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Abstract
Epstein-Barr virus (EBV), an oncogenic virus that 

ubiquitously establishes life-long persistence in humans, 
encodes viral miRNAs in two clusters, BHRF1 and BART. 
EBV also regulates expression of a large pool of cellular 
miRNAs, including miR-155, miR-146a, miR-21, miR-29, 
and miR-34a. These miRNAs targets both viral and cel-
lular genes involved in the entire viral lifetime from lytic 
infection to oncogenesis, including viral replication, im-
mune responses, cell cycle regulation, apoptosis, and cell 
proliferation, and are indispensable for persistent infec-
tion, latency establishment and maintenance, and can-
cer development. Among them, circulating miRNAs and 
unique miRNA profiles are promising diagnosis and prog-
nosis biomarkers alone or with other traditional biomark-
ers. Elucidation of the precise mechanisms of action of 
these miRNAs in EBV latent infection will improve our 
knowlege of EBV persistence and oncogenesis, and may 
foster new strategies to target these miRNAs for treat-
ments of EBV-associated cancers.

Introduction
microRNAs (miRNAs) have been the focus in the last 

decade because they represent a new category of regula-
tors in “fine-tuning” gene expression at post-transcrip-
tional level in a broad spectrum of biological processes 
including cell activation, proliferation and differentiation, 
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immune responses, tumorigenesis, and maintenance of 
homeostasis during viral infection or stress [1-8]. The hu-
man genome encodes approximately 2,000 miRNAs (ac-
cording to miRBase). Many viruses have been discovered 
to encode viral miRNAs, with more than 500 identified 
by far [9-12]. Rhesus lymphocryptovirus (rLCV), the rhe-
sus monkey gammaherpesvirus closely related to human 
Epstein-Barr virus (EBV), encodes the most viral miR-
NAs among all examined viruses, with at least 68 mature 
miRNAs [10,13]. The herpesvirus family of DNA viruses 
encode at least half of all known viral miRNAs [10,14], a 
large portion of which are encoded by the two oncogenic 
herpesviruses EBV and KSHV [7,15,16]. It is of note that 
viral miRNAs from the herpersvirus family has share little 
sequence conservation except a few. They also have a large 
range of distinct targets in different host cells for similar 
functional outcomes [17]. 

In host-virus interaction, a pool of viral and cellular 
miRNAs are invoked, and their aberrant expression is hall-
mark of diseases caused by viral infection [6,8-10,18,19]. 
Among cellular miRNAs, miR-155, miR-146a, miR-21, 
miR-29a, miR-125b, miR-17/92, and miR-181 are com-
monly deregulated by oncogenic viruses. These viral and 
cellular miRNAs have profound impacts on persistent in-
fection and virus-mediated oncogenesis [10,16,20]. They 
not only regulate viral replication and shape the immune 
response to infection, but also contribute to the establish-
ment of persistent or latent infection, and to virus-medi-
ated oncogenesis [7,12,17,20,21].
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EBV-Encoded Viral miRNAs
EBV encodes the first and the largest number of viral 

miRNAs in all human oncogenic viruses, with a total of 25 
precursor and 49 mature miRNAs discovered by now  (Ta-
ble 1) [22-24], in two genomic clusters, BHRF1 and BART, 
except miR-BART2-5p and -3p that are transcribed from 
antisense orientation to the 3’-UTR of the gene encoding 
BALF5 DNA polymerase (Figure 1) [14]. Both BART and 
BHRF1 miRNAs targets multiple pathways that control 
cellular functions to favor EBV infection, persistence, and 
oncogenesis (Figure 2) [23,25]. 

Figure 1: EBV Genomic Organization for Viral miRNAs.
Genomic structure for BART and BHRF1 miRNAs and latency pro-
teins are shown [14]. BHRF1 miRNAs are derived from the BHRF1 
transcript. BART miRNAs are produced from different introns de-
rived fro6m a large transcript spanning 138081 to 160531 of EBV ge-
nome. Region for the two miRNA clusters, BHRF1 and BART, are 

shown in details at bottom. 
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Figure 2: Viral and Cellular miRNAs in EBV Latency and Onco-
genesis.

