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ABSTRACT 

Assessing the Impact of Restored Wetlands on Bat Foraging Activity Over Nearby Farmland 

by 

Philip L. Allagas 

Up to 87% of the world’s wetlands have been destroyed, considerably reducing ecosystem 

services these wetlands once provided. More recently, many wetlands are being restored in an 

attempt to regain their ecosystem service. This study seeks to determine the effects of restored 

wetlands on local bat habitat use. Bat activity was found to be significantly higher around the 

wetlands when compared to distant grassy fields; however, no significant difference was found 

among the restored wetlands and a remote cattle farm containing multiple water features. 

Geospatial models of bat distribution and bat foraging were produced using machine learning 

that showed higher habitat suitability and foraging activity around restored wetlands than around 

distant grassy fields, suggesting that wetlands provide vital habitat for insectivorous bats. This 

study demonstrates that restored wetlands promote bat activity and bat foraging, and restoring 

wetlands may be a useful means of increasing natural pest control over nearby farmlands. 
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CHAPTER 1. INTRODUCTION 

Background 

Historically, wetland habitat was considered a nuisance1.  Standing water and saturated 

soil prevented agriculture on the nutrient-rich soil2.  The bogs and swamps were drained to 

access the fertile, arable land, which destroyed the ecosystem services that the wetlands were 

providing2.  Now, wetlands are known to play a vital role in the hydrologic cycle by absorbing 

floodwaters, filtering and removing excess nutrients and waste, such as fertilizers, and supplying 

water to streams during droughts3. 

Before the middle of the 20th century, Shady Valley in northeast Tennessee was 

dominated by wild cranberry bogs that are characterized by slow-moving, acidic waters, and 

deep beds of sphagnum moss4,5. In the 1960s, Shady Valley’s wetlands were filled in, and the 

waterways were relocated to make way for pastures and agriculture6.  More recently, the Nature 

Conservancy has begun restoring the lost wetlands in Shady Valley, and currently has three 

wetland sites that have been expanded to cover over 230 acres7.  Of the wetland preserves in 

Shady Valley, all three contain at least one pond, either human-made or constructed by North 

American beavers (Castor canadensis), in addition to large areas of standing water7.  The habitat 

is generally open and suitable for a large variety of animals and plants. 

Restoration efforts in Shady Valley have been met with resistance from landowners in the 

region8.  With the changes in the perceptions of wetlands in recent decades, biologists have 

begun researching the benefits of wetlands to farmland.  This raises the question of how wetlands 

are directly impacting farmers in the area, particularly in quantifiable economic terms such as 

cleaner water, or a reduced need for pesticides.  The Nature Conservancy is currently developing 

a protocol for quantifying the reduction in water pollution provided by their restored wetlands8; 
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however, no research is currently being conducted to determine how the wetlands impact the 

activity of bats.  

The Shady Valley wetlands have been manipulated by human restoration practices, which 

places these systems somewhere between a natural wetland and a constructed wetland8.  Farmers 

and municipalities often create wetlands on land that has not historically contained wetlands to 

filter runoff or process biological waste, and these artificial wetlands have also been found to 

support increased biodiversity in the area9,10.  Specifically, in a study conducted in England, 

constructed wetlands were found to significantly promote bat activity in the surrounding 

region10.  By using acoustic monitoring and thermal imaging, Stahlschmidt et al. (2012) showed 

a marked increase in foraging over the retaining ponds when compared to the open area over the 

nearby vineyards.  Notably, the study also assessed the correlation between the activity recorded 

on the acoustic monitors and the number of individual bats counted via thermal imaging in the 

area and found that in general, as the number of individuals in an area increases, the activity 

recorded on the acoustic monitors also increases in a relatively linear fashion10.  

Large bodies of standing water seem to be a significant attractant for bats11.  In a previous 

study of Central Appalachian wetlands, researchers found that bats were only active around 

wetlands that contain a large pond11,12.  Francl et al. (2004) define a pond as a still body of acidic 

water with a maximum depth of at least one meter11.  In the wetlands at Big Run Bog in Tucker 

County, WV, USA, there is a 2-hectare pond, and the study found a significant increase in little 

brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus), which are voracious 

insectivores that prey on many flying insects from earworm moths to mosquitoes11.  Bats have 

been estimated to provide billions of dollars in ecological services to the agricultural community 

alone13–15.   Additionally, bats have been shown to reduce pest insect populations in their 
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foraging areas significantly and are an excellent means of naturally reducing crop pests16.    As 

bats are natural predators of many pest insect species, increased foraging over wetlands in and 

around farmland would have distinct advantages to the farmers who rely on the land for their 

livelihood.   

Project Overview 

A primary aim of ecologists and conservationists is to preserve and maintain healthy 

ecosystems, such as wetlands, old-growth forests, and coral reefs.  To that end, many ecologists 

study how ecosystems function and how the organisms within ecosystems interact with each 

other and the environment.  With up to 87% of wetlands in the world lost17, many 

conservationists are actively researching the best way to restore wetlands and reactivate the vital 

ecosystem services that wetlands provide18.  In Shady Valley, The Nature Conservancy has 

restored three large bogs by removing drainage canals installed by the U.S. Army Corps of 

Engineers and revitalizing the seed bank in an effort to restore the native habitat7. Researchers 

have conducted many studies that aim to explore the effects of ecological restoration projects in 

former wetland sites19–21; however, few studies examine the interactions between bats and newly 

restored wetlands22,23.  This study aims to determine if bats are using the wetlands in Shady 

Valley as foraging grounds more than the surrounding landscape. 

Frequently, bat ecologists use passive acoustic monitoring to track bats and determine the 

level of bat activity at a given site24–27.  While these types of studies provide vital information 

about what species of bats are present at a given site, and their relative abundance, bat activity 

studies using acoustic data do not elucidate how the bats are using the area.  Bats could be using 

a given location as a roosting site, a hunting ground, or a flyway to commute between their roost 

and the primary foraging area.  While the presence of resting bats can visually identify roosting 
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sites during the day, flyways and foraging areas are more challenging to recognize.  Using bat 

activity alone (counts of echolocation passes), a flyway and a foraging area may appear very 

similar.  Foraging bats emit search-phase calls and high-tempo feeding buzzes that indicate that 

the bat is approaching its prey28,29.  Since terminal feeding buzzes occur during the approach and 

attempted-capture of prey, counting feeding buzzes at a given location can allow researchers to 

distinguish between flyways and hunting grounds.  Unfortunately, feeding buzzes make up a tiny 

fraction of the calls that are recorded (personal observation).  Currently, manual counts are the 

standard technique for quantifying the level of foraging activity.  Feeding buzzes are very 

distinct calls and can usually be identified in a spectrogram of a recorded bat call, but a single 

passive acoustic recorder can generate thousands of recordings per night.  In this study, I 

retrained Google’s InceptionV3 CNN30 to identify call recordings containing at least one feeding 

buzz, thereby automating the counting process and significantly accelerating the analysis of 

collected data.   

The massive amount of data generated by passive acoustic monitoring, and the expensive 

equipment required to sample a site limits the number of sites that can be sampled and analyzed.  

Furthermore, data collected by passive acoustic monitoring only provides information for the 

specific site being sampled.  To infer bat activity or foraging activity at unsampled sites, species 

distribution models and species abundance models use statistical techniques and machine 

learning to find an association between the sample data and the local environment31.  Expanding 

on this concept, automated feeding buzz count data collected at many sites were used to model 

the foraging abundance of bats in Shady Valley at a 100-meter resolution to test the following 

hypotheses.   
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Hypotheses 

1. Bat activity will be higher over wetland sites containing large bodies of standing water 

(maximum depth > one meter, surface area > 200 square meters). 

2. Bat activity over pastures and fields near wetland sites will be higher than over distant 

pastures and fields. 

3. A convolutional neural network can be trained to identify bat feeding buzzes in 

bioacoustic recordings with human-level accuracy. 

4. Feeding buzzes will be detected most often over the bogs, and less frequently in dry 

fields and forested areas. 

An Overview of Machine Learning 

The idea of machine learning was conceived by Arthur Samuel in 1952 when he was 

developing a computer system that could play chess; however, it was not until 1959 when he first 

used the term in the literature32.  Machine learning uses computer algorithms to predict outcomes 

based on known inputs33.  Machine learning can be implemented in a variety of 

ways.  Supervised learning, unsupervised learning, and reinforcement learning are the most 

common methods of applying machine learning33.  The best method depends upon the problem 

or question that needs to be addressed.   

