the 
interpretation of that model. We will predict climate change risk using age, income, 
ideology, and “gend”, a dummy variable for gender for which 1 = male and 0 = female. 

 

In this case, the interpretation of the coefficients on age and ideology are the same as they 
would be above. The interpretation of gender is different however. The coefficient on 
gender reflects the difference in global warming risk perceptions for males, relative to 
females. First note that the inclusion of the dummy variables does not change the manner 
in which you interpret the other (non-dummy) variables in the model; the estimated partial 
regression coefficients for age, education, income and ideology should all be interpreted as 
described in the prior chapter. Note that the estimated partial regression coefficient 
for gender" is negative and statistically significant, indicating that males are less likely to be 
concerned about the environment than are females. The estimate indicates that, all else 
being equal, the average difference between men and women on the climate change risk 
scale is -0.204. 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.591298

R Square 0.349633

Adjusted R Square 0.348855

Standard Error 2.477514

Observations 2512

ANOVA

df SS MS F Significance F

Regression 3 8275.877 2758.626 449.4285 1.187E-233

Residual 2508 15394.29 6.138075

Total 2511 23670.17

CoefficientsStandard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 11.15444 0.246387 45.2721 0 10.67130081 11.63758526 10.67130081 11.63758526

age -0.00479 0.0035 -1.36867 0.171226 -0.011652861 0.002072729 -0.011652861 0.002072729

gender -0.20422 0.100978 -2.02237 0.043244 -0.402224787 -0.006205953 -0.402224787 -0.006205953

ideol -1.03857 0.028741 -36.1356 1.5E-230 -1.094929966 -0.982213016 -1.094929966 -0.982213016



Summary 

This chapter has focused on options in designing and using OLS models. We covered the 
use of dummy variables to capture the effects of group differences on estimates of Y. 
Overall, these refinements in the use of OLS permit great flexibility in the application of 
regression models to estimation and hypothesis testing in policy analysis and social science 
research. 

Study Questions 

1. What is a dummy variable? When should we use it? How do you interpret 
coefficients on dummy variables? 
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