EBV encodes BHRF1 and BART miRNAs. BART miRNAs are en-
riched in Type II latency that is associated with epithelial carcinomas. 
BART miRNAs positively regulate Wnt signaling by targeting WIF1, 
BTRCP, NLK, GSK3β and APC. They also inhibit apoptosis by target-
ing the mRNAs encoding Caspase-3, and the Bcl-2 family members 
Bim, BAD, and PUMA. BART miRNAs also target viral transcripts 
including LMP1, EBNA2, BHRF1, Zta, Rta, and BALF5, and therefore 
play important roles in limiting EBV lytic replication, maintaining 
EBV latency, and promoting oncogenesis. BHRF miRNAs are exclu-
sively enriched in Type III latency, and implicated in AIDS-related 
lymphomas, by taregting a pool of increasingly identified cellular and 

viral transcripts.
EBV latent infection also regulates expression of a large panel of cel-
lular miRNAs. Specifically, EBV LMP1 signaling pathway induces 
miR-155, miR-146a, miR-21, amongst other miRNAs, which play 
important roles in EBV immune evasion, latency maintenance, and 
oncogenesis, by targeting multiple components in LMP1, TLR, Jak-

STAT, and apoptosis pathways.  
Cellular miRNAs are indicated in purple fonts, and EBV miRNAs and 

EBV products are indicated in red fonts.

Of note, both BART and BHRF1 miRNAs target the 
key EBV oncogene, LMP1, and its inducer EBNA2. Im-
portantly, both BART and BHRF1 miRNAs play impor-
tant roles in EBV escape of NK cell innate recognization 
by targeting MICB [26], and in EBV evasion of T cell-
mediated adaptive immune responses by interfering with 
multiple processes, including inhibition of production 
and release of proinflammatory cytokines such as  IL12b 
and inhibition of antigen presentation by targeting TAP2, 
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IPO7, GILT and LGMN, amongst others [27-28]. The EBV 
antigen EBNA1, that has the ability to prevent  process-
ing and presentation of its epitopes on MHC class I mol-
ecules, is reduced at protein level by EBV miRNAs [28]. 
EBV miRNAs also control adaptive immune responses 
by targeting LMP1, which regulates multiple chemokines 
and cytokines involved in adaptive immunity [17]. 

BHRF1 miRNAs
BHRF1 miRNAs, including BHRF1-1, -2, -2* and -3, 

are produced from a transcript that encodes the BHRF1 
lytic protein (Figure 1). They are highly and exclusively 
expressed in B lymphoma cells with EBV Type III latency, 
and likely stimulate cell cycle progress, repress apoptosis, 
and promote survival of B cells [29-31]. Specifically, the 
cluster BHRF1-3 miRNA has potent ability to promote 
EBV-mediated B cell transformation [31-32], at least by 
targeting pTEN, p27 and a Bcl-2 homolog [33]. BHRF1 
miRNAs have also been implicated in preventing apopto-
sis during infection of cultured primary B cells [30], and 
high throughput screens have identified a pool of BHRF1 
miRNA targets including GUF1, NAT12, and SCRN1[34]. 
Both BHRF and BART miRNAs target viral transcripts, 
including BHRF1, LMP1 and EBNA2, which should be 
of notable implications in AIDS-related lymphomas [35]. 
However, a study with mouse models has suggested that 
BHRF miRNAs did not contribute to EBV oncogenesis 
[36]. 



11

                                                          Herpesviridae

www.avidscience.com

Since the sequences encoding BHRF1 miRNAs are 
located in the 3’-UTR of the gene encoding the lytic pro-
tein BHRF1, BHRF1 miRNAs are expressed in lytic cycle 
and implicated in EBV reactivation and immune evasion. 
In fact, miR-BHRF1-3 may contribute to EBV evasion of 
IFN-mediated immune response by targeting the IFN-
inducible chemokine CXCL11[38]. A recent report shows 
that miR-BHRF1-1 targets RNF4 during lytic infection 
and promotes virus production [37]. 