Supervised learning works best when the problem involves predicting an outcome or 

condition from a known set of observations or data.  To solve classification problems, the 

researcher creates a known dataset of inputs with the matching desired outputs33.  The desired 

outputs are called labels.  This dataset is usually divided into two parts; the first part of the 

dataset is used to train the computer, and the second part is used to validate that the computer is 

"learning."   During the training phase, the computer runs the algorithm on each input and 
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"learns" what the output should be.  After all the training data has been processed, the 

coefficients in the algorithm and the mathematical functions are stored and are now collectively 

referred to as a model.  

The researcher uses the second portion of the dataset that was withheld during training to 

confirm the performance of a model during training.  This portion of the dataset is known as the 

validation data.  The computer then processes the inputs from the validation data through the 

model and compares the predicted output with the desired output to determine the model's 

accuracy.  After training and validation have been completed, the researcher prepares another 

dataset with matched inputs and desired outputs that can be used to test the model.  In this 

instance, researchers provide the computer with the input data but withhold the correct output 

labels.  Researchers then ask the computer to predict the right outputs based on the given input 

data.  Model validation ensures that the model can be applied to data that the model has not 

processed before, which is known as generalization.   

A model that generalizes well can accurately make predictions or classifications based on 

previously unseen input data.  Models that are very accurate in the training and validation 

phases, but fail to perform well in the testing phase, are said to be over-fit.  In this case, the 

model has "memorized" the input-output pairs, instead of "learning" why each input matches its 

corresponding output.  With enough training data, researchers can teach computers to analyze 

complex data and produce human-like predictions from the data. 

Artificial Neural Networks 

Researchers use many different machine learning algorithms to train computers to solve a 

wide variety of problems34,35.  In one type of problem called computer vision, researchers 

attempt to teach computers to interpret visual data, such as pictures or videos.  In computer 
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vision, artificial neural networks (ANNs) are the most common category of algorithms used to 

process image data to accomplish tasks like image classification and image segmentation.  ANNs 

were initially conceived to emulate the neural pathways of animal vision.  Like amacrine cells, 

bipolar cells, horizontal cells, and ganglion cells in animal vision, ANNs consist of layers of 

mathematical functions called nodes that are connected, and the outputs of initial nodes are fed to 

subsequent nodes influencing the final prediction produced by the output layer.  A simple ANN 

may consist of the input node, a group of intermediate nodes called a hidden layer, and the last 

output node that makes the predictions.  

Deep Neural Networks 

The width and depth of machine learning algorithms vary widely depending on the 

accuracy researchers require from the model and the complexity of the problem36.  More 

sophisticated models known as Deep Neural Networks (DNNs) utilize many hidden layers and 

are generally more capable of parsing through more complex input data than traditional ANNs37.  

A simple model can easily classify red squares and green squares, but distinguishing cats from 

dogs, or faces from photographs, is much more challenging.  In the first case, a model with one 

or two hidden layers could likely achieve near 100% accuracy very quickly.  In the second case, 

a simple model may never perform well.  To solve more complex problems, researchers add 

more hidden layers to the model to extract more features and details from the input data.  Deep 

neural networks (DNNs) are models that use many layers to analyze input data before making 

predictions.   

As DNNs increase in complexity, more processing power is required to train the models.  

While the average user does not possess a workstation with enough processing power to 

efficiently train large DNNs from scratch, technology firms and research labs like Google and 
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Microsoft have stepped in to compete in building the most accurate networks in image 

classification38.  Google and Microsoft regularly release new DNNs that are open-sourced and 

available to researchers30,39–41.  Many artificial intelligence teams compete to build DNN image 

classifiers that are progressively more capable of classifying images in the ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC)38.  These models are trained to classify images 

contained in the ImageNet dataset, which contains over 20,000 classes and over 14 million 

images38. 

Transfer Learning 

Sometimes researchers may find themselves looking to solve many similar problems.  

Transfer learning allows researchers to use a previously trained model as the foundation for 

solving a new, comparable problem42.  For example, if a researcher has already prepared a model 

to identify doors in a picture, that model can easily be retrained to identify windows instead.  

While learning to recognize a door, the algorithm has already learned to differentiate edges from 

surfaces and to look for square patterns in images.  By fixing the weights in the initial layers of 

the algorithm, and only retraining the last couple layers, the model only needs to learn the fine 

details that make windows different from doors.  This process is called fine-tuning a model and 

can significantly enhance the predictive performance on new related data when compared to 

training a new model from scratch43.   

Machine Learning in Ecology 

Collecting and analyzing data for ecological studies can be labor-intensive and costly.  

Machine learning has been employed in a variety of ecological tasks to reduce the staff-hours 

required to process and analyze vast collections of data.  Convolutional neural networks (CNNs) 
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have been used extensively.  Kellenberger et al. (2018) implemented a CNN to conduct a census 

of large mammals of the Kuzikus wildlife reserve in Namibia44, and Norouzzadeh et al. (2018) 

trained an ensemble of DNNs, including CNNs, to perform classification of images collected 

with camera traps from the Snapshot Serengeti dataset containing 3.2 million images45.  Using a 

multi-stage approach, the images from the Snapshot Serengeti dataset were classified with 

human-level accuracy and provided details on the presence, species identifications, and 

behaviors captured by camera traps45.   

CNNs are not limited to analyzing visual data.  When audio data are converted in 

spectrograms (e.g., Figure 1), CNNs can learn from these visual representations of sound.  

Ecologists often seek to study animals that are difficult to track visually or are highly mobile.  By 

studying animal vocalizations, ecologists can gain insight into the presence and behavior of 

elusive species.  Researchers from the University of Quebec at Rimouski used a multi-layer 

perceptron model, the precursor to CNNs, to identify and classify calls emitted by blue whales in 

the Saguenay-St. Lawrence Marine Park using short-time Fourier transform spectrograms46.  

Many other marine ecologists are now using machine learning to process their bioacoustic data 

and identify marine mammals47,48. 

While marine ecologists search beneath the ocean waves, terrestrial ecologists are 

presented with similar challenges on land and in the air.  Flying animals often move quickly and 

Figure 1: Basic patterns contained in bat echolocation 

calls 



19 

 

 

occupy large ranges that make visually tracking and monitoring individuals difficult.  

Ornithologists have recognized the power of machine learning and now use a variety of machine 

learning techniques to passively monitor birds over large swaths of habitat by recording bird 

songs and calls49,50.   

In bat research, chiroptologists rely heavily on machine learning and bioacoustic data as 

well.  Bats, being nocturnal, flying mammals that echolocate with ultrasonic vocalizations, are 

especially elusive to human eyes and ears.  Technology has risen to the task.  Ultrasonic 

microphones allow researchers to “listen in” on bats at night, but the substantial amount of raw 

data produced can quickly become overwhelming to process manually.  Computers can 

automatically sort recordings of bats’ high-frequency vocalizations based on the type of call 

using machine learning.  According to Griffin et al. (1961), insectivorous bats produce different 

patterns of high-frequency echolocation calls when they are commuting, and when they are 

actively foraging28.  Commuting calls are typically referred to as search-phase calls, and active 

foraging calls are terminal buzzes or feeding buzzes29. Many researchers have used machine 

learning to find search-phase calls in large batches of recordings quickly51,52, and according to 

Jennings et al. (2008), computers are as accurate as experienced humans, and more accurate than 

humans with less than one year of experience, when deciding whether a recording contains a 

search-phase call or not53. 

Species Distribution Modeling 

Species distribution modeling is a machine learning technique used by conservationists 

and ecologists to determine the possible current, future, or past range of a species54.  Researchers 

use geographic information science (GIS) software to map known occurrences or absences of a 

species and compare them to the environmental variables at those locations54,55. Various machine 
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learning algorithms can then be used to predict species occurrences in new locations based on 

environmental variables54. Current applications of species distribution modeling include locating 

new populations of rare species56,57, analyzing habitat suitability to assess the impact of invasive 

species58,59, and possible disease vectors60,61, predicting the impact of climate change on species 

distributions62,63, and many other valuable analyses.  
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CHAPTER 2. MATERIALS AND METHODS 

Study Area and Site Selection 

The study area includes Shady Valley, TN, a small community in Johnson County, TN, 

USA.  Located between Holston Mountain and the Iron Mountains in the Southern Appalachian 

Mountains of East Tennessee (36.5193°, -81.9279°), Shady Valley is a high-elevation 

community that encompasses 140 square kilometers with elevation ranging from approximately 

600 meters to 1300 meters above sea-level. While Shady Valley previously contained a massive, 

forested cranberry bog4, today, the valley contains mostly cow pastures, farm equipment storage, 

and residential dwellings.  Five properties were selected (Figure 2A) for passive acoustic 

sampling.  Orchard Bog, Schoolyard Springs, and Quarry Bog are sites that have been 

ecologically restored by The Nature Conservancy to natural wetlands. The McQueen Farm and 

John R. Dickey Birch Branch Sanctuary served as distant dry pasture sites. The McQueen Farm 

is an active cattle farm owned by the McQueen family, and the John R. Dickey Birch Branch 

Sanctuary is a historical mountain homestead maintained by The Nature Conservancy. Sample 

sites were selected by stratified random sampling. One hundred random points were plotted in 

ArcGIS Pro 2.5.1 (Esri) on each property using the random point tool.  Ten points were then 

selected from the list at each property, ensuring that each point was at least 100 meters away 

from other selected points and 30 meters away from open bodies of water, such as ponds (Figure 

2B). 
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Passive Acoustic Monitor Setup and Data Collection 

This study employed passive acoustic monitoring of bat species in Shady Valley, TN, 

from June 10th until October 16th, 2019.  Ten Wildlife Acoustics SM4-Bat FS acoustic monitors 

with SMM-U2 microphones (Sample Rate: 256kHz, Min Trigger frequency: 20 kHz, Schedule: 

Sunset-30 to Sunrise+30, all other settings left at defaults) were deployed at one-week intervals 

with two passive acoustic monitors located at each property.  Microphone towers were built 

using 3-meter lengths of 1/2” PVC, and three nylon rope guy lines to stabilize each microphone, 

as seen in Figure 3.  The towers were oriented such that the microphones were aimed directly 

toward the open sky.  When passive acoustic monitors were deployed in forested areas, the 

microphones were positioned and aimed toward the highest point in the canopy. Every effort was 

Figure 2: (A) An elevation map of the study area with properties sampled indicated by 

different colored hatching. (B) A map of the detector sites (green) used for the SDM and 

foraging abundance models, and pseudoabsences (pink) used for the foraging abundance 

model. 
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made to ensure that passive acoustic monitors were deployed in open areas within the forest to 

provide the clearest audio recordings.  During May, preliminary recordings were collected from 

10 randomly selected sites within the study area to obtain training data for the neural network 

that was used to identify feeding buzzes.  During the study period, two sites were selected from 

each of the five properties in the study area each week.  A total of 50 sampling sites were 

monitored over five sampling weeks, and then during the second half of the study, the same sites 

were resampled in the same order as the first period.  This process provided the opportunity to 

sample each site during various weather conditions, from the best weather in July and August 

(warm nights above 15º C) to the marginal weather in June, late September, and early October 

(cold nights below 15º C).  Recorded bat calls were stored on 16GB SD cards and transferred to 

a desktop PC for analysis. 

Figure 3: Example of passive acoustic 

monitor deployment site 
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Data Processing 

All data were separated by sample-site before processing.  As passive acoustic 

monitoring generates many false triggers, the scrubber tool in Kaleidoscope Pro 5.1.0 (Wildlife 

Acoustics) was used, which was set to include calls with a minimum of three pulses and 

minimum call duration of two milliseconds.  The software then filtered out recordings that did 

not include bat-like call characteristics.  A bat pass was counted for each recording that 

contained bat-like call characteristics, and the number of bat passes was used to assess the 

intensity of bat activity at each site.  All recordings containing bat-like characteristics were 

processed with a custom Python script (python 3.7) using the Pydub module (an audio 

processing extension to the Python programming language) to split each recording into multiple 

one-second segments.  Then, a second custom Python script using the Librosa module was 

used(an audio analysis extension to the Python programming language) to produce magnitude 

spectrograms of each one-second recording segment.  Segments shorter than one second were 

not included to ensure that the resulting spectrograms were all the same 299x299 pixel 

dimensions without requiring temporal distortion of the spectrograms.  The python code used for 

data processing is included in Appendix A. 

Statistical Analysis 

The bat activity among sites was compared using PROC ANOVA in SAS 9.4 (SAS 

Institute).  I used an alpha level of 0.05 for all tests.  First, the normality of the dataset and the 

bat activity at each site was assessed using the Shapiro-Wilks test of the residuals.  When the 

data failed to pass the Shapiro-Wilks test, a log transformation was performed to normalize the 

distribution by taking the log10 of the number of bat passes at each sample site, and the Shapiro-

Wilks test was rerun.  The normality of the transformed data was confirmed with Q-Q plots.  
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Levene’s Test for Homogeneity was used to test for equal variances of the bat activity at each 

property.  A one-way ANOVA was used to analyze the main effects of passive acoustic monitor 

location for the five properties in the study area (McQueen Farm, John R. Dickey Birch Branch 

Sanctuary, Orchard Bog, Quarry Bog, and Schoolyard Springs).  The response variable was the 

bat activity.  When the F-test indicated significant differences in bat activity among the 

properties, a Tukey's post-hoc analysis was performed. 

Deep Neural Network: Training and Predicting 

Five thousand spectrograms were randomly selected from the preliminary dataset to build 

an initial training dataset for the neural network. These spectrograms were manually sorted.  

Spectrograms containing any portion of a feeding buzz were placed into a directory named 

“Buzz,” and all other spectrograms were placed into a directory named “Other.”  The sorted 

portion of the preliminary dataset was then loaded into TensorFlow 2.1 (Google) using flow-

from-directory to generate labels for each recording.  An initial CNN model was generated using 

transfer learning by loading Google’s InceptionV3 model30 from TensorFlow Hub.  The Nadam 

optimizer64 was used to guide the learning process by calculating the updates to the model 

weights after each batch of data.  The early-stopping callback was used to reduce the risk of 

overfitting and overtraining the model. If the model’s validation loss failed to improve (decrease) 

for five consecutive epochs, training was halted.  To reduce the initial training volatility, a 

learning rate schedule with a 10-epoch warm-up period (learning rate = 1e-4) was used, followed 

by a period of faster learning (learning rate= 5e-4) to decrease the training time, and ending with 

a low learning rate (1e-4) to fine-tune the model weights.  Next, the initial model was used to 

make predictions on the remaining preliminary data.  All recordings classified as feeding buzzes 

by the initial model were manually vetted, and true positives and false positives were added to 



26 

 

 

the “buzz” folder and the “other” folder, respectively. 

The InceptionV3 model was then restarted and retrained on the supplemented training 

data.  The resulting model was used to make predictions on the remaining recordings in the 

preliminary dataset again, and the vetting process was repeated.  This cycle was repeated from 

retraining InceptionV3 to vetting the results for a total of five cycles.  The “other” predictions 

were then vetted to ensure that recordings containing clear feeding buzzes were not being 

misclassified.  The Weights and Biases software was used to optimize the model’s 

hyperparameters (dropout rate, L2 regularization, and batch size) using the Bayesian 

optimization technique.  A total of 218 models were trained, and three models were chosen based 

on performance.  Models that achieved higher MCC scores on both the training and validation 

data were prioritized.  Selected models were combined using the soft-voting ensemble approach 

in which the predictions of all three models were averaged together to generate ensemble 

predictions.  This method emphasizes models that are more confident in their predictions.  

Finally, the ensemble of the selected models, hereafter referred to as BuzzFinder, was used to 

classify the bat recordings from the study-period as either containing a feeding buzz or not.  To 

avoid counting feeding buzzes from the study-period dataset multiple times (in cases where the 

feeding buzz spanned multiple recording segments), the filename suffixes (e.g. “SEG_1”) were 

removed, and unique base filenames were counted when generating the final tally of recordings 

containing at least one feeding buzz.  The TensorFlow code used to produce the neural networks 

is included in Appendix B. 

Modeling the Distribution of Bats 

A species distribution model (SDM) showing the distribution of bats was created for 

Shady Valley, TN, based on the site locations where any species of bat was recorded during the 
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study.  Based on passive acoustic sampling, bats were present at each site.  With a small, 

mountainous study area, macroclimatic data would be ineffective in modeling the actual 

distribution of bats at high resolution, because of the high variability of weather patterns over 

short distances in the mountains65.  Since the most detailed climatic data currently available for 

Shady Valley is only approximately one-kilometer resolution, topographic features (aspect, 

topographic wetness index), Euclidean distances to crucial habitat features (buildings, roads, 

streams, forest edge), and land cover data were used as recommended by Jaberg and Guisan66,67.  