BART miRNAs 
In contrast to BHRF miRNAs, BART miRNAs are 

more abundantly expressed in epithelial cells with Type 
II latency, although their expression is detectable in all 
EBV-associated tumors [29,39-41]. Therefore, BART 
miRNAs are closely associated with the pathogenesis of 
nasopharyngeal carcinoma (NPC) and gastric carcinoma 
[39,42-44]. Their expression is at least induced by LMP1/
NFκB signaling pathway, and also likely by AP1 and EBV 
BZLF1/NFκB pathway [41,45]. BART miRNAs may have 
evolved from the human miR‐17/92 cluster, and they co-
target hundreds of cellular mRNA 3’-UTRs [35]. 

Since BART miRNAs are induced by EBV immedi-
ate-early transcription factor BZLF1, they are involved in 
immune evasion during lytic infection and in EBV reacti-
vation [46]. BART miRNAs are also involved in immune 
evasion in latency. miR-BART6-3p, along with the cellular 
miR-197, has been shown recently to suppress host im-
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mune response by targeting IL6R [47]. miR-BART16 in-
hibits type I IFN production in EBV-transformed B cells 
by targeting CREB-Binding Protein (CBP) [48], a crucial 
transcriptional coactivator of the type I IFN genes. In 
contrast to most herpesvirus viral miRNAs that mainly 
regulate lytic transcripts to reinforce latent infection, EBV 
miRNAs rarely target its own lytic transcripts. Excep-
tions include miR-BART2 that inhibits lytic replication 
by targeting the lytic transcript of BALF5 for degradation 
[49], and miR-BART6 and miR-BART20 that target RTA 
and Zta, two crucial factors for lytic replication (Table 1) 
[44,50].

BART miRNAs promote WNT signaling pathway by 
extensively targeting key Wnt inhibitors such as Wnt-in-
hibiting factor 1 (WIF1), GSK3B, Adenomatous Polyposis 
Coli (APC, known as PPP1R46), Beta-Transducin Repeat 
Containing Protein (BTRCP) that encodes an E3 ubiquit-
in ligase targeting β-catenin for degradation, and NEMO-
Like Kinase (NLK) that interferes with β-catenin/TCF/
LEF binding [39,43] (Figure 2). They inhibit apoptosis by 
targeting Caspase-3 and the Bcl-2 family, and thus may 
contribute to the maintenance of Burkitt’s lymphoma [51]. 

Although BART miRNAs are also implicated in EBV-
mediated B-cell lymphoma, they are dispensable for B‐cell 
transformation as most of them (BART5, -16, -17, and -6 
in BART cluster 1 and the entire BART cluster 2) do not 
exist in the common EBV strain B95-8 (Figure 1), which, 
however, is still able to immortalize primary B cells in cul-
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ture, suggesting that their functions are complemented 
by cellular miRNA orthologues [9,35,52]. A recent report 
indicates that BART miRNAs can promote tumor growth 
in mice, although they are not required for the growth of 
EBV-infected cells in cell culture [53]. 

EBV-Regulated Cellular miRNAs 
EBV infection has a global impact on cellular miRNA 

expression in B lymphocytes and epithelial cells [34,54-
56]. Specifically, EBV LMP1 induces expression of miR-
155 [57-59], miR-146a [60-61], miR-29b [62], miR-21[63-
65], miR-10b [66] and miR-34a [67], through NFκB and/
or AP1 signaling axes, but downregulates miR-183-96-182 
cluster through Akt activity [68]. These cellular miRNAs 
play crucial roles in oncogenesis, and some oncogenic vi-
ruses encode their viral orthologs. For example, KSHV 
[69-70] and Marek’s disease virus [71], encode functional 
orthologs of miR-155. EBV, instead, has evolved to devel-
op sophisticated strategies to regulate their expression so 
as to minimize the total numbers of its products. For some 
other cellular crucial miRNAs in oncogenesis, including 
miR-29 and the miR-17/92 cluster, EBV BART miRNAs 
are their functional orthologs. 