Details about the creation of the individual environmental variables can be found in Appendix C. 

Using the Biomod2 package68 in R, a generalized linear model (GLM) of the distribution 

of bats in Shady Valley was produced.   A total of five GLM models were trained.  Each model 

was projected over the study area, and then a consensus model was constructed by combining the 

outputs of all five models into one ensemble by averaging the predictions.  Finally, the ensemble 

model was exported to ArcGIS Pro in ASCII format for use in modeling the potential foraging 

activity of bats in Shady Valley. 

Modeling Bat Foraging Activity 

The Forest-Based Regression (FBR) tool in ArcGIS Pro was used to create a foraging abundance 

model to predict the bat foraging activity in Shady Valley.  The FBR tool is based on Leo 

Breiman’s Random Forests algorithm and performs well when environmental variables are 

highly correlated69.  When training a regression model, the number of pseudoabsences should 

match the number of data points70.  Since bat foraging activity data were collected at 50 sample 

sites, 50 random pseudoabsences were generated by the random point generator tool in ArcGIS 

Pro using a buffer of 400 meters around detector sites to prevent pseudoabsences from being 

generated near sites known to support foraging activity.  The feeding buzz counts given by the 
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BuzzFinder model were used to calculate the average foraging activity (feeding buzzes per night) 

observed at each site by dividing the number of recordings containing feeding buzzes by the 

number of nights that the passive acoustic monitor was deployed at each site.  FBR was then 

used to analyze the relationship between the aspect, topographic wetness index (TWI), Euclidean 

distances (to roads, streams, forest edge, and buildings), the likelihood of bat presence, and the 

observed foraging activity at my study sites.  I employed the grid-search technique to tune the 

FBR model hyperparameters.  The best model was produced with 250 trees, a maximum depth of 

five, and minimum leaf size of 20.  The number of randomly sampled environmental variables 

included in each tree was set to two.  Based on these relationships, the model predicted the 

average number of recordings containing feeding buzzes per night within each 100-meter cell in 

the study area.  The mean squared error was calculated by the FBR and converted to root mean 

squared error (RMSE) for model evaluation.   
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CHAPTER 3. RESULTS 

Passive Acoustic Monitoring 

During preliminary data collection, 19,613 audio recordings were collected on the 

passive acoustic monitors.  The noise files were not scrubbed from the preliminary dataset to 

preserve some files that did not contain any bat-like call characteristics for use in training the 

BuzzFinder model.  After the preliminary recordings were processed with the WavChop script 

(Appendix A), 149,496 recordings were converted into magnitude spectrograms using the 

custom generate_spectrograms script. 

The number of files in each dataset after each processing step can be seen in Table 1. 

Over ten weeks, and 679 sample nights, the passive acoustic monitors were triggered 149,522 

times.  After removing the probable noise files with the Kaleidoscope Pro scrubber, 100,917 

recordings contained bat-like call characteristics.  These files were then segmented into 889,716, 

one-second audio segments after discarding short clips.  One audio file from the study-period 

dataset was corrupted and could not be converted into a readable spectrogram.  

 

During the study period, three microphones were disturbed or lost power and failed to 

produce data.  During week two of the study, site BB4 was knocked down during a storm, and 

site OB8, in Orchard Bog, was taken down by cattle.  At the McQueen Farm, site MF1 failed to 

Table 1: File counts after each step of data processing.  Note: Noise files were not scrubbed from 

the preliminary dataset in order to preserve noise files for training the neural network. 

 Dataset Status Preliminary Dataset Study-Period Dataset Total

Raw Audio 19,613 149,522 169,135

Scrubbed with Kaleidoscope Pro 19,613 100,917 120,530

Processed with WavChop script 149,496 889,716 1,039,212

Spectrograms 149,496 889,715 1,039,211
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record data during week four because of a battery failure.  Also, sites BB1, MF8, QB1, QB2, and 

SS1 suffered battery failures and lost power resulting in a shortened sampling period during 

week 6.   

Apart from difficulties in collecting data at some sites, other sites produced bat activity 

that was significantly higher than expected. Site MF6 and OB2 experienced abnormally high 

levels of bat activity during weeks three and seven, respectively.  Data from these sites, while not 

statistical outliers (>2.5 times the inner quartile range), were much higher than the mean bat 

activity collected on their respective properties.  Since cattle attract many insects71,72, the bat 

activity at these sites may have been influenced by the presence of cows during the sampling 

periods covered by those instruments.   

Statistical Analysis of Bat Activity 

 Bat activity was quantified by the number of bat passes recorded on each property.  The 

log-transformed bat activity was significantly different among the five properties (F92,4 = 3.91, p 

= 0.0056) (Figure 4).  Based on the Tukey's post hoc analysis, the estimated mean bat activity at 

John R. Dickey Birch Branch Sanctuary (581.00 ± 161.05 passes/night, mean ± SE) was 

significantly different from Orchard Bog (1363.05 ± 315.51 passes/night), Quarry Bog (1200.80 

± 241.25 passes/night), and Schoolyard Springs (1331.30 ± 246.84 passes/night). Bat activity at 

John R. Dickey Birch Branch Sanctuary was significantly lower than at the wetland properties.  

While the estimated mean bat activity at the McQueen Farm (702 ± 184.26 passes/night) was 

lower than at the three wetland properties, the difference was not statistically significant.  The 

mean bat activity at the McQueen Farm was also not significantly different from the mean bat 

activity at John R. Dickey Birch Branch Sanctuary.  Orchard Bog, Quarry Bog, and Schoolyard 

Springs estimates were not significantly different. 
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Google’s InceptionV3 Model Retrained 

To train the BuzzFinder model to identify bat feeding buzzes visualized in spectrograms, 

a total of 5,000 spectrograms were manually sorted, and over 140,000 additional spectrograms 

were vetted from the preliminary passive acoustic monitoring dataset.  Seven hundred eighty-

three feeding buzzes were identified in the preliminary dataset.  To build a training dataset 

containing 10,000, the feeding buzzes were oversampled to create 5,000 positive training 

samples, and under-sampling was employed to randomly select 5,000 non-feeding buzz 

recordings to represent the negative class.  Using the Bayesian hyperparameter sweep tool in the 

Figure 4: A comparison of the Log10(Bat Activity) by property.  Error bars represent standard 

error.  Differences in means (Tukey, α = 0.05) are represented by different letter-groups on the 

bars.  
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Weights and Biases web application (Weights and Biases AI, San Francisco, CA), 218 unique 

models were retrained, using Google’s InceptionV3 model as a base model.  Matthew’s 

Correlation Coefficients for the three best models are listed in Table 2.   

Species Distribution Model  

The sampled distribution of bats in Shady Valley includes restored wetlands on the west-

central valley floor, pastures in the foothills near Winchester Road, and natural open fields and 

woodland toward the north end of the valley at Birch Branch Road (Figure 2).  Because of Shady 

Valley’s slope with higher elevations in the south and lower valley floor in the north, all sample 

sites were located at similar elevation (700-800 meters above sea-level) despite the McQueen 

Farm and John R. Dickey Birch Branch Sanctuary properties being much higher off the valley 

floor and closer to the mountain ridges.    

The SDM (Figure 5) performed well, although it appears to overfit slightly.  All original 

models displayed a moderate predictive capability (AUC > 0.75) (Table 3).  The true skill 

statistics (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 − 1) for the original models are also very 

good (TSS > 0.5) 73 indicating that the model is often correctly predicting whether or not bats are 

present in a given area (Table 3). Overall, the ensemble model resulted in good predictions and 

was able to capture most of the presence points within areas estimated to have a high likelihood 

of presence. The habitat suitability was highest in the southern end of the valley on the open 

Training Validation Testing

20200412-001120  Classic-Sweep-11 0.8292 0.9574 0.7725

20200408-151919 Good-sweep-1 0.8366 0.9829 0.894

20200412-103003 silvery-sweep-19 0.8233 0.9734 0.8501

Matthew's Correlation Coefficient (MCC)
Timestamp Model Name

Table 2: Individual CNN model performance statistics.  The training and validation performances 

were evaluated on the split training dataset.  The testing performance was evaluated base on 

10,000 randomly selected files from the study-period dataset. 
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valley floor, excluding the most developed region at the crossroads of Tennessee State Routes 91 

and 133, and United States Highway 421.  The north end of Shady Valley shows a moderate 

likelihood of hosting bat species, although not as probable as the south.  It is also important to 

note that all three wetland properties are shown to have a high likelihood of bat presence; 

however, the model predicts that John R. Dickey Birch Branch Sanctuary is much less suitable 

for bats.  The McQueen Farm shows a low probability of presence on the west side of the 

property but higher suitability on the east side of the property near the creek and small pond.  