miR-155 
miR-155 is encoded by a single gene called B-cell inte-

gration cluster (BIC). miR-155 plays important roles in in-
nate immunity [5,72], and is the first identified oncogenic 
miRNA (oncomiR) that is implicated in various types of 
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cancers. miR-155 preferentially targets SHIP1 in immune 
responses [73], and likely in different cancers, as shown 
by us and others [74-76]. Targeted expression of miR-155 
alone in B cells results in the development of B cell malig-
nancies in transgenic mice [77], in addition to an elevated 
level of serum TNFα and increased susceptibility to septic 
shock [78]; whereas targeted expression in mouse bone 
marrow cells causes myeloid neoplasia [79]. The impor-
tance of miR-155 in cancer is also highlighted by the fact 
that at least two oncogenic herpesviruses, KSHV [69-70] 
and Marek’s disease virus (MDV) [71], encode functional 
orthologs of miR-155.

EBV does not encode miR-155 ortholog; instead, 
miR-155 is induced by LMP1 through NFκB and AP1 and 
also through IRF4 as shown by us [74]. In addition, miR-
155 is also induced by LMP2A [80]. miR-155 induction 
in EBV latency not only stabilizes latency status [81], but 
also likely contributes to EBV oncogenesis by targeting 
SHIP [74]. 

miR-146a
Like miR-155, miR-146a is also encoded by a single 

gene, and its expression can also be induced by NFκB 
downstream of TNFα, IL1β, and TLR signaling path-
ways in immune responses [8]. In turn, miR-146a targets 
IRAK1, IRAK2, and TRAF6, components critical for these 
signaling pathways, and therefore controls these pathways 
through a negative feedback regulatory loop [82]. 
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miR-146a overexpression has been found in papillary 
thyroid carcinoma and cervical cancer, but acts as a tumor 
suppressor in hormone-refractory prostate carcinoma by 
targeting ROCK1 that is a kinase critical for hormone-re-
fractory prostate carcinoma cell transformation [83], and 
also is a potential tumor suppressor in pancreatic cancer 
[84]. miR-146a-deficient mice develop many of the same 
abnormal hematopoietic phenotypes described in a subset 
of myelodysplastic syndrome (MDS) patients who have 
the deletion of a region containing the miR-146a gene. 
Knockdown of miR-146a in mouse hematopoietic stem/
progenitor cells can recapitulate many of these abnormali-
ties [85]. Although it has been reported that miR-146a is 
also induced by LMP1 [60-61,86], and downregulated by 
EBNA2 independently of LMP1[86] , its precise role in 
EBV oncogenesis is unclear. It may be involved in innate 
immune evasion by targeting IRAK1 and TRAF6, two 
crucial mediators of innate immune signaling pathways.

miR-21
Like miR-155 and miR-146a, miR-21 plays important 

roles in innate and adaptive immune responses. It is in-
duced by NFκB and STAT3 downstream of TLR signal-
ing [87], IL6 [88], and TGFβ [89], as well as upregulated 
in autoimmune diseases such as multiple sclerosis [90]. 
miR-21 is also induced by type I IFNs [91], and in turn, 
inhibits IFN production by targeting IRAK1 and MyD88 
during HCV infection [92]. PDCD4, an important player 
in inflammatory responses, is a direct target for miR-21 in 
macrophages [87]. 
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miR-21 is the only oncogenic miRNA overexpressed 
in most tumor types tested so far, and is deemed a cancer 
biomarker [93]. Interestingly, like miR-155 and miR-146a, 
miR-21 is upregulated by NFκB in EBV- and HTLV1-
transformed cells [64,94]. Mature miR-21 is also induced 
by EBNA2, probably through post-transcritpional pro-
cessing, and thus may contribute to EBNA2-mediated B 
cell transformation [86]. Targeted expression of miR-21 
in mouse hematopoietic compartment induces pre-B cell 
lymphoma. In contrast, loss of miR-21 results in massive 
apoptosis, complete tumor regression and a 100% survival 
rate [95]. pTEN is a key target for miR-21 in cancer [95-
98]. Targeting pTEN by miR-21 results in elevated Akt 
and NFκB activation [99]. In addition, miR-21 plays its 
oncogenic role by targeting TPM1 (tumor suppressor pro-
tein tropomyosin 1) [100] and Wnt1[101] , amongst oth-
ers [99].

miR-29
The miR-29 family includes miR-29a, -b, and c. They 

can function as either oncomiRs or tumor suppressors, 
depending on the contexts [102]. miR-29 also suppresses 
HIV replication by targeting Nef [103]. As a tumor sup-
pressor, miR-29 can induce p53-mediated apoptosis by 
targeting p85α, which is a subunit of PI3K for Akt acti-
vation. Activated Akt targets MDM2 for degradation and 
then p53 is activated [104] . miR-29 is overexpressed in 
chronic lymphocytic leukemias (CLLs), resembling to 
bovine leukemia virus (BLV)-associated tumors in phe-
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notype in that BLV encodes a miR-29 ortholog miR-B4 
[105]. When overexpressed in mouse B cells, miR-29 
causes CLL-like B lymphoma [106]. 

In the setting of EBV latency, LMP1 induces expres-
sion of miR-29b that targets the oncogene TCL1, and 
therefore likely functions as a tumor suppressor [62]. 
In addition to induce miR-29b expression, EBV miR-
BART1-3p, together with rLCV miR-rL1-6-3p and MDV2 
miR-M21, are encoded with miR-29 seeds [10]. 

miRNAs as Biomarkers and Thera-
peutic Targets of EBV-Associated Can-
cers 

miRNAs are promising cancer biomarkers because of 
their significantly aberrant expression, the lack of com-
plex modifications compared to mRNAs and proteins, 
and their presence as circulating miRNAs in body fluid 
[107]. It is notable that, however, some viral and cellular 
miRNAs have different expression levels between EBV-
associated tumors and cell culture, and between pre-
cursors and mature miRNAs through transcriptional or 
post-transcriptional mechanisms [53,108-110]. A single 
miRNA can serve as a cancer biomarker itself or in com-
bination with other miRNAs and traditional biomarkers. 
In this light, a unique miRNA expression pattern may be 
used as biomarker for a given disease. 

As to EBV, circulating EBV miR-BART7 and miR-
BART13 are overexpressed in NPC patients and down-
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regulated after radiotherapy, and therefore they may be 
useful for diagnosis of NPC and prediction of treatment 
efficacy [111]. Circulating miR-BART17-5p, combined 
with BamHI-W DNA, may serve as post-treatment bio-
markers for NPC [112]. Overexpression of miR-BART20-
5p is associated with poor prognosis of EBV+ gastric can-
cer [113]. Except these viral miRNAs, the cellular miRNA, 
miR-10a-5p, has been identified as a predictive biomarker 
for EBV-associated endemic Burkitt’s lymphoma [114].

In terms of miRNA therapeutic applications, under-
standing their exact roles in, and their biological relevance 
to, a given disease setting is the base for developing thera-
peutic strategies. The cellular miR-122 is the only one so 
far that is being clinically used to hinder HCV replication 
[115]. The lack of conservation of herpesvirus miRNA 
sequences and their distinct tagets in different cells raise 
difficulties for researchers to study their functional rela-
vance. Nevertheless, promising progresses have also been 
made on some miRNAs in regard to their applications to 
treat NPC in combination with traditional strategies, in-
cluding miR-1, miR-29c, miR-34a, amongst others [55].
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