Table 3: Performance metrics of original GLM models.  The area under the 

receiver operator curve (AUC) and True skill statistic (TSS) 

 

Run AUC TSS 

1 0.871 0.693 

2 0.891 0.695 

3 0.815 0.624 

4 0.751 0.520 

5 0.897 0.698 
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Figure 5: Distribution of bats in Shady Valley, TN using generalized linear modeling. Cells 

colored red indicate areas of high habitat suitability, yellow cells indicate moderate habitat 

suitability, and green cells represent areas of low habitat suitability. 
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 Foraging Activity Model 

The foraging activity model (Figure 6) appears to perform well (RMSE = 3.72 FB/night), 

capturing general trends in the foraging areas of Shady Valley.  The model accounts for 12.26% 

of the variation within the data.  The likelihood of presence was the most critical factor in 

predicting the foraging activity of bats in Shady Valley, followed by the TWI, and aspect. The 

list of variable importance is shown in Table 4.  The areas around the restored wetlands and 

along the western valley floor are predicted to have the highest foraging activity, while heavily 

wooded areas are predicted to have minimal foraging activity.  Interestingly, the model predicts 

that foraging activity will be slightly higher along creeks and streams when compared to the 

surrounding woodland.  The predicted foraging activity appears very similar among the wetland 

sites.  The foraging activity model predicts that foraging activity will be minimal or absent at the 

McQueen Farm and John R. Dickey Birch Branch Sanctuary.  The foraging abundance model 

generally follows the same overall distribution as the SDM with areas of a high likelihood of 

presence also being more likely to exhibit high levels of foraging activity.   

Table 4: Importance of variables in determining the estimated foraging activity 

Variable                   Importance                % 

Likelihood of Presence                         214.98               25 

Topographical Wetness Index                                          173.63 20 

Aspect                     128.35               15 

Euclidean Distance to Forest                      112.48               13 

Euclidean Distance to Streams                      86.03               10 

Euclidean Distance to Buildings                    79.78                9 

Euclidean Distance to Roads                        75.74                9 
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Figure 6: Foraging activity in Shady Valley, TN using Random Forest modeling.  Cells colored 

red indicate areas of high foraging activity, yellow cells indicate moderate foraging activity, and 

green cells represent areas of low foraging activity. 
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CHAPTER 4. DISCUSSION 

Bat Activity Among the Wetland Properties 

At the start of this study, I hypothesized that the wetlands at Orchard Bog would have 

higher bat activity because of the two large, open-water ponds on the property.  This hypothesis 

is not supported by the data recorded and analyzed in this study.  Based on the one-way ANOVA 

and Tukey post hoc analysis, there was no significant difference in bat activity when the three 

wetland sites are compared.  This finding agrees with the SDM of bat presence in Shady Valley.  

The SDM (Figure 5) predicts that all three wetland properties have a high probability of hosting 

bat species because of the favorable habitat.  As bats often prefer lacustrine habitats for foraging 

areas11, the presence of Beaverdam Creek along the edge of each of the wetland properties may 

be influencing the overall bat activity in the area.  Alternatively, it could be that all ponds located 

within the Shady Valley wetlands are large enough to promote bat activity.  Francl et al. (2004) 

suggested that large ponds are necessary for wetlands to support bat foraging activity; however, 

no studies have been conducted to determine the minimum pond size required.  This information 

could be vital in helping farmers determine the optimal size of their constructed wetland ponds 

and retention ponds to reap the benefits of water runoff filtration while also minimizing the 

increase in pest insects.  Increased bat activity over retention ponds may reduce the need for 

dosing pesticides, or kerosene, to control mosquitoes.    

Bat Activity of Near-Wetland Fields Versus Distant Fields 

When comparing the bat activity of the wetlands and the distant fields at McQueen Farm 

and John R. Dickey Birch Branch Sanctuary, higher activity is expected in the wetlands because 

of the increased optimal habitat for insect proliferation.  While this hypothesis is supported when 

comparing the wetlands to BB, the bat activity at the McQueen farm was not significantly 
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different from the bat activity at any of the wetland properties.  This is likely a result of the 

combination of active cow pastures at MF and the presence of multiple retention ponds, a small 

natural pond, and the McQueen Branch creek running through the property.  Active cow pastures 

are known to promote bat activity because of the increase in insects that congregate around 

cows71.  Also, McQueen Branch creek likely increases the quality of habitat available for 

foraging bats.  On the East side of the property, the likelihood of bats being present is higher than 

on the West side of MF, based on the SDM (Figure 5).  As MF contains habitat in the west that is 

slightly similar to the habitats at the wetlands and very similar to the fields at BB on the east side 

of the property, the lack of a significant difference between MF and all other studied properties is 

not surprising.   

Bat activity at John R. Dickey Birch Branch Sanctuary is significantly lower than the bat 

activity at any of the three wetland sites based on the Tukey post hoc analysis.  This finding is 

also reflected in the SDM (Figure 5), which shows that the habitat suitability and likelihood of 

bat species being present are very low when compared to the wetland sites.  While there are a 

few fragmented patches of habitat that may be suitable for a sizeable population of bats, the 

habitat overall is not conducive to success for foraging bats.  

Efficacy of Identifying Feeding Buzzes with Machine Learning  

Manually sorting bioacoustic data can be very time-consuming.  To make future studies 

on bat foraging activity more efficient, a convolutional neural network was developed to 

automate the process of identifying and counting bat feeding buzzes contained in large 

bioacoustic datasets.  The overall performance of the BuzzFinder model is outstanding (Table 2).  

The three models produced in this study, when combined using a soft-voting system, could 

differentiate between feeding buzzes and other high-frequency sounds in most audio recordings 
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collected during the study.  The high MCC scores indicate that there was a strong agreeance 

between the predictions the model made and the labels that were applied during human 

classification. Since other studies have found that machine learning can be used to identify 

search-phase calls reliably52,53, it is not surprising that computers can also be trained to recognize 

feeding buzzes. 

In some cases, BuzzFinder was able to identify feeding buzzes that were faintly visible in 

the spectrograms and were missed during the initial manual classification process.  These results 

may not translate to other study areas.  CNN's are highly data-dependent, and more massive 

datasets tend to produce more robust models that make better predictions on unseen data.  In the 

dataset from this study, feeding buzzes were quite rare, being present in approximately 2.7% of 

the calls recorded, but that is not always the case.  Some studies, as in Gillam’s (2007) study on 

the foraging behavior of Brazilian free-tailed bats, suggest that passive acoustic monitors are 

much more likely to capture some species’ feeding buzzes than others74.  This is because of the 

high interspecific variability in the amplitude of bat calls, making some species more detectable 

than others75,76.  The frequency of bat calls also influences detectability; in that high frequency, 

low energy sounds do not travel as far as low frequency, high energy sounds.  This means that 

the area around an acoustic monitor from which a low-frequency bat call may be detected is 

much larger than the area that a high-frequency call may be detected.  While the BuzzFinder 

model was very accurate for the Shady Valley dataset, adding more audio recordings from other 

regions containing different bat species would likely increase the model's generalization 

capability and make the model more useful as a universal tool to quantify bat foraging activity 

quickly. 
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Foraging Activity over Near-Wetland Fields Versus Distant Fields 

Bat foraging intensity was expected to be significantly higher near the wetlands and 

lower in the drier regions of Shady Valley.  Based on the foraging activity model (Figure 6), this 

hypothesis is generally supported.  The foraging activity model predicts that the foraging activity 

will be highest along the valley floor near the western wood line and around the wetlands.  The 

foraging activity is also predicted to be much less at John R. Dickey Birch Branch Sanctuary and 

in all the forested, higher-elevation terrain surrounding Shady Valley.  The foraging activity 

model expects bats to forage in areas that tend to collect water (indicated by a high TWI value) 

and have a high likelihood of hosting bat species.  Oddly, the eastern valley floor is predicted to 

have a high probability of hosting bat species, but the foraging activity model identifies very few 

cells with high foraging activity predictions.  The overall performance of the model was fair, 

with the RMSE indicating that the average error was approximately 30%.  The amount of 

variation explained by the model is low.  

This model could benefit from more data points and better environmental variables that 

could allow the model to capture the high variability in bat foraging behavior.  While the SDM, 

the TWI, and the aspect seem to provide some explanation of the variability in the data, the 

Euclidean distance variables failed to contribute much to the model’s ability to predict feeding 

buzz counts at the detector sites.  As bats are highly mobile species, the locations of potential 

roost sites and unfavorable landscape features seem to have little relevance to the distribution or 

foraging activity of bats in a 100-meter resolution model. Additional environmental variables 

(i.e., microclimatic variables, such as minimum low temperature, temperature seasonality, vapor 

pressure, and humidity) and data points may be expected to produce a better model with higher 

predictive capability.    
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Conclusions 

Wetlands provide many benefits when maintained near farmland.  Crop farms use a 

significant amount of fertilizers to increase crop yield, and cattle farms produce large quantities 

of manure, both of which often end up in the groundwater, streams, and rivers via runoff. This 

pollution contributed to a variety of negative ecological consequences, such as eutrophication77.  

Since wetlands provide an excellent means of preventing non-point source pollution from 

entering the waterways78, preserving wetlands near the farms may significantly reduce the 

amount of agricultural pollution that reaches the groundwater, streams, and ultimately, the ocean.   

While cleaner water is a boon to humanity, pest insect control is beneficial to crop 

farmers, specifically.  Bats are known to eat many pest insects, such as the corn earworm 

(Helicoverpa zea), that decimate crops and could cost the agricultural community billions of 

dollars annually if left unchecked13–15.  Cattle farms do not appear to reap all the benefits that 

crop farms may, such as increased bat foraging.  As wetlands and active pastures contain large 

insect populations, wetlands and active cow pastures most likely compete to become the prime 

foraging areas that bats seek.  Cows draw many prey species that feed bat populations72.  

However, as the number of livestock fluctuates, wetlands may act as a reservoir for times when 

the bat population exceeds the ability of drier farms to sustain them.   

In addition to threatening livestock and crops, mosquitoes and other disease vectors 

threaten humans with diseases like the Zika virus and malaria.  Since many of these dangerous 

insects are capable of breeding in small pools of water, maximizing bat foraging activity over 

farmland by converting retention ponds to constructed wetlands may serve to limit human 

exposure to these pests without requiring the application of pesticides while also providing the 

many functions that retention ponds impart, such as offering reserve water sources used to 
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irrigate crops, water cattle and collecting runoff before it enters the waterways.  While many 

methods have been proposed to naturally reduce pest insects on crop and cattle farms79, 

eliminating reliance on pesticides will probably require implementing multiple mitigation 

techniques.  Bats are not capable of reducing all pest insect populations, but when combined with 

other techniques, such as push-pull and biochemical methods, maintaining wetlands near 

farmland has the potential to reduce the amount of pesticides required and limit agricultural 

pollution. 
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APPENDICES 

Appendix A   

Python Code for Data Processing 

WavChop.py 

from pydub import AudioSegment 

from pydub.utils import make_chunks 

import os 

import wave 

import contextlib 

input_folder = 'PATH TO BAT RECORDINGS (WAV FILES) ' 

 

 

def main(): 

    for path, dirs, files in os.walk(input_folder): 

        for f in files: 

            if f.endswith('.wav'): 

                wav_file_path = os.path.join(path, f) 

                my_audio = AudioSegment.from_file(wav_file_path, "wav") 

                chunk_length_ms = 1000 

                chunks = make_chunks(my_audio, chunk_length_ms) 

                for i, chunk in enumerate(chunks): 

                    chunk_num = "__" + str(i + 1) 

                    output_file_name = os.path.basename(wav_file_path.replace('.wav', chunk_num)) +  

        '.wav' 

                    output_dir = os.path.dirname(wav_file_path) 

                    chunk_name = os.path.join(output_dir, output_file_name) 

                    print("exporting", chunk_name) 

                    chunk.export(chunk_name, format="wav") 

 

 

def remove_short(): 

    for path, dirs, files in os.walk(input_folder): 

        for f in files: 

            if f.endswith('.wav'): 

                wav_file_path = os.path.join(path, f) 

                with contextlib.closing(wave.open(wav_file_path, 'r')) as f: 

                    frames = f.getnframes() 

                    rate = f.getframerate() 

                    duration = frames / float(rate) 

                    print(duration) 

                    if duration < 1.0: 
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                        os.remove(wav_file_path) 

                        print('Short File deleted: ' + wav_file_path) 

 

main() 

remove_short() 

 

Generate_spectrograms.py 

import os 

import numpy as np 

from matplotlib import pyplot as plt 

import librosa 

from librosa import display 

input_folder = '/PATH/TO/WAV/SEGMENTS/DIRECTORY'   

 

 

def main(): 

    for path, dirs, files in os.walk(input_folder): 

        for f in files: 

            if f.endswith('.wav'): 

                wav_file_path = os.path.join(path, f) 

                print("Checking " + wav_file_path) 

                output_file_name = os.path.basename(wav_file_path.replace('.wav', '.jpg')) 

                output_dir = os.path.dirname(wav_file_path) 

                output_path = os.path.join(output_dir, output_file_name) 

                if not os.path.isfile(output_path): 

                    print("Creating spectrogram of " + output_path) 

                    plot_audio_spectrogram(wav_file_path, output_path) 

 

def plot_audio_spectrogram(audio_path, plot_path=None, sr=256000): 

    y, sr = librosa.load(audio_path, sr=sr) 

    plt.figure(figsize=(100, 100), dpi=6, frameon=False) 

    D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max) 

    me = np.mean(D, 1) 

    spec = D - me[:, np.newaxis] 

    librosa.display.specshow(spec, cmap='magma') 

    plt.subplots_adjust(left=0, right=1, bottom=0, top=1) 

    plt.axis('off') 

    plt.savefig(plot_path) 

    plt.close() 

 

    return spec 

 

main() 

print("Scan Complete!!!")  
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Appendix B 

Tensorflow Code for Retraining Google’s InceptionV3 Model 

retrain.py 

import tensorflow as tf 

import os 

import tensorflow_hub as hub 

import datetime 

import numpy as np 

import wandb 

from wandb.keras import WandbCallback 

from sklearn.metrics import precision_score 

from sklearn.metrics import recall_score 

from sklearn.metrics import f1_score 

from sklearn.metrics import cohen_kappa_score 

from sklearn.metrics import matthews_corrcoef 

from sklearn.metrics import confusion_matrix 

import logging 

 

# Limit messages 

logger = tf.get_logger() 

logger.setLevel(logging.WARNING) 

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  # or any {'0', '1', '2'} 

 

gpus = tf.config.experimental.list_physical_devices('GPU') 

if gpus: 

    try: 

        tf.config.experimental.set_memory_growth(gpu, True) 

        print(len(gpus), "Physical GPUs") 

    except RuntimeError as e: 

        print(e) 

 

hyperparameter_defaults = dict( 

    Dropout=0.2, 

    BATCH_SIZE=4, 

    l2=1e-4, 

    ) 

 

wandb.login() 

wandb.init(config=hyperparameter_defaults, notes="") 

config = wandb.config 

 

print(tf.version.VERSION) 
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print("Hub version:", hub.__version__) 

print("GPU is", "available" if tf.config.list_physical_devices('GPU') else "NOT AVAILABLE") 

CurrTime = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") 

print('Training starting at ' + CurrTime) 

 

module_selection = ("inception_v3", 299) 

handle_base, pixels = module_selection 

MODULE_HANDLE = 

"https://tfhub.dev/google/imagenet/{}/feature_vector/4".format(handle_base) 

IMAGE_SIZE = (pixels, pixels) 

print("Using {} with input size {}".format(MODULE_HANDLE, IMAGE_SIZE)) 

 

BATCH_SIZE = config.BATCH_SIZE 

N_TRAIN = int(1e4) 

STEPS_PER_EPOCH = N_TRAIN//BATCH_SIZE 

 

data_dir = "/Your/Data/Directory/" 

 

datagen_kwargs = dict(rescale=1./255, 

                      validation_split=0.20 

                      ) 

dataflow_kwargs = dict(target_size=IMAGE_SIZE, 

                       batch_size=BATCH_SIZE, 

                       interpolation="bilinear" 

                       ) 

 

valid_datagen = tf.keras.preprocessing.image.ImageDataGenerator( 

    **datagen_kwargs) 

valid_generator = valid_datagen.flow_from_directory( 

    data_dir, subset="validation", shuffle=False, **dataflow_kwargs) 

 

train_datagen = valid_datagen 

train_generator = train_datagen.flow_from_directory( 

    data_dir, subset="training", shuffle=True, **dataflow_kwargs) 

 

do_fine_tuning = True 

 

print("Building model with", MODULE_HANDLE) 

 

BuzzFinder = tf.keras.Sequential([ 

    hub.KerasLayer(MODULE_HANDLE, trainable=do_fine_tuning), 

    tf.keras.layers.Dropout(rate=config.Dropout), 

    tf.keras.layers.Dense(train_generator.num_classes, 

                          kernel_regularizer=tf.keras.regularizers.l2(config.l2), 

                          activation='softmax')]) 



54 

 

 

BuzzFinder.build((None,)+IMAGE_SIZE+(3,)) 

BuzzFinder.summary() 

BuzzFinder.compile( 

    optimizer=tf.keras.optimizers.Nadam(learning_rate=0.0001, 

                                        beta_1=0.9, 

                                        beta_2=0.999, 

                                        epsilon=1e-07, 

                                        name='Nadam'), 

    loss=tf.keras.losses.BinaryCrossentropy(label_smoothing=0.2), 

    metrics=['accuracy']) 

 

steps_per_epoch = train_generator.samples // train_generator.batch_size 

validation_steps = valid_generator.samples // valid_generator.batch_size 

 

# Callbacks 

es_callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5) 

ckpt_path = '/Directory/to/save/checkpoints' + CurrTime 

ckpt_callback = tf.keras.callbacks.ModelCheckpoint(filepath=ckpt_path, save_best_only=True) 

 

 

def scheduler(epoch): 

    if epoch < 10: 

        return 0.0001 

    elif epoch < 20: 

        return 0.0005 

    else: 

        return 0.0001 

 

 

lr_schedule = tf.keras.callbacks.LearningRateScheduler(scheduler) 

 

hist = BuzzFinder.fit( 

    train_generator, 

    epochs=50, steps_per_epoch=steps_per_epoch, 

    validation_data=valid_generator, 

    validation_steps=validation_steps, 

    callbacks=[WandbCallback(), 

               es_callback, 

               lr_schedule, 

               ckpt_callback]) 

 

# Directory path to save the final model. The best checkpoint model was previously saved. 

model_save_path = '/Directory/to/save/final/model_' + CurrTime 

BuzzFinder.save(model_save_path) 
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def get_model_perf(generator): 

    filenames = generator.filenames 

    nb_samples = len(filenames) 

 

    preds = BuzzFinder.predict(generator, verbose=1, steps=nb_samples) 

 

    preds_cls_idx = preds.argmax(axis=1) 

    y_true = generator.labels 

 

    print('**********************') 

    print('|  Confusion Matrix  |') 

    print('**********************') 

    print('         ') 

 

    cm = confusion_matrix(y_true, preds_cls_idx) 

    cm_norm = cm / cm.astype(np.float).sum(axis=1) 

    print(cm_norm) 

 

    print('TP: ', cm[1, 1]) 

    print('FP: ', cm[0, 1]) 

    print('TN: ', cm[0, 0]) 

    print('FN: ', cm[1, 0]) 

    print('**********************') 

    print('|       STATS        |') 

    print('**********************') 

    print('         ') 

 

    precision = precision_score(y_true, preds_cls_idx) 

    recall = recall_score(y_true, preds_cls_idx) 

    f_score = f1_score(y_true, preds_cls_idx) 

    kappa = cohen_kappa_score(y_true, preds_cls_idx) 

    mcc = matthews_corrcoef(y_true, preds_cls_idx) 

 

    print('Precision:   ', np.round(precision, decimals=4)) 

    print('Recall:      ', np.round(recall, decimals=4)) 

    print('F-score:     ', np.round(f_score, decimals=4)) 

    print('Kappa:       ', np.round(kappa, decimals=4)) 

    print('MCC:         ', np.round(mcc, decimals=4)) 

 

 

# Reload the best model and make predictions 

print("Reloading Best Model: " + ckpt_path) 

print("This may take a minute...") 

BuzzFinder = tf.keras.models.load_model(ckpt_path) 
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print("Best model: Ready, Set... Predict!") 

print('Predict on Training Set...') 

train_generator = train_datagen.flow_from_directory( 

     data_dir, subset="training", shuffle=False, **dataflow_kwargs) 

get_model_perf(train_generator) 

 

print('Predict on Validation Set...') 

get_model_perf(valid_generator) 

 

print('Predict on Test Set...') 

pred_dir = '/PATH/TO/test_data/spectrograms' 

pred_datagen = valid_datagen 

pred_generator = pred_datagen.flow_from_directory( 

     pred_dir, shuffle=False, **dataflow_kwargs) 

get_model_perf(pred_generator) 

 

 

predict.py 

import tensorflow as tf 

import tensorflow_hub as hub 

import numpy as np 

import pandas as pd 

import datetime 

 

 

# Setup Memory Growth fix for GTX 1660 Super 

gpus = tf.config.experimental.list_physical_devices('GPU') 

if gpus: 

    try: 

        # Currently, memory growth needs to be the same across GPUs 

        for gpu in gpus: 

            tf.config.experimental.set_memory_growth(gpu, True) 

        print(len(gpus), "Physical GPUs") 

    except RuntimeError as e: 

        # Memory growth must be set before GPUs have been initialized 

        print(e) 

 

print(tf.version.VERSION) 

print("Hub version:", hub.__version__) 

print("GPU is", "available" if tf.config.list_physical_devices('GPU') else "NOT AVAILABLE") 

CurrTime = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") 

print('Predicting starting at ' + CurrTime) 
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IMAGE_SIZE = (299, 299) 

BATCH_SIZE = 16 

 

train_dir = "/PATH/TO/Data/train/" 

 

datagen_kwargs = dict(rescale=1./255, 

                      validation_split=.20) 

 

dataflow_kwargs = dict(target_size=IMAGE_SIZE, 

                       batch_size=BATCH_SIZE, 

                       interpolation="bilinear") 

 

valid_datagen = tf.keras.preprocessing.image.ImageDataGenerator( 

    **datagen_kwargs) 

valid_generator = valid_datagen.flow_from_directory( 

    train_dir, subset="validation", shuffle=False, **dataflow_kwargs) 

 

train_datagen = valid_datagen 

train_generator = train_datagen.flow_from_directory( 

    train_dir, subset="training", shuffle=True, **dataflow_kwargs) 

 

# Load Model 

model_name = 'YOUR SELECTED MODEL NAME' 

model_path = '/PATH/TO/SAVED/MODELS/' + model_name 

 

BuzzFinder = tf.keras.models.load_model(model_path) 

 

# Get Predictions (Test) 

 

site_name = '_Total'  #  Prediction data identifier.  Can be any string of text. 

pred_dir = '/PATH/TO/UNCLASSIFIED/DATA/' 

 

pred_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255) 

 

pred_generator = pred_datagen.flow_from_directory( 

    pred_dir, 

    target_size=IMAGE_SIZE, 

    color_mode='rgb', 

    classes=None, 

    class_mode='binary', 

    batch_size=1, 

    shuffle=False, 

    interpolation='bilinear') 

 

filenames = pred_generator.filenames 
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nb_samples = len(filenames) 

 

preds = BuzzFinder.predict(pred_generator,  verbose=1, steps=nb_samples) 

 

print('Match Prediction to Class Label') 

 

preds_cls_idx = preds.argmax(axis=-1) 

idx_to_cls = {v: k for k, v in train_generator.class_indices.items()} 

preds_cls = np.vectorize(idx_to_cls.get)(preds_cls_idx) 

 

print('Store Predictions in DataFrame') 

predictions = pd.DataFrame({"filenames": filenames, "prediction": preds_cls, "Buzz Prob": 

preds[:, 1]}) 

 

print('Saving Predictions') 

# Save Predictions to CSV 

result_save_dir = '/DIRECTORY/TO/SAVE/RESULTS/' 

pred_report_name = model_name + '_predictions.csv' 

predictions.to_csv(result_save_dir + pred_report_name) 
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Appendix C 

Environmental Variables for Spatial Modeling 

 

Digital Elevation Model 

The 10-meter DEM was obtained from the 3DEP dataset produced by USGS and masked 

to the study area in Shady Valley, TN, USA.  

Land Cover 

The land cover data were obtained from the National Land Cover Database 2011 (NLCD 

2011) produced by the Multi-Resolution Land Characteristics (MRLC) consortium.  The NLCD 

2011 was masked to Shady Valley, TN, and then resampled to a 100-meter resolution using the 

“majority” resampling technique.  Using this technique, the value for each cell is determined by 

the land cover type that is most commonly found within the cell. 

 

Figure 7: Environmental variables used to model species distribution and bat foraging activity 
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Aspect 

The aspect layer was calculated based on the 3DEP DEM and then resampled using 

bilinear interpolation to 100-meter resolution for use in the SDM and SAM analyses. 

Topographic wetness index 

A topographic wetness index layer was calculated from the 3DEP DEM using the TWI 

one-step tool in SAGA GIS.  The TWI layer was then exported to ArcGIS Pro and resampled 

using bilinear interpolation to 100-meter resolution for use in SDM and SAM analyses.  

Euclidean distances to buildings  

A building footprint layer was obtained from the Tennessee Geographic Information 

Council.  I used the Euclidean distance tool in ArcGIS to calculate the Euclidean distance from 

the center of each 100-meter cell to the closest building edge using a 100-meter output cell size 

and the planar distance method. 

Euclidean distances to roads 

The Euclidean distance to the nearest major road was calculated based on the TL 2019 

database produced by the United States Census Bureau.  Since most bat species avoid busy 

roads, the polylines for Tennessee State Route 91, Tennessee State Route 133, and US Route 421 

were extracted from the dataset and used for analysis.  The Euclidean distance tool in ArcGIS 

was used to calculate the Euclidean distance from the center of each 100-meter cell to the closest 

major road using a 100-meter output cell size and the planar distance method. 

Euclidean distances to streams 

ArcGIS Pro was used to create a layer of potential streams and waterways based on the 

3DEP DEM.  First, the fill tool was used to fill sinks in the DEM.  Then the flow direction tool 
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was used to calculate the D8 flow direction.  Next, the flow accumulation tool was used to 

calculate where water would potentially accumulate on the landscape.  To determine the location 

of ecologically important waterways, the raster calculator was used to extract all locations with 

greater than 2,000 cells of flow accumulation.  Then, the raster-to-polyline tool was used to 

extract a polyline layer with the location of potential waterways.  The Euclidean distance tool in 

ArcGIS was used to calculate the Euclidean distance from the center of each 100-meter cell to 

the closest waterway using a 100-meter output cell size and the planar distance method. 

Euclidean distances to the forest edge 

To map the forested and open regions in Shady Valley, the NLCD 2011 was reclassified 

in ArcGIS Pro.  Deciduous forest, evergreen forest, mixed forest, and woody wetlands were 

reclassified as “forests,” and all other land cover types were classified as “open.”  Then, I 

extracted the “forests” polygon to a new layer and used the Euclidean distance tool to calculate 

the Euclidean distance from the center of each 100-meter cell to the closest tree line using a 100-

meter output cell size and the planar distance method. 
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Appendix D 

R Code for Ensemble Species Distribution Modeling in Biomod2 

packages <- c('biomod2', 'randomForest', 'kernlab', 'raster', 'caret', 'dismo', 'rgdal', 'maptools', 

'hexbin') 

 

if (length(setdiff(packages, rownames(installed.packages()))) > 0) { 

  install.packages(setdiff(packages, rownames(installed.packages())))   

} 

 

library(biomod2) 

library(randomForest) 

library(raster) 

library(caret) 

library(dismo) 

library(rgdal) 

library(maptools) 

 

setwd(" //Your//Working//Directory// ") 

par.defaults <- par(no.readonly=TRUE) 

save(par.defaults, file="R.default.par.RData") 

 

speciesData <- read.csv("presence.csv") 

 

ed_bldgs <- raster("ed_buildings.asc") 

ed_roads <- raster("ed_roads.asc") 

ed_streams <- raster("ed_streams.asc") 

ed_trees <- raster("ed_forest.asc") 

TWI <- raster("twi.asc") 

aspect <- raster("aspect.asc") 

nlcd <- raster("nlcd.asc") 

 

myExpl <- stack(list(ed_bldgs=ed_bldgs, 

                     ed_roads=ed_roads,  

                     ed_streams=ed_streams,  

                     ed_trees=ed_trees,  

                     TWI=TWI, 

                     aspect=aspect, 

                     nlcd=nlcd 

)) 

names(myExpl) 

plot(myExpl) 

 

myRespName <- "Bats" 
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myRespXY <- speciesData[,c("LON_DD","LAT_DD")] 

 

myResp <- as.numeric(speciesData[,myRespName]) 

myBiomodData <- BIOMOD_FormatingData( resp.var = myResp,  

                                      expl.var = myExpl, 

                                      resp.xy = myRespXY,  

                                      resp.name = myRespName,  

                                      PA.nb.rep = 1,  

                                      PA.nb.absences = 10000,  

                                      PA.strategy = 'random') 

 

plot(myBiomodData) 

 

myBiomodOption <- BIOMOD_ModelingOptions() 

 

myBiomodModelOut <- BIOMOD_Modeling( 

  myBiomodData, 

  models = c( 'GLM' ), 

  models.options = myBiomodOption, 

  NbRunEval = 5, 

  DataSplit = 70, 

  Prevalence = 0.5, 

  VarImport = 3, 

  models.eval.meth = c('TSS', 'ROC'), 

  SaveObj = TRUE, 

  rescal.all.models = TRUE, 

  do.full.models = FALSE, 

  modeling.id = paste(myRespName, "Bats", sep="")) 

 

myBiomodModelEval <- get_evaluations(myBiomodModelOut) 

 

myBiomodModelEval["TSS", "Testing.data" ,,,] 

myBiomodModelEval["ROC", "Testing.data",,,] 

 

get_variables_importance(myBiomodModelOut) 

 

myGLMModels <- BIOMOD_LoadModels(myBiomodModelOut, models=c('GLM')) 

myRespPlotGLM <- response.plot2(models  = myGLMModels, 

                               Data = get_formal_data(myBiomodModelOut,'expl.var'),  

                               show.variables= get_formal_data(myBiomodModelOut,'expl.var.names'), 

                               do.bivariate = FALSE, 

                               fixed.var.metric = 'median', 

                               col = c("red", "blue", "green"), 

                               legend = TRUE, 

                               data_species = get_formal_data(myBiomodModelOut,'resp.var')) 
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myBiomodProj <- BIOMOD_Projection( 

   modeling.output = myBiomodModelOut, 

   new.env = myExpl, 

   proj.name = 'current', 

   selected.models = c( "Bats_PA1_RUN1_GLM", 

                         "Bats_PA1_RUN2_GLM", 

                         "Bats_PA1_RUN3_GLM", 

                         "Bats_PA1_RUN4_GLM", 

                         "Bats_PA1_RUN5_GLM"), 

   binary.meth = 'TSS', 

   compress = 'xz', 

   build.clamping.mask = FALSE, 

   output.format = '.grd') 

 

plot(myBiomodProj, str.grep = "GLM") 

 

myBiomodEM <- BIOMOD_EnsembleModeling( modeling.output = myBiomodModelOut, 

                                       chosen.models = c( "Bats_PA1_RUN1_GLM", 

"Bats_PA1_RUN2_GLM", 

"Bats_PA1_RUN3_GLM", 

"Bats_PA1_RUN4_GLM", 

"Bats_PA1_RUN5_GLM"), 

                                       em.by = 'all', 

                                       eval.metric = c('ROC'), 

                                       eval.metric.quality.threshold = c(0.6), 

                                       prob.mean = TRUE, 

                                       prob.cv = FALSE, 

                                       prob.ci = FALSE, 

                                       prob.ci.alpha = 0.05, 

                                       prob.median = FALSE, 

                                       committee.averaging = FALSE, 

                                       prob.mean.weight = TRUE, 

                                       prob.mean.weight.decay = 'proportional') 

 

EMplot <- BIOMOD_EnsembleForecasting(projection.output = myBiomodProj, 

                                     EM.output = myBiomodEM) 

plot(EMplot) 

 

Ensemble_raster <- raster("Bats/proj_current/proj_current_Bats_ensemble.grd") 

writeRaster(Ensemble_raster, file="Bats/proj_current/proj_current_Bats_ensemble", 

format="ascii", overwrite=TRUE) 
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